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a b s t r a c t

Brains interface with the world through perception. The process extracts information from microscopic
sensory inputs and incorporates it into the mesoscopic memory store for retrieval in recognition. The
process requires creation of spatiotemporal patterns of neural activity. The construction is done through
phase transitions in cortical populations that condense the background activity through spontaneous
symmetry breaking. Large-scale interactions create fields of synaptically driven activity that is observed
by measuring brain waves (electrocorticogram, ECoG) and evaluated by constructing a mesoscopic
vectorial order parameter as follows. The negative feedback among excitatory and inhibitory neurons
creates spatially and spectrally distributed gamma oscillations (20–80 Hz) in the background activity.
Band pass filtering reveals beats in ECoG log analytic power. In some beats that recur at theta rates
(3–7 Hz), the order parameter transiently approaches zero, giving a null spike in which the microscopic
activity is uniformly disordered (symmetric). A phase transition that is manifested in an analytic phase
discontinuity breaks the symmetry. As the null spike terminates, the resurgent order parameter imposes
mesoscopic order seen in spatial patterns of ECoG amplitude modulation (AM) that actualize and update
the memory of a stimulus. Read-out is through a divergent/convergent projection that performs on
cortical output an irreversible spatiotemporal integral transformation. The ECoG reveals a conic phase
gradient that accompanies an AM pattern. The phase cone manifests a vortex, which is initiated by the
null spike, and which is inferred to help stabilize and prolong its accompanying AM pattern that might
otherwise be rapidly degraded by the turbulent neural noise from which it emerges.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Brains constantly generate background activity whether they
are at work, rest or in sleep (Freeman, 2009a). The activity is seen
in the continuous irregular firing of action potentials at the mi-
croscopic level, in fluctuating dendritic potentials at the meso-
scopic level, and in spatiotemporal fluctuations in blood flow at
the macroscopic level, which indirectly reflect the insatiable de-
mands of brains for energy. It is commonly regarded as chaos, but it
is not deterministic chaos (Rapp, 1993), because those systems are
stationary, autonomous and noise-free, whereas brains are noisy,
time-varying, open systems generating stochastic chaos (Freeman,
2000; Freeman, Kozma, & Werbos, 2001; Kozma, Puljic, Balister,
Bollabás, & Freeman, 2005). It is also regarded as noise and re-
moved by time-locked averaging to extract event-related poten-
tials, on the assumption that the stimulus- or response-related
activity is superimposed on the background activity. However,
the background activity is neither random nor chaotic but is self-
organized in dynamic structures that reflect the properties of neu-

∗ Tel.: +1 510 642 4220; fax: +1 510 643 9290.
E-mail address: dfreeman@berkeley.edu.
URL: http://www.sulcus.berkeley.edu.

ral mechanisms by which brains regulate themselves close to crit-
icality, and by which they reorganize in transitions from rest to
work (Freeman, 2004a, 2004b, 2005, 2006; Makeig et al., 2002).

This review is focused on four spatiotemporal structures in
the background activity, which have been observed in the band
pass filtered electrocorticogram (ECoG) of cortices at rest and at
work. One appears as a power-law spectrum. Another is a tem-
poral downward spike in the analytic power of electric potential,
decreasing often by a factor of 10−4 to 10−6. The third is a stable
spatial pattern of the analytic phasewith respect to themeanphase
at the center frequency of the pass band, which has the form of a
cone. The fourth is pulsing or rotating patterns of ECoG amplitude,
which are displayed in successive movie frames of digitized, band
pass filtered data from 8 × 8 electrode arrays (6 × 6 mm in rab-
bit; 10 × 10 mm in human) on the cortical surface. These patterns
resemble satellite video images of the vortex of a hurricane.

Reasons are given in this essay for proposing that these several
structures are different manifestations of the process in the cortex
by which perception reads outmemories. Thememories are stored
by learning in cortical synaptic webs, and the read-out is triggered
by conditioned stimuli through a process that is characterized as a
phase transition (Freeman, 1990; Kozma & Freeman, 2001; Kozma
et al., 2005) in cortical dynamics. The read-out results in a spatial
pattern of amplitude modulation (AM) of the carrier frequency in

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.06.050
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the beta or gamma ECoG frequency range. It is classifiable with
respect to triggering stimuli (Freeman, 2005). An accompanying
spatial pattern of phase modulation (PM) of the carrier wave has
no classificatory value, though it serves to define and widen the
temporal boundaries of the AM pattern (Freeman, 2006).

Section 2 summarizes experimental observations. Section 3 in-
troduces the Rice distribution. Section 4 proposes that background
activity is sustained by mutual excitation. Section 5 proposes that
inhibitory feedback operates as a band pass filter. Section 6 pos-
tulates governance of cortex by an occult limit cycle attractor.
Section 7 concludes with remarks on the neural mechanisms of
perception.

2. Power-law PSD, null spikes, phase cones, vortices

Microscopic background activity that is observed in the
extracellular recording of axonal action potentials with audio and
visual monitors resembles white noise with equal power density
across the spectrum. The power spectral density (PSD) in log–log
coordinates is a power-law distribution with slope = 0, 1/f0 (flat
spectrum = white noise) but only up to one or more kHz. Above
that break frequency is pink noise, 1/f of slope −1. Mesoscopic
ECoG is from synaptic currents of dendrites that cumulatively
sum the synaptic potentials evoked by the action potentials. The
cumulative sum of white noise with zeromean is brown noise with
a slope of −2, 1/f2. The PSD of summed extracellular dendritic
potentials that provide themain constituents of the ECoG in awake
rest approaches brown noise with an average slope near −2, but
owing to refractory periods the slope is steeper; in deep slow
wave sleep the slope averages near −3 (Fig. 1) (Freeman, 2009b;
Freeman, Holmes, West, & Vanhatalo, 2006).

The important generalization is that the spectra of the
mesoscopic rest ECoG are continuous and power-law for all slopes
between −2 and −4 (Freeman & Zhai, 2009). The implied self-
similarity has been confirmed over the spectral ranges of clinical
interest: theta, alpha, beta, and gamma (Freeman, 2007a; Freeman,
O’Nuillain, & Rodriguez, 2008). The obvious inference is that a band
pass filter of any center frequency and bandwidth applied to ECoG
will give Rayleigh noise (Fig. 2A, B), as already found in olfactory
cortical ECoG (Fig. 3.13c, p. 148 in Freeman (1975)).

The statistical properties of the beats are best revealed by
the logarithm of the analytic power (the square of the analytic
amplitude following the Hilbert transform (Freeman, 2007b))
(Fig. 2C) and the analytic frequency (D), which is approximated by
calculating the differences between successive digitizing steps in
radians, dividing them by the duration of the digitizing step in s,
and dividing by 2π to get the instantaneous analytic frequency in
Hz.

The similarity held for differing pass bandwidths and center
frequencies and equally for brown and black noises with various
slopes (Freeman & Zhai, 2009) for human, cat and rabbit ECoG.

Histograms were calculated of the intervals between events
where successive power differences changed from negative to
positive, indicating a down spike. Ripples imposed by digital
filtering gave a bimodal histogram owing to the very short
intervals. Demeaning and setting a threshold at the minimum of
the histogram between the two maxima minimized distortion.
The modes of the valid intervals were found to depend only on
the width of the pass band irrespective of the center frequency,
again underscoring the self-similarity of the resting ECoG. Rice
(1945), Breiman (1968) and Papoulis and Pillai (2002) predicted
this result for white noise. Simulations confirmed his result before
extension of his procedure to brown and black noises and to ECoG.
Comparison among the four data sets proved their similarity for
resting ECoG (see Fig. 7A below). Rice proved that themodal values
from white noise expressed as the beat frequency in Hz were
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Fig. 1. The power spectral density (PSD) is illustrated for the transition from slow
wave sleep to active arousal. The power-law distribution of spectral energy reflects
both the randomness of the background activity at rest and the self-similarity across
a broad range of oscillations. The steep slope of black noise (log–log PSD slope a
in 1/fa = −4 < a < −2) is explained by the refractory periods of the neurons
generating the background activity. In waking rest the slope shifts toward −2.
Upon active engagement with the environment, peaks emerge above the power-
law level (Freeman, 2006, 2007a; Freeman & Zhai, 2009), curve fitting by linear
regression with the criterion of least squares residuals indicates a slope shallower
than −2, but with excessive residuals (Freeman, 2009b).

proportional to the bandwidth in Hz by a factor of 0.641 (Sect.
3.8., page 90, equation 3.8–3.15 in Rice (1945)). This value was
confirmed for human ECoG, rabbit ECoG, and simulated brown and
black noises (see Fig. 5 in Freeman (2009b)).

The histograms giving the distributions of values of the loga-
rithm of analytic power revealed the similarity of the derivations
from brown noise (Fig. 3A) and ECoG (B).

The spatial pattern of phase modulation (PM) from the 8 × 8
phase values that accompanied the AM pattern of the carrier wave
at its relatively fixed frequency had the shape of a cone in the cor-
tical surface coordinates. In a view onto the surface (Fig. 4) the
isophase contours of an example appear as arcs (steps of 0.1 rad).
The location and sign (lag ‘o’ or lead ‘•’) of the cone varied randomly
from each AM pattern to the next but were fixed within AM pat-
terns. The phase gradient in rad/mm of the cone varied randomly
inversely with the carrier frequency in rad/s; the mean phase ve-
locity from the ratio in m/s equaled mean conduction velocity of
cortical axons running parallel to the surface (Freeman & Baird,
1987). Maps of the phase cones on the cortical surface showed that
the frames lasted 3 to 5 cycles of the carrier oscillation. The phase
cone helped to determine the location, diameter, starting time and
duration of each frame containing anAMpattern, but it has no clas-
sificatory value with respect to stimuli (Freeman, 2005, 2006).

Display of the filtered ECoG amplitude by frames at twice the
digitizing interval in movies showed overlapping AM patterns
with different locations, carrier frequencies, and PM patterns.
An example (Fig. 5) looking through the 6 × 6 mm array
window onto the cortical surface shows one focus that oscillates
with repeated expansion of alternating positive and negative
peaks (+o − o+). The other focus oscillates with alternating
positive and negative peaks (PNPN) rotating counterclockwise
about a fixed point corresponding to the downward apex of a
phase cone with maximal lag (implosion). This technique showed
that the conic phase gradients were time-dependent (Kozma &
Freeman, 2008) as schematized in Fig. 6; six types of spatial
PM patterns were observed: repetitive expansion (explosion),
contraction (implosion), clockwise rotation, or counterclockwise
rotation (Freeman & Vitiello, 2009).

3. The appearance of Rice noise

The down spike interval histograms from both rabbit and
human at rest conformed to the Rayleigh distribution (Fig. 7A) for
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Fig. 2. A. Application of a band pass filter, here in the low gamma range 25–50 Hz, to resting ECoG produces beats in Rayleigh noise. This recording from an 8× 8 electrode
array (5.6×5.6mm) on rabbit visual cortex shows 64 superimposed ECoG signals. B. Application of the Hilbert transform gives the analytic power of the 64 signals, showing
the repeated approach to zero power (Freeman, 2009b; Freeman et al., 2008). C. The logarithmof the analytic power shows sharp down spikes in clusters among the 64 signals.
The lower line shows a defective channel D. The analytic frequency shows positive and negative spikes during the down spikes where the analytic phase is indeterminate.
Null spikes were down < 10−4. At these times the spatial standard deviation, SDX (t), has high values. Each epoch between spikes has a minimum in SDX (t) that serves to
evaluate the analytic frequency distribution in the epoch. The mean analytic frequency is nearly constant in each epoch and on average shifts by ±10 Hz between epochs.
The lower signal in C is from a blocked electrode (Freeman, 2009b).
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Fig. 3. The distributions of the logarithm of analytic power were calculated from a 17 s continuous record from 64 electrodes at 2 ms intervals (B) for comparison with 64
simulated independent time series. The pass band was in the low gamma range (Freeman & Zhai, 2009). Spikes less than the inferred threshold are referred to as null spikes.

all center frequencies tested, as Rice (1945) predicted for white
noise, provided that the bandwidth exceeded 8Hz. For bandwidths
of 3 to 6 Hz and sometimes up to 8 Hz a different distribution was
observed,which it turned out Rice (1945) had also predicted.When
he added a sine wave to white noise, the modal value of interval
distributions from the 4 Hz band pass filtered ECoG increased
toward almost twice the Rayleighmode (Fig. 7B), depending on the
amplitude of the added sine wave, at the sine wave frequency. In
4 Hz pass bands on the shoulders, the modal interval was shorter

(Fig. 8A). The modified distributions can be called examples of the
Rice distribution. Rice proposed using this effect to locate signals
embedded in random noise. Here it was considered possible to
serve that purpose in the search for signals in ECoG and possibly
EEG.

The search for a comparable shift in distribution in rabbits
engaged in responding to conditioned stimuli yielded similar
shifts in 4 Hz bands with center frequencies ranging from 16
to 88 Hz, although the deviations from the Rayleigh distribution
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Fig. 4. The silhouette shows the outline of the olfactory bulb, on which is superimposed a 4 × 4 mm rectangle giving the position of the surgically placed 8 × 8 electrode
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one phase cone at 0.1 rad intervals (Breiman, 1968). The insets below the display of apices give examples of phase cone respectively from rabbit (Freeman, 2004b), phase
lead, and human (Freeman et al., 2006), phase lag.

(randomness) at the center frequency were small (Fig. 8B). More
easily found were deviations in the side bands of the central added
sinewave (Fig. 8A), in which themodal intervals were shorter than
predicted by the Rayleigh distribution (see Figs. 6, 7 in Freeman
(2009b)).

An opportunity presented itself to estimate thewidth of the en-
dogenous bandwidth of the carrier waves of the ECoG segments
that were classified with respect to the conditioned stimuli pre-
sented on the trials from which the ECoG came, carrying classifi-
able spatial AM patterns of amplitudemodulation (Freeman, 2005,
2006). The AM patterns were measured at the maxima of analytic
power in segments identified as having relatively constant analytic
frequency between null spikes. The minimum value of the spa-
tial standard deviation of the analytic frequency, SDX (t), in each
frame between down spikes was used to estimate the analytic fre-
quency distribution in Hz in that frame. Each value was paired in
a scattergram with the interval duration expressed as its recipro-
cal, the analytic frequency in Hz (Fig. 9). The scattergram was re-
peated for ECoG bandwidths of 4, 8 and 16 Hz, with calculation of
the geometricmean of the null spike rate, respectively 2.1±0.7Hz,
3.8 ± 1.4 Hz, and 7.4 ± 2.6 Hz. The recurrence rate of classifiable
frameswasdetermined to liewithin the theta range (3–7Hz) (Free-
man, 2005). Therefore, the optimal estimate of bandwidth when
expressed as the minimal value of SDX (t) was inferred to be in the
vicinity 8 Hz, giving a modal spike repetition rate near 5 Hz, in the
middle of the theta range.

The Rayleigh distribution was calculated for the same length of
data using either brown or black noise in the same filter settings,

giving a globular distribution of points at the upper limit of the
range of the ECoG (Fig. 9, ‘‘X’’). The Rice distributionwas calculated
in the same way but after adding a sine wave to the noise at the
center frequency of the pass band with RMS amplitude half the
SD of the noise at that frequency. The points were distributed in a
globular cluster at the lower end of the elliptical ECoG distribution.
This finding indicated that the ECoG data contained non-random
activity in the form of a narrow-band oscillation constituting a
signal, which by inference may correspond to the relatively fixed
carrier wave of the classifiable AM patterns. The clustering of the
ECoG points overlaps the theta range (3–7 Hz). That can explain
the neuralmechanism for the tendency of bursts of gamma activity
(variously defined in the range of 25–100 Hz to include low
and high gamma) to recur at rates in the theta range, which is
known as the theta–gamma linkage (Canolty et al., 2006; Chrobak
& Buzsáki, 1998; Fell et al., 2003; Lisman, 2005; Schack, Vath,
Petsche, Geissler, & Möller, 2002), and which appears to hold for
beta activity (12.5–30 Hz) as well (Freeman, 2005).

The fact that adding power at a fixed frequency to brown or
black noise prolongs the intervals between null spikes in that pass
band is significant, because the hallmark of frames between null
spikes,which carryAMpatterns that are classifiablewith respect to
conditioned stimuli, is that they have long durations, long enough
to encompass 3 to 5 cycles of the carrier frequency for read-out (Fig.
A1.08, C in Freeman (2004a)). These frames last much too long to
be modeled with random numbers, i.e., random noise (Freeman,
2006).
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Fig. 5. Frames from a 5.6 × 5.6 mm 8 × 8 electrode array were shown in time steps of 4 ms (left to right, top to bottom) of ECoG filtered in a pass band 20–25 Hz. A
small focus (+o − o+) oscillated in place with cycle duration near 48 ms, the other focus rotated counterclockwise with cycle duration near 46 ms. Each pattern persisted
for several cycles, then terminated. Four to six independent phase-locked ECoG patterns commonly overlapped, giving the appearance of a pan of boiling water (Freeman,
2004b; Kozma & Freeman, 2008). From a lecture by WJF at DICE, Castiglioncello, Italy 28 Sept 2008.

explosion
pulsation

±π/4 radians

Fig. 6. Summary diagram of observed conic phase gradients with time variation
appearing as vortices: either inward (implosion, maximal lag at the apex) or
outward (explosion, maximal lead at the apex); rotation clockwise; rotation
counterclockwise; or pulsation without rotation (Freeman & Vitiello, 2009; Kozma
& Freeman, 2008). From a lecture by WJF, DICE Conf, Castiglioncello, Italy 28 Sept
2008.

4. Origin and stabilization of the background

The PSD slopes steeper than -2 cannot be simulated by
summingwhite noise. Instead, it is necessary to sum the simulated
impulse responses that are triggered by simulated pulses in a
Poisson process governed by random numbers. The envelope of
the evoked unit activity (Fig. 10) gives the kernel of integration
for ECoG. The impulse response is adequately simulated with the
sum of two exponential terms, one for the rise rate and the other
for the decay rate, thus neglecting higher order poles. The rise rate

determines the slope of the PSD, and the decay rate determines
the break frequency, below which the spectrum tends to be
flat (Freeman&Zhai, 2009). Excitatory input drives cortex above its
self-regulated set point that determines the background level. The
increased activity increases the decay rate and decreases the rise
rate, owing to saturation of forward gain of neural populations by
the refractory periods. The saturation or partial block diminishes
the positive feedback gain (gain contours in Fig. 11). The same
result holds for decreasing the set point, which decreases the
background activity. The saturation effect depends on the ratio
of evoked activity to the background activity. For example, the
reduction in spike activity with the onset of slow wave sleep
reflects the reduction in the set point with reduced arousal, and
this can then explain the steeper slope of the PSD in slow wave
sleep.

The power-law distribution of energy of frequencies requires
that there be a comparable source of distribution in the delays in
the neural negative feedback loops that determine the frequencies.
The local feedback delays from propagation times are negligible,
so the frequencies are determined by the rise rates of the
dendritic cable delays but mainly by the decay rates of the passive
membranes. These frequencies are in the gamma range (Freeman,
1975, 2006). Lower frequencies in the beta range involve longer
delays contributed by longer propagation delays. The power-law
distribution of frequencies is provided by the distributions of the
lengths of intracortical axons that run parallel to the surface, which
on re-evaluation have also been shown to be power-law and not
exponential (Freeman, 2007a).

The key experimental evidence for this hypothesis has come
from studies of the impulse response of a population of neurons
at the input to the olfactory bulb, which on electrical stimulation
of incoming axons shows a transient increase in the level of activ-
ity with no evidence for forward or recurrent inhibition (Fig. 10).
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Paradoxically the periglomerular neurons transmit to each other
by GABA, which is widely shown to be an inhibitory transmitter
in mammalian brains. However, these neurons have a high inter-
nal concentration of chloride ions (Siklós, Rickmann, Joó, Freeman,
& Wolff, 1995), so the effect of GABA on GABA-A receptors is to
open the channels and allow chloride to escape, thus depolarizing
the membranes and causing excitation. An impulse input causes a
transient increase in firing rate above the background level aver-
aging about 10/s, followed by an exponential decay to the back-
ground without an overshoot. This is revealed by calculating post
stimulus time histograms (PSTH) of trains of action potentials from
representative neurons in the population on repetitive stimulation
at low stimulus rates (≤ 1/s) (Fig. 10).

When the impulse input intensity is increased, the response
amplitude increases, and the rate of exponential decay likewise
increases, as shown by 2 of 6 samples. The decay rates are
determined by fitting the solutions to two coupled third order
ordinary differential equations (ODE) (Fig. 11) that represent the
dynamics of two subpopulations in the excited cortical population:
a receiving subset and a transmitting subset that is continually
renewed from the receiving subset (Freeman, 2009b).

The interaction strength is represented by the positive feedback
gain, Kp, and the open loop dynamics is evaluated by three
exponential terms: the passivemembrane decay rate, the rise time
imposed by the cable delay of the dendrites, and a concave upward
deflection caused by the synaptic delay from axon to dendrite. The
repeated solution of the equations with incremental increase in
Kp gives a root locus plot (Fig. 11), in which the decay rates of
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frequency. The same analysis applied to black noise ‘‘B’’ and brownnoise ‘‘X’’ yielded
globular clusters at the two ends of the ECoG distribution (Freeman, 2009b).

the impulse responses give poles on the negative real axis of the
complex plane. These locations along the root locus show thatwith
increasing stimulus intensity, or with decreasing self-stabilized
background activity, the feedback gain, Kp, is reduced.

The impulse response amplitude decreases in proportion with
the stimulus intensity to zero response at threshold. The decay rate
likewise decreases in proportion with the stimulus intensity and
extrapolates to zero at threshold (Fig. 12).



Author's personal copy

W.J. Freeman / Neural Networks 22 (2009) 491–501 497

150

100

50

0

pu
ls

es
/s

150

100

50

0
pu

ls
es

/s

decay rate α:

-59/s -94/s

0 40 80 120
time, ms

0 40 80 120
time, ms

Fig. 10. The PSTH of a periglomerular neuron is shown for two representative
intensities of stimulation. The data as plotting symbols were fitted with the
solutions to a 6th order linear ODEwith a variable coefficient, the positive feedback
gain, Kp (Freeman, 1975).

gain = 1.0

0.53

0.19
0.05

0.01
-600-800 -400 -200

real axis, α

phase = 0° -400

-200

+200

+400
im

ag
in

ar
y 

ax
is

, j
ω

Fig. 11. Two 3rd order ODE are coupled with positive feedback gain, Kp, to model
the dynamics of a population of excitatory neurons that sustain background activity.
Six sets of the 4 of 6 poles closest to the imaginary axis are shown as∆ for 6 levels of
intensity; twomore sets for the highest frequencies are far to the left in the complex
plane. The pole at the origin, ∆, is by extrapolation to amplitude = 0, decay rate =
0, Kp = 1.0 (from Fig. 5.13(a) on p. 292 in Freeman (1975)).

At zero decay rate the feedback gain is unity, Kp = 1. This
finding implies that the background activity is governed by a point
attractor, which is symbolized by the zero eigenvalue in the linear
approximation to the nonlinearODE, giving a pole∆ at the origin of
the complex plane. The synaptic connection density is sufficiently
high that, once it has begun by any random firing of a neuron, the
activity is self-sustained indefinitely. Its set point and steady state
level are regulated by neurohumoral control from aminergic nuclei
in the brain stem (Freeman, 2005) that control the level of arousal.
The model predicts the steady state at unity gain. Activity driven
above the set point is homeostatically reduced. Decreases from loss
of input are met by transient increases in gain Kp > 1, with return
to the steady state. Proof is by showing that occluding the nostrils
to block olfactory receptor input or cutting the olfactory nerve does
not abolish the background activity (Freeman, 2009b).

5. Role of inhibition in generating oscillations

Further information about stabilization of background activity
has been derived by simultaneously recording the ECoG at the
cortical surface above a microelectrode and the train of action
potentials generated by a single neuron embedded in populations
of excitatory and inhibitory neurons (Freeman, 2009b; Freeman &
Erwin, 2008). The ECoG is superior to local field potentials (LFP)
from the depth electrode, because the phase relations between the
two time series are more clearly defined. The question is asked,
what is the relation between the pulse time series and the wave
time series? Calculating the pulse probability conditional on ECoG
amplitude provides the answer. Typically in the background state
the amplitude histogram of the ECoG approximates the Gaussian
normal density function, and the autocorrelation decays to zero
with oscillations over distributions of frequencies. The spike trains
likewise give autocorrelation functions that rise from zero to a

sustained level showing the refractory periods, then steady state
background activity. Interval histograms show an exponential
decay to zero conforming to a Poisson process with a dead time
at shortest intervals >0 that are caused by absolute refractory
periods (Freeman, 1975).

The normalized conditional pulse probability density function
has been fitted with an equation derived by a statistical
generalization of theHodgkin–Huxley equations (Freeman, 2009b;
Freeman & Erwin, 2008). The derivative of the asymmetric sigmoid
curve, dp/dv, gives the nonlinear gain (Kp, Fig. 13A). There are two
values of the wave amplitude at which unity gain occurs. The KIe
excitatory set stabilizes itself to the right of maximal gain. Further
increases result in decreased gain, Kp, as shown by the tangents to
the sigmoid curve (Fig. 13A) as evaluated in Fig. 10 and derived in
Fig. 11.

Cortex is composed of mixed populations of excitatory and
inhibitory neurons. They stabilize themselves at unity gain well
below maximal gain (Fig. 13B), so that impulse driving tends
transiently to increase the gain. However, cortex maintains itself
at or near a state of criticality (Bressler & Kelso, 2001; Freeman,
2008; Freeman et al., 2001; Kozma & Freeman, 2008; Kozma et al.,
2005) by the saturation modeled with the point attractor that is
symbolized by the pole at the origin of the complex plane (∆ in
Fig. 11). The negative feedback gives rise to oscillatory impulse
responses (evoked potentials). They reveal the cortical operating
point, for which the frequency and decay rate are amplitude-
dependent, owing to bilateral saturation imposed by thresholds
during excess inhibition and the refractory periods during excess
excitation. Impulse responses that exceed in amplitude the peak-
to-peak amplitude of the self-stabilized background activity (Mode
1e and 1i in Fig. 14) tend always to lower frequencies or faster
decay rates or both, owing to the limitations imposed by the
refractoriness of trigger zones on forming action potentials under
the influence of the synaptic currents from dendrites.

Owing to the mixed populations there are three kinds of
feedback in cortex: negative, Kn, positive excitatory, Ke, and
positive inhibitory, Ki. All three gains are modified by changes in
response amplitude, but in different ways. These are illustrated
by root loci in the complex plane as a function of the three gains,
starting at the three poles as in Fig. 11, representing the open
loop rate constants that are essentially the same for excitatory
and inhibitory neural populations (Freeman, 2009b). The root
loci extend outwardly into the complex plane to zeroes typically
far distant from the origin. In all cases the nonlinear sigmoid
input–output relation in Fig. 13 governs the functions. The root
loci are plotted only in the upper half of the complex plane near
the origin; the lower half is a mirror image. The curve in Fig. 14
running upwardly to the right across the imaginary axis represents
the locus of predicted frequencies and decay rates of impulse
responses in conditions of cortical dynamic symmetry, when the
two positive feedback gains are equal to Kn, which results in pole-
zero cancellation and reduction in the network to one negative
feedback loop, the reduced KII set (Freeman, 2009b; Freeman &
Erwin, 2008).

Two Modes of deviation from symmetry by explicit symmetry
breaking are illustrated in Fig. 14. In Mode 1e the input that
excites the bulb through electrical stimulation of the olfactory
nerve, the sensory afferent pathway from the receptors, activates
both the periglomerular neurons and the negative feedback loop.
The input of the excitatory interneurons to the loop sustains
an excitatory bias. The effect (Mode 1e) is to rotate the root
locus clockwise, so that increased amplitude gives increased decay
rate with constant frequency. In Mode 1i the stimulation of the
output axons likewise excites the negative feedback loop but also
the inhibitory interneurons, which creates an inhibitory bias and
frequency dispersion especially into the low frequency range, with



Author's personal copy

498 W.J. Freeman / Neural Networks 22 (2009) 491–501

100

75

50

25

0

de
ca

y 
ra

te
, 1

/s
1.6

1.2

0.8

0.4

0.0

am
pl

itu
de

15 20 25 35 40 45
stimulus intensity, micramp

15 20 25 35 40 45
stimulus intensity, micramp

unity
feedback

gain
threshold

Fig. 12. Extrapolation to zero amplitude at threshold gives zero decay rate and unity gain in accord with root loci in Fig. 14 Freeman (1975).

5

4

3

2

1

0

5

4

3

2

1

0

-1

P
ul

se
 d

en
si

ty
, q

5

4

3

2

1

0

-1

P
ul

se
 d

en
si

ty
, q

3210-1-2-3
Wave density, v

3210-1-2-3
Wave density, v

Qm

linearized 
positive

feedback 
gain, Kp:

linearized 
negative

feedback 
gain, Kn:

Kle set

0.19

0.53

1.00

arousal arousal

rest rest

threshold
threshold

N
onlinear gain, dq/dv

5

4

3

2

1

0

N
onlinear gain, dq/dv

Kllob set

Mode 1e = 1

Mode 1i 
<1

Mode 2 
>1

A B

Fig. 13. The nonlinear function that governs the probability of pulse firing conditional on dendritic current intensity and ECoGwave amplitude holds for both excitatory and
inhibitory populations. A. Mutual excitation (KIe set). B. Negative feedback (KII set (Freeman, 2005)). Two sigmoid curves and their gain curves are shown for two behavioral
states: rest and arousal, governed by the maximum normalized pulse density Qm = 2 at rest and 5 at work (Freeman & Erwin, 2008).

diminished cortical output through the spatiotemporal integration
that is imposed by the output pathway. Increased input intensity
decreases the frequency with little change in decay rate. Thus
there aremultiple determinants of the spectral content of the ECoG
under differing conditions and sources of input.

The salient finding is the symmetry in the background state in
the absence of impacts from sensation or intention, so that the
frequencies are for the most part collapsed into a very simple
spectrum. In this state the power spectral density of the ECoG
and EEG tends to a power-law form, in which all frequencies are
present but not as peaks above the straight line. The values of the
slope in awake states typically cluster slightly steeper than −2
(slope=−2 is brownnoise). In slowwave sleep the slope steepness
to −3 or steeper (which is referred to as black noise (Freeman &
Zhai, 2009)).

6. Evidence for control by a limit cycle attractor

While the dynamics of cortex in Mode 1 is dominated by the
move toward stabilization under bombardment that drives cortex
outside its self-stabilized range, within that range the activity
reveals a very different dynamics in the spontaneous variation of
the frequency and decay rate of the impulse response to fixed
stimulus intensity. Modeling the root loci that conform to the
variations has shown that the dynamics designated as Mode 2 is

dominated by the move toward destabilization by the approach to
the imaginary axis with increasing amplitude, the reverse of Mode
1. The root loci for various combinations of Kn, Ke and Ki cross
the axis but then curve back and re-cross the axis at a point of
convergence, which corresponds to a complex conjugate pole pair
on the axis, implying the presence of a limit cycle attractor (Fig. 15).

Changing the background or the input changes the evoked
potentials along the same root loci (Freeman, 2009b), which
indicates that the underlying factor that brings the operating point
toward the imaginary axis is not the increase in the response
amplitude, which is an effect of the closer approach of the
operating point to the limit cycle attractor. It is apparent that the
factor that carries the dynamics toward the boundary of stability
is the decrease in the amplitude of the background activity. Once
the operating point has been shifted by noise reduction across
the imaginary axis into the domain of positive real exponents, the
move to the limit cycle attractor is inexorable, suggesting that the
destabilization of the cortex by the combination of the conditioned
stimulus and a null spike may drive the cortex to a singularity.

7. Conclusion

The remainder of this brief overview is devoted to asking
and answering five questions. What is an optimal description of
the expectant brain state? What factor might lower background
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level (see Fig. 6.7 in Freeman (1975)).

amplitude that induces the move of the operating point toward
instability?What mode of description can best express the change
in state that is implied by an approach of the operating point
toward a singularity in the piece-wise linear analysis of the
dynamics? What factor might provide an activation energy that is
required to cross the imaginary axis? How is an activated cortical
pattern read-out and transmitted broadly through the forebrain?

The proposed answers to the five questions are as follows. First,
the best description of the cortex in an expectant state is that
cortex holds itself at its dynamic operating point in or near a state
of criticality that is rightly described as self-organized, because
it is homeostatically controlled (Freeman, 2008). Studies of this
state provide important parameters of cortical dynamics such as
the PSD, the axon connectivity, and the size and durations of
areas of activity, having power-law distributions that support self-
similarity across wide spatial and temporal scales. Observations of
the textures of the spatiotemporal patterns of phase and amplitude
of the ECoG show that they resemble the bubbles in a pan of
boiling water (Freeman, 2004a, 2004b), so that they manifest the
maintenance of a non-equilibrium steady state with prodigious
expenditure of metabolic energy. Most importantly, cortex has
pluripotentiality for very rapid changes among recurring patterns
that extend over broad cortical areas (Pribram, 2009), which may
reflect the continual retrieval and actualization of memories from
the knowledge base of the brain.

Second, the neural mechanism that precipitates the reduction
in background activity appears to be a down spike from
interference in a pass band that is selected by input or by a local
fluctuation, which breaks the symmetry of the critical state at the
operating point (small rectangle centered in Fig. 14). The theta
gating frequency that is seen in the recurrence of spatial AM
patterns in relation to the relative frequencies in analytic power
histogram in Fig. 3B suggests that the threshold for an effective null
spikemay be< 10−4 of maximal mean power. The spatiotemporal

distributions of the null spikes in Fig. 2C suggest that the spatial
location might be anywhere within the sensory cortex, which is
consistent with the variation in spatial location of the apices of
phase cones accompanying the AM patterns (Freeman, 2004a;
Freeman et al., 2006).

Third, the event that constitutes the emergence of each new
AM pattern with its accompanying stable analytic phase pattern is
best described as a phase transition, which in a dissipative system
such as cortex is the selection by the stimulus of one among
a collection of unitarily inequivalent ground states (Freeman &
Vitiello, 2006; Vitiello, 2001). These states are held in potentia by
synaptic networks that have been modified in prior learning, and
that are brought close to threshold for activation by preafferent
signals under limbic control in the process of selective attention.
When activated, they constitute a landscape of chaotic attractors,
each corresponding to one of several possible or plausible expected
answers to a question that an animal or human asks with each act
of observation.

Fourth, the sensory cortices maintain a high degree of
selectivity in responding only to desired or expected stimuli based
in experience, so it is plausible to suppose that themanynull spikes
that recur asynchronously in a Rayleigh spectral continuummerely
open a gate for a possible phase transition. A suggestedmechanism
is that prior learning over repeated presentations of a conditioned
stimulus forms a Hebbian nerve cell assembly that serves as a
correlation map for the pairwise activated neurons. Any subset
that is excited then activates the entire microscopic assembly,
constituting an inductive generalization from the individual to
the class. The firing of such neuron assemblies can be sustained
for many tens of ms, as has repeatedly been demonstrated in
unit spikes in all sensory cortices by many neurobiologists using
microelectrode recording of feature detector neurons. The null
spike may initiate the phase transition that transposes the activity
across levels, from the microscopic activity of the assembly to the
mesoscopic activity of the entire sensory cortex into awave packet,
which is a mechanism that can integrate past learning with the
present state into a percept.

Fifth, the input to sensory cortex is carried on pathways
by topographic mapping, whereas cortical output is transmitted
not only by mapping but by divergent–convergent projections
that perform a spatiotemporal integral transformation, which
is comparable to that in holography (Pribram, 2009) though
without an inverse transform. The anatomical tracts resemble
the wiring diagram in an analog crosscorrelator. This operation
selects the spectral component of the transmitted signal that has
the same instantaneous frequency, which is the carrier of the
endogenously constructedmesoscopic AMpattern,while it deletes
the signals with dispersed frequency and phase, which are the
microscopic raw sense data. As in a hologram, every fraction of the
cortical output carries the same signal, so this operation interfaces
the cortical input and the cortical output, each with its own
developmental and anatomical constraints. Every fraction of the
output undergoes the same enhancement of signal-to-noise ratio
in each transmission. These several attributes attest to the utility of
the transposition from microscopic pulse frequencies (sensations)
to mesoscopic pulse and wave densities (perceptions).

These operations are feature binding on a grand scale. The
interpretation from theoretical physics is that the populations
in cortex, by widespread, continuously distributed synaptic
interaction, generate an order parameter, which is a collective
force that epiphenomenally manifests itself in the ECoG, as it
imposes mesoscopic patterned order on the microscopic neurons
sustaining it. During a null spike, the order parameter transiently
diminishes close to zero. When the populations are momentarily
freed from order into disorder, an active Hebbian assembly
may capture the whole and direct the cortical trajectory across
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the attractor landscape to the relevant basin of attraction,
initiating narrow band oscillation. Thereafter the neurons are
mobilized and constrained into the construction of a new
AM pattern that actualizes and broadcasts the knowledge that
the cortex holds about the selecting stimulus at the carrier
frequency. The endogenous trigger of the transition, which
emerges from the random activity, the null spike, justifies the
description of the phase transition as spontaneous breaking of
symmetry (Freeman, 2008; Freeman&Vitiello, 2006). Thememory
store is an indefinitely large collection of latent ground states. The
maintenance and the mobilization of the knowledge store depend
intrinsically and unavoidably on energy dissipation (Freeman,
2008; Freeman & Vitiello, 2006) by the brain, as measured by fMRI
and related techniques to estimate cerebral blood flow.

These are the new experimental data and some heuristic hy-
potheses to explain them (Freeman, 1975; Freeman, Kozma, Bol-
lobás, & Ballister, 2009; Freeman & Vitiello, 2009; Pribram, 2009).
What is needed now is development of rigorous mathematics on
which to base a proper theory of perception.
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