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Biased ART:  A neural architecture that shifts attention toward 

previously disregarded features following an incorrect prediction 

 

 

Abstract 

 

Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that 

focus attention on those portions of bottom-up inputs that match active top-down expectations. 

While this learning strategy has proved successful for both brain models and applications, 

computational examples show that attention to early critical features may later distort memory 

representations during online fast learning. For supervised learning, biased ARTMAP 

(bARTMAP) solves the problem of over-emphasis on early critical features by directing 

attention away from previously attended features after the system makes a predictive error. 

Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Two-

dimensional simulation examples demonstrate the evolution of bARTMAP memories as they are 

learned online. Benchmark simulations show that featural biasing also improves performance on 

large-scale examples. One example, which predicts movie genres and is based, in part, on the 

Netflix Prize database, was developed for this project. Both first principles and consistent 

performance improvements on all simulation studies suggest that featural biasing should be 

incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are 

available from the CNS Technology Lab Website:  http://techlab.bu.edu/bART/. 

 

 

Keywords 

Adaptive Resonance Theory, ART, ARTMAP, featural biasing, supervised learning, top-down / 

bottom-up interactions 
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Biased ART:  A neural architecture that shifts attention toward 

previously disregarded features following an incorrect prediction 
 

 

1. Introduction 

 

During learning, Adaptive Resonance Theory (ART) models encode attended featural subsets 

called critical feature patterns. With winner-take-all coding, when a novel exemplar activates an 

established category only the features of the bottom-up input that are also in the top-down 

critical feature pattern remain active in working memory. The network hereby focuses attention 

on a subset of the input, ignoring other incoming features as not relevant to the currently active 

category. If the top-down / bottom-up pattern meets a matching criterion, the learned critical 

feature pattern sharpens, shedding features not represented in the current input. 

 

The strategy of learning attended critical feature patterns, rather than basing memories on whole 

bottom-up inputs, has proved successful both in models of cognitive information processing and 

in applications of unsupervised ART and supervised ARTMAP systems. However, focusing on 

features that that were critical early in learning may lead a system later to pay too much attention 

to these features. Computational examples show that, for certain input sequences, such undue 

featural attention can distort system memories and reduce test accuracy. If training inputs are 

repeatedly presented, an ARTMAP system will correct these errors – but real-time learning may 

not afford such repeat opportunities before action is required. 

 

Biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by 

directing attention away from previously attended features after the system makes a predictive 

error. A variety of examples demonstrate that bARTMAP performance is consistently better than 

that of fuzzy ARTMAP. Small-scale, hand-computed analog and binary examples illustrate key 

model dynamics. Two-dimensional simulation examples demonstrate the evolution of 

bARTMAP memories as they are learned online. Benchmark simulations show that featural 

biasing also improves performance on large-scale examples. The Boston remote sensing image 

example (Carpenter, Martens, & Ogas, 2005) has been used in previous studies. A second 

example, which predicts movie genres and is based, in part, on the Netflix Prize database, was 

developed for this project. Both benchmark datasets and biased ARTMAP code are available 

from the CNS Technology Lab Website (http://techlab.bu.edu/bART). 

 

For a given training input, biased ARTMAP tracks attended features that have led to predictive 

errors, and reduces activation of these features during search. Bias strength is controlled by a free 

parameter  �, with the network reducing to the unbiased system (fuzzy ARTMAP) when �=0. For 

a given application, an optimal value of � can be determined by validation, but setting  � equal to 

a default value of 10 produces near-optimal results on small-scale and large-scale computational 

examples. Improvements in test accuracy are accompanied by reduced overlap of the category 

boxes that geometrically represent network memories, with little or no increase in network size. 

All examples use the same default ARTMAP parameters, with winner-take-all coding, fast 

learning, and maximum generalization. In a fast-learning system, long-term memory variables 

reach their asymptotes on each input trial. 
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2. ART and ARTMAP 

 

ART neural networks model real-time prediction, search, learning, and recognition. ART 

networks serve both as models of human cognitive information processing (Grossberg, 1999, 

2003; Carpenter, 1997) and as neural systems for technology transfer (Caudell et al., 1994; 

Lisboa, 2001; Parsons & Carpenter, 2003). 

 

Design principles derived from scientific analyses and design constraints imposed by targeted 

applications have jointly guided the development of many variants of the basic networks, 

including fuzzy ARTMAP (Carpenter et al., 1992), ARTMAP-IC (Carpenter & Markuzon, 

1998), and Gaussian ARTMAP (Williamson, 1996). One distinguishing characteristic of 

different ARTMAP models is the nature of their internal code representations. Early ARTMAP 

systems, including fuzzy ARTMAP, employ winner-take-all coding, whereby each input 

activates a single category node during both training and testing. When a node is first activated 

during training, it is permanently mapped to its designated output class.  

 

Starting with ART-EMAP (Carpenter & Ross, 1995), ARTMAP systems have used distributed 

coding during testing, which typically improves predictive accuracy while avoiding the design 

challenges inherent in the use of distributed code representations during training. In order to 

address these challenges, distributed ARTMAP (Carpenter, 1997; Carpenter, Milenova, & 

Noeske, 1998) introduced a new network configuration, new learning laws, and even a new unit 

of long-term memory, replacing traditional weights with adaptive thresholds (Carpenter, 1994). 

 

Comparative analysis of the performance of ARTMAP systems on a variety of benchmark 

problems has led to the identification of a default ARTMAP network (Carpenter, 2003), which 

features simplicity of design and robust performance in many application domains. Default 

ARTMAP employs winner-take-all coding during training and distributed coding during testing 

within a distributed ARTMAP network configuration. With winner-take-all coding during 

testing, default ARTMAP reduces to the version of fuzzy ARTMAP that is used here as the basis 

of comparison with biased ARTMAP. However, the biased ARTMAP mechanism is a small 

modular addition to the ART orienting subsystem, and could be readily added to any other 

version of the network. 

 

 

2.1. Complement coding:  Learning both absent and present features 

 

ART and ARTMAP employ a preprocessing step called complement coding (Figure 1), which 

models the nervous system’s ubiquitous computational design known as opponent processing 

(Hurvich & Jameson, 1957). Balancing an entity against its opponent, as in agonist-antagonist 

muscle pairs, allows a system to act upon relative quantities, even as absolute magnitudes may 

vary unpredictably. In ART systems, complement coding (Carpenter, Grossberg, & Rosen, 1991) 

is analogous to retinal ON-cells and OFF-cells (Schiller, 1982). When the learning system is 

presented with a set of feature values a � a1...ai ...aM( ) , complement coding doubles the number 

of input components, presenting to the network both the original feature vector a and its 

complement    a
c . 
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Figure 1.  Complement coding transforms an M-dimensional feature vector a into 

a 2M-dimensional system input vector A. A complement-coded input represents 

both the degree to which a feature i is present ai( )  and the degree to which that 

feature is absent 1� ai( ) . 

 

 

 

Complement coding allows an ART system to encode within its critical feature patterns of 

memory features that are consistently absent on an equal basis with features that are consistently 

present. Features that are sometimes absent and sometimes present when a given category is 

learning becomes uninformative with respect to that category. Since its introduction, 

complement coding has been a standard element of ART and ARTMAP networks, where it plays 

multiple computational roles, including input normalization. However, this device is not 

particular to ART, and could, in principle, be used to preprocess the inputs to any type of system. 

 

To implement complement coding, component activities ia  of a feature vector a are scaled so 

that 0 1ia� � . For each feature i, the ON activity ia  determines the complementary OFF 

activity ( )1 ia� . Both ia  and ( )1 ia�   are represented in the 2M-dimensional system input 

vector 
  
A = a a

c( )  (Figure 1).  Subsequent network computations operate in this 2M-

dimensional input space. In particular, learned weight vectors wJ  are 2M-dimensional. 
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2.2. ARTMAP search and match tracking 

 

The ART matching process triggers either learning or a parallel memory search (Figure 2).  

When search ends, the learned memory may either remain the same or incorporate new 

information from matched portions of the current input. While this dynamic applies to arbitrarily 

distributed activation patterns at the coding field F2, the code will here be described as a single 

active category node  J  in a winner-take-all system. 

 

Before ARTMAP makes an output class prediction, the bottom-up input A is matched against the 

top-down learned expectation, or critical feature pattern, that is read out by the active node 

(Figure 2b). The matching criterion is set by a parameter �  called vigilance. Low vigilance 

permits the learning of abstract prototype-like patterns, while high vigilance requires the learning 

of specific exemplar-like patterns. When a new input arrives, vigilance equals a baseline level 

� . Baseline vigilance is set equal to zero by default in order to maximize generalization. 

Vigilance rises after the system has made a predictive error. The internal control process that 

determines how far � must rise in order to correct the error is called match tracking (Carpenter, 

Grossberg, & Reynolds, 1991). As vigilance rises, the network is required to pay more attention 

to how well top-down expectations match the current bottom-up input. 

 

Match tracking (Figure 3) forces an ARTMAP system not only to reset its mistakes but to learn 

from them. With match tracking, fast learning, and winner-take-all coding, each ARTMAP 

network passes the Next Input Test, which requires that, if a training input were re-presented 

immediately after a learning trial, it would directly activate the correct output class, with no 

predictive errors or search. Match tracking simultaneously implements the design goals of 

maximizing generalization and minimizing predictive error without requiring the choice of a 

fixed matching criterion. ARTMAP memories thereby include both broad and specific pattern 

classes, with the latter typically formed as exceptions to the more general “rules” defined by the 

former. ARTMAP learning produces a wide variety of such mixtures, whose exact composition 

depends upon the order of training exemplar presentation. 

 

Unless they have already learned on all their coding nodes, ARTMAP systems contain a reserve 

of nodes that have never been activated, with weights at their initial values. These uncommitted 

nodes compete with the previously active committed nodes, and an uncommitted node will be 

chosen over poorly matched committed nodes. An ARTMAP design constraint specifies that an 

active uncommitted node should not reset itself. Weights initially begin with wiJ = 1 . Thus, when 

the active node J is uncommitted, x = A �wJ = A  at the match field. Then, 

� A � x = � A � A = � �1( ) A . Thus � A � x � 0  and an uncommitted node does not 

trigger a reset, provided that � � 1. For biased ARTMAP, where A and/or x are replaced by their 

biased counterparts in the match/mismatch decision, the requirement that an uncommitted node 

does not trigger a reset provides a key system design constraint. 
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Figure 2. A fuzzy ART search cycle (Carpenter, Grossberg & Rosen, 1991), with 

winner-take-all coding in a distributed ART network configuration (Carpenter, 

1997). The ART 1 search cycle (Carpenter & Grossberg, 1987) is the same, but 

allows only binary inputs and did not originally feature complement coding. 

When an F2 node J is active, the field F1 represents the matched activation pattern 

  
x = A � w

J
, where �  denotes the component-wise minimum, or fuzzy 

intersection, of the bottom-up input A and the top-down expectation 
  
w

J
. If the 

matched pattern fails to meet the matching criterion, then the active node is reset 

at F2, and the system searches for another node that better represents the input. 

The match / mismatch decision is made in the ART orienting system. Each active 

feature in the input pattern A excites the orienting system with gain equal to the 

vigilance parameter � . Hence, with complement coding, the total excitatory input 

is 

   

� A = � A
i

i =1

2 M

� =

  

� a
i

+ 1� a
i( )( ) =

i =1

M

� � M . Active cells in the matched pattern x 

inhibit the orienting system, leading to a total inhibitory input equal to 
2

1

M

i

i

x
=

� = ��x . If 0� � �A x , then the orienting system remains quiet, allowing 

resonance and learning to proceed. If 0� � >A x , then the reset signal r=1, 

initiating search for a better matching code.  
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Figure 3.   ARTMAP match tracking (Carpenter, Grossberg, & Reynolds, 1991). 

When an active node J meets the matching criterion � A � x � 0( ) , the reset 

signal r = 0  and the node makes a prediction. If the predicted output is incorrect, 

the feedback signal R=1. While R = rc = 1 , � increases rapidly. As soon as 

� >
x

A
, r switches to 1, which both halts the increase of � and resets the active 

F2 node. From activation of one chosen node to the next within a search cycle, � 

decays to slightly below 
x

A
 (MT–:  Carpenter & Markuzon, 1998). On the time 

scale of learning � returns to its baseline level � . 
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2.3. ART geometry 

 

ART long-term memories are visualized in the M-dimensional feature space as hyper-rectangles 

called category boxes. A weight vector wJ  is interpreted geometrically as a box RJ  whose ON-

channel corner uJ  and opposite OFF-channel corner v J  are, in the format of the complement-

coded input vector, defined by uJ v J
c( ) � wJ  (Figure 4a). For fuzzy ART with the choice-by-

difference F0 � F2  signal function TJ  (Carpenter & Gjaja, 1994), an input a activates the node J 

of the closest category box RJ  according to the L1 (city-block) metric. In case of a distance tie, 

as when a lies in more than one box, the node with the smallest RJ  is chosen, where the box size 

RJ  is defined as the sum of the edge lengths  viJ � uiJ( )
i=1

M

� . The chosen node J will reset if  

RJ � a > M 1� �( ) , where RJ � a  is the smallest box enclosing both RJ  and a. Otherwise, RJ  

expands toward RJ � a  during learning. With fast learning, RJ
new

= RJ
old

� a . 

 

 

3. Anomalous online learning by fuzzy ARTMAP 

 

The six-point training example (Table 1) is designed to demonstrate how ARTMAP fast online 

learning may distort memories by undue attention to critical feature patterns. Figure 5 illustrates 

this anomaly with this small training set, which suggests a medical example. The six-point 

supervised learning problem presents two feature values (age, temperature), with each training 

input labeled as belonging to class red or class blue. In the training phase, ARTMAP learns to 

associate class labels with the six sequentially presented inputs (Figure 5a). The six training 

patterns result in the activation of three coding nodes, represented as category boxes R1, R2, R3.  

The test phase shows that the blue class has overwhelmed the red class (Figure 5b), due to 

recoding that occurs in response to input #6. The training sequence was constructed so that 

categories J=1 and J=2 are defined almost entirely by values of the feature temperature. 

Subsequent inputs that activate these categories treat temperature as the critical feature, 

disregarding values of the other feature, age. The normally useful strategy of attending to critical 

features becomes non-adaptive after one of these nodes makes a predictive error. At that point, a 

system with featural biasing would direct more attention to the previously disregarded feature 

age. Although ARTMAP would correct its errors if the training set were re-presented, real-world 

learning might provide important examples only once. 
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Figure 4. (a) Fuzzy ART geometry. The weight of a category node  J  is 

represented in complement-coding form as wJ = uJ v J
c( ) , with the M-

dimensional vectors uJ  and v J  defining opposite corners of the category box RJ . 

When M=2, the size of RJ  equals its width plus its height. During learning, RJ  

expands toward RJ � a , defined as the smallest box enclosing both RJ  and a. 

Node J will reset before learning if RJ � a > M 1� �( ) . (b) Biased ART 

geometry. The biased weight vector 
 
�wJ = �uJ �v J

c( )  defines opposite corners of 

the biased category box 
 
�RJ , and the biased input vector 

 

�A = �u �vc( )  defines 

opposite corners of the biased input box  
�R . The biased matched pattern 

 
�x = �A � �wJ =

 

�u � �uJ( ) �v � �v J( )
c( )  defines opposite corners of the box 

 

�RJ �
�R , 

with �  denoting the component-wise maximum, or fuzzy union, of two vectors. 

Node J will reset before learning if  
 

�RJ �
�R � �R( )  > 

 
M � �R( ) 1� �( ) . 
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Table 1 

Six-point training set. 

 

 

Six-point example 

Input 

# 

Input 

a 

Output 

class 

 

1 (0.0, 0.8) red 

2 (1.0, 0.8) red 

3 (0.0, 0.9) blue 

4 (0.8, 0.9) blue 

5 (1.0, 0.4) blue 

6 (0.5, 0.7) blue 

 

 

 

 

 

 

 

Figure 5 (following page). Six-point example:  fuzzy ARTMAP. (a) For a small-

scale prototype medical training dataset, subject records provide values of the 

features age and temperature. Inputs #1-2 belong to the class red, and inputs #3-6 

belong to the class blue.  (b) Class label predictions (red or blue) of fuzzy 

ARTMAP, trained online with winner-take-all coding and with each input 

presented once. (c) The coding node J=1 (box R1) maps inputs #1 and #2 to the 

class red. (d) The coding node J=2 (box R2) maps inputs #3 and #4 to the class 

blue. (e) The coding node J=3 (point box R3) maps input #5 to the class blue. (f) 

Input #6 (class blue) first actives node J=1, which is reset following its incorrect 

prediction of the class red. ART search then activates node J=2, which meets the 

matching criterion and makes the correct prediction. However, learning then 

overwhelms most of the early red predictions based on inputs #1 and #2. Note 

that inputs #1-4 define categories J=1 and J=2 primarily in terms of the value of 

the critical feature temperature. 
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Figure 5 
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4. Biased ART 

 

A medium-term memory in all ART models allows the network to shift attention among learned 

categories during search. The network developed here introduces a new medium-term memory 

that shifts attention among input features, as well as categories, during search. This device 

corrects the ARTMAP online search anomaly that was illustrated in Figure 5. 

 

 

4.1. Biasing against previously active category nodes during attentive memory search 

 

Biasing mechanisms are not new to ART network design:  they have always played an essential 

role in the dynamics of search. Biased ART adds qualitatively to these mechanisms within the 

search cycle, as follows. 

 

Activity x at the ART field F1 continuously computes the match between the field’s bottom-up 

and top-down input patterns. A reset signal r shuts off the active F2 node J when x fails to meet 

the matching criterion determined by the value of the vigilance parameter �. Reset alone does 

not, however, trigger a search for a different F2 node:  unless the prior activation has left an 

enduring trace within the F0-to-F2 category choice subsystem, the network will simply reactivate 

the same node as before. As modeled in ART 3 (Carpenter & Grossberg, 1990), biasing the 

bottom-up input to the coding field F2 to favor previously inactive nodes implements search by 

allowing the network to activate a new node in response to a reset signal. The ART 3 search 

mechanism defines a medium-term memory (MTM) in the F0-to-F2 adaptive filter which biases 

the system against re-choosing a category node that had just produced a reset. A presynaptic 

interpretation of this bias is transmitter depletion, or habituation, as illustrated in Figure 6. 

 

 

4.2. Biasing against previously active critical features during attentive memory search 

 

Figure 7a shows how biased ART augments fuzzy ART (Figure 2b) in order to redirect attention 

away from critical features that have led to incorrect predictions. Biased ART and fuzzy ART are 

the same within the F0 – F1 – F2 complex, where category choice and learning occur. The two 

networks are also the same during testing, when a system receives no feedback about predictive 

errors. After node J=J1 produces an incorrect prediction, the bART biasing signal e grows in the 

components of the attended input features i = 1 and i = 2 (Figure 7b). Pattern e transforms the 

original input A  into the biased input A
~

, and the matched pattern x into the biased matched 

pattern  �x . Following a reset, which activates a new category node J=J2 (Figure 7c), biased 

ARTMAP can now pay relatively more attention to input feature i = 3, which was not part of the 

critical feature pattern of the first chosen node  J=J1.  
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Figure 6.  ART 3 search implements a medium-term memory within the F0-to-F2 

pathways, which biases the system against choosing a category node that has just 

produced a reset.  
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Figure 7 
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Figure 7. Biased ARTMAP search. After the system makes a predictive error, the 

pattern e directs attention away from input features that were recently in critical 

feature patterns of active F2 nodes. In response to a predictive error when J=J1, 

both fuzzy ARTMAP (Figure 2b) and biased ARTMAP raise � to just above 0.35. 

When J=J2, fuzzy ARTMAP resets because 
x

A
=

1.5

5
= 0.3  < �. Biased 

ARTMAP also resets, with 

 

�x
�A

=
0.881

3.950
= 0.223  < �. If �  had been between 0.223 

and 0.3, only biased ARTMAP would have reset. For this illustration, where �=3, 

computational details appear in Section 6.1, following the biased ARTMAP 

system specification (Section 5). The rectification operator z[ ]
+

 truncates 

negative components of a vector z at 0, i.e., z[ ]i
+
� max zi ,0{ } � 0 . 
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4.3. Biased ART corrects the ART featural attention anomaly 

 

Figure 8 illustrates how redirected featural attention during search produces a new memory 

structure for the six-point example. Each component of the biasing vector e equals zero at the 

start of an input presentation. Thus, until the system makes a predictive error, the biased input A
~

 

equals the unbiased input A  and the biased matched pattern x~  equals the unbiased matched 

pattern x. Following a predictive error, the biasing signal ei  grows for attended features i, where 

components xi  of the matched pattern are large. After A chooses a new category node, the 

patterns A
~

 and x~  are selectively biased against these previously attended features.  

 

Until A produces a predictive error, search and learning are the same in biased ARTMAP  as in 

fuzzy ARTMAP. Even after a predictive error makes e > 0 , the two networks may still choose 

and learn on the same category nodes, as for input #4 in the six-point example (Figure 5d). Thus 

biased ARTMAP learning on inputs #1-5 (Figure 8c-e) is the same as for fuzzy ARTMAP 

(Figure 5c-e).  

 

When input #6 activates node J=1, bARTMAP produces a bias against the feature temperature, 

whose value alone defines this category. The network then rejects node J=2, which is also 

defined almost entirely by the value of temperature. The system can then search further, 

resulting in activation of the more successful category J=3 (Figure 8f). Modification of the 

weight vector w3  results in non-overlapping category representations and better test set 

predictions (Figure 8b). As here, across a variety of computed examples biased ARTMAP 

characteristically reduces test set errors and decreases category box overlap, without increasing 

memory size. 

 

 

 

Figure 8 (following page).  Six-point example: biased ARTMAP. In response to 

the initial predictive error (red) made when input #6 chooses node J=1, biased 

ARTMAP shifts attention away from feature i = 2 (temperature) toward the 

feature i = 1 (age), resulting in internal category representations that do not distort 

the early learning of the class red. When (0<��0.62), biased ARTMAP produces 

the same memories as fuzzy ARTMAP (�=0) (Figure 5). When �>18, biased 

ARTMAP’s input #4 resets node J=2, producing a new blue point box. 

Computational details appear in Section 6.2.  
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Figure 8 
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4.4. Biased ART geometry 

 

Figure 4b illustrates biased ART geometry. As for fuzzy ART, an input a activates the node J of 

the closest category box RJ  and, unless reset, RJ  expands toward RJ � a  during learning. The 

two systems differ in the reset decision, with  
�A  and  �x  replacing A and x in biased ART. 

Formally, the biased matched pattern 
 
�x = �A � �wJ , though  �x  is computed as x � e[ ]

+
, and the 

biased ART network does not actually represent 
 
�wJ  (Figure 7). Having been chosen, a biased 

ART node J resets if  
 
� �A � �x > 0 . Note that when the chosen node J is uncommitted,  �x = �A , 

so 
 
� �A � �A � 0  and J is not reset. 

 

The dynamics and geometry of biased ART category choice and learning are the same as for 

fuzzy ART. During search, by analogy with fuzzy ART geometry, a box  �R  represents the biased 

input 
 

�A � �u  �vc( )  and a box 
 
�RJ  represents the biased weight vector 

 
�wJ � �uJ   �v J

c( ) . 

Rectification of 
 
�A = A � e[ ]

+
 and 

 
�wJ = wJ � e[ ]

+

 place  �R  and 
 
�RJ  within the unit box. Thus in 

Figure 4b 
 
�RJ  does not extend as far above RJ  as  �R  extends above a.  

 

 
�RJ �

�R  is defined as the smallest box enclosing both 
 
�RJ  and  �R , and 

 

�RJ �
�R = M � �x  and 

 

�R = M � �A . In biased ARTMAP, node J resets if 
 
� �A � �x > 0 . Thus, geometrically, node J 

resets if  
 

�RJ �
�R � �R( ) > M � �R( ) 1� �( ) . Before a given input makes any predictive errors, 

e=0 and  �R  is the point box a. Biased ART geometry then reduces to fuzzy ART geometry, with 

reset when  RJ � a > M 1� �( ) . 
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5. Biased ARTMAP model 

 

Computation of the biasing vector e is embedded in fuzzy ARTMAP as follows. 

 

 

5.1. Variables 

Bias vector e � e1... ei ... e2M( )  

Biased input vector 
 

�A � A � e[ ]
+
� �u  �vc( )   

Biased weight vector 
 
�wJ � wJ � e[ ]

+

 
� �uJ �v J

c( )  

Biased matched vector 
 
�x � x � e[ ]

+
= �wJ �

�A   

Vigilance � 

Mismatch reset 

 

r =
1 if  � �A � �x > 0

0 otherwise

�
�
�

��
 

Predictive error R =
1 when the active node J  makes a predictive error

0 otherwise

�
�
�

  

 

 

5.2. Parameters 

 

The bias parameter � is the only free parameter of biased ARTMAP. In all simulations, 

ARTMAP parameters assume the default values listed below. 

 

 � � 0    Bias parameter 

   Biased ARTMAP reduces to fuzzy ARTMAP when � = 0 . 

   By default, � = 10 . 

  � � 1   Fast integration of  MTM variables �  and  ei  after a predictive error 

 � = 0+   ARTMAP choice parameter 

   By default, � = 10�8 . 

 � � 0,1[ ]  ARTMAP learning rate parameter 

   By default, �=1 (fast learning). 

 � � 0,1[ ]  ARTMAP baseline vigilance parameter 

   By default, � = 0 . 

 � = 0�   ARTMAP match tracking parameter (MT–) 

   By default, � = �10�5 . 

 wiJ = 1   Weight initial values 
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5.3. New training input 

When a new input a is first presented, 

 e = 0  

 
 

�A = A � a  ac( )  

 � = �  

 r = R = 0 

 

 

5.4. ARTMAP category choice 

Among F2 category nodes j  that have not been reset, the chosen node J  maximizes the choice-

by-difference  F0 � F2  signal function  Tj = A �w j + 1��( ) M � w j( ) . For uncommitted 

nodes, Tj = �M . Winner-take-all coding assumes slight tie-breaking variations, so that the 

system chooses one committed or uncommitted node at a time. 

Matched pattern:  x = A �wJ  

 

 

5.5. Match or mismatch? 

Biased matched pattern:  
 
�x = x � e[ ]

+
 

If  node  J  fails to meet the matching criterion, i.e., if 

 

�x
�A

< � , then node J is shut off for the 

duration of the search cycle (mismatch reset).  

A then chooses another node J (GO TO: 5.4. ARTMAP category choice). In this case, J does not 

make an output class prediction, so  R remains equal to 0 and neither  �  nor  ei  increases. 

If node  J meets the matching criterion, it makes an output prediction. 

If the prediction is correct, or if J is an uncommitted node,  learning ensues (GO TO:  5.9. 

ARTMAP learning). 

If the prediction is incorrect, vigilance increases enough to reset J (GO TO:  5.6. Match 

tracking). 

 

 

5.6. Match tracking 

When the active node  J  meets the matching criterion but makes a predictive error, r = 0 and 

R = 1.  Vigilance �  then quickly increases according to the ARTMAP match tracking equation: 

 
d�

dt
= � � � �( ) + �Rrc  . 

Vigilance stops increasing as soon as r = 1, at which point �  is infinitesimally larger than the 

match value  

 

�x
�A

.   

MT–:  On the time scale of search, �  decays by � before the next coding node is chosen. 
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5.7. Bias update 

When R = r =1 (after a predictive error has produced a match tracking reset), bias vector 

components ei   i= 1 ... 2M( )   quickly increase according to the bias update equation: 

 

 

dei
dt

= �ei + �Rr � �xi �
x

2M

�

�
�

�

�
	

+

� ei
�

�

�
�

�

�

	
	

+

 , 

where  
 
�x � x � e[ ]

+
 is continuously updated as the bias variables ei  increase. Note that 

x

2M
 is 

the average value of components of the matched pattern x. Attended features are hereby defined 

as those of above-average activation, approximating the dynamics of a competitive network. 

 

While R = r = 1, 

 
1

�

deii
dt

�   � xi � eii[ ]
+

�
x

2M

�

�
�

�

�
�

+

� eii
�

�

�
�

�

�

�
�

+

. 

 

�  is assumed to be large enough so that ei  reaches equilibrium before node  J  shuts off, which 

will switch the predictive error signal R back to 0. 

 

Like �, ei  values decay only slightly on the rapid time scale of search. 

 

 

5.8. Bias model solution 

Starting with eii = ei
old ,  ei � ei

new   for 0 � � � �  . 

 

Case 1 ei
new

= ei
old  if  � xi � ei

old
�� ��

+

�
x

2M

�

�
�

�

�
	 � 0  

 

Case 2 ei
new

= ei
old  if ei

old
� � xi � ei

old
�� ��

+

�
x

2M

�

�
�

�

�
	 > 0  

 

Case 3 ei
new

=

xi �
x

2M
�

�
�

�

�
�

1 + �
�1

 if xi > ei
old    and  � xi � ei

old
�� �� �

x

2M

�

�
�

�

�
� > ei

old . 

 

Biased input:  
 
�A = A � e[ ]

+
 

A chooses another node J  (GO TO:  5.4. ARTMAP category choice). 
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5.9. ARTMAP learning 

Update weights:  wJ
new

= 1� �( )wJ
old

+ � wJ
old

�A( )  

With fast learning, wJ
new

= wJ
old

�A . 

The time scale of learning is assumed to be much greater than the medium-term memory time 

scale. Thus vigilance �  and the bias variables ei  decay to their initial values as wJ � wJ
new . 

Biasing during search affects the choice of the final node J, but does not otherwise affect 

learning. 

Choose the next input a (GO TO:  5.3. New training input). 

 

 

5.10. ARTMAP testing 

Testing is the same as training, with � � 0  (no reset) and no learning. Since the system receives 

no feedback about which outputs are correct, R=0 during testing, so all bias terms ei  remain 

equal to 0. 

 

 

 

6. Biased ARTMAP illustrations 

 

When the choice parameter � and the match tracking parameter � are small, fuzzy ARTMAP 

dynamics may be calculated by hand, with each step visualized geometrically (Figure 5). 

Similarly, biased ARTMAP dynamics may be hand-calculated, as shown here for the examples 

illustrated in Figure 7 and Figure 8. 

 

 

6.1. Calculations for the Figure 7:  Biased ARTMAP search 

 

 

6.1.1. Figure 7a:  Match tracking 

A = 1, 0.75, 0.5, 0.25, 0 0, 0.25, 0.5, 0.75, 1( ) ,  M = 5 

Match tracking reset at J = J1 :    wJ = 1, 0.75, 0, 0, 0 0, 0, 0, 0, 0( )  

x = A �wJ = 1, 0.75, 0, 0, 0 0, 0, 0, 0, 0( ) ,  
x

2M
=

1.75

10
= 0.175  

��
x

A
=

1.75

5
= 0.35  
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6.1.2. Figure 7b:  Bias update 

e1 �

x1 �
x

2M
1 + �

�1
=
x1 � 0.175

1 + �
�1

=
0.825

1 + �
�1 ,   e2 �

x2 � 0.175

1 + �
�1

=
0.575

1 + �
�1

 

� = 3:     e1 = 0.619 , e2 = 0.431  

 
�A1 = A1 � e1[ ]

+

= 1� e1[ ]
+

= 0.381  

 
�A2 = 0.75 � e2[ ]

+

= 0.319  

 

 

6.1.3. Figure 7c:  Biased featural attention 

J = J2 :    wJ = 1, 0, 0.5, 0, 0 0, 0, 0, 0, 0( )  = A �wJ = x  

 
 
�x 1 = x 1�e1[ ]

+

= 1� e1[ ]
+

= 0.381  

 

 

�x
�A

=
1.5 � e1

5 � e1 � e2

=
0.881

3.950
= 0.223    

 

 

6.2. Calculations for Figure 8:  Six-point example 

 

The biased ARTMAP learning illustrated in Figure 8d requires that � � � =
109

6
= 18.17 , and 

Figure 8f requires that � > � =
2

3.225
= 0.620 , as follows. 

 

� � � :  Input point #4 (0.8, 0.9) [blue] first chooses node J=1, which incorrectly predicts red, 

with A = 0.8,0.9  0.2,0.1( ) , w1 = 0,0.8  0,0.2( ) , and x = 0,0.8  0,0.1( ) . 

 

Match tracking raises � to 
x

A
=

0.9

2
 = 0.45 and e2  to 

x2 �
x

2M
1 + �

�1
=

0.8 �
0.9
4

1 + �
�1  = 

0.575

1 + �
�1

. 

Input #4 then chooses node J=2, with w2 = 0,0.9  1,0.1( ) , x = 0,0.9  0.2,0.1( ) , 

 

�A = 0.8,0.9 � e2   0.2,0.1( ) , and 
 
�x = 0,0.9 � e2   0.2,0.1( ) . This node will produce another 

mismatch reset unless 

 

�x
�A

� � , i.e., e2 �
6

11
 or � �

109

6
= 18.17 � � . 
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� < � :  Input point #6 (0.5, 0.7) [blue] first chooses node J=1, which incorrectly predicts red. 

Match tracking raises  � to 0.45 and e2  to 
0.475

1 + �
�1

. 

A subsequent mismatch reset at J = 2  requires that  e2 > 0.182 , i.e., � >
2

3.225
= 0.620 � � . 

No reset occurs when point #6 chooses J = 3:  With � = 0.45  and � < � � � , the minimum 

value of  

 

�x
�A

 is 0.5, which is realized when e2 = 0.4  � = 5.33( ) . 

 

 

 

7. Biased ARTMAP examples analytically computed 

 

 

7.1. Biasing in favor of previously inattended features  

 

The six-point prototype example (Figure 8) illustrates how biased ARTMAP may generate extra 

resets by biasing against previously attended features. This example might produce the 

hypothesis that biasing, like higher baseline vigilance, can only add more committed nodes to 

memory. However, calculations for a similar example with three training exemplars (Table 2) 

show how bARTMAP mechanisms may generate fewer resets, by biasing in favor of  features 

that had not been previously attended within the search (Figure 9). 

 

 

 

Table 2 

Three-point training set. 

 

Three-point example 

Input 

# 

Input 

a 

Output 

class 

 

1 (1.0, 0.1) red 

2 (0.0, 1.0) blue 

3 (1.0, 1.0) blue 
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Figure 9. Three-point example.  In (c),  � = 1.231 ( e1 = 0.4 ) . Bias parameters � 

�  �  �  0.335 = �   (0.725 �  e1  �  0.182)  all give the same learned system and 

test results (f). 
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7.2. Calculations for Figure 9:  Three-point example 

 

 

7.2.1. Figure 9a 

For training point  #1, a = ( 1.0,  0.1 ) is mapped to class red, and for training points #2 and #3, a 

= ( 0,  1 ) and a = ( 1,  1 ) are mapped to class blue. 

 

 

7.2.2. Figure 9b 

 For all � � 0, training point #1 creates the point box R1 . 

Training point #2  first chooses J = 1, which makes a predictive error, and creates the point box 

R2 .  

Training point #3 first chooses J=1, which makes a predictive error, raising � to 

x

A
=
M � R1 � a

M
=

2 � 0.9

2
= 0.55  . 

For fuzzy ARTMAP ( � = 0 ),  node  J  resets if   

 RJ � a > M 1� �( ) . (1) 

When � = 0, the next chosen node  J = 2 resets because R2 � a = 1 > M 1� �( ) � 0.9 , so training 

point #3 creates the point box R3 . 

 

 

7.2.3. Figure 9c 

 Biased ARTMAP learning is the same as fuzzy ARTMAP’s, up to training point #3. Following 

activation of node J=1, match tracking raises � to 0.55, which switches the reset signal to r = 1. 

At this point,  bARTMAP also raises ei  for attended features i, in this case for i = 1, as follows. 

A = (1,1 | 0,0), 

w1 = 1,0.1 0,0.9( ) , 

x = A �w1 = 1,0.1 0,0( ) , 

ei (0) = 0 , 

1

�

d

dt
ei  = � xi � ei[ ]

+

�
x

2M

�

�
�

�

�
�

+

� ei
�

�

�
�

�

�

�
�

 , and 

x

2M
=

1.1

4
= 0.275 . 

Thus only e1  increases, and  

e1 �

x1 �
x

2M
1 + �

�1
=

1� 0.275

1 + �
�1

=
0.725

1 + �
�1 . 

The biased input #3 then becomes 
 

�A = 1� e1,1 0,0( ) . 
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The next chosen node is J = 2. 

Biased ARTMAP does not  reset iff   

 
 

�RJ �
�R � M 1� �( ) + � �R  . (2)  

In this example, 
 

�R2 �
�R = R2 � a = 1, and the left-hand side of equation (2) is the same as the 

left-hand side of equation (1).  

However, 
 

�R = e1 >0, so the right-hand side of equation (2) is greater than the right-hand side of 

equation (1), reflecting a bias in favor of feature i= 2. 

Biased ARTMAP will thus not reset if 
 
1 � 2 1� 0.55( ) + 0.55 �R  . 

In this case, node J = 2 does not reset if  
 

�R = e1 =
0.725

1 + �
�1
�

0.1

0.55
� 0.182 , 

i.e., if  � � � =
0.182

0.543
= 0.335 . 

In Figure 9c,  � = 1.231  and  e1 = 0.4 . 

 

 

7.2.4. Figure 9d 

Since node J = 2 does not reset when � � � , and J=2 predicts the correct output class (blue), 

learning ensues, expanding R2  to include input point #3. 

 

 

7.2.5. Figure 9e,f 

Comparing the red / blue test set response profiles, the bARTMAP bias favoring feature i = 2, 

which allowed the expansion of category box R2 , is reflected in the larger number of test points 

that predict the class blue. 

 

 

7.3. Binary example 

 

Another small example, with inputs that specify six features ai with values 0 or 1, indicates how 

biased ARTMAP works in the binary domain. For this example, fuzzy ARTMAP and biased 

ARTMAP (� > 9) each commits three coding nodes during training on a sequence of inputs #1-6 

(Table 3). Test predictions differ between the two ARTMAP systems on three of the six training 

patterns. As in the six-point example (Figure 5), fuzzy ARTMAP’s focus on certain critical 

features at the expense of others causes learning of later patterns to obscure predictions of earlier 

patterns during online training. 

 

During training on the binary example, fuzzy ARTMAP and biased ARTMAP activate the same 

category nodes and produce the same learned weight vectors for inputs #1-5: 

 

w1 = 000011 111100( ) �  negative    Input #1

w2 = 110100 0 00000( ) �  positive    Inputs #2,3

w3 = 111100 0 00010( ) �  negative   Inputs #4,5
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The binary vector a = a1  ... ai  ... aM( )  indicates the “presence” of feature i when ai = 1  and the 

“absence” of feature i when ai = 0 . The weight vector w j  “attends to” the presence or absence 

of i as a critical feature if wij = 1  or if w i+M( ) j = 1 . If wij = w i+M( ) j = 0 , neither the presence nor 

the absence of feature i  influences the F2  category node choice function Tj , and node j  “does 

not care about”  the value of ai  in the input. Critical features i = 1…M of node J are printed in 

boldface. 

 

 

 

Table 3 

Binary training set. 

(a) Six binary inputs are presented once, in order 1-6. Inputs #2 and #3 are mapped to the output 

class positive (+), and the other inputs are mapped to the output class negative (–). 

 

 (a) Binary example:  training set 

Input 

# 

Input 

A = a  ac( )  

Traning 

output 

class 

fuzzy ARTMAP 

(��=0) 

test prediction 

biased ARTMAP 

(�>9) 

test prediction 

1 000011  111100( )  – – – 

2 111110  000001( )  + +/– tie + 

3 110101  001010( )  + + + 

4 111100  000011( )  – +/– tie – 

5 111101  000010( )  – +/– tie – 

6 111011  000100( )  – – – 
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Table 3 

(b) Fuzzy ARTMAP and biased ARTMAP each commits three nodes, but make different +/– 

predictions on 19 of the 64 binary test inputs. Three of these different predictions occur on 

training inputs, where fuzzy ARTMAP forgets the trained class labels, predicting  +/– ties. 

Biased ARTMAP correctly predicts the classes of all six training inputs during testing. 

 

(b) Binary example:  test set 

64 = 2
6 

test 

predictions 

fuzzy ARTMAP 

(��=0) 

# predicted classes 

biased ARTMAP 

(�>9) 

# predicted classes 

 

+   

J = 2 

13 16 

+ / – ties 

J = 2 / 3 

21 12 

– 

J = 1 / 3 

30  

13   J = 1 

17   J = 3 

36  

24   J = 1 

12   J = 3 

 

 

 

 

In response to input #6, with A = (111011 | 000100), each system first chooses node J = 2, which 

incorrectly predicts the output class +. At F1 , the matched pattern is x = 110000 0 00000( ) , so 

match tracking raises � to 
x

M
=

1

3
, triggering a search which next activates the F2  node  J = 3.  

 

With J=3, fuzzy ARTMAP produces the matched pattern x = 111000 0 00000( ) , which meets 

the matching criterion, with 
x

M
=

1

2
>

1

3
= � . After learning, w3 = x = 111000 000000( ) . 

Testing proves, however, that the network’s attention to critical features i = 1, 2, and 3 at this 

moment obscures much of what the system had previously learned. During testing, fuzzy 

ARTMAP predicts +/– ties for training inputs #2, #4, and #5. 

 

When biased ARTMAP activates node J = 2 in response to input #6, the match tracking signal R, 

in addition to gating 
d�

dt
 and raising � to 

1

3
, also gates 

dei
dt

. With the matched pattern 
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x = 110000 0 00000( ) , and attended critical features i = 1 and i = 2, the biasing terms e1  and 

e2  increase to 

5
6

1 + �
�1
� e . 

 

Like fuzzy ARTMAP, biased ARTMAP then activates node  J = 3 and produces the matched 

pattern x = 111000 0 00000( ) . Now, however, the biased matched pattern 

 
�x = 1 - e( ), 1 - e( ),1000 000000( )  and the biased input pattern 

 

�A = 1� e( ), 1� e( ),1011 000100( ) . Thus, 

 

�x
�A

=
3� 2e

6 � 2e
, which is less than � =

1

3
 when 

e =
5 6

1 + �
�1

>
3

4
, i.e., when � > 9 . With � > 9 , mismatch reset keeps node J=3 from making a 

prediction (–), which would have been correct. Without a predictive error, R=0 and neither 

vigilance nor any biasing component ei  increases. 

 

Following reset of node J=3, the next active node  J = 1, with w1 = 000011 111100( ) , produces 

the matched pattern x = 000011 0 00100( ) , which focuses attention on the presence or absence 

of the critical features i = 4, 5, and 6. Since e4 = e5 = e6 = 0 , the biased matched pattern  �x  is the 

same as x. The biased input  �A  is still equal to 1� e( ), 1� e( ),1011 000100( ) , and � =
1

3
. Thus 

 

�x
�A

=
3

6 � 2e
>

1

2
> � . Since node J =1 makes a correct output class prediction (–), learning 

ensues, after which w1 = 000011 000100( ) . 

 

After training on inputs #1-6, the fuzzy ARTMAP weight vectors are: 

 

w1 = 000011 111100( ) �  negative    Input #1

w2 = 110100 0 00000( ) �  positive    Inputs #2,3

w3 = 111000 0 00000( ) �  negative   Inputs #4,5,6

 

All three committed nodes focus attention on features i = 1 and 2; two nodes attend to features i 

= 3 and 4; and only one node attends to features i = 5 and 6.  

 

After training on the same six inputs, the biased ARTMAP � > 9( )  weight vectors are: 

 

w1 = 000011 000100( ) �  negative   Inputs #1,6

w2 = 110100 0 00000( ) �  positive    Inputs #2,3

w3 = 111100 0 00010( ) �  negative   Inputs #4,5

 

Compared to fuzzy ARTMAP, biased ARTMAP pays less attention to features i = 1, 2, and 3; 

and more attention to features i = 4 and 5. It is the redistribution of attention among features 
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during search that results in biased ARTMAP’s correctly learning the training set predictions. 

Note that this shift of attention is the result of featural biasing that occurred during training, and 

that no active biasing takes place during testing. 

 

 

 

8. Two-dimensional simulations of real-time learning 

 

Simulations now illustrate biased ARTMAP performance on three real-time learning examples, 

each mapping points in the unit square to output labels red or blue. Training inputs, selected one 

at a time at random, are presented once to a fast-learning winner-take-all network with �=0 

(fuzzy ARTMAP) or �=10 (default biased ARTMAP) or �� �  (maximum bias). For each 

example, a sparse training set constitutes the initial training points in a corresponding dense 

training set. Sparse examples thus indicate how much learning of the dense examples occurred 

early in training. 

 

A category box overlap index equals the average number of boxes RJ  in which a test point is 

contained for a given simulation. Comparing category box geometry of the six-point example for 

fuzzy ARTMAP learning (Figure 5f) with the geometry of biased ARTMAP learning (Figure 8f) 

leads to the prediction that featural biasing reduces category box overlap. All simulations support 

this prediction. 

 

 

8.1. Stripes example 

 

In the stripes example, points are labeled red or blue in six alternating horizontal stripes (Figure 

10). The sparse stripes training set contains 200 points and the dense stripes training set contains 

1,000 points. In both the sparse and dense simulations, featural biasing cuts the test error rate 

almost in half. Setting � to its default value reduces the error from 11% (�=0) to 5.7% (�=10) on 

the sparse training set and from 3.2% (�=0) to 1.7% (�=10) on the dense training set. For these 

examples, category box overlap of trained fuzzy ARTMAP systems is about 50% greater than 

category box overlap of corresponding biased ARTMAP systems. 

 

 

8.2. Checkerboard example 

 

In the checkerboard example, points are labeled as red or blue on a 6x6 checkerboard (Figure 

11). The sparse checkerboard training set contains 500 points and the dense checkerboard 

training set contains 2,000 points. Given that randomly located points are presented one at a time 

during training, the checkerboard problem is a challenging example for a real-time fast-learning 

system. Indeed, after 500 training points, fuzzy ARTMAP test accuracy (53.4%) is barely above 

chance. At this stage of learning, biased ARTMAP (�=10) also makes many errors, but its test 

accuracy (63.3%) is substantially above chance. After training on an additional 1 500 points, 

fuzzy ARTMAP has recruited more committed nodes (85 vs. 71), and its response profile visibly 

indicates the 56% greater category box overlap compared to biased ARTMAP. The dense 
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checkerboard is an exceptional case where the default biased ARTMAP system does not produce 

near-optimal accuracy, with a chance input ordering producing a relatively large error patch.  

 

 

8.3. Circle-in-the-square example 

 

In the circle-in-the-square (CIS) example, points inside a circle centered in the square are labeled 

blue, and points outside the circle are labeled red (Figure 12). The sparse CIS training set 

contains 100 points and the dense training set contains 1,000 points. Although biased ARTMAP 

improves test accuracy by a useful margin, the geometry of the CIS problem tends not to produce 

elongated category boxes, so this example does not benefit as much from biasing as do most 

other examples. The relatively small performance improvements are reflected in the relatively 

small reductions in category box overlap. 

 

 

8.4. Biased ARTMAP vs. fuzzy ARTMAP performance comparisons 

 

Table 4 summarizes simulation results for the sparse and dense stripes, checkerboard, and circle-

in-the-square examples. In every case, biased ARTMAP with its default parameter value (�=10) 

or maximum � � �( )  parameter value shows improved test accuracy compared to fuzzy 

ARTMAP (�=0). In nearly every case biased ARTMAP performance dips slightly as � � � , 

compared to �=10. Except for examples with the unusual convexity of CIS, fuzzy ARTMAP 

learning produces category boxes that overlap test points by about 50% more than biased 

ARTMAP, while the number of category nodes remains approximately constant across systems 

0 � � � �( )  on a given problem. 

 

For each simulation, Table 4 also shows the number of training points for which featural biasing 

occurs e > 0( )  in response predictive errors. As expected, a larger fraction of training examples 

make predictive errors early in training, but substantial numbers continue to produce featural 

biasing as the systems continue to learn to correct predictive errors. For the sparse checkerboard, 

for example, biased ARTMAP (�=10) errors trigger featural biasing on 46% of the first 500 

training examples (sparse). Of the next 1 500 examples (dense), 25% make predictive errors, 

thus increasing ei  values during search. 

 

Additional simulations that add noise to each of the examples of Table 4 show similar 

performance patterns. These studies provide additional clues to how biased ARTMAP 

consistently improves test prediction accuracy compared to fuzzy ARTMAP on real-time fast-

learning problems. In one such study, red / blue labels were switched on 10% of randomly 

chosen training points. Without knowing that some training labels are incorrect, fuzzy ARTMAP 

tends to create inappropriately large and overlapping category boxes early in training, as in the 

six-point example (Figure 5f). In response to the same training set, even with fast learning, 

featural biasing produces more resets in response to mislabeled inputs, which leads biased 

ARTMAP to create point boxes rather than expanded boxes that tend to obliterate prior learning. 

These studies indicate that biasing helps to limit the damage of training set noise or outliers. 
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Figure 10.  Stripes simulations. Figures 10-12 show predictions for a 250x250 

grid of test points in the unit square. Light red and blue indicate correct red and 

blue predictions, and dark colors indicate errors. 
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Figure 11.  Checkerboard simulations. 
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Figure 12.  Circle-in-the-square simulations. 
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Table 4 

Two-dimensional simulation comparisons of fuzzy ARTMAP (�=0) and biased ARTMAP (�=10 

and � � � ), as illustrated in Figures 10-12. 

 

Example ��  # train # train 

|e| > 0 

% correct  RJ  overlap 

average 

# nodes 

 

0 0 89.0 1.4 12 

10 29 94.3 0.95 12 

Stripes 

sparse 

�  

 

200 

32 93.3 0.91 14 

 

0 0 96.8 1.7 13 

10 53 98.4 1.1 14 

Stripes 

dense 

�  

 

1,000 

54 98.4 1.1 15 

 

0 0 53.4 4.1 35 

10 230 63.3 3.2 38 

Checkerboard 

sparse 

�  

 

500 

240 60.7 3.5 50 

 

0 0 77.8 6.4 85 

10 611 78.2 4.1 71 

Checkerboard 

dense 

�  

 

2,000 

632 81.4 4.5 84 

 

0 0 79.3 1.2 8 

10 26 80.9 1.2 9 

CIS 

sparse 

�  

 

100 

26 79.9 1.2 8 

 

0 0 93.9 2.1 13 

10 94 94.6 1.9 17 

CIS 

dense 

�  

 

1,000 

105 94.3 2.1 15 
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9. Large-scale simulations of real-time learning 

 

Two simulation testbeds, the Boston remote sensing example and a new movie genre prediction 

example, now show that the introduction of featural bias improves performance on large-scale, 

as well as two-dimensional, benchmark problems. 

 

 

9.1. Boston remote sensing example 

 

The Boston testbed was developed as a challenging benchmark to assess performance of a 

variety of learning systems. The labeled dataset is available from the CNS Technology Lab 

Website (http://techlab.bu.edu/bART/). A canonical learning procedure (Parsons & Carpenter, 

2003) divides the image into four vertical strips: two for training, one for validation (if needed), 

and one for testing (Figure 13). This protocol produces geographically distinct training and 

testing areas, to assess regional generalization. Typically, class distributions vary substantially 

across strips. For example, strip #4 contains a large fraction of ocean pixels, which are 

completely absent in strip #1. 

 

Each Boston image pixel is described by 41 feature values: six Landsat 7 Thematic Mapper 

(TM) bands at 30m resolution; two thermal bands at 60m resolution; one panchromatic band with 

15m resolution; and 32 derived bands representing local contrast, color, and texture. In the 

Boston dataset, each of 29,003 ground truth pixels is labeled as belonging to one of eight classes 

(beach, ocean, ice, river, road, park, residential, industrial). Biased ARTMAP simulations did 

not require a validation strip, so systems are trained on ground truth pixels from three strips and 

tested on the fourth. Each strip serves, in turn, as a test set for an independently trained network. 

 

Accuracy of a class prediction is assessed using a measure that is independent of the mix of 

classes in the test set. In this way, accuracy is not artificially inflated by large numbers of “easy” 

pixels in a test region as, for example, ocean pixels in strip #4. For each class, the predictive 

accuracy on test pixels actually in that class is recorded. If more samples of this class were added 

to the test set, the fraction of correct predictions would remain approximately constant. Overall 

predictive accuracy of a system is taken to be the average accuracy across the eight output 

classes. 
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Figure 13. The Boston testbed image (Carpenter, Martens, & Ogas, 2005). The 

city of Revere is at the center, surrounded by (clockwise from lower right) 

portions of Winthrop, East Boston Chelsea, Everett, Malden, Melrose, Saugus, 

and Lynn. Logan Airport runways and Boston Harbor are at the lower center, with 

Revere Beach and the Atlantic Ocean at the right. The Saugus and Pines Rivers 

meet in the upper right, and the Chelsea River is in the lower left of the image. 

Vertical strips #1-4 define disjoint training, validation, and test regions. 

Dimensions: 360x600 pixels (15m resolution) == 5.4x9km. 
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Table 5 shows overall class prediction accuracies for each of the four strips, following one epoch 

of training on the other three strips by fuzzy ARTMAP (�=0), and by biased ARTMAP with its 

default parameter setting (�=10) and with ��� . Boston testbed results show the same 

performance improvement patterns as seen in the two-dimensional simulation examples. 

Compared to fuzzy ARTMAP, biased ARTMAP improves performance on every strip, in most 

cases by a substantial margin. For example, biased ARTMAP reduces the error rate from 8.0% to 

4.4% on strip #1, and from 16.9% to 11.9% on strip #4. As ��� , biased ARTMAP accuracy 

remains the same as or slightly below that of the default value (�=10), again following the 

pattern of the two-dimensional examples. Neither are Boston testbed performance improvements 

accomplished at the expense of additional memory load:  each simulation produces 13, 14, or 15 

committed nodes across the four strips and for � = 0, 10, or � . 

 

 

 

Table 5 

Boston remote sensing example. 

 

Boston remote sensing example: Test 

 Test 

strip #1 

Test 

strip #2 

 Test 

strip #3 

Test 

strip #4 

��   Class % accuracy 

0 92.0 81.0 90.6 83.1 

10 95.6 85.2 91.0 88.1 

�  95.6 85.2 90.9 87.3 
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9.2. Movie genre example 

 

The Netflix® Prize is a competition to improve movie recommendation accuracy (Bennet & 

Lanning, 2007). Rules of the competition are available at http://www.netflixprize.com/index. 

Netflix provides a dataset containing 100,480,507 ratings by 480,189 users for 17,770 movies. 

Movie recommendation engines trained on these data are tested on an undisclosed data set to 

gauge prediction success.   

 

To create a biased ARTMAP benchmark example, the Netflix dataset was augmented with a 

primary genre label for each of the 17,770 movies. Genre labels were obtained from the movie 

synopses on the Netflix website. The term used for such data collection is crawling. Movies are 

classified as belonging to one of 21 genres (Table 6). 

 

The Netflix dataset forms a sparse ratings matrix of size 17,770 movies x 480,189 users, with 

only 100,480,507 (0.01%) of the matrix elements populated by ratings. While the prize 

competition seeks to predict the missing ratings in this matrix, this project uses the enhanced 

dataset to define a different problem:  predicting primary movie genres from ratings data. 

 

 

 

Table 6 

Primary Netflix movie genres. The seven genres shown in italics are infrequent, accounting for 

only 980 of the 17,770 movies. 

 

Netflix movie genres 

!!Uncensored Drama NA 

Action&Adventure Faith&Spirituality Romance 

Anime&Animation Foreign Sci-Fi&Fantasy 

Children&Family Gay&Lesbian SpecialInterest 

Classics Horror Sports&Fitness 

Comedy Independent Television 

Documentary Music&Musicals Thrillers 
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9.2.1. Movie feature derivation 

 

In the absence of directly interpretable features, most Netflix prediction algorithms rely on user 

and/or movie similarities to generate predictions. The broad class of such approaches is termed 

collaborative filtering. Informative features describing movies and users may be obtained 

indirectly by factoring the ratings matrix into a user matrix and a movie matrix, where users and 

movies correspond to rows and columns in the matrices resulting from decomposition.  Matrix 

factorization minimizes the difference between the populated elements of a reconstructed matrix 

and the actual ratings matrix. An incremental singular value decomposition (SVD) factorization 

algorithm uses error minimization to produce user and movie matrices. This preprocessing 

technique is a minor variant of the technique introduced to the Netflix Prize competition by Funk 

(2006). 

 

The incremental SVD algorithm produces a 64-dimensional feature vector for each movie. The 

17,770 movie feature vectors and their genre labels constitute the genre-augmented dataset. 

Omitting movies with genres that appear infrequently produces a dataset with 16,840 movies, 

each classified as belonging to one of 14 genres (Table 7) 

 

 

 

Table 7 

Primary genres of 16,840 movies in the genre-augmented dataset. 

 

Benchmark movie genres 

Action&Adventure Documentary Romance 

Anime&Animation Drama Sci-Fi&Fantasy 

Children&Family Foreign Television 

Classics Horror Thrillers 

Comedy Music&Musicals  

 

 

 

9.2.2. Genre prediction by fuzzy ARTMAP and biased ARTMAP 

 

Each of the 64 movie feature vector components was linearly scaled to the [0,1] range. The 

dataset was partitioned into a training set of 14,314 movies and a test set of 2,526 movies. This 

dataset is available from  http://techlab.bu.edu/bART/. 

 

Performance of Netflix genre prediction was assessed using the same class-based accuracy 

measure as for the Boston testbed, so that evaluation is independent of particular mix of genre 

exemplars in the test set. For each genre, predictive accuracy on test set movies actually in that 

genre was recorded, and the pattern of errors recorded in one row of a confusion matrix. Overall 
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predictive accuracy is the average accuracy across the 14 genre classes. With this method, if 

genres were assigned to movies randomly, prediction accuracy would equal 7.1%. 

 

After training for one epoch, fuzzy ARTMAP (�=0) produces a test genre prediction accuracy of 

39.6%, with biased ARTMAP (�=10) improving genre prediction accuracy to 44.4%.  While still 

making many erroneous primary genre predictions, both systems performed well above chance. 

Moreover, erroneous predictions were “sensible” in that, although each movie was given only 

one genre label, many actually belong to multiple genres. For example, the movie The Seventh 

Seal might be labeled Foreign in the dataset, while its genres are also listed as Drama and 

Classic on the Netflix users’ website. In fact, of the 288 movies with the primary genre label 

Foreign, biased ARTMAP correctly labeled 44% Foreign, while labeling 12% each Comedy or 

Drama, and labeling another 6% Classics. These error patterns suggest an expansion of the genre 

problem to multi-class predictions, as discussed in Section 10.3. 

 

 

 

10. Discussion 

 

This section considers points of possible concern raised by detailed consideration of biased ART 

dynamics. 

 

 

10.1. Bias update does not disrupt orderly search 

 

Bias update begins when the reset signal r switches to 1, at the moment when � rises above 

 

�x
�A

 

during match tracking. Bias update will continue, however, only so long as r remains equal to 1, 

which in turn depends upon 

 

�x
�A

 remaining less than � as bias terms ei  increase. If this were not 

the case, bias update per se could shut off reset, leading to an alternating cycle of increasing � 

and increasing ei . In fact, 

 

�

�ei

�x
�A

�

�
�

�

�
� = 0  for Cases 1 and 2 (Section 5.8). For Case 3,  

 

�

�ei
�x =

�

�ei
�A = �1 , so 

 

�

�ei

�x
�A

�

�
�

�

�
	 =

� �A � �x( )
�A

2 � 0 . Thus 

 

�x
�A

 remains less than � as bias terms 

increase, and the real-time bARTMAP network performs as described by the algorithm and as 

illustrated by Figure 7. 

 

Similarly, e  is always less than M and 
 

�A >0 for all inputs A. 
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10.2.  Biasing may produce Next Input Test failures 

 

Match tracking implies that fuzzy ARTMAP satisfies the Next Input Test:  after a fast-learning 

trial, an  input that is re-presented is guaranteed to make the correct prediction without search 

(Section 2.2). Inputs trained with biased ARTMAP may, however, fail the Next Input Test. In the 

checkerboard example, for instance, this failure occurs for certain inputs that lie in the 

intersection of long thin perpendicular category boxes. In this case, it is possible that e may cause 

 
�A to decrease more than  �x , and that 

 

�x
�A

� � >
x

A
 during search. 

 

Some such cases produce occasional Next Input Test failures on training exemplars, even though 

overall test performance is still better. The five-point example (Table 8) shows how biased 

ARTMAP may sometimes fail to learn a correct training point prediction. The example also 

indicates why such failures tend not to harm performance, and may even help, by treating some 

noisy training inputs as outliers.  

 

In Figure 14a, in response to input #5 where a = (0.9, 0.85), fuzzy ARTMAP creates the point 

box R3. This point passes the Next Input Test:  if re-presented, a will choose node J = 3 and 

correctly predict the output class red. However, this point box does not influence the 

classification decisions of any surrounding points, which all predict blue. 

 

 

 

Table 8 

The five-point example illustrates how biased ARTMAP may fail the Next Input Test. 

 

Five-point example 

Input 

# 

Input 

a 

Output 

class 

 

(1,0) red 

(1, 1) red 

(0.2,0.8) blue 

(1,0.9) blue 

1 

2 

3 

4 

5 (0.9,0.85) red 

 



Biased ART Technical Report CAS/CNS TR-2009-003 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Five-point example test predictions. (a) Fuzzy ARTMAP commits 

three category nodes, and the five training inputs correctly predict their output 

classes during testing. (b) Biased ARTMAP commits only two category nodes, 

which leads to more test-set red labels, even though training input #5 incorrectly 

predicts blue during testing. 

 

 

Biased ARTMAP fails the Next Input Test at input point #5 when e2 = 
 

�R  > 4/11, i.e., when 

� � � = 2.26  (Figure 14b). When input #5 chooses node J=2, e2 increases, producing a bias 

against the feature i=2. As e2 increases, both 
 
�x  and 

 

�A  decrease, and 

 

�x
�A

�
x

A
< � . 

 

However, when input #5 then chooses node J=1, 

 

�x
�A

>
x

A
. Because category box R1 is 

elongated in the direction of i =2,  node J=1 is indifferent to the fact that e2>0. Thus after 

bARTMAP resets J=2 and chooses J=1, 
 
�x = x , i.e., 

 

�R1 � 5 = R1 � 5 . On the other hand, the 

bias does make 
 

�A < A , so that 

 

�x
�A

>
x

A
. If � lies between these two values, biased ARTMAP 

will not reset, while fuzzy ARTMAP does reset node J=1. The five-point example is constructed 

to demonstrate that this possibility may, in fact, occur. 

 

With biased ARTMAP, when node J = 1 passes the vigilance test the category box  R1 expands 

to include input #5. If this a were re-presented, it would choose node J = 2, since R2 is smaller 
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than R1, and hence incorrectly predict blue. Despite this failure, biased ARTMAP learning in 

response to a paradoxically expands the set of more distant test points predicting red, compared 

to the response profile of fuzzy ARTMAP (Figure 14). 

 

If passing the Next Input Test on all training exemplars were a necessary condition for a given 

problem, bARTMAP could be modified to meet this constraint. For example, the system could 

be defined to reset if either 

 

�x
�A

< �   or 
x

A
< �  , which would produce more bARTMAP resets. 

However, all examples considered so far indicate that this additional condition is not necessary, 

and that requiring that a system strictly pass the Next Input Test on 100% of training trials may 

even worsen test performance. 

 

 

10.3. Multi-class predictions 

 

The Netflix movie genre prediction example trains each movie with just one genre label, and a 

system’s accuracy is evaluated in terms of its success in predicting primary genre labels of test 

set movies. Confusion matrices that indicate reasonable predictions of secondary genre labels 

suggest augmenting the benchmark problem to consider both primary and secondary genre 

predictions. Assessment of such predictions would require additional information from Netflix or 

other sources. ARTMAP systems, which are designed to learn one-to-many maps, as well as 

many-to-one maps, are intrinsically suited to such multi-class prediction tasks and to discovering 

rule-like relationships among classes (Carpenter, Martens, & Ogas, 2005). 

 

 

 

11. Conclusions 

 

The new biasing mechanism introduced here allows a learning system to redistribute attention 

among features active in a top-down / bottom-up matched pattern when the system detects an 

error. While the featural biasing step could, in principle, readily augment any system, the central 

role of top-down / bottom-up interactions is virtually a defining characteristic of ART networks. 

In order to highlight its specific contributions, biased ARTMAP dynamics and performance have 

here been closely compared with those of fuzzy ARTMAP. Fuzzy ARTMAP has, in turn, been 

widely used in technological applications and in other comparative studies. While computational 

examples demonstrate how featural biasing in response to predictive errors improves 

performance on supervised learning tasks, the error signal that gates biasing could also originate 

from other sources, as in reinforcement learning. 

 

Learning systems may be presented with labeled input patterns only once. Examples show that, 

while ARTMAP attention to early critical features may later distort learned memory 

representations, biased ARTMAP corrects this distortion by focusing on previously unattended 

features when the system detects an error. Both first principles and consistent performance 

improvements on a variety of simulation studies suggest that featural biasing should be 

incorporated by default in all ARTMAP systems. 
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