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a b s t r a c t

Human cognition performs granulation of the seemingly homogeneous temporal sequences of perceptual
experiences into meaningful and comprehensible chunks of fuzzy concepts and behaviors. These
knowledge granules are stored and consequently accessed during action selection and decisions. A
dynamical approach is presented here to interpret experimental findings using K (Katchalsky) models.
In the K model, meaningful knowledge is repetitiously created and processed in the form of sequences of
oscillatory patterns of neural activity distributed across space and time. These patterns are not rigid but
flexible and intermittent; soon after they arise through phase transitions, they dissipate. Computational
implementations demonstrate the operation of the model based on the principles of intentional brain
dynamics.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Various brain regions contribute to the decision making
processes, including the basal ganglia, parietal cortex, orbitofrontal
cortex and prefrontal cortex (Dayan & Daw, 2008; Frank &
Claus, 2006; Levine, in this issue). The role of top–down and
bottom–up approaches in anticipatory control has been analyzed,
and onset of synchronized oscillations in prefrontal cortex on
attention focus has been demonstrated (Liang & Wang, 2003).
Comprehensive modeling of the interactions between large-
scale brain areas is beyond our reach at present; however,
relatively simple modular models have been proposed, which
reflect basic properties observed in experiments, including cortical
and subcortical areas (Houk &Wise, 1995; O’Reilly & Frank, 2006).
Game theory approaches (Von Neumann & Morgenstern, 1944)
have been used to analyze decisionmaking in the prefrontal cortex
(Barraclough, Conroy, & Lee, 2004). The role of the interaction
between prefrontal cortical regions and subcortical areas in
decision making has been studied extensively, including the
amygdala (Bechara, Damasio, Tranel, & Anderson, 1998; Damasio,
Everitt, & Bishop, 1996; Werbos, in this issue). Experiments
indicate that the amygdala, together with the orbitofrontal cortex,
is involved in decision making (Bechara, Damasio, & Damasio,
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2000; Le Doux, 2000; Zhou & Coggins, 2002). The interaction
between entorhinal cortex, amygdala, hippocampal and cortical
areas is studied in Kozma and Freeman (2003) and Kozma and
Muthu (2004). The role of entorhinal cortex in decision making
under the influence of sensory, orientation, andmotivational clues
has been evaluated (Kozma, 2007a).
During the past years, strong evidence has emerged in the

literature about the existence of sudden jumps in measured
cortical activities. Lehmann, Strik, Henggeler, Koenig, and Koukkou
(1998) identify ‘‘micro-states’’ in brain activity and jumps between
them. Rapid switches in EEG activity have been described
(Fingelkurts & Fingelkurts, 2001, 2004; Freeman, Burke, & Holmes,
2003; Stam, Breakspear, & Cappellen, 2003). Synchronization
of neural electrical activity while completing cognitive tasks
has been studied in various animals, e.g., in cats, rabbits,
gerbils, and macaque monkeys (Barrie, Freeman, & Lenhart, 1996;
Bressler, 2003; Ohl, Scheich, & Freeman, 2001; Ohl, Deliano,
Scheich et al., 2003). Behavioral correlates of transitions between
metastable cortical states have been identified (Bressler & Kelso,
2001; Bressler, 2002; Kelso, 1995; Kelso & Engstrom, 2006). A
comprehensive overview of stability,metastability, and transitions
in brain activity is given in Le Van Quyen, Boucher et al. (2001) and
Werner (2007). Chaotic itinerancy (Tsuda, 2001) is a mathematical
theory that describes the trajectory of a dynamical system, which
intermittently visits ‘‘attractor ruins’’ as it traverses across the
landscape. A popular approach to consciousness is based on the
global workspace theory (Baars, 1988). There is striking similarity
between the spatio-temporal features of cortical phase transitions
and the act of conscious broadcast in global workspace theory.
Therefore, it can be hypothesized that a large part of cortical
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phase transitions are in fact manifestations of conscious broadcast
events.
The experimental findings have been interpreted using dy-

namic systems theory (Freeman et al., 2003; Freeman, 2005).
According to dynamical system models of neural dynamics, the
brain’s basal state is a high-dimensional/chaotic attractor, and
cognition is described through a trajectory moving across a
convoluted attractor landscape like a high-dimensional Lorenz
butterfly with multiple wings corresponding to memory patterns
(Korn & Faure, 2003; Skarda & Freeman, 1987). In the basal
mode, the system is in a high-dimensional dynamic state, and the
trajectory of the system has direct and immediate access to all
lower-dimensional attractors comprising the landscape. When an
input pattern is presented to the model, the oscillations undergo a
phase transition and the trajectory is switched to a localized, low-
dimensional memory wing. The system stays in this wing briefly
as it produces a spatial amplitude modulation (AM) activity pat-
tern of a phase-locked oscillation with its frequency modulated
(FM) in the gamma range. As the external and internal conditions
change, the phase locking dissipates after 3–5 cycles, and the sys-
tem leaves thiswing and returns to high-dimensional space. It then
jumps to another wing as it explores the complex attractor land-
scape while the system evolves. Intensive studies are conducted
towards the interpretation of the content of the metastable AM
patterns separated by brief transitory periods of phase transitions.
The available physiological data are very complex, so that ad-
vanced machine learning and feature extraction tools are needed,
such as information-theoretic learning, support vector machines,
kernelmethods (Bishop, 2006; Haykin, 1998; Shawe-Taylor & Cris-
tianini, 2004; Vapnik, 1998; Zhang, in this issue). These tools open
away for better understanding the underlying neurodynamics pro-
cesses (Perlovsky & Kozma, 2007).
In this work, the biologically-inspired KIV model is described

to study intentional dynamics, which phase-locks various sensory
and motor cortical areas with the limbic system. It is shown that
at the highest level, KIV manifests key features of neurophysiolog-
ical correlates of intentional behaviors. Mesoscopic neurodynam-
ics is a crucial component of our approach to neural organization,
dynamics, and goal-oriented function. It means intermediate spa-
tial organization between microscopic (cellular) and macroscopic
(intracortical) scales. At the same time, it is manifested through
intermediate temporal effects in the order of 10–50ms. Intermedi-
ate spatial and temporal models present a very challengingmathe-
matical problem and can lead to resonance effects, see, e.g. Kozma,
1998; Kozma & Freeman, 2001. In this paper, two types of meso-
scopic models are described: (i) neuropercolation based on dis-
crete random graph theory; (ii) ordinary differential equations
in continuous space–time approach. Mesoscopic neurodynamics
exhibits intermittent phase transitions originating at the micro-
scopic level, leading to frequent switches between metastable AM
patterns of activations. This very property of self-organized
intermittent spatio-temporal oscillatory dynamics observed in
mesoscopic models is the unique property that will be used in de-
veloping mathematical and computational systems that mimic bi-
ological intentionality. These observations are used for designing
multi-sensory inference and decision making systems.

2. High-level view on neurodynamics — Intentionality and
goal-directedness

2.1. Neural correlates of higher cognition measured by EEG

Observing and identifying cortical AM patterns in vivo at
controlled conditions confirmed that they convey cognitively
significant information (Barrie et al., 1996; Makeig, Debener,
Onton, & Delorme, 2004). Phase transitions correspond to the
acts of identification and decision making, while the given AM
pattern manifests the outcome of the decision. Evidence from
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Fig. 1. The raster plot shows the successive differences of the unwrapped analytic
phase, changing with time (left abscissa) and channel (right abscissa). When the
jumps or dips are aligned with the right abscissa, they occur with nearly zero lags
among them (Freeman et al., 2003).

AM pattern analysis during tasks requiring sensory discrimination
demonstrates the potential existence of multiple modes in
neocortex that are mutually exclusive and cannot interact when
accessed, because the trajectory can only visit one basin of
attraction at a time.
In Fig. 1, results of scalp EEG recordings are shown with human

volunteers (Freeman et al., 2003). Analytic phase differences are
shown for EEG signals evaluated in the beta band (12–30 Hz) with
3 mm spacing of 64 electrodes in a linear 189 mm array digitized
at 1 ms intervals. The perceptual content is found in the collection
of wave amplitudes measured during phase plateaus of human
scalp EEG (Ruiz, Li, Gonzales, & Freeman, in press). The EEG shows
that neocortex processes information in frames like a cinema. The
phase jumps show the shutter. The resemblance across a 33-fold
difference in width of the zones of coordinated activity reveals
the self-similarity of the global dynamics that is required to form
multi-sensory percepts by integrating the activity patterns of all
sensory and limbic cortices across the beta and gamma spectral
ranges in the formation of Gestalts (Freeman, 2007).

2.2. Principles of neurodynamics — Hierarchy of K sets

A hierarchical approach to spatio-temporal neurodynamics,
based on K sets, was proposed by Freeman in the 70s, named in the
honor of Aharon Katchalsky, an early pioneer of neural dynamics
(Freeman, 1975). K sets consist of a hierarchy of components
with increasing complexity, including K0, KI, KII, KIII, KIV, and
KV systems. They model the hierarchy of the brain starting from
the mm scale to the complete hemisphere. Today, K sets are used
in a wide range of applications, including classification (Chang,
Freeman, & Burke, 1998; Freeman, Kozma, &Werbos, 2001), image
recognition (Li, Lou, Wang, Li, & Freeman, 2006), time series
prediction (Beliaev & Kozma, 2007), and robot navigation (Harter
& Kozma, 2005; Voicu, Kozma, Wong, & Freeman, 2004). Recent
developments include KIV sets for sensor fusion (Kozma & Tunstel,
2005; Kozma & Muthu, 2004), and autonomous control (Kozma,
2007a; Kozma et al., 2008).
The hierarchical K model based approach is summarized in the

10 ‘‘Building Blocks’’ of neurodynamics (Freeman, 1975, 2001):
1. Non-zero point attractor generated by a state transition of an
excitatory population starting from a point attractor with zero
activity. This is the function of the KI set.

2. Emergence of damped oscillation through negative feedback
between excitatory and inhibitory neural populations. This is
the feature that controls the beta–gamma carrier frequency
range and it is achieved by KII having low feedback gain.

Please cite this article in press as: Kozma, R., & Freeman, W. J. The KIV model of intentional dynamics and decision making. Neural Networks (2009),
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3. State transition from a point attractor to a limit cycle
attractor that regulates steady state oscillation of a mixed
excitatory–inhibitory KII cortical population. It is achieved by
KII with sufficiently high feedback gain.

4. The genesis of broad-spectral, aperiodic/chaotic oscillations
as background activity by combined negative and positive
feedback among several KII populations; achieved by coupling
KII oscillators with incommensurate frequencies.

5. The distributed wave of chaotic dendritic activity that carries
a spatial pattern of amplitude modulation (AM) in KIII.

6. The increase in nonlinear feedback gain that is driven by input
to a mixed population, which results in the destabilization
of the background activity and leads to emergence of an AM
pattern in KIII as the first step in perception.

7. The embodiment of meaning in AM patterns of neural activity
shaped by synaptic interactions that have been modified
through learning in KIII layers.

8. Attenuation ofmicroscopic sensory-driven noise and enhance-
ment of macroscopic AM patterns carrying meaning by diver-
gent–convergent cortical projections in KIV.

9. Gestalt formation and preafference in KIV through the
convergence of external and internal sensory signals activates
the attractor landscapes leading to intentional action.

10. Global integration of frames at the theta rates through
neocortical phase transitions representing high-level cognitive
activity in the KV model.
Principles 1 through 7 have been implemented in KIII models

and applied successfully in various identification and pattern
recognition functions. They serve as the basic steps to create the
conditions for higher cognition. Principles 8 and 9 reflect the
generation of basic intentionality using KIV sets, which is the target
of the present overview. Principle 10 expresses the route to high-
level intentionality and ultimately consciousness, which is not
addressed at present.

2.3. KIV model of intentional behavior

Higher cognition is modeled here using KIV set. KIV is an inten-
tional dynamical system, in whichmeaningful knowledge is contin-
uously created, utilized, and dissipated in the form of sequences
of oscillatory patterns of activity modulated by simulated synaptic
connections previously modified by learning sensory data (Kozma
& Freeman, 2003; Kozma, Freeman, & Erdi, 2003). The oscilla-
tory patterns are often metaphorically viewed as the representa-
tions that are used by generalized symbol systems. However, these
dynamical symbols are not rigid but flexible, and they dissipate
very soon after they appear, within fractions of a second, at theta
rate. They are not passively representational symbols; they are
dynamic enactive symbols that execute brain commands. Inten-
tionality means in the context of the present approach the cyclic
operation of prediction, testing by action, sensing, perceiving,
and assimilation by synaptic modification in associative learning.
Specifically, non-convergent dynamics continually creates new in-
formation in forming new symbols as a source of novel solutions
to complex problems. The intermittent hemisphere-wide synchro-
nization–desynchronization cycle is postulated a neurophysiologi-
cal correlate of intentionality. The proposed dynamical hypothesis
on intentionality goes beyond the basic notion of goal-oriented be-
havior, or sophisticated manipulations with symbolic representa-
tions to achieve given goals. Intentionality is endogenously rooted
in the agent by reinforcement learning, and it cannot be implanted
into it from outside by any external agency.
Fig. 2 illustrates the structure of a KIV model (Kozma &

Freeman, 2003). The connections are shown as bidirectional, but
they are not reciprocal. Three types of sensory signals can be
distinguished. Each of these sensory signals provides stimulus
to a given part of the brain, namely the sensory cortices,
midline forebrain, and the hippocampal formation, respectively.
The corresponding types of sensory signals are listed below:

(i) exteroceptors ; (ii) interoceptors, including proprioception from
the musculoskeletal system and interoception from the vital
organs including the cardiovascular and respiratory systems;
(iii) orientation signals. The convergence location and output are
provided by the amygdala. KIV has a number ofmajor components,
which correspond to functions answering the following key
questions: ‘‘What?’’ — using sensory cortices, ‘‘Where?’’ — By
the hippocampal model,‘‘When?’’—through dynamic encoding of
sensory data, and ‘‘Why?’’ — using the internal motivation and
valence system linked to the amygdala and entorhinal cortex (not
shown in Fig. 2). In the present systems, such components are
incorporated by design, to address the required functionality. We
model the decision making by integrating all the signals from the
cortical and hippocampal units into the amygdala.

2.4. Learning in KIV models

In order to use the arrays of K sets as novel computational
and memory devices, we need to study the effect of learning
on the system dynamics. In particular, we need to describe the
role of learning and adaptation on phase transitions. The system
memory is defined as the collection of basins and attractor wings,
and a recall is the induction by a state transition of a spatio-
temporal gamma oscillation with a spatial AM pattern. Three
learning processes are defined (Kozma & Freeman, 2001):
• Hebbian reinforcement learning of stimulus patterns; this is fast
and irreversible, always pair-wise between neurons.
• Habituation of background activity; slow, cumulative, and
reversible, and only at the output synapses of neurons activated
without reinforcement.
• Normalization of nodal activities to maintain overall stability;
very long-range optimization outside local on-line time and
extending deeply into real time.

Various learning processes exist in a subtle balance and their
relative importance changes at various stages of the memory
process. Habituation is an automatic process in every primary
sensory area that serves to screen out stimuli that are irrelevant,
confusing, ambiguous or otherwise unwanted. It constitutes an
adaptive filter that serves to identify ‘‘signals’’ and then to
reduce the impact of environmental noise that is continuous and
uninformative. It is continually up-dated in a form of learning,
and it can be abruptly canceled (‘‘dis-habituation’’) by novel
stimuli and almost as quickly reinstituted (‘‘re-habituation’’) if
the novel stimuli are not reinforced. It is a cortical process that
does not occur at the level of sensory receptors. It is modeled
by incremental weight decay that decreases the sensitivity to
stimuli that are not designated as desired or significant by
accompanying reinforcement. Learning effects form a Hebbian
nerve cell assembly for each class of stimulus that a subject can
discriminate, and they contribute to the formation of convoluted
attractor basins, which establish generalization gradients and
facilitate phase transitions in the dynamical model at the edge of
chaotic activity.

3. Modeling mesoscopic neural populations

3.1. Neuropercolation approach to population dynamics

Cognitive models of brain functions can utilize various ap-
proaches, e.g., a continuum description of space–time dynam-
ics based on differential equations, or an alternative discrete
approach using randomgraph theory. Neuropercolation is a graph-
theoretical approach for neurodynamics (Kozma, Puljic, Balis-
ter et al., 2005). Neuropercolation is a generalization of cellular
automata, Hopfield memory arrays and Conway’s game of life
(Berlekamp, 1982;Hopfield, 1982), bymerging the concepts of ran-
dom graph theory (Bollobas, 2001; Erdos & Renyi, 1960) and non-
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Fig. 2. KIV model of the brain, which consists of three major components: cortex, hippocampal formation, and midline forebrain, shown by green, blue, and yellow in the
case of color reproduction. The amygdala striatum and brain stem are at the bottom of the figure and they provide link to the externalmotor part of the limbic system (Kozma
et al., 2007). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

local interactions represented by axonal connections, in the style
of neural networks. It bridges the gap between Ising-type models
and mean field approaches (Kozma et al., 2005; Kozma, 2007b).
Neuropercolation is a class of probabilistic cellular automata

defined as follows (Balister, Bollobas, & Kozma, 2006).We consider
the 2-dimensional discrete torus Z2n of size n × n as a model of
the cortical sheet. For x ∈ Z2n , let ‖x‖ = |x1| + |x2|, where x =
(x1, x2) and each xi each is chosen to be at most n/2 in modulus.
Let 1 ≤ a < n/2 and A = {x ∈ Z2n : ||x|| ≤ a}. Each site x can
be active or inactive, and there is a rule to update the states of the
sites iteratively. The activation of site x will be influenced by the
sites in the domain x + A, which is also called the a-ball around
x. We introduce the arousal function r and the depression function
defined over all subsets of A as follows: j : P(A) → [0, 1] and r:
P(A)→ [0, 1]. At time 0, the sites are active with probability p. At
each time step t , every site is updated simultaneously according to
the following rule. Write St for the set of active sites at time t and
set

B = [St ∩ (A+ x)] − −x = (St − x) ∩ A.

If x 6∈ St (i.e., 0 6∈ B) then xwill become active with probability j(B),
and if x ∈ St (i.e., 0 ∈ B) then xwill be deactivated with probability
r(B).
The family of random cellular automata is much richer than

the family of bootstrap percolations. In particular, if all the
probabilities are 0 or 1 we recover the theory of deterministic
cellular automata, such as that of Conway’s Game of Life. These
models are known to be capable of extremely complex behavior.
On the other hand, if we choose j(B), r(B) 6= 0, 1 for all B then there
is no need for an initial probability p, and with a suitable choice
of the arousal and depression functions, we may achieve that the
system hovers around a certain density of active sites. As a simple
example of models with local neighborhoods of 5 nodes (a = 1)
and

j(B) = {p, if |A ∩ B| < 3; 1− p otherwise},
r(B) = {p, if |A ∩ B| > 2; 1− p otherwise}.

In this case the site is active with probability p if at most
2 of the four neighbors and the site itself are active at time

t − 1. Otherwise the site is inactive with this probability. As
we vary p this model shows a phase transition similar to that
seen in the Ising model. Results on neuropercolation concern
conditions of sustained background activity of neural populations,
and conditions leading to band-passed oscillatory spatio-temporal
patterns in interacting excitatory–inhibitory populations (Balister
et al., 2006; Kozma et al., 2005; Puljic & Kozma, 2008). These
models correspond to the hierarchy of K models from K0 up to
KIII, while present and future studies aim at neuropercolation
implementations of KIV models. Neuropercolation incorporates
the following major conditions inferred based neurobiological
motivation: interaction with noise, long axon effects, inhibitory
effects (Kozma, 2007b).
Interaction with noise: The dynamics of interacting neural

populations are inherently non-deterministic due to dendritic
noise and other random effects in the nervous tissue and external
noise acting on the population. This is expressed by Szentagothai
(1978, 1990): ‘‘Whenever he is looking at any piece of neural
tissue, the investigator becomes immediately confronted with
the choice between two conflicting issues: the question of how
intricate wiring of the neuropil is strictly predetermined by some
genetically prescribed blueprint, and how much freedom is left to
chance within some framework of statistical probabilities or some
secondary mechanism of trial and error, or selecting connections
according to necessities or the individual history of the animal’’.
Neuropercolation includes randomness in the evolution rules,
and it is described in random cellular automata and in other
models. Randomness plays a crucial role in neuropercolation
models. The situation resembles the case of stochastic resonance
(Bulsara & Gammaitoni, 1996; Kosko, 2006; Moss & Pei, 1995). An
important difference from chaotic resonance is the more intimate
relationship between noise and the system dynamics, due to the
excitable nature of the neuropil (Kozma & Freeman, 2001; Kozma
et al., 2003).
Long axon effects: Neural populations stem ontogenetically

in embryos from aggregates of neurons that grow axons and
dendrites and form synaptic connections of steadily increasing
density. At some threshold the density allows neurons to transmit
more pulses than they receive, so that an aggregate undergoes a

Please cite this article in press as: Kozma, R., & Freeman, W. J. The KIV model of intentional dynamics and decision making. Neural Networks (2009),
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state transition from a zero point attractor to a non-zero point
attractor, thereby becoming a population. In neural populations,
most of the connections are short, but there are a relatively few
long-range connections mediated by long axons (Das & Gilbert,
1995). The effects of long-range axons are related to small-
world phenomena (Watts & Strogatz, 1998) and it is part of the
neuropercolation model.
Inhibition: The cortical tissue contains two basic types of

interactions: excitatory and inhibitory ones. Inhibition contributes
to the emergence of sustained narrow-band oscillatory behavior
in the neural tissue (Aradi, Barna, & Erdi, 1995; Arbib, Erdi, &
Szentagothai, 1997). Inhibition is key in various brain structures;
e.g., hippocampal interneurons are almost exclusively inhibitory
(Freund & Buzsaki, 1996). Inhibition is inherent in cortical tissues
and it controls stability and metastability observed in brain
behaviors (Kelso, 1995; Kelso & Engstrom, 2006). Inhibitory effects
are part of neuropercolation models.
In local models, a rigorous proof has been found of the fact

that for extremely small noise levels the model spends a long
time in either low- or high-density configurations before the very
rapid transition to the other state (Balister et al., 2006). Fairly good
bounds have been found on the very long time the model spends
in the two essentially stable states and on the comparatively very
short time it takes to cross from one essentially stable state to
another. The behavior of the lattice models differs from that in
the mean field model in the manner of these transitions. For
the mean field model, transitions typically occur when random
density fluctuations result in about one half of the states being
active.When this occurs, themodel passes through a configuration
which is essentially symmetric between the low- and high-density
configurations, and is equally likely then to progress to either one.
Mean fieldmodels have at least one stable fixed point and can have
several stable and unstable fixed points, limit cycles, and chaotic
oscillations. In the lattice models, certain configurations with very
low density can have a large probability of leading to the high-
density configuration, and transitions from low to high density
typically occur via one of these non-symmetric configurations. As
opposed to mean field models, analytical solution is not available
for the local and mixed local mean field models, in which case
computer simulations are used to study these systems. Finite size
scaling theory of statistical physics is applied to characterize the
observed critical behavior which indicates the presence of a weak-
Ising universality class (Puljic & Kozma, 2005, 2008).

3.2. ODE based approach to neural populations

KIV models have been implemented using the solution of a
set of ordinary differential equations with distributed coefficients
using the Runge–Kutta method. The model solves the differential
equations using a fixed time step of 0.5 ms, which gives sufficient
accuracy for the studied neural processes (Freeman et al., 2001).
A Matlab Neurodynamics Toolbox package with the hierarchy of K
sets from KO up to KIII, is available on-line at the Computational
NeuroDynamics Lab site (Beliaev, Ilin, & Kozma, 2005).
The basic K-unit, called K0 set, models a neuron population of

about 104 neurons. Its dynamics are governed by a second order
ordinary differential equation (Freeman, 1975):

(a ∗ b)
d2P(t)
d2t

+ (a+ b)
dP(t)
dt
+ P(t) = F(t). (1)

Here a and b are biologically determined time constants; a = 0.22,
b = 0.72. P(t) denotes the activation of the node as function of
time; F(t) is the summed activation from neighbor nodes and any
external input. The K0 set has a weighted input and an asymptotic

sigmoid function for the output. The sigmoid functionQ (x) is given
by the equation:

Q (x) = q ∗
{
1− exp

(
−

1
q(ex − 1)

)}
(2)

where q = 5, is the parameter specifying the slope and
maximal asymptote of the curve. Coupling two or more K0 sets
with excitatory connections, we get a KI. The next step in the
hierarchy is the KII model. KII is a double layer of excitatory
and inhibitory units. In the simplest architecture there are 4
nodes: two excitatory, denoted e, and two inhibitory, denoted
i, nodes. The excitatory and inhibitory nodes in a KII set are
arranged in corresponding layers, so KII has a double-layer
structure. Given proper initial conditions, this model may produce
sustained periodic oscillations the frequency and magnitude of
which are determined by the interconnection weights between
units. KIII consists of three double layers of KII sets that are
connected with no-delay feed-forward connections and delayed
feed-back connections. Properly tunedKIIImodels typically exhibit
non-convergent chaotic behavior due to the competition of KII
oscillators. KIII is the model of sensory cortices. Finally, several
KIII and/or KII sets form the multi-sensory KIV set, as shown in
Fig. 2. KIV is capable of exhibiting intermittent spatio-temporal
synchronization, as the result of interacting chaotic KIII and KII
oscillatory units.
The operation of the KIV model has three major phases:

learning, labeling and control (Kozma et al., 2003). At the learning
phase, the input data are presented to the system using a
predefined strategy. In the presence of positive reinforcement
signal, learning occurs in the KIII unit. We apply positive
reinforcement when KIV produces a correct decision, i.e., it moves
towards the specified goal state. On the other hand, KIII learning
can use negative reinforcement when the sensory data indicate
undesirable conditions. Reinforcement learning is implemented
using the Hebbian correlation rule in KIII units. During the labeling
phase no learning takes place. Instead, KIV collects reference
activation patterns from the decision module. Typically a handful
of possible activation patterns are considered, corresponding to
potential actions. At the control phase, these reference patterns are
used to make decision on the direction of the next step.

4. Macroscopic generation of large-scale phase transitions

4.1. Phase transitions in neuropercolation

Phase transitions play a central role in our cognition model,
embodying the idea of an emergent computation that progresses
by a staccato trajectory through the high-dimensional attractor
space that constitutes the memory/knowledge store of the brain.
During phase transitions, mesoscopic dynamic structures of
cooperative activity dissolve, and the component neurons enter
a state of uniform randomness that is symmetric. This disorder is
due to the precipitous reduction in cooperative activity, the order
parameter,which ismanifested by a suddendecrease in brainwave
amplitude. This indicates spontaneous symmetry breaking near
the critical state.
Several key factors have been identified that determine

phase transitions in the neuropercolation models, including:
endogenously generated noise, structure and extent of non-
locality of neural populations (long axons), sparseness of inhibitory
links. The resulting tools have been used to study the intricate
complexity of various dynamic behaviors of neural populations
(Kozma, Puljic, & Perlovsky, 2009; Puljic & Kozma, 2005).
Neuropercolation gives a mathematical framework for systematic
studies of phase transitions in neural populations.
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Fig. 3. Intermittent synchronization in the neuropercolation model as the function of the system noise level; the noise changes from 13%, 15%, and 16% on figures (a), (b),
and (c), respectively. Intermittent synchronization–desynchronization is seen at critical noise level 15% in figure (b) (Kozma et al., 2009).

The behavior of the neuropercolation model with excitatory
and inhibitory nodes is illustrated on Fig. 3. Due to the negative
feedback, these models can generate sustained limit cycle and
non-periodic oscillations, similar to the behavior observed in
models based on coupled ODEs. At certain critical parameter
values, the behavior of the system changes suddenly, which is
described as a phase transition (Kozma et al., 2005). Subcritical
and supercritical behaviors are separated by critical parameter
combinations. The spatial distribution of synchronization shows
that the subcritical regime is characterized by rather uniform
synchronization patterns. On the other hand, the supercritical
regime shows high-amplitude, unstructured oscillations.
Near critical parameters, intermittent oscillations emerge,

i.e., relatively quiet periods of weak oscillations followed by
periods of intensive oscillations in the synchronization. This type
of behavior is observed qualitatively in EEG and ECoG arrays as
illustrated in Fig. 1, and it is postulated as a neurodynamic correlate
of intentionality. The degree of sparseness of connectivity to and
from inhibitory populations acts as a control parameter, in addition
to the system noise level and the rewiring ratio. The system shown
in Fig. 3(a)–(c) has a few % of connectivity between excitatory and
inhibitory units.

4.2. Simulation of phase transitions in ODE models

In a set of experiments, we used a simulated autonomous agent
moving in a 2-dimensional environment. During itsmovement, the
agent continuously receives two types of sensory data: (1) distance
to obstacles; (2) and orientation toward some preset goal location.
KIVmakes decisions about its actions toward the goal. The sensory-
control mechanism of the system is a simple KIV set using two
sensory channels (KIII sets) and the amygdala as the convergence
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Fig. 4. Illustration of simulations with a KIV model of the hemisphere; phase
differences are shown in the entorhinal cortex across time and space (80 spatial
nodes). The intermittent desynchronization periods for a large part of the array are
clearly seen (Kozma & Myers, 2005).

region for decisions (KII set) (Kozma & Myers, 2005; Voicu et al.,
2004). We analyze the activation of the amygdala and find sudden
changes in its spatio-temporal dynamics, identified as phase
transitions.
Results show the existence of brief periods with sudden

changes in the simulated EEG activity, which are in qualitative
agreement with properties of metastable AM patterns observed
in cortical EEG data. Cognitive processing utilizes global phase
jumps to cortico-cortical communication across the hemisphere
at high speed. An example of the calculated analytical phase
differences is shown on Fig. 4, for a simulated period of 4 s
and amygdala array consisting of 80 nodes. The intermittent
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desynchronization is clearly seen at a rate of several times per
second. These results indicate that the KIV model is indeed a
suitable level of abstraction to grasp essential properties of cortical
phase transitions as evidenced in intracranial and scalp EEG and
MEG data.

5. Discussion

With the advent of the digital computer more than half a
century ago, researchers working in a wide range of scientific
disciplines have obtained an extremely powerful tool to pursue
a deep understanding of natural processes in physical, chemical,
and biological systems. Computers pose a great challenge to
mathematical sciences, as the range of phenomena available for
rigorous mathematical analysis has been enormously expanded,
demanding the development of a new generation of mathematical
tools. Mathematics have progressed intensively in the past
centuries, and it generated outstanding theories originating
from practical needs, and produced powerful tools for the
technical challenges faced by the society. Functional analysis
and calculus lead the way in practical implementations, using
tools of differential equations. Differential equations have a
huge variety of types, such as ordinary and partial, linear and
nonlinear, deterministic and stochastic. They manifest high-
level abstraction and provide excellent examples of the finest
mathematical theories. There is, however, a critical mismatch
between the powerful computational tools and the mathematical
models dominated by the formalism of differential equations.
Mathematical theories provide existence conditions for solutions
in various conditions, but most of the practical problems have
complexity that demand differential equations which do not have
analytic solutions, therefore various approximations are required.
These issues lead to the problem of computational complexity,
which often prevent obtaining practically meaningful solutions
within given constraints. To provide solutions to these complex
problems, there is a need for a breakthrough and paradigm shift
in scientific thinking, in particular in mathematics, comparable to
the one Newton and other outstanding mathematicians of his age
brought about over three hundred years ago. The theory of large-
scale networks and random graphs arguably can provide help in
creating the conditions for the breakthrough.
In contrast to the digital computer memories presently used,

where information is encoded in the form of a string of binary
digits, we propose a novel approach, in which the encoding
is embodied in oscillations of the activity of the memory
nodes. Biological evidence suggests that sensory information
encoded by receptors activates the retrieval of memories in
the form of oscillatory patterns is advantageous compared to
convergent, fixed-point-typememories. These oscillatory patterns
of neural activity serve as enactive symbols in cortical dynamics.
We implement this approach using neurodynamics principles
embodied in Freeman’s K set theory, with the highest level at
present having the KIII and KIV models. The approach is strongly
biologically motivated and based on the observation that humans
and animals can solve difficult identification tasks fast and with
high accuracy based on limited and noisy information.
We have introduced two types of models to implement

the developed the theory of chaotic dynamics of the cerebral
cortex, namely, based on ordinary differential equations and on
random graph theory, respectively. In our approach, these two
implementations played different roles. The differential equation
based approach has produced the high-level KIV model, which
is an example of an operational chaotic memory neural network
demonstrating multi-sensory integration and decision support.
Theoretical and numerical studies of the integrated system yielded
a landscape of aperiodic attractors in the basal state. Each

attractor corresponds to a class of stimuli that the agent was
capable of discriminating. Its basin of attraction corresponds to
its range of generalization. Capture of the trajectory in a higher
dimension confined the agent to a lower dimension. Convergence
to the attractor constituted abstraction from the properties of the
stimulus to the properties of the class. These features solve the
classic psychological problems of generalization and abstraction
over equivalent stimuli.
Neuropercolation theory at present is constrained to the

equivalent of KII and KIII sets. It has been used to build a
solid mathematical theory of dynamical memories using phase
transitions in lattices. When an input pattern is presented to
the model, the aperiodic oscillations undergo a phase transition
and the trajectory is switched to a localized memory wing. In
this framework, the memory and classification process can be
described as percolation phenomenon of percolation through
the neuropil medium. These conclusions are underpinned by
numerous simulations and by precise mathematical results.
The work described here has important implication on inter-

preting neurobiology observations and in computer modeling of
brains and neural networks. However, the breakthrough is so far
mainly in biology and computation. What is now needed, and only
just starting, is the application of mathematical tools to describe
rigorously and understand the behavior of themodel. This can lead
to large-scale models of higher brain functions, which is applica-
ble in computational neuroscience and also in the implementation
of these biological principles in practical artificially intelligent de-
signs.

6. Conclusions

In the past decades, intensive research has been conducted
on emergent behavior in complex systems, including biological
systems, and it is concerned with the very nature of life and in-
telligence. The forefront of research touches the boundaries of hu-
man cognitive functions and consciousness, both in individuals and
in populations of individuals. Methods of discrete mathematics,
probabilistic combinatorics, random graph theory and statistical
physics are proving to be especially useful in analyzing such com-
plex phenomena. The goal of this work is to pose these exciting
problems and to describe several methods available for the de-
scription and analysis of large-scale, complex structures, includ-
ing ordinary differential equations and random graph theory. Our
approach is strongly motivated by biology, and strongly related in
particular to higher brain functions, as cognition and decision.
Complex decision support systems must provide quick re-

sponse to sudden changes in the environment. Data must be pro-
cessed from high-dimensional, heterogeneous sensor resources.
Due to the complexity of the problem, this requires integration of
often contradictory information. The present work is based on re-
cent progress on phase transitions in brains using advanced, high-
resolution spatio-temporal EEG measurements (Freeman et al.,
2003; Freeman, 2007). Large-scale synchronization in the cor-
tex, interrupted intermittently by short periods of desynchro-
nization through phase transitions, is an emergent property of
the cortex as a unified organ. The intermittent synchroniza-
tion–desynchronization cycle is themanifestation of intentionality
as observed in brains.
We designed computational KIV models which manifest dy-

namical behaviors attributed to intentionality in brains. Simulated
EEG signals generated by the KIV model are analyzed and show
striking similarity to biological EEG signals, in particular concern-
ing sudden transitions in spatio-temporal oscillation patterns. The
KIV system integrates the sensor information and provides the
basis for decisionmaking. Decisions aremade between various po-
tential scenarios and actions are executed accordingly. The inte-
grated system cumulatively creates and learns its internal model,
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and adapts it based on the error betweenmodel prediction and ac-
tual data.
The obtained results can be used for designing a multi-purpose

decision support system, in which information is not passively
received and reactively utilized but proactively predicted and
immediately integrated into associative memory. Assigned goals
and guidelines serve as constraints in the knowledge base available
a priorifor the system. The KIVmodel demonstrates this intentional
dynamics and it is a candidate for implementing intentionality and
robust decision making in artificial systems.
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