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Abstract
Abundant new information about signaling pathways in forebrain microcircuits presents many
challenges, and opportunities for discovery, to computational neuroscientists who strive to bridge
from microcircuits to flexible cognition and action. Accurate treatment of microcircuit pathways is
especially critical for creating models that correctly predict the outcomes of candidate neurological
therapies. Recent models are trying to specify how cortical circuits that enable planning and voluntary
actions interact with adaptive sub-cortical microcircuits in the basal ganglia. The basal ganglia are
strongly implicated in reinforcement learning, and in all behavior and cognition over which the frontal
lobes exert flexible control. The persisting role of the basal ganglia shows that ancient vertebrate
designs for motivated action-selection proved adaptable enough to support many “modern”
behavioral innovations, including fluent generation of language and speech. This paper summarizes
how recent models have incorporated realistic representations of microcircuit features, and have
begun to trace their computational implications. Also summarized are recent empirical discoveries
that provide guidance regarding how to formulate the rules for synaptic modification that govern
learning in cortico-striatal pathways. Such efforts are contributing to an emerging synthesis based
on an interlocking set of computational hypotheses regarding cortical interactions with basal ganglia
and thalamic nuclei. These hypotheses specify how specialized microcircuits solve learning and
control problems inherent to the brain's parallel design.
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1. Introduction: Forebrain Circuits for Motivated Action Selection
A recurring task for an animal is to select, among probably-achievable action plans, those action
plans that are more likely to promote its well-being. Thus, the planner needs access to frequently
updated estimates not only of act-outcome probabilities and outcome values, but also of the
achievability of the actions, given both the actor's current state and the context of action.
Because plan evaluation and selection may occur well before the best time to execute a plan,
and because plans take time to execute, new options may be noticed after plan selection, but
before plan completion. Thus, it will often pay to interrupt execution of a plan, perform another,
and then resume or abandon the original plan. Coping well with such complications requires
sophistication in the forebrain circuitry that enables intelligent planning in mammals.

Although the forebrain encompasses the cerebral cortex and BG (basal ganglia), most
treatments of intelligent planning and motivated action–selection validly focus on the frontal
cortex and BG, which are so linked that the BG exert a much stronger and more direct influence
on frontal than on posterior cortex. Indeed, a general rule is that for every planning and action
deficit that results from lesioning a discrete region within frontal cortex, a highly similar deficit
can be produced by lesioning whatever discrete part of the BG circuit projects its output toward
the given region within frontal cortex. This makes sense on the hypothesis, now broadly
supported (Bullock, 2004b), that frontal cortex can represent many potential types of cognitive
and other actions, whereas the BG are responsible for selecting which such actions to execute
(Redgrave et al., 1999a).

Given that selection among action plans is strongly influenced by reinforcement-guided
learning, it is not surprising that the BG play multiple roles in action choice and learning. At
the coarse grain of a tri-partite division of the conventional BG's major input nucleus, the
striatum, it is possible to distinguish: the ventral striatum as important for processing context-
conditioned reward expectations, medial-dorsal striatum for act-outcome expectations, and
lateral-dorsal striatum for habitual condition action relations. Two of these divisions
correspond to an actor-critic architecture (Houk et al., 1995), with learning in both actor and
critic compartments governed in part by reward-prediction errors (RPEs), as expected by
temporal difference (TD) models of reinforcement learning (e.g., Sutton and Barto, 1981).
However, many microcircuit specializations in the BG go beyond or deviate from what was
predicted by actor-critic architectures, or by associated TD models, and their existence raises
the problem of identifying their computational implications. Moreover, Swanson (2000) has
argued for extending the concept of the BG to encompass further regions, such as some nuclei
of the extended amygdala. Any such extension would entail further di erentiation of
architectures and models. In this review, we detail BG microcircuit features, particularly in
striatum, which suggest revisions to actor-critic systems and TD-based learning rules;
summarize some of their computational implications; and note in-depth treatments published
elsewhere. A briefer treatment of these issues appeared in Bullock and Tan (2009).

2. Microcircuit Specializations of the Basal Ganglia, with Computational
Implications
2.1. Dopamine (DA) cell firing provides an asymmetrical representation of positive and
negative reward prediction errors (RPEs)

Dopamine cells are well established as carriers of conditioned (i.e., stimulus- and learning-
history-dependent) RPE signals. That they discharge spontaneously at a constant rate means
that positive rate deviations can signal positive RPEs and negative deviations (dips below
baseline rate) negative RPEs. However, the low value of the baseline firing rate implies a
truncation of negative RPE signals, whereas some DA burst signals to positive RPEs remain
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proportionate. For a general class of dual-path models capable of learning to compute RPEs
in a network including DA cells, Tan et al. (2008) derived a key computational implication of
this asymmetry, which accords with DA signal measurements reported by Tobler et al.
(2005). Tan et al. (2008) showed that this asymmetry so a ects incremental learning that, after
learning, the magnitude of residual phasic DA burst signals generated in response to delivery
of a CS-predicted primary reward will scale with the learned conditional probability of reward
omission (i.e., 1 − p(R*|CS)) given the predictive cue (CS). Note that in their derivation, as in
the data (Tobler et al., 2005), the residual DA burst signal is independent of the absolute reward
magnitude, R*. Yet the dopamine burst signal generated earlier, at CS-onset, reflects both R*
and p(R*|CS). Although the concept of RPEs is helpful for interpreting DA burst signals, any
interpretation that equates the two is incorrect.

2.2. Conditional components of DA signaling go well beyond RPEs, to include most (all?) of
what is expected from behavioral reinforcement research

Behavioral research on what constitutes a reinforcer has shown that, in addition to prototypical
events, such as reward delivery, several other types of events behave as reinforcers, i.e., such
events’ contingent delivery raises the future probability of cue-conditioned instrumental
behavior. Notable cases are: contingent cessation of an aversive input, contingent delivery of
non-aversive stimuli that are novel but not linked to tangible rewards, and contingent access
to the opportunity to engage in a more preferred behavior. Of these, the first two have been
shown to have the effect on DA release that would be expected if such release also mediates
these components of internal reinforcement signaling (see also Ungless et al., 2004). Some
initial computational implications were disclosed using the new striatal microcircuit model of
Tan and Bullock (2008b). The novelty-related DA cell responses present a further challenge
to the classical view of DA signals as pure RPE signals. Such novel events are neither
conventional rewards nor conventional learned predictors of such. Recently, two studies
attempted to address the novelty-related increase in DA release within a formal TD framework.
Kakade and Dayan (2002) assumed that novelty, in itself, provides “reward bonuses” that alter
the sum of experienced reward, thereby interfering with RPE estimations with respect to normal
external rewards. In an attempt to avoid treating novelty as inherently rewarding, Laurent
(2008) presented a TD–based simulation that showed how positive RPEs to novel events (state
entries) might arise from prior reinforcement learning. Although it seems likely that some of
the ability of novel stimuli to generate DA responses results from their similarity to other
reward-predicting cues, the treatment in Laurent (2008) does not appear to be compatible with
the key observation that the novelty-related DA responses habituate as a cue's novelty wanes
(e.g., Red-grave et al., 1999b). Note that novelty wanes as the cognitive system learns correct
predictions in general - not just correct predictions about rewards. Again, DA burst signals
cannot be accurately modeled from a perspective that focuses exclusively on RPEs.

2.3. Sustained dopamine cell signal components reflect uncertainty in reward prediction
Contrary to expectations of TD models, there is evidence (Fiorillo et al., 2003, 2005) that DA
cells exhibit an uncertainty response that is a non-monotonic (inverted-U) function of reward
probability conditional on the cue: when there is a probabilistic relationship between a
predictive cue and a rewarding outcome that may (or may not) occur at a fixed time after cue
onset, then there is a gradual buildup of DA cell firing rate between the cue onset and the
expected time of the uncertain reward. In an attempt to derive an uncertainty response within
the TD framework Niv et al. (2005) proposed that this response emerges as an artifact of
averaging gradually back-propagating RPEs across successive learning trials. To the contrary,
there is no evidence that RPE signals “propagate gradually backwards” in the time between
cue and reward, and the data (Fiorillo et al., 2003, 2005) show that uncertainty responses are
robust on single trials. Uncertainty response appear to be inexplicable using a standard TD
model.
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More recently, Tan and Bullock (2008b,c) proposed that this signal component may be
computed by a surprisingly common but rarely simulated property of neurons: co-release of
more than one chemical signaler from the same axon terminal. They showed that the well-
established, but computationally mysterious, co-release of GABA and the neuropeptide SP
(substance P) from striato-nigral terminals can explain robust single trial computation of
uncertainty responses, which are a non-monotonic function of the conditional probability of a
reward (R*) given a cue (CS), i.e., p(R*|CS). Under broad conditions, such co-release will
produce a signal proportional to p(1 − p), which shows a peak when uncertainty is maximal,
i.e., when p(R*|CS) = .5. Although the discoverers of this DA signal component aptly proposed
that it may be important to explain habitual gambling, Tan and Bullock (2008b) noted that the
broadcast of the DA signal to many brain sites beyond the dorsolateral striatum implies that it
can function much more broadly, and adaptively, to optimize computations in both learning
and performance. Notably, it can promote search for more-predictive representations, and rapid
switching away from no-longer-rewarding alternatives. This functional interpretation of the
role of sustained elevation of DA level and its origins (co-release of SP from striato-nigral
terminals) deviates significantly from simple RPE and TD frameworks, but provides an
explanation for the behavioral effects of SP: injection of SP into the VTA enhances responding
for conditioned rewards in general, but also disrupts reward discrimination processes and
thereby results in (some degree of) response generalization (Placenza et al., 2004; Kelley et
al., 1989).

Such specialized task-dependent firing patterns of the DA cells highlight shortcomings of the
computational models of DA responses that are based on the formal RPE-TD framework. The
genesis and effects of at least three distinct DA cell firing patterns (reward-related bursts,
novelty responses, and sustained uncertainty responses), which exhibit distinct task-
dependencies and operate on di erent time-scales, suggest that DAergic projections to striatal
target structures (in particular, to dorsal striatum) engender computations that go beyond those
envisioned in the RPE hypothesis of DA and the “actor-critic” concept of BG architecture. In
addition, oft-neglected interactions between neurotransmitters, coupled with specialized
microcircuits of the BG, indicate a need to revise common reinforcement rules, and imply a
far-reaching role for the BG, not only in reinforcement learning but also in evaluation, selection,
and execution of actions whose outcomes are contingent on diverse types of factors. We discuss
neurotransmitter interactions next, and BG micro- and macrocircuits in Section 2.7

2.4. Striatal learning, adaptive timing and action-gating are governed by a dopamine-
acetylcholine (DA-ACh) cascade

Early studies of Parkinson's disease emphasized the striatal balance between DA and ACh in
the performance-control functions of the striatum. Because the only sources for striatal ACh
are the giant ACh neurons of the striatum itself, the striatal ACh signal source is anatomically
distinct from the ACh cells whose projections strongly affect attention/arousal as well as
neocortical (Kilgard and Merzenich, 1998) and hippocampal (Hasselmo, 2006) learning.
Striatal ACh neurons are often called TANs (for “tonically active neurons”), and their
functional signaling obeys di erent principles than non-striatal ACh neurons. Like DA cells,
they show learning-dependent changes. Recently Tan and Bullock (2008a) showed, in a
biophysically realistic simulation of TANs, that many of these learning-dependent changes are
attributable to learning-dependent changes in the behavior of DA cells whose axons synapse
on the TANs. Because both DA and ACh modulate learning of cortico-striatal synapses
(Centonze et al., 1999; Pawlak and Kerr, 2008; Wang et al., 2006), it is now clear that both
striatal learning and striatal performance functions are strongly dependent on a DA-ACh
cascade. One immediate implication is that common reinforcement learning rules need
updating to reflect an additional ACh dependency.
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Many common reinforcement learning rules have been solely based on DAergic reward
prediction errors (RPEs). These rules are often used in combination with the concept of direct
and indirect pathways in the BG, (e.g., Albin et al., 1989). According to this scheme, cortical
signals are distributed to two classes of striatal output neurons (medium spiny projection
neurons; MSPN). MSPNs that contain neuropeptide substance-P (SP) and express mainly D1-
type DA receptors (D1-SP-MSPNs hereafter) make direct contact with the BG output nuclei,
forming the direct pathway. MSPNs that contain enkephalin and express mainly D2-type DA
receptors (D2-ENK-MSPNs hereafter) contact BG output nuclei indirectly via relays in the
globus pallidus and STN (subthalamic nucleus), forming the indirect pathway. The direct
pathway is assumed to promote or permit behaviors (the “GO” pathway), whereas the indirect
pathway is assumed to suppress or inhibit behaviors (the “NO-GO” or “STOP” pathway).
Reinforcement learning rules for acquiring behaviors in this simplified system posit a D1
receptor-mediated long-term potentiation (LTP) of cortico-striatal synapses onto the direct
pathway MSPNs, and D2 receptor-mediated long-term depression (LTD) of cortico-striatal
synapses onto the indirect pathway MSPNs. Therefore, phasic DA signals (presumed to reflect
RPEs, but see above) are assumed to drive learning in opposite directions in these two pathways
(e.g. Frank, 2005; Brown et al., 2004). This presumption is based on the earlier observation
that LTD and LTP occur at the synapses between cortical pyramidal cells and striatal MSPNs
(Calabresi et al., 1992a,b), and that dopaminergic D2 (and to some extent, D1) receptors are
crucial for LTD induction (Calabresi et al., 1992a; Kerr and Wickens, 2001), whereas induction
of LTP depends critically on the D1 dopamine receptors (Kerr and Wickens, 2001; Schotanus
and Chergui, 2008). However, as briefly mentioned above, a growing body of evidence
contradicts this simple (yet convenient) learning rule: (1) ACh strongly modulates striatal
plasticity via muscarinic receptors, and (2) both LTD and LTP can occur at synapses onto both
D1-receptor bearing and D2-receptor bearing MSPN classes.

Both in vitro pharmacological and in vivo gene-knockout studies have shown that a pause in
the striatal ACh signal is required for LTD at corticostriatal synapses onto both classes of
MSPNs, whereas baseline or elevated cholinergic transmission is necessary for LTP (Centonze
et al., 1999; Bonsi et al., 2008; Wang et al., 2006). More specifically, Bonsi et al. (2008) showed
that either pharmacologic blockade or genetic deletion of muscarinic M2/M4 receptors, which
serve as autoreceptors on TANs that limit striatal ACh level, impairs LTD but not LTP, and
this impairment is alleviated by either depleting striatal ACh or blocking postsynaptic M1
receptors, which are located on MSPNs. Although LTP induction was una ected by blockade/
deletion of presynaptic M2/M4 autoreceptors, activation of postsynaptic M1 receptors is
necessary for LTP induction. In fact, in the presence of an M1 receptor antagonist, cortical
high-frequency stimulation failed to induce LTP on the recipient MSPNs, even when the
dopamine D2 receptors were blocked concomitantly. This observation suggests that the lack
of LTP induction was not due to interference by the dopamine D2 receptors, and confirms a
role for postsynaptic muscarinic M1 receptors in LTP induction. In summary, it appears that
LTD requires intact presynaptic M2/M4 autoreceptors, or a reduction of the striatal ACh signal
to below-baseline levels, whereas LTP induction requires stimulation of postsynaptic M1 by
baseline or elevated ACh transmission.

Spike timing dependent plasticity (STDP) adds another piece to the puzzle of cortico-striatal
learning. Rules of cortico-striatal STDP for synapses onto MSPNs are of reversed direction
(Fino et al., 2005) compared to those abstracted from observations on other brain structures
(e.g., Sjöström and Nelson, 2002). That is, LTP occurs when a postsynaptic MSPN is activated
before cortical high frequency stimulation (“post-pre” LTP), whereas LTD is observed when
a postsynaptic MSPN is activated after cortical stimulation (“pre-post” LTD). In addition,
while this study by Fino et al. (2005) did not identify MSPN classes, they reported that
bidirectional plasticity (i.e., both LTP and LTD) occurs at the same cortico-striatal synapses,
contradicting the prior views that LTP and LTD occur at synapses onto distinct MSPN classes.
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This latter observation appears to be tightly linked to the role striatal ACh transmission plays
in striatal plasticity. In an attempt to solve the paradox that D2 receptor-dependent LTD is
possible in striatal MSPNs even though all do not express postsynaptic D2 receptors, Wang et
al. (2006) showed that D2 receptor-dependent LTD requires the activation of D2 receptors on
striatal TANs. Indeed, this result nicely complements those in Bonsi et al. (2008): activation
of D2 receptors on striatal TANs slows the autonomous spiking of TANs, reducing ACh
release. Indeed, LTD induction is reinstated by D2 receptor antagonists and by lowering
postsynaptic M1 receptor activation. Thus, D2 receptor-dependence of LTD appears to be
another manifestation of ACh-dependence. These reports cohere with those of Centonze et al.
(1999), and together they suggest that a pause in ACh transmission is permissive of striatal
LTD induction, whereas baseline or elevated ACh level is required for striatal LTP induction.
Reinforcement learning rules based on the presumption of distinct processes operating on di
erent classes of MSPNs will have to be replaced with more realistic learning rules that reflect
these factors.

Studies of interval timing shed more light on the roles of neurotransmitters in reinforcement
learning in the BG. Cortico-striatal circuits have been implicated in the timing of intervals in
the seconds-to-minutes range, and dopaminergic and cholinergic drugs have been reported
(Meck, 1996; Buhusi and Meck, 2005) to advance or delay the transition from low- to high-
rate responding that occurs when an animal expects that action-contingent reward is imminent.
For example, systemic administration of DA agonists (e.g., methamphetamine) causes an
immediate, proportional leftward shift in the distribution of peak response times (i.e., promotes
early responses), whereas DA antagonists cause similar rightward shifts (Meck, 1983, 1986).
In contrast, systemic administration of ACh agonists (such as physostigmine) produces no
immediate effect, but if continued for multiple learning sessions, causes a gradual, proportional
leftward shift in the distribution of peak response times (Meck, 1983; Meck and Church,
1987), whereas ACh antagonists cause rightward shifts. However, a conspicuous di erence
between DAergic and cholinergic involvement in adaptive interval timing is that DAergic drug
effects are compensable by further learning while on the drug. When drug administration is
discontinued, a temporary rebound effect with opposite latency occurs, after which the animal
once again returns to the appropriate response time by further learning (Meck, 1996). The
cholinergic drug effects, however, are not compensable by learning and do not show rebound
effects. Based on these observations, the DA effect has been called a performance or “clock
speed” effect, whereas the ACh effect is interpreted as altering the learned response time, a
“memory effect”. Nevertheless, the normative role of DA and ACh in adaptive interval timing
remains to be explicated. As local interactions within the cortex-BG circuits are disclosed in
all their complexity, realistic models will be vital to compute their mutual implications.

2.5. Striatal acetylcholine release depends on expected value, stimulus salience, and task-
relevance

Beyond its role in striatal learning and interval timing, a further implication of the task-
dependent DA-ACh cascade in the striatum (Tan and Bullock, 2008a, Section 2.4) is its bearing
on striatal performance functions. The dominant response of TANs to a cue-induced burst DA
signal, indicating a positive RPE, is a pause followed by a rebound reactivation. Thus TAN
responses reflect expected value of cues. However, TANs also receive inputs from the thalamic
centromedian and parafascicular (CM-Pf) nuclei, whose responses reflect the novelty, salience,
and task-relevance of cues. One computational implication, partly explicated as a bi-
conditional response surface computed by Tan and Bullock (2008a), is that it is combinations
of a cue's expected value, perceptual salience, and task-relevance that control striatal decision
making, not expected value alone. One immediate consequence of interactions among these
three decision variables for striatal cholinergic signaling is that, not only phasic DA elevations,
but also the gradual build-up of DA during the delay period can influence the striatal decision-
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making process via cholinergic transmission, especially when the stimuli have significant
salience/relevance (Figure 1). Striatal ACh transmission, in turn, exerts direct control on striatal
performance functions via its effects on the MSPNs that target the output nuclei of the basal
ganglia (Wang and McGinty, 1997; Alcantara et al., 2001).

It has been assumed in some computational models that DA facilitates D1-SP-MSPNs while
suppressing D2-ENK-MSPNs (e.g. Gurney et al., 2001a,b; Humpries et al., 2006), and that
ACh has an effect opposite to DA. However, data show a more complicated picture. ACh
stabilizes the prevailing MSPN state by modulating several intrinsic currents (Howe and
Surmeier, 1995; Gabel and Nisenbaum, 1999; Surmeier et al., 2005). DA, in contrast, has a
state-dependent effect on MSPNs (Flores-Hernandez et al., 2002; Gruber et al., 2003): it
facilitates MSPN responses when MSPNs are in a depolarized (up) state while depressing
MSPNs in a hyperpolarized (down) state. Therefore, it is probable that the response of striatal
MSPNs to a given corticostriatal glutamatergic input in vivo strongly depends on the patterning
within the cascading DA-ACh signal (cf. Tan and Bullock, 2008a, see also Section 2.4) in the
striatum. This contrasts to the common presumptions of the actor-critic architecture that (1)
phasic DA level in the striatum has only a direct effect on striatal processing by exciting or
inhibiting striatal output neurons (e.g. Frank, 2005; Frank and O'Reilly, 2006), and (2) striatal
action-gating is a simple linear or sigmoidal function of expected reward value. Contrary to
these ideas, emergent interactions among various neurotransmitters (glutamate, ACh, DA,
GABA) in the striatum provide a much more flexible schema governing striatal performance
functions, involving an interplay among at least the three aforementioned decision variables.
Therefore, performance rules governing the actor component of the actor-critic system also
need modifications to better reflect biological reality.

Whether any decision centers other than striatum can offer similar, to say nothing of better,
sensitivity to multiple desiderata, remains to be seen. One key region to consider is the
orbitofrontal cortex, which has been strongly implicated in the ability to resist framing effects
in decision making (DeMartino et al., 2006), and which has been modeled recently (Dranias
et al., 2008) as a key nexus in an evaluative neuraxis that includes the hypothalamus and
amygdala (cf. also Frank and Claus, 2006).

2.6. Should any nuclei of the extended amygdala be regarded as parts of the striatum?
Swanson (2000) has argued for extending the concept of the BG to encompass further forebrain
nuclei, notably parts of the “extended amygdala” (e.g., de Olmos and Heimer, 1999). Although
some nuclei of the amygdala are far more “cortical” (because the principle neurons are
glutamatergic) than “striatal”, McDonald (2003) suggested a “consensus ... that the lateral
portions of the central nucleus [of the amygdala] are striatal-like (p. 13).” Notably, this region
does not reciprocate its projections from cortex, its principle neurons are GABAergic MSPNs,
and it connects appropriately with midbrain DA neurons. However, from a computational
perspective, dis-analogies are equally important, if they imply that a generic striatal circuit
model cannot be used to simulate processing in CeA (central nucleus of amygdala). Two dis-
analogies may prove to be decisive. First, it is generally believed that the CeA's ACh is supplied
by a erents arriving from basal forebrain (e.g. Schäafer et al., 1988), and not by intrinsic giant
cholinergic neurons (TANs) like those found in “traditional” striatum. Second, although output
from CeA MSPNs is potently regulated by feedforward inhibition (Paré et al., 2003), Zahm et
al. (2003) found that the GABAergic parvalbumin immunoreactive (PV+) fast-spiking
interneurons (FS-INs) characteristic of the striatum are absent from the extended amygdala.
Both di erences would preclude readily adapting any computational model of normal striatum
to simulate information processing in lateral CeA, the “most striatal” part of the amygdala.
That said, it must be admitted that even within the traditional striatum, any model must be
adapted to capture important regional variations.
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2.7. Basal ganglia architecture cannot be captured in feed-forward models: Toward a better
understanding of perseverance, lockout protection, interrupts, switching, and resumption

Most published representations of the BG are so incomplete as to promote severe
underestimations of the computational competence of the BG. That situation is being rectified
by some of the microcircuit models noted above. However, the BG macrocircuit is also much
di erent than typically depicted. First, the typical depiction aptly emphasizes that the cortico-
striatal projection is not reciprocated by a striato-cortical projection. This promotes thinking
of the BG as a structure dominated by a feed-forward flow along the path: cortex-striatum-
pallidumthalamus (and back to cortex). However, as briefly explored in Brown et al. (2004)
(see also Srihasam et al., 2009), and as the more complete circuit in Figure 2B suggests even
more emphatically, the “feedforward BG” conception has little basis. In fact, Brown et al.
(2004) showed the importance of recognizing that many of the cells of origin of the cortico-
striatal projection are not identical to the cells of origin of the cortico-STN projection (see also
Turner and DeLong, 2000). Because of their non-identity, the former class can serve as plan
representations, whereas the latter can be activated only at time of plan execution. The
projection of these cells’ output back into the BG via the STN can then be understood as helping
to lockout competing plans and thereby provide the selected plan enough time to execute - at
least in the general case.

Another conspicuous “feedback flow” is mediated by the projection from GPe back to the
striatum. This projection originates from a subset of GABAergic parvalbumin immunoreactive
(PV+) neurons that are recipients of STN projections, and targets exclusively the PV+ fast-
spiking interneurons (FS-INs) in the striatum (Bevan et al., 1998). Though this feedback
projection has been neglected by most modelers, anatomical considerations shed some light
on its functional implications. Striatal MSPNs and FSINs receive similar plan-related inputs.
The prominence of collaterals between MSPNs has been taken as evidence for a winner-take-
all competition between these output neurons. However, recent data challenged this
assumption, showing that inhibitory communication occurs almost exclusively between di
erent classes of MSPNs, and is not reciprocated (Venance et al., 2004; Taverna et al., 2008,
see also below). Such data and other considerations inspired the proposal that feed-forward
inhibition via striatal FS-INs mediates striatal competition and selection (e.g., Brown et al.,
2004; Bullock and Tan, 2007). Furthermore, striatal FS-INs are coupled via gap-junctions
(Koos and Tepper, 1999; Tepper et al., 2004). Such coupling can promote synchronous activity
of FS-INs, yet preserves topographic organization by allowing cortico-striatal terminals with
restricted distributions to nevertheless recruit FS-INs broadly, allowing robust feedforward
inhibition of striatal MSPNs. Thus, it is conceivable that selection of a plan among several
others is highly sensitive to the relative cortical activation levels and/or corticostriatal synaptic
weights at the moment when one plan wins the competition and activates a corresponding
MSPN despite feedfor-ward inhibition via FS-INs. However, if FS-IN inhibition of the winning
MSPN were to persist during the entire movement interval, the winning MSPN would remain
at risk of falling below its activation threshold, especially if competing cortical plan
representations remain active and are of nearly equal strength. Nevertheless, this “risk” can be
reduced by channel-specific inhibitory feedback from GPe to FS-INs that are in the
neighborhood of the winning MSPN: cortico-subthalamo-pallidal projections can activate cells
of origin of the pallido-striatal feedback pathway, thereby inhibiting the subset of FS-INs that
are recipients of selected cortical plan representations, disinhibiting corresponding MSPNs.
Therefore, one possible computational role of the feedback projection from GPe to striatal FS-
INs is to enable a “real-time contrast-enhancement” at the striatum while the outcome of the
ongoing selection process is still unfolding.

Added to this emerging picture are the “horizontal” interactions of two classes of MSPNs. As
mentioned above, the assumption of a winner-take-all (WTA) competition between D1-SP-
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and D2-ENK-MSPNs has been challenged on the basis of electrophysiology (Jaeger et al.,
1994) and logic (Brown et al., 2004, p. 476). Here we add that the breadth of collateral
arborization falls far short of what would be needed to achieve WTA selection across broad
regions of the striatum. Furthermore, recent data show that: (1) a subset of MSPNs in the
striatum are coupled via gap junctions (Onn and Grace, 1994; Venance et al., 2004); (2) this
electrotonic coupling is mostly confined to D2-ENK-MSPNs (Onn and Grace, 1994; Venance
et al., 2004); (3) chemical (GABAergic) transmission between MSPNs is potent but
unidirectional (Tunstall et al., 2002; Venance et al., 2004); and, equally important, (4)
electrotonic and unidirectional chemical communication among MSPNs are mutually
exclusive (Venance et al., 2004). The first implication is that D2-ENK-MSPNs do not inhibit
each other. That D2-ENK-MSPNs are not mutually inhibitory complements their gap-junction
coupling because it allows even a focused glutamatergic input of su cient strength and duration
to recruit them synchronously and in significant numbers. This is consistent with the “STOP”
or “NO-GO” function attributed to D2-ENK-MSPNs in some models (e.g., Brown et al.,
2004; Frank, 2005), whereas, had the contrary been found, i.e., had it been found that D1-SP-
MSPNs were both electro-tonically coupled and not mutually inhibitory, it would have
disconfirmed all recent BG models. Beyond this key conclusion, the data force a choice
between two possibilities in any model. Either active D1-SP-MSPNs inhibit D2-ENK-MSPNs,
or vice versa, but not both (because chemical transmission is non-reciprocated). Here it is
important to recall that because of the limited arborization of MSPN feedback collaterals,
feedback inhibition by D2-ENK-MSPNs would be much more powerful (than by D1-SP-
MSPNs), because their electrotonic coupling would enable feedback inhibition to be much
broader than that overtly implied by the limited arborization. This would nicely enhance the
proposed “STOP” signal function of the indirect pathway. By contrast, D1-SP-MSPN feedback
inhibition would remain highly focused, would not support a WTA property, would not sharpen
contrast among competing direct pathway MSPNs, but would interfere with the STOP-signal
function by inhibiting nearby D2-ENK-MSPNs. From a global functional perspective, it
therefore seems much more likely that the observed unidirectional GABAergic transmission
between MSPNs (Venance et al., 2004) runs from D2-ENK-MSPNs to D1-SPMSPNs. In fact,
it has recently been shown that feedback inhibitory communication directed from D2-ENK-
MSPNs to D1-SP-MSPNs is much more prominent than the alternatives (Taverna et al.,
2008).

The difference in neuropeptide co-release by di erent classes of MSPNs (substance-P vs.
enkephalin) begets a further asymmetry. Cortico-striatal terminals in the striatum express
presynaptic neurokinin-1 receptors (primary target of substance-P in primates and humans;
Regoli et al., 1994), and it has recently been shown that endogenous SP released by D1-SP-
MSPNs may enhance presynaptic glutamate release, thereby facilitating postsynaptic
responses in neighboring MSPNs (Blomeley et al., 2009). It should be noted that only D1-SP-
MSPNs can partake in such a feedback excitation by virtue of somatically co-releasing SP with
GABA. Through this feedback excitation, a subset of MSPNs, once selected, can recruit
neighboring MSPNs (presumably belonging to the same functional channel), perhaps to further
enhance the contrast between selected and competing plan representations.

The data summarized above clearly suggest that local interactions within the BG, particularly
in the striatum, are not only more complicated than assumed in most models of the BG, but
also can offer substantial computational abilities that most current models of the BG lack.
Nevertheless, human intuition is generally insu cient to predict ramifications of such complex
interactions, and computational models that reflect these microcircuit specializations can reveal
their implications for BG functions. Recently, Bullock and Tan (2007) used the more complete
macro-circuit in Figures 2B and 2C as a basis for exploring how the BG circuit enables a more
complete set of fundamental abilities that serve as a basis for intelligent cognitive control of
behavioral scheduling, sequencing, and interleaving, including the ability to interrupt, switch,

Bullock et al. Page 9

Neural Netw. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and resume planned behavior. Demonstration of such abilities of the BG, with models that take
a more complete macro- and microcircuit of the BG into account than traditional TD-and RPE-
based actor-critic architecture, in turn, opens up exciting avenues for integrating the BG into
computational models of higher cognitive and behavioral functions.

2.8. Basal ganglia architecture is pivotal for advanced human abilities, including speech
To some who considered language as the most “neo” of neo-cortical functions, it came as a
shock when early fMRI studies (e.g., Ullman et al., 1997) strongly implicated the BG in such
prototypical linguistic functions as control of regular past-tense production (e.g., postfixing –
ed in English). The BG have since also been implicated in arithmetic rule application
(Teichmann et al., 2008). Despite such data clues, few computational models of speech,
linguistic or arithmetic rule application make integral use of either the cortex-thalamus-BG
macrocircuit or BG microcircuits. Steps to rectify this shortfall have recently been taken by
several research groups. For example, Bohland et al. (2009) are exploring the hypothesis that
the BG are critical for ensuring that speech acts satisfy the multiple types of constraints that
must be met by linguistic productions if they are to succeed as conventional communications.

Consider the difference between computational models of de-contextualized sequence
production and meaning-communicative sequence production, which obeys learned rules. For
example, chronometric (latency) patterns of anticipatory or deferral errors in non-linguistic
sequence production (Farrell and Lewandowsky, 2004) as well as electrophysiological
recordings (Averbeck et al., 2002; Rhodes et al., 2004) have strongly supported a class of
sequence control models, called competitive queuing (CQ) models (Averbeck et al., 2002;
Bullock, 2004a,b; Rhodes et al., 2004; Ivey et al., 2008), that are defined by two assumptions
(cf. Grossberg, 1978): (1) the sequential order relation among plan-representations of
forthcoming acts is represented by an analog gradient (“primacy gradient”) of activation levels
established over the plan representations in a WM (working memory), and (2) once a plan
representation is chosen for enactment, its representation is deleted from the planning WM,
and thus eliminated from the competition (among the surviving representations) that
determines which plan to perform next. However, it has not been clear whether CQ models
should, or how they could, be extended to explain linguistic sequences controls. For example,
although many linguistic sequencing errors are exchange errors, as predicted by CQ theory,
elementary CQ theory does not explain why linguistic exchange errors respect linguistic class.
The connectionist language production model of Ward (1994), which utilized concepts from
construction grammar (e.g., Goldberg, 2006), explored one way that a CQ process could be
extended to ensure that next-word choices simultaneously obeyed semantic and syntactic
constraints. However, Ward (1994) offered no interpretation of model components in terms of
identified brain circuits. Although it did not include BG microcircuits, the computational model
of language processing in Dominey et al. (2006) also adopted ideas from construction grammar,
and proposed that the cortical-striatal projection mediates retrieval of form-to-meaning
mappings. The computational model of Bohland et al. (2009) incorporated macro- and some
micro-circuit details from the Brown et al. (2004) model of fronto-BG function to illustrate
one way to use BG circuitry to offer a CQ-consistent explanation for multi-syllabic speech
production. In this model, exchange errors are appropriately class-constrained, a consequence
of the model's ability to ensure that next-sound choices obey both phonemic and syllabic
constraints. The model's mapping of computations to neurobiological circuits enabled it to
pinpoint candidate neural bases of speech stuttering errors (Civier et al., 2009), and similar
future models should be able to use BG computations to ensure the simultaneous satisfaction
of multiple types of constraints in language processing, e.g., to achieve the integrative-well-
formedness checks, based on semantic, syntactic, and pragmatic constraints, that were recently
attributed to the BG by Bornkessel and Schlesewsky (2006).
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In such approaches, the BG are seen to offer computational resources to ensure that decisions
are not finalized unless and until multiple types of preconditions for success are simultaneously
satisfied. This way of thinking about the BG dates back (at least) to Passingham (1987), who
argued that the multiple types of information that need to be considered for good decisions
often are not brought together in any single cortical region, but are brought together in compact
regions of the striatum. Consistently, Brown et al. (2004) showed how cortico-striatal
convergence patterns and intrinsic BG circuitry can ensure that plans are withheld from
enactment until distinct types of representations, computed in multiple cortical areas, become
simultaneously active, and thus coherently support performance of an associated plan.

Much work remains to fully understand how BG microcircuits support such computations, and
there yet exists no consensus that the BG are obligatorily involved in language processing. A
barrier to consensus is that many researchers interpret their findings with respect to a mistaken
or a highly incomplete mental model of pertinent circuitry. For example, Wahl et al. (2008)
used a lack of task-related signal variance in their recordings from human GPi and STN (during
a language comprehension task) to argue that “syntactic and semantic language analysis is
primarily realized within cortico-thalamic networks, whereas a cohesive basal ganglia network
is not involved in these essential operations of language analysis.” A close examination of their
argument reveals a number of problems. First, they concluded that the task-related signal
variance that they observed in the VIM thalamus could not have been BG-dependent, because
of the absence of GPi modulation. This is mistaken, because it presupposes that the only trans-
BG path to the thalamus runs through the GPi. This ignores both the well-known SNr projection
to thalamus, as well as another path that is little-known but even more pertinent here. As shown
in Figure 2B, there is also a trans-BG path that runs from cortex to D2-ENK-MSPNs (in
striatum), to the GPe, to the reticular nucleus of the thalamus, and finally to specific nuclei of
the thalamus, such as VIM. Second, although they measured activity only in VIM, their
interpretation, based on a review of subcortical aphasis by Nadeau and Crosson (1997),
emphasizes linguistic roles for the CM and pulvinar nuclei of the thalamus. Supposing that
these thalamic nuclei (not recorded in their experiments) are implicated in linguistic
computations, it is hard to understand how the BG are not also strongly implicated, for two
reasons: the pulvinar has maintained strong projections to the striatum since before the cerebral
cortex evolved, and we earlier noted that the CM and Pf nuclei of the thalamus are potent
sources of inputs to cholinergic TANs located in, respectively, the putamen and the caudate
nuclei of the striatum. Moreover, there is accumulating evidence that jointly implicates the CM
and BG in speech control disorders, notably stuttering (Alm, 2004; Civier et al., 2009).

3. Conclusion: Accurate Microcircuit Models are Key for Understanding
Individual Di erences in the Neurophysiology of Cognitive Functions

Many macro- and microcircuit specializations in the BG-frontal cortex circuits go beyond what
was predicted by traditional TD models, RPE theory, and actor-critic architectures. For the
traditional models to capture the computational roles of the BG implied by such specializations,
both commonly used reinforcement learning rules, and performance-related rules, must be
updated. Most notably, these specializations imply a far-reaching computational role for the
BG-frontal cortex circuits not only in reinforcement learning but also in robust evaluation,
selection, and execution of actions associated with different environmental contingencies.
Striatal computations need to heed the diverse types of preconditions that must be met before
a planned act can be expected to succeed. An exciting application of comprehensive models
of BG-frontal cortex circuits, including key microcircuits, will be the growing ability to assess/
diagnose neural bases of individual di erences (e.g., Frank, 2005) and pathologies, and then to
use individualized computer brain models to predict individual di erences in response to
therapeutic regimes, such as those based on pharmacological measures or implanted
neurostimulators.
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Figure 1.
The tight coupling between striatal DAergic, cholinergic, and thalamo-striatal glutamatergic
transmission. The upper panel's color values show the normalized cholinergic interneuron
(TAN) responses (baseline firing rate 0.5), if allowed to reach equilibrium (Tan and Bullock,
2008a), as a function both of phasic and sustained dopamine signal inputs (shown in the lower
panel) that reflect reward expectations, and of thalamo-striatal glutamatergic inputs (from CM-
Pf nuclei, shown on the ordinate) that reflect stimulus salience. The lower panel shows the
(normalized) learned DA response to a CS-then-reward sequence, after training with a p = 0.5
conditional probability schedule during delay conditioning with a 2 second-long CS (Tan and
Bullock, 2008b). The phasic DA burst in response to CS onset (t = 1.2 sec) reflects the expected
value of reward; that in response to primary reward (t = 3.2 sec) reflects the probabilistic
schedule; and the gradual increase during the delay period reflects the uncertainty in the
expected outcome (Tobler et al., 2005; Tan and Bullock, 2008b; Fiorillo et al., 2003, 2005).
Although the TAN responses (upper panel) also reflect such task-dependent variables, TAN
responses also depend upon stimulus salience.
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Figure 2.
The basal ganglia (BG) system is not correctly represented as a feedforward structure. Panel
A depicts a common view of BG information processing. Panel B adds further details to clarify
some of the multiple kinds of feedback that need to be considered in a realistic model. Panel
C shows the microcircuit-level interactions between medium spiny projection neurons and fast-
spiking interneurons in the striatum. Black arrows denote excitatory connections, black semi-
circles denote adaptive synaptic connections, black circles (and gray lines/circles in Panel C)
denote inhibitory connections. Key: Vb, layer Vb of frontal cortex; III/Va, layers III and Va
of frontal cortex; STN, subthalamic nucleus; FS-IN, fast-spiking GABAergic interneuron of
the striatum; D2-ENK-MSPN, a dopamine D2-type receptor-expressing, enkephalin co-
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releasing, GABAergic medium spiny projection neuron of the striatum; D1-SP-MSPN, a
dopamine D1-type receptor-expressing, substance P co-releasing, GABAergic medium spiny
projection neuron of the striatum; GPe, external (lateral) globus pallidus; GPi, internal (medial)
globus pallidus; Ret. Nuc.: reticular nucleus of thalamus.
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