
Kobe University Repository : Kernel

PDF issue: 2024-04-28

Subspace-based support vector machines for
pattern classification

(Citation)
Neural Networks,22(5-6):558-567

(Issue Date)
2009-07

(Resource Type)
journal article

(Version)
Accepted Manuscript

(URL)
https://hdl.handle.net/20.500.14094/90001051

Kitamura, Takuya
Takeuchi, Syogo
Abe, Shigeo
Fukui, Kazuhiro

Subspace Based Support Vector Machines for Pattern

Classification

Takuya Kitamura, Syogo Takeuchi, Shigeo Abea, Kazuhiro Fukuib

aGraduate School of Engineering, Kobe University, Kobe, Japan
bGraduate School of Systems and Information Engineering, University of Tsukuba,

Tsukuba, Japan

Abstract

In this paper, we discuss subspace based support vector machines (SS-SVMs),

in which an input vector is classified into the class with the maximum similar-

ity. Namely, for each class we define the weighted similarity measure using the

vectors called dictionaries that represent the class and optimize the weights

so that the margin between classes is maximized. Because the similarity

measure is defined for each class, for a data sample the similarity measure

to which the data sample belongs needs to be the largest among all the

similarity measures. Introducing slack variables we define these constraints

either by equality constraints or inequality constraints. As a result we obtain

subspace based least squares SVMs (SSLS-SVMs) and subspace based lin-

ear programming SVMs (SSLP-SVMs). To speedup training of SSLS-SVMs,

which are similar to LS-SVMs by all-at-once formulation, we also propose

SSLS-SVMs by one-against-all formulation, which optimize each similarity

measure separately. Using two-class problems, we clarify the difference of

Email address: abe@kobe-u.ac.jp (Shigeo Abe), kfukui@cs.tsukuba.ac.jp
(Kazuhiro Fukui)

Preprint submitted to Neural Networks June 4, 2009

SSLS-SVMs and SSLP-SVMs and evaluate the effectiveness of the proposed

methods over the conventional methods with equal weights and with weights

equal to eigenvalues.

Key words: Kernel methods, Least squares, Linear programming,

Subspace based methods, Support vector machines

1. Introduction

In subspace methods (Watanabe & Pakvasa, 1973; Oja, 1983) each class

region is defined by a set of basis vectors and the similarity of an input

vector to a class is measured by the length of projection of the input onto the

associated subspace. Similarities of the input vectors serve as discriminant

functions.

Various subspace methods, such as class feature compression (CLAFIC)

(Watanabe & Pakvasa, 1973) and learning subspace methods (Oja, 1983),

have been proposed. In most cases, principal component analysis (PCA) is

used to compute basis vectors of subspaces. The basic idea of PCA is to rotate

the coordinates so that data samples are non-correlated and delete the axes

that do not contribute in representing the data distribution. To extend PCA

for nonlinear problems, kernel PCA (KPCA) has been proposed (Schölkopf

et al., 1998, 1999). Recently, using KPCA variants of subspace methods are

extended to kernel-based subspace methods, such as kernel mutual subspace

methods (KMSMs) (Sakano et al., 2005; Fukui & Yamaguchi, 2007), kernel

constrained mutual subspace methods (KCMSMs) (Fukui et al., 2006), and

kernel orthogonal mutual subspace methods (KOSMSs) (Fukui & Yamaguchi,

2007).

2

In subspace methods using KPCA, we set the eigenvalues or 1 to the

weights in the similarity measure of each class. However, because each sub-

space is defined separately and an overlap of subspaces or the margin between

classes is not controlled after the definition of the subspaces, these weights

may not be optimal from the standpoint of class separability. In our previous

work (Kitamura et al., 2009; Takeuchi et al., 2009), we have developed least

squares and linear programming support vector machines based on subspace

methods.

In this paper, based on Kitamura et al. (2009); Takeuchi et al. (2009),

we propose subspace based support vector machines (SS-SVMs), which op-

timize the weights in the similarity measure so that the margin between

classes is maximized while minimizing the classification error for the training

data. This is the same idea as that of support vector machines (SVMs) (Abe,

2005). We consider the similarity measure as the separating hyperplane that

separates the associated class from the remaining classes and formulate the

optimization problem under the linear constraints that the similarity mea-

sure associated with a data sample has the highest similarity among all the

similarity measures. This formulation is the same as all-at-once SVMs, which

are considered to be inefficient. However, because kernel evaluations are done

when similarity measures are calculated, kernel evaluations are not necessary

during optimization. We define two-types of SS-SVMs: subspace based least

squares SVMs (SSLS-SVMs) and subspace based linear programming SVMs

(SSLP-SVMs). For SSLS-SVMs with the quadratic objective function and

the equality constraints, we derive a set of linear simultaneous equations.

And we formulate SSLP-SVMs by the linear objective function and the in-

3

equality constraints so that they can be solved by linear programming.

To speed up training SSLS-SVMs for large data sets, we propose formu-

lating SSLS-SVMs by one-against-all formulation. By this formulation we

can optimize the weights of each class, separately.

This paper is organized as follows. In Section 2, we describe kernel-based

subspace methods (KSMs) and how to calculate the similarity measures.

In Section 3, we propose SSLS-SVMs and SSLP-SVMs that optimize the

weights in similarity measures. In Section 4, we demonstrate the effectiveness

of SSLS-SVMs and SSLP-SVMs through computer experiments. And we

conclude our work in Section 5.

2. Kernel-based Subspace Methods

2.1. Kernel Principal Component Analysis

In kernel-based subspace methods, KPCA is used to represent a subspace

of each class. Unlike conventional KPCA, in calculating the covariance ma-

trix, the mean vector is not subtracted from the training data. We consider

an n-class classification problem with the m-dimensional input vector x. Let

x be mapped into the l-dimensional feature space by the mapping function

g(x). Thus, ri dictionaries ϕik for the subspace for class i are the eigenvectors

of the following eigenvalue problem:

1

|Xi|
∑
i∈Xi

g(xj) gT (xj)ϕik = λik ϕik (1)

for i = 1, ..., n, k = 1, ..., ri,

where Xi is the index set for class i training data, |Xi| is the number of

elements in Xi, and λik is the eigenvalue associated with ϕik. Here, we

4

assume that we select the first to the rith largest eigenvalues in (1).

To calculate (1) without using the variables in the feature space, we need

to use kernel tricks. But it is time consuming. Thus to speed up calculations

we use the concept of the empirical feature space (Xiong et al., 2005; Abe,

2007). The empirical feature space is spanned by the mapped training data

and gives the same kernel value as that of the feature space.

Let the kernel be H(x,x′) = gT (x) g(x′) and the number of data be M .

For the M m-dimensional data xi (i = 1, . . . , M), the M ×M kernel matrix

H = {H(xj,xk)} (j, k = 1, ..., M) is symmetric and positive semidefinite.

Let the rank of H be N(≤ M). Then H is expressed by

H = USUT , (2)

where the column vectors of U are eigenvectors of H and S is given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . . 0N×(M−N)

0 σN

0(M−N)×N 0(M−N)×(M−N)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

Here, σj(> 0) are eigenvalues of H , whose eigenvectors correspond to the jth

columns of U , and for instance 0(M−N)×(M−N) is the (M − N) × (M − N)

zero matrix.

Defining the first N vectors of U as the M × N matrix P and Λ as the

N × N diagonal matrix whose diagonal elements are σj(j = 1, ...N), we can

rewrite (2) as follows:

H = PΛP T , (4)

where P T P = IN×N but PP T �= IM×M , and I is the unit matrix.

5

The mapping function to the N -dimensional empirical feature space is

given by

h(x) = Λ−1/2P T (H(x1,x), ..., H(xM ,x))T . (5)

It is proved that the empirical feature space gives the same kernel value

as that of the feature space. Therefore, without inducing any error, instead

of (1), we can carry out KPCA by

1

|Xi|
∑
i∈Xi

hT (xj)h(xj)ϕik = λikϕ
T
ik. (6)

Although the dimension of the coefficient matrix on the left-hand side of (1)

may be infinite for RBF kernels, that of (6) is finite, i.e., N . Calculations

of the eigenvalues and eigenvectors in (5) are not necessary if we obtain the

N linearly independent data that span the empirical feature space. This can

be done by the Cholesky factorization of the kernel matrix H deleting the

linearly dependent data. Then, instead of (5) we use

h(x) = (H(xk1,x), ..., H(xkN
,x))T , (7)

where xkj
(j = 1, ..., N) are linearly independent in the feature space.

For the N eigenvalues obtained by solving (6), we select, as the class i

dictionaries, the first ri largest eigenvalues and the associated eigenvectors

according to the accumulation of eigenvalues. Namely, we select different

dimensions for the different classes based on the cumulative proportion, a(ri),

which is defined as follows:

a(ri) =

ri∑
j=1

λij

N∑
j=1

λij

× 100 (%). (8)

6

We set a threshold κ and determine ri so that a(ri − 1) < κ ≤ a(ri).

2.2. Similarity Measures

We consider an n-class classification problem with the m-dimensional

input vector x by kernel subspace methods in the empirical feature space.

Let x be mapped into the ri-dimensional subspace for class i in the N -

dimensional empirical feature space mapped by h(x) and the kth dictionary

for class i be ϕik (k = 1, ..., ri). Then the similarity measure is given by

Si(x) =

ri∑
k=1

wik (ϕT
ik h(x))2

‖ϕik‖2 ‖h(x)‖2
, (9)

where wik is the weight for the kth dictionary of class i.

Defining

fi(x) =

(
(ϕT

i1 h(x))2

‖ϕi1‖2 ‖h(x)‖2
, ...,

(ϕT
iri

h(x))2

‖ϕiri
‖2 ‖h(x)‖2

)T

, (10)

(9) becomes

Si(x) = wT
i fi(x), (11)

where wi = (wi1, ..., wiri
)T .

Input vector x is classified into class

arg max
i=1,...,n

Si(x). (12)

3. Subspace Based Support Vector Machines

3.1. Idea

In conventional subspace methods using KPCA, we set the eigenvalues or

1 to the weights of the similarity measure of each class. However, these values

7

are not optimal from the standpoint of class separability, because weights are

not determined to make class separability as large as possible.

We propose subspace based support vector machines (SS-SVMs) to solve

this problem. Because (11) can be viewed as a decision function without a

bias term we can borrow the idea of SVMs, namely maximizing margins be-

tween classes. But, unlike the decision functions of conventional SVMs, (11)

is defined for each class. Thus we need to formulate SS-SVMs so that for a

data sample the similarity measure for the associated class is the largest. This

leads to formulating SS-SVMs by all-at-once formulation. To alleviate the

computational burden of all-at-once formulation we also formulate SS-SVMs

by one-against-all formulation. In the following we discuss SSLS-SVMs by

all-at-once formulation and by one-against-all formulation and SSLP-SVMs

by all-at-once formulation.

3.2. Subspace Based LS-SVMs by All-at-Once Formulation

Equation (11) can be viewed as the separating hyperplane in the class i

subspace given by fi(x), and it separates class i data from those belonging

to other classes. Thus, we can maximize the margin in the subspace by

minimizing ‖wi‖. But, unlike the decision functions of conventional SVMs,

each class has its decision function. Thus we need to formulate subspace

based support vector machines according to all-at-once formulation.

Let for an n class problem M training data pairs be {(x1, y1),..., (xM , yM)},
where xi and yi are the m-dimensional input vectors and the associated class

labels, respectively, and yi ∈ {1, ..., n}. We formulate the SSLS-SVM with

8

all-at once formulation as follows:

minimize Q(w, ξ) =
1

2

n∑
i=1

‖wi‖2

+

n∑
i=1

M∑
yj �=i,

j=1

CM

2n |Xyj
|ξ

2
ij (13)

subject to wT
yj
fyj

(xj) −wT
i fi(xj) = 1 − ξji

for i �= yj, i = 1, ..., n, j = 1, ..., M, (14)

where C is the margin parameter that determines the tradeoff between max-

imizing margins and minimizing misclassifications and ξij are non-negative

slack variables. The term C M/(n |Xyj
|) in (13) is to avoid biased penalties

for the unbalanced class data. In kernel subspace methods, the weights are

assumed to be non-negative, but here we do not impose non-negativeness to

increase freedom of solutions.

We solve the above optimization problem in the primal form. Substituting

(14) into (13), we obtain

Q(w, ξ) =
1

2

n∑
i=1

‖wi‖2 +

n∑
i=1

M∑
yj �=i,

j=1

CM

2n |Xyj
|

×(1 − (wT
yj
fyj

(xj) − wT
i fi(xj)))

2. (15)

Taking the partial derivative of (15) with respect to wi and setting the

resulting equation to 0, we obtain

w =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 B12 · · · B1n

B21
. . .

...
...

. . .
...

Bn1 · · · · · · An

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

a, (16)

9

where w = (w1, ...,wn)
T , a = (a1, ..., an)T , and

Ai =
n

MC
Iri

+
M∑

j=1,yj �=i

1

|Xyj
| fi(xj) fT

i (xj)

for i = 1, . . . , n, (17)

Biyj
= −

M∑
j=1,yj �=i

1

|Xyj
| fi(xj) fT

yj
(xj)

for i �= yj , i = 1, . . . , n, (18)

ai = (n − 1)

M∑
j=1,yj=i

1

|Xyj
| fi(xj)

−
M∑

j=1,yj �=i

1

|Xyj
| fi(xj) for i = 1, . . . , n. (19)

The size of the matrix that needs to be solved in (16) is
∑n

i ri. Thus, as the

number of classes or the number of dictionaries increases, training becomes

slow.

In our study we use RBF kernels: exp(−γ‖x−x′‖2) where γ is the width

of the radius. Then, before training SSLS-SVMs, we need to determine the γ

value, and the threshold value of the cumulative proportion, κ, and the value

of margin parameter C. Because it is inefficient to determine the three values

by cross-validation, we first determine γ value with κ = 99.9 (%) changing

the value of C by cross-validation. Then we determine κ and C values by

cross-validation.

In addition to the above, to compare the proposed method with the con-

ventional kernel subspace methods, first we determine γ and κ values for

kernel subspace methods by fivefold cross-validation. Then, using these val-

ues, we optimize the C value for SSLS-SVMs by fivefold cross-validation. For

this case, the algorithm of training SSLS-SVMs by all-at-once formulation is

10

as follows.

Algorithm 1

Step 1 Determine the γ and κ values for kernel subspace methods with

equal weights or weights equal to eigenvalues by fivefold cross-validation.

For the determined subspaces, determine the C value for the SSLS-SVM

by fivefold cross-validation.

Step 2 Using the parameter values determined in Step 1, select the linearly

independent data from the training data by the Cholesky factorization.

Step 3

Generate the mapping function to the empirical feature space using the

linearly independent data obtained in Step 2. Calculate eigenvectors

ϕik and eigenvalues λik for class i (i = 1, . . . , n) using (6).

Step 4 Determine the dimension of the subspace for class i, ri, using the

κ value determined in Step 1.

Step 5 Calculate fi(xj) for i = 1, . . . , n, j = 1, . . . , M .

Step 6 Calculate weights w using (16).

3.3. Subspace Based LS-SVMs by One-against-All Formulation

We can optimize the weights in the similarity measures by the SSLS-

SVM by all-at-once formulation. But if the size of the matrix in (16) is large,

it will be difficult to train the SSLS-SVM. Therefore, to speed up training

in such a situation, we consider formulating SSLS-SVMs in one-against-all

11

formulation, in which we separately optimize the weights of the similarity

measure of each class.

To improve the classification ability which may be decreased because of

approximation introduced by one-against-all formulation, instead of (11), we

use the following decision function which include the class i bias term bi:

Si(x) = wifi(x) + bi. (20)

Then for class i (i = 1, . . . , n) we formulate the SSLS-SVM with one-against-

all formulation as follows:

minimize Q(w,b, ξ) =
1

2
||wi||2 +

M∑
j=1

CM

2n |Xyj
|ξ

2
ij (21)

subject to yj(fi(xj) + bi) = 1 − ξij

for j = 1, ..., M. (22)

Here, unlike ξij in (13), ξij in (21) is defined for j = 1, . . . , M and can

be discarded when wi is obtained. Thus, it may be possible to drop the

subscript i in ξij. But since they are different for different classes, we use ξij .

We solve the above optimization problem in the primal form. Substituting

(22) into (21), we obtain

Q(w,b) =
1

2
||wi||2 +

M∑
j=1

C M

2n |Xyj
|(1 − yj(fi(xj) + bi))

2. (23)

Taking the partial derivative of (23) with respect to wi and bi, and setting

the resulting equation to 0, we obtain

wi = Ω−1
i a′

i, (24)

bi =
1

2

(
M∑

j=1

yj

|Xyj
| − wT

i

M∑
j=1

1

|Xyj
|fi(xj)

)
, (25)

12

where

Ωi =
n

CM
Iri

+
M∑

j=1

1

|Xyj
| fi(xj)f

T
i (xj) (26)

−1

2

M∑
j=1

1

|Xyj
| fi(xj)

M∑
j=1

1

|Xyj
| f

T
i (xj), (27)

a′
i =

M∑
j=1

1

|Xyj
|yjfi(xj)

− 1

M

M∑
j=1

1

|Xyj
|yj

M∑
j=1

1

|Xyj
| fi(xj). (28)

Since we calculate the ri × ri matrixes for i = 1, . . . , n, the number of matrix

operations is O(
∑n

i r3
i). While by all-at-once formulation the number of

matrix operations is O((
∑n

i=1 ri)
3). Thus, by one-against-all formulation,

the computational cost will be much cheaper. We call the SSLS-SVM by

one-against-all formulation SSLS-SVM (O).

The algorithm of training SSLS-SVM (O) using the γ and κ values de-

termined for kernel subspace methods is as follows.

Algorithm 2

Step 1 Determine the γ and κ values for the kernel subspace methods

by fivefold cross-validation. And determine the value of the margin

parameter for the SSLS-SVM (O) by fivefold cross-validation.

Step 2 Using the parameter values determined in Step 1, select the linearly

independent data from the training data by the Cholesky factorization.

Set i = 1.

Step 3 Calculate eigenvectors ϕik and eigenvalues λik for i = 1, . . . , n by

(6).

13

Step 4 Determine the dimension of class i subspace, ri, using the κ value

determined in Step 1.

Step 5 Calculate fi(xj) for j = 1, . . . , M .

Step 6 Calculate weight vector wi and bias term bi using (24) and (25),

respectively.

Step 7 If i �= n, we set i = i + 1 and go to Step 3. If i = n, terminate the

algorithm.

3.4. Subspace Based LP-SVMs by All-at-Once formulation

In this section, we formulate SSLP-SVMs. To introduce freedom into the

similarity measure we use the decision function defined by (20). As will be

shown in the “Experimental Results” section, in some cases inclusion of the

bias term does not work well. In such cases, we delete the bias term.

We consider (20) as the separating hyperplane, in the dictionary space

given by fi(x) for class i, that separates class i data from those belonging to

the other classes. Thus, minimizing ‖w‖1 results in maximizing the margin

in the dictionary space. By this definition, the difference from SVMs is that

there are n distinct dictionary spaces and thus a data sample belonging to

class i to be correctly classified, the value of (20) for class i must give the

maximum value. This results in all-at-once formulation used for SVMs.

Accordingly, SSLP-SVMs are defined by

minimize Q(w,b, ξ) =

n∑
i=1

rk∑
k=1

wik +

M∑
j=1

n∑
i�=yj ,i=1

C M

n |Xyj
|ξji (29)

14

subject to wT
yj
fyj

(xj) + byj
−wT

i fi(xj) − bi ≥ 1 − ξji

for i �= yj, i = 1, ..., n, j = 1, ..., M, (30)

ξji ≥ 0

for i �= yj, i = 1, ..., n, j = 1, ..., M, (31)

wik ≥ 0 for i = 1, ..., n, k = 1, ..., rk, (32)

where b = (b1, . . . , bn)T , C is the margin parameter that determines the

tradeoff between maximizing margins and minimizing misclassifications, yj (yj ∈
{1, . . . , n}) are the class labels for the jth training data, ξji (i �= yj) are

nonnegative slack variables for the jth training data for class i, and ξ =

(. . . , ξij, . . .)
T . In (29), M/(n |Xyj

|) is to set different values of the mar-

gin parameter for different classes for unbalanced training data. Namely,

if |Xyj
| is larger than those of the remaining classes, ξji is multiplied by

C M/(n |Xyj
|). But if |Xi| are the same for all classes, ξji is multiplied by C.

Unlike regular SVMs, we make the weights nonnegative by (32). Since

fi(xj) are constants, the above optimization problem is equivalent to a linear

all-at-once SVM with nonnegative weights.

To solve the above problem by linear programming we convert variables

bi that take negative values into the difference of nonnegative variables as

follows:

bi = bi
+ − bi

−, (33)

where bi
+ ≥ 0, bi

− ≥ 0.

In addition, to transform inequality constraints into equality constraints,

we introduce nonnegative slack variables uji (i = 1, . . . , n, i �= yj, j =

1, ..., M). Then the optimization problem given by (29)–(32) is transformed

15

as follows:

minimize Q(w,b+,b−, ξ,u) =
n∑

i=1

rk∑
k=1

wik +
M∑

j=1

n∑
i�=yj ,i=1

CM

n Nyj

ξji (34)

subject to wT
yj
fyj

(xj) + b+
yj
− b−yj

−wT
i fi(xj) − b+

i + bi
− = 1 − ξji + uji

for i �= yj, i = 1, ..., n, j = 1, . . . , M, (35)

where u = (. . . , uji, . . .)
T . In the above optimization problem, all the vari-

ables are nonnegative and excluded from the constraints. Thus, (32) is

deleted. In this formulation, the number of variables is
∑n

i=1 ri+(n−1)M+2n

and the number of constraints is (n − 1)M .

We can solve the above optimization problem by linear programming

using simplex methods or primal-dual interior-point methods.

When optimization is finished, if wik = 0, we assume fik(x) does not

contribute in recognition, where fik(x) is the kth element of fi(x). Therefore,

we can delete fik(x) from the dictionary. This means that we can carry out

training and feature selection at the same time.

In training SSLP-SVMs, we need to determine the values of γ, κ, and C.

Since SSLP-SVMs can perform dictionary selection during training, we set a

large value to κ. In the computer experiments we set κ = 99.9 (%) and make

SSLP-SVMs select the optimum dictionaries.

In addition to optimizing the values of γ and C simultaneously, to make

clear the improvement of the proposed method over the conventional methods

with equal weights and with weights equal to the eigenvalues, we optimize

weights for the parameter values optimized for conventional kernel subspace

16

methods. Namely, we first determine, in the empirical feature space deter-

mined by the Cholesky factorization, the kernel parameter value and the cu-

mulative proportion for the conventional methods by fivefold cross-validation.

Then using the subspaces determined by the conventional methods, we op-

timize the weights of the similarity measures by fivefold cross-validation. In

the following we show the training algorithm for this case.

Algorithm 3

Step 1 For the conventional subspace method, determine the value of γ and

cumulative proportion of eigenvalues, κ, by fivefold cross-validation.

Namely, for a given value of γ, select linearly independent training data

by the Cholesky factorization. Then, perform KPCA for each class and

determine the subspace for a given value of κ. For all the combination

of γ and κ values, select the values of γ and κ that realize the highest

recognition rate for the validation data set. For the determined γ value,

determine the value of C for the SSLP-SVM by fivefold cross-validation.

Step 2 Select the linearly independent data by performing the Cholesky

factorization of the kernel matrix H = H(xj,xk) (j, k = 1, . . . , M)

with the γ value determined in Step 1.

Step 3 For class i (i = 1, . . . , n), calculate eigenvectors ϕik and eigenvalues

λik using (6).

Step 4 Using the κ value determined in Step 1, determine the number of

eigenvalues, ri, for class i (i = 1, . . . , n).

Step 5 Calculate fi(xj) for i = 1, . . . , n, j = 1, . . . , M .

17

Step 6 Train the SSLP-SVM and obtain w and b.

4. Experimental Results

4.1. Benchmark Data Sets and Evaluation Conditions

Unlike support vector machines, subspace methods are essentially for mul-

ticlass problems but because the two-class benchmark data sets (Rätsch et

al., 2001) 1 include various types of classification problems, by evaluating the

performance of all data sets we can get a clear view of classifier performance.

Therefore, we used these benchmark data sets.

We compared the proposed SSLS-SVMs and SSLP-SVMS with SVMs,

LS-SVMs, and the conventional kernel subspace methods (KSMs). Table 1

shows the number of inputs, training data, test data, and training and test

data sets of the two-class data sets. We used RBF kernels and assumed that

the diagonal element in the Cholesky factorization is zero if the argument of

the square root in the diagonal element is less than or equal to 10−5.

As conventional KSMs, we used (1) KSMs with weights equal to 1, KSMs

(1) for short; and (2) KSMs with weights equal to eigenvalues, KSMs (E) for

short. We compared SS-SVMs with KSMs in two ways. In the first method

we optimized parameters of SS-SVMs and KSMs separately. In the second

method, we first optimized the kernel parameter γ and the threshold of the

cumulative proportion κ for KSMs by fivefold cross-validation. Then using

the same values of γ and κ, we optimized the value of C for SS-SVMs. In this

case, we can check how optimizing the weights improves the generalization

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

18

Table 1: Two-class Benchmark Data Sets
Data Inputs Training Test Sets

Banana 2 400 4900 100

B. cancer 9 200 77 100

Diabetes 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1300 1010 20

Ringnorm 20 400 7000 100

F. solar 9 666 400 100

Splice 60 1000 2175 20

Thyroid 5 140 75 100

Titanic 3 150 2051 100

Twonorm 20 400 7000 100

Waveform 21 400 4600 100

ability of KSMs.

We selected κ from {80, 85, 90, 95, 99, 99.9}, γ from {0.1, 0.5, 1, 1.5, 3, 5, 10, 15},
and C from {0.1, 0.5, 1, 3, 5, 10, 50, 100, 500, 103, 5× 103, 104, 2× 104, 5× 104,

105} by fivefold cross-validation.

Table 2 shows the parameter values for KSMs determined by the above

procedure. The γ values are the same for only three problems.

4.2. Comparison of SSLS-SVMs with KSMs

Table 3 shows the parameter values for SSLS-SVMs determined by fivefold

cross-validation. In the table, “O” in the parentheses denotes one-against-all

formulation and “1” and “E” denote, respectively, that the γ and κ values

determined for KSM (1) and KSM (E) were used. Thus, SSLS and SSLS

(O) denote that the γ, C, and κ values were determined independently from

19

Table 2: Parameter Values for KSMs
KSM (1) KSM (E)

Data κ (%) γ κ (%) γ

Banana 99.9 15 99.9 15

B. cancer 99.9 0.5 85 3

Diabetes 99.9 3 80 5

German 85 3 85 10

Heart 95 1.5 80 3

Image 99 15 99.9 15

Ringnorm 99.9 0.1 99.9 15

F. solar 80 5 95 10

Splice 99 1 99 15

Thyroid 85 15 80 15

Titanic 80 0.1 95 5

Twonorm 80 0.1 80 3

Waveform 80 1.5 80 5

20

KSMs.

Table 3: Parameter Values for SSLS-SVMs

SSLS SSLS (O) SSLS (1) SSLS (E) SSLS (O,1) SSLS (O,E)

Data γ C κ (%) γ C κ (%) C C C C

Banana 15 50 99.9 15 1 99 50 50 1 1

B. cancer 3 0.1 85 1 5 80 10 0.1 5 1

Diabetes 3 103 95 3 50 95 103 1 50 0.5

German 3 104 80 10 500 85 104 0.5 100 500

Heart 1 1 80 0.5 0.1 80 10 0.1 500 0.5

Image 15 104 99 15 103 99.9 105 105 500 103

Ringnorm 0.1 104 99.9 0.1 1 80 104 500 1 0.1

F. solar 5 104 80 5 5 95 104 500 1 10

Splice 1 104 99 5 500 99 104 5 × 103 103 0.1

Thyroid 5 500 95 10 5 90 500 500 5 5

Titanic 5 0.1 80 5 5 95 500 0.1 0.5 5

Twonorm 0.1 50 80 0.5 0.1 80 50 10 1 0.1

Waveform 3 103 80 5 50 85 50 5 × 103 1 0.1

Table 4 shows the average recognition rates and their standard deviations

of the validation data sets by SSLS-SVMs and KSMs for the first five training

data sets. For each problem, the best average recognition rate is shown

in boldface. And the bottom row shows the number of the best average

recognition rate for each method. From this, SSLS, SSLS (1), and KSM

(1) performed comparably and the methods based on eigenvalues and one-

against-all formulation did not perform well.

For the ringnorm problem, by optimizing weights of KSM (1), the average

recognition rates by SSLS (1) and SSLS (O, 1) were significantly improved.

21

But for the splice problem, optimizing weights of KSM (1) by SSLS (O,1)

degraded the average recognition rate.

Table 4: Average Recognition Rates (%) and Their Standard Deviations of Validation Sets

for SSLS-SVMs

Data SSLS SSLS (O) SSLS (1) SSLS (O,1) SSLS (E) SSLS (O,E) KSM (1) KSM (E)

Banana 89.7 ± 3.1 89.7 ± 3.5 89.7 ± 3.1 90.1± 3.2 89.7 ± 3.1 90.1± 3.2 89.8 ± 3.1 88.3 ± 2.9

B. cancer 75.1 ± 3.1 72.4 ± 4.4 74.4 ± 4.3 72.8 ± 4.3 75.1 ± 3.1 71.0 ± 4.6 72.6 ± 4.6 75.7± 3.5

Diabetes 73.6 ± 2.8 73.0 ± 3.3 73.8± 2.8 72.7 ± 3.9 70.6 ± 3.2 70.8 ± 3.0 73.5 ± 2.6 73.8± 3.0

German 72.9 ± 3.3 71.0 ± 3.0 72.6 ± 3.3 68.4 ± 3.0 71.0 ± 2.7 71.0 ± 3.0 73.9± 3.0 71.6 ± 2.8

Heart 83.0 ± 3.0 82.9 ± 3.8 83.2 ± 4.4 81.7 ± 5.4 84.3 ± 4.7 82.5 ± 4.3 82.1 ± 3.9 82.9 ± 3.9

Image 94.9 ± 1.2 94.1 ± 1.2 94.8 ± 1.0 93.7 ± 1.2 94.9 ± 1.2 94.1 ± 1.2 95.7± 0.9 88.1 ± 1.4

Ringnorm 97.8± 1.7 90.1 ± 2.5 97.8± 1.7 89.9 ± 2.5 63.2 ± 3.3 63.4 ± 3.2 52.8 ± 1.8 62.5 ± 4.0

F. solar 66.1± 3.5 65.1 ± 4.3 66.1± 3.5 62.6 ± 4.6 65.1 ± 3.8 65.1 ± 3.7 65.2 ± 2.8 64.4 ± 3.7

Splice 86.3 ± 2.1 77.1 ± 3.1 86.3 ± 2.1 57.2 ± 2.2 72.1 ± 3.1 72.4 ± 2.9 87.4± 2.5 72.0 ± 3.0

Thyroid 96.3± 2.3 96.2 ± 2.0 96.3± 2.4 96.2 ± 2.0 95.3 ± 2.5 96.0 ± 2.4 95.6 ± 2.5 96.0 ± 2.7

Titanic 79.0 ± 7.8 78.3 ± 8.1 79.0 ± 7.5 76.0 ± 5.9 78.4 ± 8.2 78.3 ± 8.1 79.6± 7.8 79.4 ± 7.0

Twonorm 97.4± 1.4 97.2 ± 1.2 97.4± 1.4 97.3 ± 1.4 97.2 ± 1.2 97.3 ± 1.2 97.1 ± 1.5 97.2 ± 1.4

Waveform 89.9± 2.7 88.2 ± 2.3 82.5 ± 3.2 81.9 ± 3.4 89.8 ± 2.2 84.2 ± 3.5 89.6 ± 3.0 89.0 ± 2.8

Best 4 0 5 1 1 1 4 2

Table 5 shows the average recognition rates and their standard deviations

of the test data sets. We performed statistical test with the significant level

of 5% and show the best average recognition rate in boldface, the second

best in Roman, and the worst in italic. The best average recognition rates

mean that there is no statistical difference among them and the second best

recognition rates mean that there is no statistical difference among them but

they are statistically different from at least one in the best group. And the

worst recognition rates mean that they are statistically inferior to at least one

22

in the second best group. The bottom row of the table shows the numbers

of the best, the second best, and the worst average recognition rates for each

method. From this, SSLS, SSLS (1), and KSM (1) performed best, second

best, third best, respectively, and KSM (E) performed the worst. From the

standpoint of computational burden, SSLS-SVM (O) is better than SSLS-

SVM but the classification performance of SSLS-SVM (O) was slightly worse.

Comparing Tables 4 and 5, the best or second best classifier for the valida-

tion data set coincides with the best classifier for the test data set. Therefore,

the average recognition rate of the validation data set is useful in selecting

the best classifier.

Table 5: Average Recognition Rates (%) and Their Standard Deviations of Test Data Sets

for SSLS-SVMs

Data SSLS SSLS (O) SSLS (1) SSLS (O,1) SSLS (E) SSLS (O,E) KSM (1) KSM (E)

Banana 88.9± 0.6 88.7 ± 0.6 88.9± 0.6 88.9 ± 0.6 88.9± 0.6 88.9 ± 0.6 88.6 ± 0.6 87 .8 ± 0 .7

B. cancer 75.1± 4.4 72 .2 ± 4 .6 73.8 ± 4.6 72 .2 ± 4 .6 75.1 ± 4.4 69 .3 ± 4 .8 75.0± 4.3 75.1± 4.4

Diabetes 72.0 ± 2.3 70 .7 ± 2 .4 72.4 ± 2.2 72.5 ± 1.9 71 .1 ± 2 .3 71 .1 ± 2 .2 73.5± 1.8 71 .7 ± 2 .3

German 73.8 ± 2.2 73 .1 ± 2 .1 74.0 ± 2.2 69 .7 ± 2 .8 72 .7 ± 2 .4 73 .1 ± 2 .1 75.1± 2.2 73.6 ± 2.1

Heart 82.6± 3.7 81.8 ± 3.6 82.6± 3.9 82.7 ± 3.5 82.1 ± 3.7 82.8 ± 3.7 80.5 ± 3.3 82.4± 3.6

Image 95.4 ± 0.6 94 .9 ± 0 .7 95.1 ± 0.6 94 .5 ± 0 .5 95.4 ± 0.6 94 .9 ± 0 .8 96.3± 0.6 88 .1 ± 1 .0

Ringnorm 97.6± 0.3 91.8 ± 0.8 97.6± 0.3 91.5 ± 0.8 64 .7 ± 1 .3 64.3 ± 2.3 76 .6 ± 11 .2 64 .1 ± 2 .4

F. solar 66.9± 1.6 65.5 ± 1.8 66.9± 1.6 62 .4 ± 2 .2 65.1 ± 1.6 65.5 ± 1.8 65.1 ± 1.8 63 .5 ± 4 .0

Splice 86.2 ± 1.0 75 .8 ± 4 .7 86.2 ± 1.0 57 .4 ± 1 .8 72 .1 ± 1 .6 72 .3 ± 1 .4 87.6± 0.8 72 .0 ± 1 .5

Thyroid 95.4± 2.1 95.4 ± 2.2 95.9± 2.1 95.5 ± 2.2 95.7 ± 2.1 95.4 ± 2.3 95.6± 2.1 95.1 ± 2.4

Titanic 76.9 ± 1.0 77.4 ± 0.7 77.2± 0.8 76.9 ± 0.9 77.3 ± 0.7 77.4 ± 0.7 76 .6 ± 1 .2 77.3± 0.6

Twonorm 97.7± 0.1 97.7 ± 0.1 97.7± 0.1 97.7 ± 0.1 97 .4 ± 0 .2 97 .4 ± 0 .2 97.6 ± 0.1 97 .0 ± 0 .5

Waveform 89.1± 0.8 87 .0 ± 1 .0 81 .2 ± 0 .9 81 .7 ± 0 .9 88 .2 ± 0 .6 87 .5 ± 0 .7 88.5 ± 0.6 88 .0 ± 1 .1

B/S/W 8/5/0 4/3/6 7/5/1 4/3/6 5/2/6 5/0/8 6/5/2 3/2/8

23

4.3. Comparison of SSLP-SVMs with KSMs

We trained three types of SSLP-SVMs: (1) SSLP-SVM with κ = 99.9 (%)

and the γ and C values optimized by fivefold cross-validation; (2) SSLP-

SVMs with the γ and κ values optimized by KSMs (1); and (3) SSLP-SVMs

with the γ and κ values optimized by KSMs (E). The reason why we set

κ = 99.9 (%) for SSLP-SVMs is that we wanted to check whether the feature

selection mechanism of linear programming formulation works. In training

the SSLP-SVMs (E) we deleted the bias term because the recognition per-

formance evaluated by cross-validation was better.

Table 6 shows the parameter values determined by the above procedure.

The C values for SSLP (1) and SSLP (E) were determined using the γ and

κ values determined for KSM (1) and KSM (E), respectively. From Tables 2

and 6, the optimal values of γ for KSM (1), KSM (E), and SSLP are different

for most of the problems.

Table 7 shows the average recognition rates and their standard deviations

of the validation data sets generated by the first five training data sets. For

each problem, the best average recognition rate is shown in boldface. The

bottom row shows the number of the best average recognition rates for each

method. From this, SSLP is the best, KSM (1), the second best, and the

SSLP (1) the third.

Usually, weights of 1 gave better results than those by the eigenvalues.

And optimization of weights worked better for SSLP (1) than for SSLP (E).

Especially, for the breast cancer and splice problems SSLP (E) performed

worse than KSM (E). Namely, optimization of weights worsened classification

performance. This may be due to the fact that the optimal values of γ are

24

Table 6: Parameter Values for SSLP-SVMs

SSLP SSLP (1) SSLP (E)

Data γ C C C

Banana 5 10 5 5

B. cancer 0.5 1 1 1

Diabetes 0.5 100 10 3

German 5 10 3 50

Heart 3 0.5 3 0.5

Image 0.5 10000 100 50

Ringnorm 0.1 1000 1000 1

F. solar 0.5 1000 3 3

Splice 0.1 1000 10 1

Thyroid 0.5 50 5 5

Titanic 0.5 0.5 5 0.1

Twonorm 0.5 1 10 5

Waveform 1 50 50 1

25

very different for SSLP (E) and KSM (E) as seen from Tables 2 and 6.

Table 7: Average Recognition Rates (%) and Their Standard Deviations of Validation Sets

for SSLP-SVMs

Data SSLP SSLP (1) SSLP (E) KSM (1) KSM (E)

Banana 89.7 ± 2.8 89.0 ± 3.2 89.2 ± 3.3 89.8 ± 3.1 88.3 ± 2.9

B. cancer 74.1 ± 5.0 74.1 ± 5.0 68.1 ± 6.4 72.6 ± 4.6 75.7 ± 3.5

Diabetes 74.8 ± 3.0 71.6 ± 3.7 70.9 ± 3.0 73.5 ± 2.6 73.8 ± 3.0

German 71.6 ± 3.5 70.2 ± 5.9 71.5 ± 2.5 73.9 ± 3.0 71.6 ± 2.8

Heart 83.5 ± 5.4 82.2 ± 4.0 83.5 ± 5.4 82.1 ± 3.9 82.9 ± 3.9

Image 94.4 ± 1.1 83.2 ± 14.4 95.2 ± 1.0 95.7 ± 0.9 88.1 ± 1.4

Ringnorm 98.4 ± 1.2 98.4 ± 1.2 63.9 ± 5.7 52.8 ± 1.8 62.5 ± 4.0

F. solar 65.6 ± 2.9 63.0 ± 6.2 65.1 ± 3.2 65.2 ± 2.8 64.4 ± 3.7

Splice 87.7 ± 1.8 86.2 ± 1.4 62.4 ± 9.2 87.4 ± 2.5 72.0 ± 3.0

Thyroid 96.6 ± 3.0 95.7 ± 2.5 96.1 ± 2.4 95.5 ± 2.5 96.0 ± 2.7

Titanic 78.3 ± 8.6 78.7 ± 7.8 73.5 ± 9.0 79.6 ± 7.8 79.4 ± 7.0

Twonorm 97.4 ± 1.2 97.5 ± 1.3 97.1 ± 1.4 97.1 ± 1.5 97.2 ± 1.4

Waveform 89.2 ± 3.0 90.0 ± 2.6 89.1 ± 2.5 89.6 ± 3.0 89.0 ± 2.8

Best 6 3 1 4 1

Table 8 shows the average recognition rates and their standard deviations

of the test data sets. We performed statistical test with the significant level

of 5%. The bottom row shows the numbers of the best, the second best, and

the worst recognition rates for each method. From this, SSLP performed

best, KSM (1) the second best, and SSLP (1) the third best.

Comparing SSLP and KSM (1), SSLP performed better for seven prob-

lems. Especially for the ringnorm problem improvement was significant.

SSLP (1) and SSLP (E) performed better than KSM (1) and KSM (E)

for four problems, respectively. Comparing the results in Tables 7 and 8,

26

improvement was decreased. Therefore, it is better to optimize the γ value

for SSLP-SVM not using the value obtained for KSM (1) or KSM (E).

As seen from Tables 7 and 8, tendency to perform best is similar for the

validation data sets and the test data sets and even if the classifiers that

show best performance are different, the performance difference is not so

large. Thus, we can select the suitable classifier according to the recognition

rate of the validation data sets.

Table 8: Average Recognition Rates (%) and Their Standard Deviations of Test Data Sets

for SSLP-SVMs

Data SSLP SSLP (1) SSLP (E) KSM (1) KSM (E)

Banana 89.0 ± 0.6 88.6 ± 0.6 88.6 ± 0.6 88.6 ± 0.6 87.8 ± 0.7

B. cancer 73.3 ± 4.6 73.3 ± 4.6 67.4 ± 5.0 75.0 ± 4.2 75.1 ± 4.3

Diabetes 73.5 ± 2.0 71.3 ± 4.9 70.1 ± 2.8 73.4 ± 1.7 71.7 ± 2.2

German 70.9 ± 6.6 71.2 ± 8.5 71.1 ± 8.5 75.1 ± 2.2 73.7 ± 2.1

Heart 83.1 ± 3.8 82.9 ± 3.7 83.1 ± 3.8 80.4 ± 3.3 82.4 ± 3.6

Image 95.1 ± 1.0 87.3 ± 13.5 95.8 ± 0.8 96.3 ± 0.6 88.0 ± 0.9

Ringnorm 98.2 ± 0.2 98.2 ± 0.2 64.1 ± 2.4 76.5 ± 11.1 64.1 ± 2.4

F. solar 64.7 ± 1.9 63.4 ± 4.7 65.0 ± 1.7 65.1 ± 1.8 63.5 ± 3.9

Splice 88.2 ± 0.6 86.7 ± 0.8 51.4 ± 4.5 87.6 ± 0.8 71.9 ± 1.5

Thyroid 96.3 ± 2.2 95.3 ± 3.8 96.1 ± 2.1 95.6 ± 2.0 95.0 ± 2.4

Titanic 76.8 ± 1.1 77.0 ± 1.7 76.1 ± 8.9 76.6 ± 1.2 77.3 ± 0.6

Twonorm 97.6 ± 0.2 97.5 ± 0.2 97.3 ± 0.3 97.6 ± 0.1 97.0 ± 0.5

Waveform 89.3 ± 0.7 89.9 ± 0.7 88.2 ± 1.2 88.5 ± 5.6 88.0 ± 1.1

B/S/W 8/3/2 4/5/4 3/2/8 6/7/0 3/3/7

Table 9 shows the numbers of deleted eigenvalues per class by SSLP,

SSLP (1), and SSLP (E). The “Class 1” column in SSLP lists the numbers of

eigenvectors for class 1 selected by setting κ = 99.9 % and the next column

27

Table 9: The Number of Deleted Eigenvectors for SSLP-SVMs

SSLP SSLP (1) SSLP (E)

Data Class 1 Del Class 2 Del Class 1 Del Class 2 Del Class 1 Del Class 2 Del

Banana 67.7 56.2 73.2 62.5 123.1 104.9 128.8 108.3 123.1 104.9 128.8 108.3

B. cancer 75.6 74.8 53.5 52.6 75.6 74.8 53.5 52.6 20.2 14.7 22.7 13.3

Diabetes 99.7 88.7 103.3 92.1 229.4 192.5 159.0 116.7 19.0 3.9 54.7 18.3

German 494.6 461.4 212.8 83.7 113.0 93.2 83.0 29.0 398.8 138.8 192.3 91.7

Heart 94.4 92.7 75.6 74.2 21.2 14.3 28.1 19.4 37.3 36.1 42.0 40.7

Image 65.7 42.1 70.7 50.5 201.4 158.4 135.6 109.1 485.9 418.0 572.9 491.0

Ringnorm 21.0 18.8 85.6 84.9 21.0 18.8 85.6 84.9 225.4 186.1 199.0 114.2

F. solar 17.2 8.8 26.6 20.0 2.0 0.2 3.0 0.4 13.4 4.7 27.8 12.6

Splice 108.3 100.8 63.5 51.1 314.7 304.7 188.8 173.8 517.0 490.8 459.9 317.2

Thyroid 15.3 13.3 33.5 31.6 11.8 6.0 29.7 2.6 8.8 2.8 27.1 1.0

Titanic 7.6 6.2 9.5 8.9 1.0 0 1.0 0.1 5.3 4.2 7.7 6.7

Twonorm 187.2 186.2 190.9 189.9 1.0 0 1.0 0 120.0 88.9 121.8 5.6

Waveform 265.3 255.0 132.3 121.1 3.0 0 2.0 0 187.1 184.1 92.0 54.8

shows the number of the deleted eigenvectors by training SSLP. And the

“Class 1” column in SSLP (1) lists the numbers of eigenvalues for Class

1 selected by KSM (1), and the next column lists the numbers of deleted

eigenvectors by training SSLP (1). For the breast cancer, heart, and twonorm

problems, the number of selected eigenvalues per class is almost one and still

SSLP performed very well. Thus, for these problems, the feature selection

worked well.

Comparing the number of eigenvectors for KSM (1) and KSM (E), KSM

(E) needed more eigenvectors for nine problems. But by optimizing weights

by SSLP-SVM (E), many eigenvectors were deleted.

28

4.4. Comparison of SS-SVMs with SVMs

Table 10 lists the average recognition rates of the proposed methods,

KSMs, L1 SVMs, and LS-SVMs. The column “SS-SVM” shows the recog-

nition rate of the classifier selected from SSLP and SSLS according to the

higher recognitions rate of the cross-validation data set listed in Tables 4 and

7. We performed the statistical test with the significance level of 5% and the

best recognition rates are shown in boldface, the second best in Roman, and

the worst recognition rates in italic. The bottom row shows the numbers of

the best, the second best, and worst recognition rates for each method.

Among subspace methods, SSLP shows best performance and SSLS shows

the second best performance. But compared to SVM and LS-SVM, they are

inferior. But as shown in the “SS-SVM” column, selecting the classifier

between SSLP and SSLS by the recognition rate of the validation data set,

performance improved and comparable to SVM and LS-SVM except for the

german and image data sets.

5. Discussions

One of the disadvantages of support vector machines is that there is no

mechanism of analyzing classification results. Namely, for two class problems

the input is classified into either Class 1 or Class 2. And if an input is

misclassified, we cannot explain the reason why it is misclassified. On the

other hand by subspace methods using similarity measures we can analyze

the classification results. Even if the input is correctly classified, by checking

the highest similarity measure with the second highest similarity measure,

we can check whether the classification results are firm or marginal. Or

29

Table 10: Comparison of Average Recognition Rates (%) and Their Standard Deviations

of Test Data Sets

Data SS-SVM SSLS SSLS (O) SSLP KSM (1) KSM (E) SVM LS-SVM

Banana 89.0 ± 0.6 88.9 ± 0.6 88.7 ± 0.6 89.0 ± 0.6 88.6 ± 0.6 87.8 ± 0.7 89.3 ± 0.5 89.4 ± 0.5

B. cancer 75.1 ± 4.4 75.1 ± 4.4 72.2 ± 4.6 73.3 ± 4.6 75.0 ± 4.2 75.1 ± 4.3 72.4 ± 4.6 74.0 ± 4.7

Diabetes 73.5 ± 2.0 72.0 ± 2.3 70.7 ± 2.4 73.5 ± 2.0 73.4 ± 1.7 71.7 ± 2.2 76.3 ± 1.8 76.9 ± 1.7

German 73.8 ± 2.2 73.8 ± 2.2 73.1 ± 2.1 70.9 ± 6.6 75.1 ± 2.2 73.7 ± 2.1 76.2 ± 2.2 76.4 ± 2.2

Heart 83.1 ± 3.8 82.6 ± 3.7 81.8 ± 3.6 83.1 ± 3.8 80.4 ± 3.3 82.4 ± 3.6 83.7 ± 3.4 83.8 ± 3.1

Image 95.4 ± 0.6 95.4 ± 0.6 94.9 ± 0.7 95.1 ± 1.0 96.3 ± 0.6 88.0 ± 0.9 97.3 ± 0.4 97.5 ± 0.3

Ringnorm 98.2 ± 0.2 97.6 ± 0.3 91.8 ± 0.8 98.2 ± 0.2 76.5 ± 11.1 64.1 ± 2.4 97.8 ± 0.3 96.3 ± 0.4

F. solar 66.9 ± 1.6 66.9 ± 1.6 65.5 ± 1.8 64.7 ± 1.9 65.1 ± 1.8 63.5 ± 3.9 67.6 ± 1.7 66.7 ± 1.6

Splice 88.2 ± 0.6 86.2 ± 1.0 75.8 ± 4.7 88.2 ± 0.6 87.6 ± 0.8 71.9 ± 1.5 89.2 ± 0.7 89.4 ± 0.7

Thyroid 96.3 ± 2.2 95.4 ± 2.1 95.4 ± 2.2 96.3 ± 2.2 95.6 ± 2.0 95.0 ± 2.4 96.1 ± 2.0 95.9 ± 2.1

Titanic 76.9 ± 1.0 76.9 ± 1.0 77.4 ± 0.7 76.8 ± 1.1 76.6 ± 1.2 77.3 ± 0.6 77.2 ± 1.1 77.3 ± 1.1

Twonorm 97.7 ± 0.1 97.7 ± 0.1 97.7 ± 0.1 97.6 ± 0.2 97.6 ± 0.1 97.0 ± 0.5 97.6 ± 0.1 97.4 ± 0.2

Waveform 89.1 ± 0.8 89.1 ± 0.8 87.0 ± 1.0 89.3 ± 0.7 88.5 ± 5.6 88.0 ± 1.1 90.0 ± 0.4 89.9 ± 0.5

B/S/W 5/6/2 2/5/6 2/2/9 3/7/3 1/5/7 2/1/10 9/4/0 10/1/2

30

introducing the threshold to classification, we can reject classification if the

difference between the first and the second similarity is within the threshold

value.

Another advantage of the subspace method is that using dictionaries we

can visually inspect the obtained subspace if linear kernels are used. For

instance for character recognition, by displaying dictionaries for each sub-

space (character), we can check whether the dictionaries well represent the

character. This will increase the reliability of the developed classifier.

Now we compare the computational complexity of the proposed methods

with support vector machines using SSLS-SVMs and LS-SVMs as examples.

To make comparison simple, we estimate the complexity of training classi-

fiers for two-class problems with given parameter values. For an LS SVM,

training is done by solving a set of linear equations with M variables, where

M is the number of training data. If we solve the set of linear equation by

the Cholesky factorization the number of matrix operations is O(M3). For

the SSLS-SVM, first we need to select independent variables by the Cholesky

factorization. If N (N ≤ M) data are selected, the number of matrix oper-

ation is O(N3) if the incremental Cholesky factorization is used. Then, we

calculate the largest ri (i = 1, 2, ri ≤ N) eigenvalues. The number of matrix

operations is O(ri N
2) if the eigenvalues are calculated from the largest to

the smallest. Training of SSLS-SVM is done by solving a set of linear equa-

tions and the number of matrix operations is O((r1 + r2)
3) for all-at-once

formulation and O(r3
1 + r3

2) for one-against-all formulation. In our experi-

ments, we calculated the relation of M , N , r1, and r2. For the SSLS-SVM,

N = 0.845 M , r1 = 0.125 N , and r2 = 0.150 N . For the SSLS-SVM (O),

31

N = 0.845 M , r1 = 0.217 N , and r2 = 0.215 N . And for the SSLP-SVM,

N = 0.845 M , r1 = 0.352 N , and r2 = 0.348 N . Here the coefficients were

the averages of the 13 classification problems. Because the sizes of r1 and r2

were small, independent data selection and eigenvalue calculations occupied

the major computation of the SS-SVMs.

For the SSLS-SVM, we need to determine the vales of κ, γ, and C by

cross-validation. Thus, including cross-validation, usually, training an SSLS-

SVM is slower than an LS-SVM. For the SSLP-SVM, the κ value is set to

99.9% and, two parameter values are determined.

From the computer experiments, the generalization ability of the proposed

methods are comparable or better than that of the SVM for some problems

but in some cases the proposed methods show inferior results. In the following

we discuss the possibilities that degrade the generalization ability using a

two-dimensional case with linear kernels. Figure 1 shows classification by

the subspace method. Here we assume that we only use one dictionary for

each class, i.e., ψ1 and ψ2. Because the projection length of the filled circle

on ψ1 is shorter than that on ψ2, it is classified into Class 1. Therefore the

class boundary is given by the line as shown in the figure, which bisects ψ1

and ψ2. Therefore, to realize high generalization ability, the dot product of

the dictionaries ψ1 and ψ2 need to be as large as possible.

Now consider the cases where the subspace method does not work well.

Figure 2 shows an example, which is separable by an SVM. But because

the two subspaces overlap heavily, classification by the subspace method is

difficult. This may happen with linear kernels. But using RBF kernels,

this will not happen because the mapping function associated with the RBF

32



Boundary

Class 2

x1

x2

0

Class 1



1

2

Figure 1: Classification by subspace methods

kernel maps the input onto the surface of the unit hypersphere with the center

at the origin. In the feature space the training data are linearly separable

by a hyperplane if the value of γ is properly set. Therefore, if the problem

is difficult to classify by the subspace method it is also difficult by the SVM.

In the subspace method, the dictionaries are defined in the non-negative

space. In Fig. 3, Classes 1 and 2 are in the opposite directions and thus

ψ1 and ψ2 are also in the opposite directions. In this case, since the two

subspace are identical, classification is impossible. In the input space, if we

confine the range of variable to be non-negative, we can avoid this situation.

For polynomial kernels: (xT x′ +1)d, where d is an integer, we can avoid this

if the range of the input space is restricted to the non-negative region. For

RBF kernels, because H(x,x′) = gT (x) g(x) > 0 for any x and x′, all the

elements of g(x) are non-negative. Thus, for RBF kernels this problem does

not happen.

From the above discussions, there seems to be no serious defect that

33



Boundary

Class 2

x1

x2

0

Class 1


1

2

Figure 2: Difficult classification by the subspace method with close ψ1 and ψ2

x1

x2

0

Class 1

1

 2
Class 2

Figure 3: Difficult classification by the subspace method with two classes in the opposite

directions

34

deteriorates the generalization ability of the subspace method. Therefore

the reason of non-uniform performance compared to SVMS may be largely

caused by the similarity measure given by (10). This is one of the similarity

measures and a large number of similarity measures have been developed.

Therefore, before developing a subspace-based classifier, it is better to select

the most suitable similarity measure. This can be done by evaluating the

similarity of dictionaries for each subspace to other subspaces and selecting

the similarity measures that give the most non-overlapping subspaces. The

proposed weight optimization method can then be used to develop the final

subspace based classifier. We leave the detailed discussions to future study.

6. Conclusions

In this paper, we proposed two types of subspace based SVMs (SS-SVMs):

subspace based least squares SVMs (SSLS-SVMs) and subspace based linear

programming SVMs (SSLP-SVMs). In SS-SVMs, the similarity measure for

each class is assumed as the separating hyperplane that separates the asso-

ciated class with the remaining classes. Then the margin between classes is

maximized under the constraints that the similarity measure associated with

the class to which a data sample belongs is the largest among all the simi-

larity measures. This leads to a linear all-at-once SVM. Because all-at-once

formulation is inefficient, we also formulated SSLS-SVMs by one-against-all

formulation.

According to the computer experiments for two-class problems, both

SSLS-SVMs and SSLP-SVMs showed better recognition rates of the test data

than the conventional kernel subspace method with equal weights or weights

35

set by the eigenvalues. We also show that although training of SSLS-SVMs

by one-against-all formulation is efficient, the recognition rates of the test

data were inferior to those of SSLS-SVMs by all-at-once formulation. We

also showed that SSLP-SVMs can perform feature selection during training.

References

Abe, S. (2005). Support Vector Machines for Pattern Classification. Springer-

Verlag, London.

Abe, S. (2007). Sparse least squares support vector training in the reduced

empirical feature space. Pattern Analysis and Applications, 10 (3), 203–

214.

Fukui, K., & Yamaguchi, O. (2007). The kernel orthogonal mutual subspace

method and its application to 3D object recognition. In: Proceedings of

Asian Conference on Computer Vision (ACCV‘07) (pp. 467-476).

Fukui, K., Stenger, B., & Yamaguchi, O. (2006). A framework for 3D ob-

ject recognition using the kernel constrained mutual subspace method. In:

Proceedings of Asian Conference on Computer Vision (ACCV‘06) (pp.

315-324).

Kitamura, T., Takeuchi, S., Abe, S., & Fukui, K. (2009). Subspace based least

squares support vector machines for pattern classification. In: Proceedings

of International Joint Conference on Neural Networks (IJCNN 2009) (pp.

xx–yy).

36

Oja, E. (1983). Subspace Methods of Pattern Recognition. Research Studies

Press.

Rätsch, G., Onda, T., & Müller, K.R. (2001). Soft margins for AdaBoost.

Machine Learning, 42 (3), 287–320.

Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Ratsch,

C., Tsuda, K., & Smola, A.J. (1999). Input space versus feature space

in kernel-based methods. IEEE Transactions on Neural Networks, 10 (5),

1000–1016.

Schölkopf, B., Smola, A.J., & Müller, K.R. (1998). Nonlinear component

analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–

1319.

Sakano, H., Mukawa, N., & Nakamura, T. (2005). Kernel mutual subspace

method and its application for object recognition. Electronics and Com-

munication in Japan, Part 2, 88 (6), 45–53.

Takeuchi, S., Kitamura, T., Abe, S., & Fukui, K. (2009). Subspace based

linear programming support vector machines. In: Proceedings of Interna-

tional Joint Conference on Neural Networks (IJCNN 2009) (pp. xx-yy).

Teukolsky, S.A., & Press, W.H. (1993). Numerical Recipes in C, Cambridge

University Press, pp. 430–444.

Watanabe, S., & Pakvasa, N. (1973). Subspace methods of pattern recog-

nition. In: Proceedings of 1st International Joint Conference on Pattern

Recognition (pp. 283-328).

37

Xiong, H., Swamy, M.N.S., & Ahmad, M.O. (2005). Optimizing the kernel

in the empirical feature space. IEEE Transactions on Neural Networks, 16

(2), 460–474.

38

