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Abstract
The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture
that excels at storing sequential short-term memories and retrieving them many time-steps later.
LSTM’s original training algorithm provides the important properties of spatial and temporal
locality, which are missing from other training approaches, at the cost of limiting it’s applicability
to a small set of network architectures. Here we introduce the Generalized Long Short-Term
Memory (LSTM-g) training algorithm, which provides LSTM-like locality while being applicable
without modification to a much wider range of second-order network architectures. With LSTM-g,
all units have an identical set of operating instructions for both activation and learning, subject
only to the configuration of their local environment in the network; this is in contrast to the
original LSTM training algorithm, where each type of unit has its own activation and training
instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes
advantage of an additional source of back-propagated error which can enable better performance
than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we
demonstrate that training recurrent networks engineered for specific tasks can produce better
results than single-layer networks. We conclude that LSTM-g has the potential to both improve
the performance and broaden the applicability of spatially and temporally local gradient-based
training algorithms for recurrent neural networks.
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1. Introduction
The Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) is a recurrent
neural network architecture that combines fast training with efficient learning on tasks that
require sequential short-term memory storage for many time-steps during a trial. Since its
inception, LSTM has been augmented and improved with forget gates (Gers & Cummins,
2000) and peephole connections (Gers & Schmidhuber, 2000); despite this, the usefulness of
the LSTM training algorithm is limited by the fact that it can only train a small set of
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second-order recurrent network architectures. By second-order neural network we mean one
that not only allows normal weighted connections which propagate activation from one
sending unit to one receiving unit, but also allows second-order connections: weighted
connections from two sending units to one receiving unit, where the signal received is
dependent upon the product of the activities of the sending units with each other and the
connection weight (Miller & Giles, 1993). When LSTM is described in terms of connection
gating, as we discuss below, we see that the gate units serve as the additional sending units
for the second-order connections.

The original LSTM architecture has an input layer, a hidden layer consisting of memory
block cell assemblies, and an output layer. Each memory block is composed of memory cell
units that retain state across time-steps, as well as three types of specialized gate units that
learn to protect, utilize, or destroy this state as appropriate. The LSTM training algorithm
back-propagates errors from the output units through the memory blocks, adjusting
incoming connections of all units in the blocks, but then truncates the back-propagated
errors. As a consequence, LSTM’s training algorithm cannot be used to effectively train
second-order networks with units placed between the memory blocks and the input layer.
More generally, LSTM’s training algorithm cannot be used to train arbitrary second-order
recurrent neural architectures, as the error propagation and weight updates it prescribes are
dependent upon the specific network architecture described in the original paper.

While there exist other methods capable of training arbitrary second-order networks, we are
aware of none that share a principal advantage of LSTM’s training algorithm: locality in
time and space. By spatial locality we mean that the weight changes that happen at some
point in the network should be directly computable from information available within the
spatial neighborhood of the connection in question. Similarly temporal locality means that
weight changes cannot rely upon records of information from arbitrarily far in the past. A
training algorithm that possesses these properties can, if it is general enough, be applied
without modification to any network architecture, and in fact even to architectures that
change during training. The human brain is an obvious example of an architecture that
changes during learning, and our concerns about spatial and temporal locality might be
summarized as a desire to maintain the locality constraints that brains appear to have.

Error back-propagation for feed-forward networks (Rumelhart et al., 1986) and Simple
Recurrent Networks (SRNs; Elman, 1990) are examples of training algorithms that exhibit
locality in time and space while generalizing to a wide variety of architectures. To our
knowledge no such algorithm exists for arbitrary second-order networks. Algorithms like
Back-Propagation Through Time (BPTT; Werbos, 1990) that have been used to train second
order architectures (e.g., Graves & Schmidhuber, 2008) violate our desire for temporal
locality by basing weight updates on perfect records of network activations extending back
in time to the beginning of arbitrarily long input sequences; the same goes for the
evolutionary training method known as Evolino (Schmidhuber et al., 2007). Real-Time
Recurrent Learning (RTRL; Williams & Zipser, 1989) is not local spatially since the
gradient term for a given weight depends directly on every other weight in the network.
Decoupled Extended Kalman Filters (DEKF; Gers et al., 2003; Puskorius & Feldkamp,
1994) utilize a host of external matrix operations to control training, and thus are not
spatially local. While this list is not exhaustive, every such training algorithm of which we
are aware, other than LSTM, is either spatially or temporally non-local.

Motivated by a desire for a spatially and temporally local, architecture-independent training
algorithm, we developed what we call Generalized Long Short-Term Memory (LSTM-g), a
training algorithm that retains the spatial an temporal locality of the original LSTM training
algorithm and can be applied, without modification, to a much wider range of second-order
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recurrent neural networks. Each unit in a network trained by LSTM-g has the same set of
operating instructions, relying only on its local network environment to determine whether it
will fulfill the role of memory cell, gate unit, both, or neither. In addition, every unit is
trained by LSTM-g in the same way—a sharp contrast from the original LSTM training
algorithm, where each of several different types of units has a unique training regimen.
LSTM-g reinterprets the gating of unit activations seen in LSTM; instead of gate units
modulating other unit activations directly, they are viewed as modulating the weights on
connections between units. This change in perspective, while mathematically equivalent to
the original design, offers increased flexibility to network designers that wish to explore
arbitrary architectures where gates can temporarily isolate one part of the network from
another. While previous work (Bayer et al., 2009) has examined alternative architectures for
LSTM-style second-order networks—as derived by network evolution to suit a particular
task—that work relies on the non-local BPTT algorithm to train the evolved networks.
While our work also focuses on alternative second-order architectures, our primary aim is to
provide a local algorithm to train alternative LSTM-style architectures.

In addition to the expanded architectural applicability that it a ords, LSTM-g provides all of
the benefits of the LSTM training algorithm when applied to the right type of architecture.
LSTM-g was designed to perform exactly the same weight updates as the original algorithm
when applied to identical network architectures. However, on LSTM architectures with
peephole connections, LSTM-g often performs better than the original algorithm by utilizing
a source of back-propagated error that appears to have heretofore gone unnoticed.

In what follows, we present LSTM and its training algorithm as previously described,
followed by the generalized version. We then present an analysis of the additional error
signals which LSTM-g uses to its advantage, followed by experimental evidence that
LSTM-g often performs better than the LSTM algorithm when using the original
architecture. Further experiments show that LSTM-g performs well on two architectures
specifically adapted to two computational problems. The appendices give the mathematical
derivation of the LSTM-g learning rules and prove that LSTM-g is a generalization of
LSTM training.

2. LSTM
The LSTM architecture was developed as a neural network architecture for processing long
temporal sequences of data, and is trained using a hybrid descendant of truncated BPTT and
RTRL. Other recurrent neural networks trained with various gradient methods proved to be
ineffective when the input sequences were too long (Hochreiter & Schmidhuber, 1997).
Analysis showed that for neural networks trained with back-propagation or other gradient-
based methods, the error signal is likely to vanish or diverge as error travels backward
through network space or through time. This is because, with every pass backwards through
a unit, the error signal is scaled by the derivative of the unit’s activation function times the
weight that the forward signal traveled along. The further error travels back in space or time,
the more times this scaling factor is multiplied into the error term. If the factor is
consistently less than 1, the error will vanish, leading to small, ineffective weight updates; if
it is greater than 1, the error term will diverge, potentially leading to weight oscillations or
other types of instability. One way to preserve the value of the error is requiring the scaling
factor to be equal to 1, which can only be consistently enforced with a linear activation
function (whose derivative is 1) and a fixed weight of wjj = 1. LSTM adopts this requirement
for its memory cell units, which have linear activation functions and self-connections with a
fixed weight of 1 (Fig. 1a). This allows them to maintain unscaled activations and error
derivatives across arbitrary time lags if they are not otherwise disturbed. Since back-
propagation networks require nonlinear hidden unit activation functions to be effective, each
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memory cell’s state is passed through a squashing function—such as the standard logistic
function—before being passed on to the rest of the network.

The processing of long temporal sequences is complicated by the issue of interference. If a
memory cell is currently storing information that is not useful now but will be invaluable
later, this currently irrelevant information may interfere with other processing in the interim.
This in turn may cause the information to be discarded, improving performance in the near
term but harming it in the long term. Similarly, a memory cell may be perturbed by an
irrelevant input, and the information that would have been useful later in the sequence can
be lost or obscured. To help mitigate these issues, each memory cell has its net input
modulated by the activity of another unit, termed an input gate, and has its output modulated
by a unit called an output gate (Fig. 1a). Each input gate and output gate unit modulates one
or a small number of memory cells; the collection of memory cells together with the gates
that modulate them is termed a memory block. The gates provide a context-sensitive way to
update the contents of a memory cell and protect those contents from interference, as well as
protecting downstream units from perturbation by stored information that has not become
relevant yet. A later innovation was a third gate, termed the forget gate, which modulates
amount of activation a memory cell keeps from the previous time-step, providing a method
to quickly discard the contents of memory cells after they have served their purpose (Gers &
Cummins, 2000).

In the original formulation of LSTM, the gate units responsible for isolating the contents of
a given memory cell face a problem. These gates may receive input connections from the
memory cell itself, but the memory cell’s value is gated by its output gate. The result is that,
when the output gate is closed (i.e., has activity near zero), the memory cell’s visible activity
is near zero, hiding its contents even from those cells—the associated gates—that are
supposed to be controlling its information flow. Recognition of this fact resulted in the
inclusion of peephole connections—direct weighted connections originating from an
intermediate stage of processing in the memory cell and projecting to each of the memory
cell’s gates (Gers & Schmidhuber, 2000). Unlike all other connections originating at the
memory cell, the peephole connections see the memory cell’s state before modulation by the
output gate, and thus are able to convey the true contents of the memory cell to the
associated gates at all times. By all accounts, peephole connections improve LSTM
performance significantly (Gers & Schmidhuber, 2001), leading to their adoption as a
standard technique employed in applications (Graves et al., 2004; Gers et al., 2003).

The LSTM network ostensibly has only three layers: an input layer, a layer of memory block
cell assemblies, and an output layer. For expository purposes, however, it will be useful to
think of the memory block assemblies as composed of multiple separate layers (see Fig. 2):
the input gate layer (ι), the forget gate layer (φ), the memory cell layer (c), and the output
gate layer (ω). For notational simplicity, we will stipulate that each of these layers has the
same number of elements, implying that a single memory cell cj is associated with the set of
gates ιj, φj, and ωj; it is trivial to generalize to the case where a set of gates can control more
than one memory cell. The input layer projects a full set of connections to each of these
layers; the memory cell layer projects a full set of connections to the output layer (θ). In
addition, each memory cell cj projects a single ungated peephole connection to each of its
associated gates (see Fig. 1a). The architecture can be augmented with direct input-to-output
connections and/or delayed recurrent connections among the memory cell and gate layers.
As will become evident in the following sections, the operation of the LSTM training
algorithm is very much dependent upon the specific architecture that we have just described.

The following equations detail the operation of the LSTM network and its original training
algorithm through a single time-step. We consider a time-step to consist of the presentation
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of a single input, followed by the activation of all subsequent layers of the network in order.
We think that this notion of a time-step, most often seen when discussing feed-forward
networks, enables a more intuitive description of the activation and learning phases that
occur due to each input. Following Graves et al. (2004), all variables in the following refer
to the most recently calculated value of that variable (whether during this time-step or the
last), with the exception that variables with a hat (^) always refer to the value calculated one
time-step earlier; this only happens in cases where the new value of a variable is being
defined in terms of its immediately & preceding value. Following Gers & Schmidhuber
(2000), we deviate from the original description of LSTM by reducing the number of
squashing functions for the memory cells; here, however, we omit the input-squashing
function g (equivalent to defining g(x) = x) and retain the output-squashing function, naming
it fcj for memory cell j. In general, we will use the subscript index j to refer to individual
units within the layer in question, with i running over all units which project connections to
unit j, and k running over all units that receive connections from j.

2.1. Activation dynamics
When an input is presented, we proceed through an entire time-step, activating each layer in
order: ι, φ, c, ω, and finally the output layer θ. In general, when some layer λ is activated,
each unit λj in that layer calculates its net input xλj as the weighted sum over all its input
connections from units i (Eq. 1). The units i vary for each layer and potentially include
recurrent connections; the most recent activation value of the sending unit is always used,
even if it is from the previous time-step as for recurrent connections. For units that are not in
the memory cell layer, the activation yλj of the unit is the result of applying the unit’s
squashing function fλj (generally taken to be the logistic function) to its net input (Eq. 2).
Each memory cell unit, on the other hand, retains its previous state  in proportion to the
activation of the associated forget gate; current state scj is updated by the net input
modulated by the activation of the associated input gate (Eq. 3). A memory cell’s state is
passed through its squashing function and modulated by the activation of its output gate to
produce the cell’s activation (Eq. 4).

(1)

(2)

(3)

(4)

When considering peephole connections in the context of the equations in this section, one
should replace the sending unit activation yi with the memory cell state sci since peephole
connections come directly from the internal state of the memory cells rather than their
activations.
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2.2. Learning rules
In order to learn effectively, each unit needs to keep track of the activity flow over time
through each of its connections. To this end, each unit maintains an eligibility trace for each
of its input connections, and updates this trace immediately after calculating its activation.
The eligibility trace for a given connection is a record of activations that have crossed the
connection which may still have influence over the state of the network, and is similar to
those used in temporal-difference learning (Sutton & Barto, 1998), except that here
eligibility traces do not decay. When a target vector is presented, the eligibility traces are
used to help assign error responsibilities to individual connections. For the output gates and
output units, the eligibility traces are instantaneous—they are simply the most recent
activation value that crossed the connection (Eq. 5). For the memory cells (Eq. 6), forget
gates (Eq. 7), and input gates (Eq. 8), the eligibility traces are partial derivatives of the state
of the memory cell with respect to the connection in question; simplifying these partial
derivatives results in Eqs. 6-8. Previous eligibility traces are retained in proportion to the
amount of state that the memory cell retains (i.e., the forget gate activation yφj), and each is
incremented according to the effect it has on the memory cell state.

(5)

(6)

(7)

(8)

Between time-steps of the activation dynamics (i.e., after the network has generated an
output for a given input), the network may be given a target vector t to compare against,
where all values in t are in the range [0, 1]. The difference between the network output and
the target is calculated using the cross-entropy function (Eq. 9) (Hinton, 1989). Since E ≤ 0
when the t and y values fall in the range [0, 1] as we require, one trains the network by
driving this function towards zero using gradient ascent. Deriving Eq. 9 with respect to the
output unit activations reveals the error responsibility δθj for the output units (Eq. 10). One
obtains the deltas for the output gates (Eq. 11) and the remaining units (Eq. 12) by
propagating the error backwards through the network.

(9)

(10)
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(11)

(12)

Finally, the connection weights into all units in each layer λ are updated according to the
product of the learning rate α, the unit’s error responsibility δλj, and the connection’s
eligibility trace ελji (Eq. 13).

(13)

3. Generalized LSTM
The Long Short Term Memory algorithm, as presented in Section 2, is an e cient and
powerful recurrent neural network training method, but is limited in applicability to the
architecture shown in Fig. 2 and sub-architectures thereof1. In particular, any architectures
with multiple hidden layers (where another hidden layer projects to the memory block layer)
cannot be e ciently trained because error responsibilities are truncated at the memory blocks
instead of being passed to upstream layers. This section details our generalized version of
LSTM training, which confers all the benefits of the original algorithm, yet can be applied
without modification to arbitrary second-order neural network architectures.

With the Generalized Long Short-Term Memory (LSTM-g) approach, the gating mechanism
employed by LSTM is reinterpreted. In LSTM, gate units directly act on the states of
individual units—a memory cell’s net input in the case of the input gate, the memory cell
state for the forget gate, and the memory cell output for the output gate (Eqs. 3-4). By
contrast, units in LSTM-g can gate at the level of individual connections. The effect is that,
when passing activity to unit j from unit i across a connection gated by k, the result is not
simply wji yi, but instead wji yi yk. In this sense, LSTM-g is similar in form to traditional
second-order networks (e.g., Giles & Maxwell, 1987; Psaltis et al., 1988; Shin & Ghosh,
1991; Miller & Giles, 1993), but with an asymmetry: Our notation considers the connection
in this example to be primarily defined by j and i (note that the weight is denoted wji and not
wjki), where k provides a temporary gain on the connection by modulating its weight
multiplicatively. This notation is convenient when considering connections which require an
output and an input, but may or may not be gated; in other words, we can refer to a
connection without knowing whether it is a first- or second-order connection.

In LSTM-g, every unit has the potential to be like LSTM’s memory cells, gate units, both, or
neither. That is to say, all units contain the same set of operating instructions for both
activation and learning. Self-connected units can retain state like a memory cell, and any
unit can directly gate any connection. The role each unit takes is completely determined by
its placement in the overall network architecture, leaving the choice of responsibilities for
each unit entirely up to the architecture designer.

1LSTM can also train architectures with additional layers that operate in parallel with the memory block layer, but the important point
here is that LSTM cannot effectively train architectures containing layers that operate in series with the memory block layer.
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Equations 14-24 describe the operation of LSTM-g networks through a single time-step. Just
as in our description of the original LSTM training algorithm, a time-step consists of the
presentation of a single input pattern, followed by the ordered activation of all non-input
layers of the network. The order in which layers are activated is pre-determined and remains
fixed throughout training. If a layer to be activated receives recurrent connections from a
layer which has not yet been activated this time-step, the sending layer’s activations from
the previous time-step are used. The full derivation of the LSTM-g training algorithm can be
found in Appendix A.

3.1. Activation dynamics
LSTM-g performs LSTM-like gating by having units modulate the effectiveness of
individual connections. As such, we begin by specifying the gain gji on the connection from
unit i to unit j (Eq. 14).

(14)

Much as with memory cells in LSTM, any unit in an LSTM-g network is capable of
retaining state from one time-step to the next, based only on whether or not it is self-
connected. The state sj of a unit j (Eq. 15) is the sum of the weighted, gated activations of all
the units that project connections to it. If the unit is self-connected it retains its state in
proportion to the gain on the self-connection. As in LSTM, self-connections in LSTM-g,
where they exist, have a fixed weight of 1; otherwise wjj = 0. Given the state sj, the
activation yj is calculated via the application of the unit’s squashing function fj (Eq. 16).

(15)

(16)

When considering these equations as applied to the LSTM architecture, for a unit j ∉ c we
can see that Eq. 15 is a generalization of Eq. 1. This is because the first term of Eq. 15
evaluates to zero on this architecture (since there is no self-connection wjj), and all the gji =
1 since no connections into the unit are gated. The equivalence of Eq. 16 and Eq. 2 for these
units follows immediately. For a memory cell j ∈ c, on the other hand, Eq. 15 reduces to Eq.
3 when one notes that the self-connection gain gjj is just yφj, the self-connection weight wjj is
1, and the gji are all equal to yιj and can thus be pulled outside the sum. However, for the
memory cell units, Eq. 16 is not equivalent to Eq. 4, since the latter already multiplies in the
activation yωj of the output gate, whereas this modulation is performed at the connection
level in LSTM-g.

3.2. Learning rules
As in LSTM, each unit keeps an eligibility trace εji for each of its input connections (Eq.
17). This quantity keeps track of how activity that has crossed this connection has influenced
the current state of the unit, and is equal to the partial derivative of the state with respect to
the connection weight in question (see Appendix A). For units that do not have a self-
connection, the eligibility trace εji reduces to the most recent input activation modulated by
the gating signal.

Monner and Reggia Page 8

Neural Netw. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(17)

In the context of the LSTM architecture, Eq. 17 reduces to Eq. 5 for the output gates and
output units; in both cases, the lack of self-connections forces the first term to zero, and the
remaining gji yi term is equivalent to LSTM’s yi.

If unit j gates connections into other units k, it must maintain a set of extended eligibility

traces  for each such k (Eq. 18). A trace of this type captures the effect that the connection
from i potentially has on the state of k through its influence on j. Eq. 18 is simpler than it
appears, as the remaining partial derivative term is 1 if and only if j gates k’s self-
connection, and 0 otherwise. Further, the index a, by definition, runs over only those units
whose connections to k are gated by j; this set of units may be empty.

(18)

It is worth noting that LSTM uses traces of exactly this type for the forget gates and input
gates (Eq. 7-8); it just so happens that each such unit gates connections into exactly one
other unit, thus requiring each unit to keep only a single, unified eligibility trace for each
input connection. This will be the case for the alternative architectures we explore in this
paper as well, but is not required. A complete explanation of the correspondence between
LSTM’s eligibility traces and the extended eligibility traces utilized by LSTM-g can be
found in Appendix B.

When a network is given a target vector, each unit must calculate its error responsibility δj
and adjust the weights of its incoming connections accordingly. Output units, of course,
receive their δ values directly from the environment based on the global error function (Eq.
9), just as in LSTM (Eq. 10). The error responsibility δj for any other unit j in the network
can be calculated by back-propagating errors. Since each unit keeps separate eligibility

traces corresponding to projected activity (εji) and gating activity , we divide the error
responsibility accordingly. First, we define Pj to be the set of units k which are downstream
from j—that is, activated after j during a time-step—and to which j projects weighted
connections (Eq. 19), and Gj to be the set of units k which are downstream from j that
receive connections gated by j (Eq. 20). We restrict both of these sets to downstream units
because an upstream unit k has its error responsibility updated after j during backward error
propagation, meaning that the error responsibility information provided by k is not available
when j would need to use it.

(19)

(20)

We first find the error responsibility of unit j with respect to the projected connections in Pj
(Eq. 21), which is calculated as the sum of the error responsibilities of the receiving units
weighted by the gated connection strengths that activity from j passed over to reach k.
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(21)

Since the memory cells in LSTM only project connections and perform no gating
themselves, δPj of Eq. 21 translates directly into Eq. 12 for these units, which can be seen by
noting that the gain terms gkj are all equal to the output gate activation yωj and can be pulled
out of the sum.

The error responsibility of j with respect to gating activity is the sum of the error
responsibilities of each unit k receiving gated connections times a quantity representing the
gated, weighted input that the connections provided to k (Eq. 22). This quantity, as with the
same quantity in Eq. 18, is simpler than it appears, with the partial derivative evaluating to 1
only when j is gating k’s self-connection and zero otherwise, and the index a running over
only those units projecting a connection to k on which j is the gate.

(22)

To find j’s total error responsibility (Eq. 23), we add the error responsibilities due to
projections and gating.

(23)

In order to obtain weight-changes similar to LSTM training, δj is not used directly in weight
adjustments; its purpose is to provide a unified δ value that can be used by upstream units to
calculate their error responsibilities due to unit j. Instead, the weights are adjusted by
combining the error responsibilities and eligibility traces for projected activity and adding
the products of extended eligibility traces and error responsibilities of each unit receiving
gated connections. The result is multiplied by the learning rate α (Eq. 24).

(24)

Appendix B provides a detailed derivation that shows that the weight changes made by both
the LSTM (Eq. 13) and LSTM-g (Eq. 24) algorithms are identical when used on an LSTM
architecture without peephole connections. This establishes that LSTM-g is indeed a
generalization of LSTM’s training algorithm.

4. Comparison of LSTM and LSTM-g
As stated in Section 3 and proved in Appendix B, an LSTM-g network with the same
architecture as an LSTM network will produce the same weight changes as LSTM training
would, provided that peephole connections are not present. When peephole connections are
added to the LSTM architecture, however, LSTM-g utilizes a source of error that LSTM
training neglects: error responsibilities back-propagated from the output gates across the
peephole connections to the associated memory cells, and beyond. To see this, we will
calculate the error responsibility for a memory cell j in an LSTM-g network, and compare
the answer to the error responsibility for that same unit as prescribed by LSTM training.
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We begin with the generic error responsibility equation from LSTM-g (Eq. 23). Since the
cell in question is the architectural equivalent of a memory cell, it performs no gating
functions; thus the set of gated cells Gj is empty and Gj is zero, leaving δPj alone as the error
responsibility. Substituting Eq. 21 for δPj we obtain Eq. 25. At this point we ask: Which
units are in Pj? The memory cell in question projects connections to all the output units and
sends peephole connections to its controlling input gate, forget gate, and output gate. From
this set of receiving units, only the output units and the output gate are downstream from the
memory cell, so they comprise Pj. Taking each type of unit in Pj individually, we expand the
sum and obtain Eq. 26. Finally, we recognize that the peephole connection to the output gate
is not gated, so the gωjcj term goes to 1 (by Eq. 14); in addition, all the output connections
are gated by the output gate, so every gθkcj term becomes yωj, and we can pull the term
outside the sum.

(25)

(26)

(27)

The resulting Eq. 27 should be equal to cj as shown in Eq. 28 (derived from Eq. 12) to make
LSTM-g equivalent to LSTM training in this case.

(28)

Upon inspection, we see that that LSTM-g includes a bit of extra back-propagated error (δωj
wωjcj) originating from the output gate. Besides giving a more accurate weight update for
connections into memory cell j, this change in error will be captured in δj and passed
upstream to the forget gates and input gates. As demonstrated in Section 5, this extra
information helps LSTM-g perform a bit better than the original algorithm on an LSTM
architecture with peephole connections.

5. Experiments
To examine the effectiveness of LSTM-g, we implemented the algorithm described in
Section 3 and performed a number of experimental comparisons using various architectures,
with the original LSTM algorithm and architecture as a control comparison.

5.1. Distracted Sequence Recall on the standard architecture
In the first set of experiments, we trained different neural networks on a task we call the
Distracted Sequence Recall task. This task is our variation of the “temporal order” task,
which is arguably the most challenging task demonstrated by Hochreiter & Schmidhuber
(1997). The Distracted Sequence Recall task involves 10 symbols, each represented locally
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by a single active unit in an input layer of 10 units: 4 target symbols, which must be
recognized and remembered by the network, 4 distractor symbols, which never need to be
remembered, and 2 prompt symbols which direct the network to give an answer. A single
trial consists of a presentation of a temporal sequence of 24 input symbols. The first 22
consist of 2 randomly chosen target symbols and 20 randomly chosen distractor symbols, all
in random order; the remaining two symbols are the two prompts, which direct the network
to produce the first and second target in the sequence, in order, regardless of when they
occurred. Note that the targets may appear at any point in the sequence, so the network
cannot rely on their temporal position as a cue; rather, the network must recognize the
symbols as targets and preferentially save them, along with temporal order information, in
order to produce the correct output sequence. The network is trained to produce no output
for all symbols except the prompts, and for each prompt symbol the network must produce
the output symbol which corresponds to the appropriate target from the sequence.

The major difference between the “temporal order” task and our Distracted Sequence Recall
task is as follows. In the former, the network is required to activate one of 16 output units,
each of which represents a possible ordered sequence of both target symbols. In contrast, the
latter task requires the network to activate one of only 4 output units, each representing a
single target symbol; the network must activate the correct output unit for each of the
targets, in the same order they were observed. Requiring the network to produce outputs in
sequence adds a layer of difficulty; however, extra generalization power may be imparted by
the fact that the network is now using the same output weights to indicate the presence of a
target, regardless of its position in the sequence. Because the “temporal order” task was
found to be unsolvable by known architectures other than the LSTM architecture when
trained by gradient descent-based methods (Hochreiter & Schmidhuber, 1997), we do not
include methods other than LSTM and LSTM-g in the comparisons. Further, because we
wish to restrict our comparisons to temporally and spatially local training algorithms, we do
not include comparisons to second-order networks trained with BPTT, RTRL, or other such
methods.

Our first experiment was designed to examine the impact of the extra error information
utilized by LSTM-g. We trained two networks on the Distracted Sequence Recall task. The
first network serves as our control and is a typical LSTM network with forget gates,
peephole connections, and direct input-to-output connections (see Fig. 2), and trained by the
LSTM algorithm. The second network has the same architecture as the first, but is trained by
the LSTM-g algorithm, allowing it to take advantage of back-propagated peephole
connection error terms.

All runs of each network used the same basic approach and parameters: one unit in the input
layer for each of the 10 input symbols, 8 units in the memory cell layer and associated gate
layers, 4 units in the output layer for the target symbols, and a learning rate α = 0.1. Both
networks are augmented with peephole connections and direct input-to-output connections.
Thus, both algorithms are training networks with 416 weights. Networks were allowed to
train on random instances of the Distracted Sequence Recall task until they achieved the
performance criterion of 95% accuracy on a test set of 1000 randomly selected sequences
which the network had never encountered during training. To get credit for processing a
sequence correctly, the network was required to keep all output units below an activation
level of 0.5 during all of the non-prompt symbols in the sequence and activate only the
correct target symbol—meaning that all units must have activations on the same side of 0.5
as the target—for both prompts. This correctness criterion was used both for networks
trained by the LSTM algorithm and for those trained by the LSTM-g algorithm to ensure
that the two types were compared on an equal footing. Each network type was run 50 times
using randomized initial weights in the range [−0.1, 0.1).
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Fig. 3 compares the number of presentations required to train the two networks. All runs of
both networks reached the performance criterion as expected, but there were differences in
how quickly they achieved this. In particular, LSTM-g is able to train the LSTM network
architecture significantly faster than the original algorithm (as evaluated by a Welch two-
sample t-test after removing outliers greater than 2 standard deviations from the sample
mean, with t ≈ 5.1, df ≈ 80.9, p < 10−5). This demonstrates that LSTM-g can provide a clear
advantage over LSTM in terms of the amount of training required, even on an LSTM-
compatible architecture.

5.2. Distracted Sequence Recall on a customized architecture
Our second experiment was designed to investigate the relative performance of the standard
LSTM architecture compared to other network architectures which would require
modifications to the LSTM training paradigm. We trained three additional networks on the
same Distracted Sequence Recall task. The first serves as the control and utilizes the LSTM
algorithm to train a standard LSTM architecture that is the same as in the previous
experiment except for the addition of recurrent connections from all (output-gated) memory
cells to all the gate units. We call this architecture the gated recurrence architecture (Fig.
4a). The second network also uses the gated recurrence architecture, but is trained by
LSTM-g. The third network is a new ungated recurrence architecture (Fig. 4b), which starts
with the standard LSTM architecture and adds direct, ungated connections from each
memory cell to all gate units. These connections come from the ungated memory cell output
like peephole connections would, but unlike peephole connections these are projected to
gate units both inside and outside of the local memory block. The intuition behind this
architecture comes from the idea that a memory cell should be able to communicate its
contents not only to its controlling gates but also to the other memory blocks in the hidden
layer, while still hiding these contents from downstream units. Such communication would
intuitively be a major boon for sequential storage and retrieval tasks because it allows a
memory block to choose what to store based on what is already stored in other blocks, even
if the contents of those blocks are not yet ready to be considered in calculating the network
output. These ungated cell-to-gate connections are a direct generalization of peephole
connections, but the new architecture that results can only be trained by the LSTM algorithm
if it were to be modified to suit the architecture. As such, we present only the results of
training the ungated recurrence architecture with LSTM-g, which requires no special
treatment of these ungated cell-to-gate connections

Each of the three networks uses the same approach and parameters as in the previous
experiment. This means the both types of network using the gated recurrence architecture
have 608 trainable connections, and the ungated recurrence architecture has only 584
because the 24 peephole connections used in the gated recurrence architecture would be
redundant2.

Though these networks are more complex than those in the first experiment, they are able to
learn the task more quickly. Fig. 5 shows, for each run, the number of input presentations
necessary before each of three networks reached the performance criterion. Again we see a
slight speed advantage for LSTM-g over LSTM when applied to the LSTM-compatible
gated recurrence architecture, though this difference misses statistical significance (t ≈ 1.8,
df ≈ 87.9, p < 0.08). More interesting is the improvement that LSTM-g achieves on the
novel ungated recurrence architecture, which reaches significance easily compared to both

2The experiments reported here were also run with a variant of the gated recurrence architecture without the 24 peephole connections,
leaving it with the same 584 weights as the ungated recurrence architecture; however, the lack of peephole connections caused a
severe learning slowdown. In the interest of comparing LSTM-g against the strongest possible control, we report only the results from
the gated recurrence architecture with peephole connections as described above.
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the gated recurrence architecture trained with LSTM (t ≈ 15.3, df ≈ 79.6, p < 10−15) and
with LSTM-g (t 10.2, df ≈ 69.6 p < 10−14). LSTM-g is able to train the ungated recurrence
architectur faster than either it or LSTM train the gated recurrence architecture. This
difference illustrates the potential benefits of the wide range of customized architectures that
LSTM-g can train.

5.3. Language Understanding on a two-stage architecture
For our final experiment we adopt a more involved and substantially different Language
Understanding task, similar to those studied recently using other neural network models
(Monner & Reggia, 2009). In this task, a network is given an English sentence as input and
is expected to produce a set of predicates that signifies the meaning of that sentence as
output. The input sentence is represented as a temporal sequence of phonemes, each of
which is a vector of binary auditory features, borrowed directly from Weems & Reggia
(2006). The network should produce as output a temporal sequence of predicates which bind
key concepts in the sentence with their referents. For example, for the input sentence “the
red pyramid is on the blue block” we would expect the network to produce the predicates
red(X), pyramid(X), blue(Y), block(Y), and on(X, Y). The variables are simply identifiers
used to associate the various predicates with each other; in this example, the three predicates
in which variable X participates come together to signify that a single object in the world is
a red pyramid which is on top of something else. In the actual output representation used by
the network, each predicate type is represented as a single one in a vector of zeroes, and the
variables required by each prediate are also represented in this way. In other words, a
network performing this task requires a set of output neurons to represent the types of
predicates, with each unit standing for a single predicate type, and two additional,
independent sets of neurons which each represent a variable, since there can be at most two
variables involved in any predicate. We chose to require the network to produce the required
predicates in a temporal fashion to avoid imposing architectural limits on the number of
predicates that a given input sentence could entail.

We chose to examine this task in part because it is hierarchically decomposable. To come up
with a readily generalizable solution, common wisdom suggests that the best strategy for the
network to use is to aggregate the incoming phonemes into words, words into phrases, and
phrases into a unified sentence meaning. Our intuition was that architectures capable of
directly supporting this type of hierarchical decomposition would be superior to those that
do not. To test this notion, we developed an architecture that we call the two-stage
architecture, shown in Fig. 6. At first it may appear complex, but it is essentially the
standard LSTM architecture with peephole connections, except with a second hidden layer
of memory block assemblies in series with the first. LSTM cannot e ciently train such an
architecture, because the back-propagated error signals would be truncated and never reach
the earlier layer of memory blocks. LSTM-g, on the other hand, trains the two-stage
architecture without difficulty. As a control to our LSTM-g-trained two-stage architecture,
we train a standard LSTM network with peephole connections (see Fig. 2) appropriately
adjusted to match the resources of the two-stage network as closely as possible.

Both networks in this experiment use essentially the same parameters as in the previous two
experiments; the only difference is in the size of the networks. The two-stage architecture
has 34 input units (corresponding to the size of the phoneme feature vectors used as input),
40 memory blocks in the first stage, 40 additional memory blocks in the second stage, and
14 output units, giving a total of 13,676 trainable connections. The standard LSTM control
has the same 34 input units and 14 output units, with a single hidden layer of 87 memory
blocks, giving it a slight edge with 7 more total memory blocks and 13,787 trainable
connections. These numbers were selected to give the two networks as near to parity in
terms of computational resources as the architecture designs and problem constraints allow.
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During a single trial in the Language Understanding task, the network being tested is given
each individual phoneme from a sentence as input in consecutive time-steps, and after the
entire input sequence has been processed, the network must output one complete predicate
on each subsequent time-step, until the network produces a special “done” predicate to
signify that it is finished producing relevant predicates. The networks are trained to produce
the predicates for a given sentence in a specified order, but are scored in such a way that
correct predicates produced in any order count as correct answers. A predicate is deemed to
be correct if all units have activations on the correct side of 0.5. We also tracked the number
of unrelated predicates that the networks generated; however, we found this number to
closely track the inverse of the fraction of correct predicates produced, and as such, we only
report the latter measure.

A small, mildly context-sensitive grammar was used to generate the sentences and
corresponding predicates for this simple version of the Language Understanding task. The
sentences contained combinations of 10 different words suggesting meanings involving 8
different types of predicates with up to 3 distinct objects referenced per sentence. The
simplest sentences required only 3 output predicates to express their meanings, while the
most complex required the networks to produce as many as 9 predicates in sequence as
output. Each network was run 32 times on this task. On each run, the network in question
began with random weights and was allowed to train through 1 million sentence
presentations. The performance of the network was gauged periodically on a battery of 100
test sentences on which the network never received training. The duration of training was
more than sufficient to ensure that all networks had reached their peak performance levels.

Fig. 7 shows a comparison of the peak performance rates of the two types of network, based
on the fraction of correct predicates produced on the novel test sentences. The two-stage
network trained with LSTM-g was able to achieve significantly better generalization
performance than the standard LSTM network on average (t ≈ 9.4, df ≈ 57.9, p < 10−12). In
addition, the two-stage network was able to achieve this performance much more quickly
than the control. Fig. 8 plots the number of sentence presentations required for each network
to produce 80% of predicates correctly; this number was chosen because every run of every
network was able to achieve this performance level. The two-stage network required
approximately 4 times fewer sentence presentations to reach the 80% performance criterion,
which is a significant difference (t ≈ 10.9, df ≈ 31.4, p < 10−11). These results underscore
the value of using LSTM-g to train customized architectures that traditional LSTM cannot.

6. Discussion
The original LSTM architecture and the associated training algorithm was an important
advance in gradient training methods for recurrent neural networks that allows networks to
learn to handle temporal input and output series, even across long time lags. While the
LSTM architecture and extensions thereof have proven useful in a variety of contexts, the
LSTM training algorithm has often been replaced in these studies by the non-local BPTT,
which was necessary to train more complex network architectures. Thus, the original LSTM
training algorithm was limited in scope to a small family of second-order recurrent neural
architectures. This paper has introduced LSTM-g, a generalized algorithm that provides the
power, speed, and spatial and temporal locality of the LSTM algorithm, but unlike said
algorithm is applicable to arbitrary second-order recurrent neural networks.

In addition to the increased architectural applicability it provides, LSTM-g makes use of
extra back-propagated error when applied to the canonical LSTM network architecture with
peephole connections. We found that this error can be put to good use, with LSTM-g
converging after less training than the LSTM training algorithm required in experiments
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which utilize the standard LSTM network architecture. Further, we found that customized
network architecture strained with LSTM-g can produce better performance than either
LSTM or LSTM-g can produce when restricted to the standard architecture. In light of
previous research that shows LSTM to outperform other recurrent network architectures
when using training methods of comparable computational complexity (Hochreiter &
Schmidhuber, 1997), the results contained herein suggest that LSTM-g may find fruitful
application in many areas where customizable or dynamically changing network
architectures are desirable.

LSTM-g is already being applied to learning problems such as natural language grounding
where maintaining brain-like spatial and temporal locality is essential (Monner & Reggia,
2011). In the future, however, it will likely be worth investigating whether LSTM-g may
also be of use in situations where spatial and temporal locality are not hard requirements—
situations in which BPTT, RTRL, DEKF, or other methods are generally used to train
second-order network architectures. While we think it unlikely that LSTM-g would
outperform these algorithms in terms of final error rates, it seems plausible that the locality
properties of LSTM-g would lead to a better performance-to-computation ratio, resulting in
faster convergence in terms of required computation time. Regardless of the outcome of
such tests, LSTM-g has the potential to broaden the applicability of local training algorithms
for second-order recurrent neural networks.

Appendix A. Learning rule derivation
Here we derive the LSTM-g learning algorithm by calculating the gradient of the cross-
entropy function (Eq. 9) for a general unit in an LSTM-g network. Such a unit may both
project normal weighted connections to other units and multiplicatively modulate the
weights of other connections. In order to know the error responsibility for unit j, we must
approximate the gradient of the error function with respect to this unit’s state sj (Eq. A.1).
To do this, we begin with the approximation that the error responsibility of unit j depends
only upon units k which are immediately downstream from j (Eq. A.2). The remaining error
gradients for k are δk by definition. We break up the second partial derivative into a product
which includes j’s activation directly so as to account for the effects of j’s squashing
function separately (Eq. A.3). The dependence of j’s activation on its state is simply the
derivative of the squashing function, which is constant across the sum and thus can be
moved outside (Eq. A.4). At this point, we can separate our set of units k into two (possibly
overlapping) sets (Eq. A.5)—those units to which j projects weighted connections (Eq. 19),
and those units that receive connections gated by j (Eq. 20). We will thus handle error
responsibilities for projection and gating separately, even in cases where j both projects and
gates connections into the same unit k, thereby defining δPj and δGj (Eq. A.6, cf. Eq. 23).

(A.1)

(A.2)

(A.3)
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(A.4)

(A.5)

(A.6)

In calculating δPj (Eq. A.7), we expand sk using its definition from Eq. 15 to obtain Eq. A.8.
Recall that we are only concerned with cases where j projects connections; as such, gkk and
gkj’ do not depend on j and are treated as constants. Since the previous state of k does not
depend on the current activation of j, the first term in the parentheses vanishes completely.
Individual terms in the sum vanish as well, except for the one case when j’ = j, leaving us
with gkj wkj for the entire derivative (Eq. A.9, cf. Eq. 21).

(A.7)

(A.8)

(A.9)

As above, to find δGj (Eq. A.10) we first expand sk (Eq. A.11). In this case, we are
considering only connections which j gates. Now the gkk term is in play, since it is equal to
yj if j gates k’s self-connection (see Eq. 14); this leads to the first term inside the parentheses
in Eq. A.12, where the derivative can takes the values 1 or 0. For individual terms in the
sum, we know yj’ ≠ yj since we are not dealing with connections j projects to k. However,
gkj’ may be equal to yj in some cases; where it is not, j does not gate the connection and the
term goes to zero. Thus, in Eq. A.12 (cf. Eq. 22), the sum is reindexed to include only those
units a whose connections to k are gated by j.

(A.10)
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(A.11)

(A.12)

We can now calculate the error responsibility δj of any unit j by back-propagation. We start
at the level of units k that are immediately downstream from j (Eq. A.13). We can separate
the k units by function again (Eq. A.14), and break up the remaining partial derivative in the
first sum (Eq. A.15). Rearranging terms in the first sum (Eq. A.16), we see a grouping which
reduces to δPj (see Eq. A.7). The remaining derivative in the first term is, by definition, the
familiar eligibility trace εji; in the second term we find the definition of the extended

eligibility trace , leaving us with Eq. A.17 (cf. Eq. 24).

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

To calculate the eligibility trace εji (Eq. A.18) we simply substitute sj from Eq. 15 to obtain
Eq. A.19. We assume unit j does not gate its own self-connection, so gjj is a constant. The
previous state  depends on wji producing a partial derivative that simplifies to the previous
value of the eligibility trace, . The only term in the sum with a non-zero derivative is the
case where i’ = i, leaving us with Eq. A.20 (cf. Eq. 17).
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(A.18)

(A.19)

(A.20)

Working on the extended eligibility trace  (Eq. A.21), we again expand sk to form Eq. A.
22. Performing the partial derivative on the first term, note that gkk may be equal to yj, which
depends on wji; also,  depends on wji via its effect on sj, so we require the product rule to
derive the first term. For terms in the sum, unit j can gate the connection from j’ to k, but k ≠
j so wkj’ can be treated as constant, as can yj’ since we are not concerned here with
connections that j projects forward. In Eq. A.23, we are left with the result of the product
rule and the remaining terms of the sum, where the a index runs over only those connections
into k that j does in fact gate. Moving to Eq. A.24, we note that the first partial derivative is
simply the previous value of the extended eligibility trace. We pull out partial derivatives
common to the latter two terms, finally replacing them in Eq. A.25 (cf. Eq. 18) with the
names of their stored variable forms. The partial derivatives in the sum are all 1 by the
definition of the a index. The remaining partial derivative inside the parentheses reduces to 1
when j gates k’s self-connection and 0 otherwise.

(A.21)

(A.22)

(A.23)

(A.24)

Monner and Reggia Page 19

Neural Netw. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A.25)

Appendix B. LSTM as a special case of LSTM-g
Here we show that LSTM is a special case of LSTM-g in the sense that, when LSTM-g is
applied to a particular class of network architectures, the two algorithms produce identical
weight changes. To prove that LSTM-g provides the same weight updates as the original
algorithm on the LSTM architecture, we first need to precisely articulate which architecture
we are considering. For notational simplicity, we will assume that the desired LSTM
architecture has only one memory cell per block; this explanation can be trivially extended
to the case where we have multiple memory cells per block. The input layer projects
weighted connections forward to four distinct layers of units (see Fig. 2), which are
activated in the following order during a time-step, just as in LSTM: the input gate layer ι,
the forget gate layer φ, the memory cell layer c, and the output gate layer ω. Each of these
layers has the same number of units; a group of parallel units are associated via the pattern
of network connectivity and collectively function like an LSTM memory block. Inputs to
each cell in the memory cell layer are gated by the associated input gate unit. The memory
cell layer is the only layer in which each unit has a direct self-connection; these each have a
fixed weight of 1 and are gated by the appropriate forget gate. A final output layer receives
weighted connections from the memory cell layer which are gated by the output gates.

With this simple LSTM network, LSTM-g produces the same weight changes as LSTM. If
we add peephole connections to the network, the error responsibilities would differ, as
LSTM-g is able to use error back-propagated from the output gates across these connections,
whereas LSTM does not; this is discussed further in Section 4.

Appendix B.1. State and activation equivalence
We begin by demonstrating the equivalence fo the activation dynamics of LSTM and
LSTM-g, when the latter is applied to the standard LSTM architecture.

Appendix B.1.1. Gate units
First we show that the activation for each gate unit (i.e., for a general unit λj where λ ∈ {ι, φ,
ω}) is the same here as it is in LSTM. Starting from the LSTM-g state definition (Eq. B.1,
cf. Eq. 15), we note that the activations of the gate units are stateless because they have no
self connections, meaning wλjλj = 0 and we can drop the first term (Eq. B.2). On this
architecture, the only connections into any of the gate units come from the input layer and
are ungated, so all the gλji terms are 1 (Eq. B.3). We are left with the definition of the net
input to a normal LSTM unit (Eq. B.4, cf. Eq. 1).

(B.1)

(B.2)
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(B.3)

(B.4)

Appendix B.1.2. Output units
The situation is similar for the output units λj. Starting from the same LSTM-g state equation
(Eq. B.5, cf. Eq. 15), we drop the first term due to lack of output unit self-connections (Eq.
B.6). Since the connections into the output units come from the memory cells, each
connection is gated by its corresponding output gate (Eq. B.7). We regroup the terms (Eq. B.
8) and note that, by Eq. 4, the output gate activation times the LSTM-g memory cell
activation gives us the LSTM memory cell activation (Eq. B.9). The result is a equal to the
net input of an LSTM output unit (Eq. B.10, cf. Eq. 1).

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

We have now proved the equivalence of xλj in LSTM and sλj in LSTM-g for non-memory
cells. It follows directly for these units that the activation yλj in LSTM is equivalent to the
quantity of the same name in LSTM-g (Eq. B.11, cf. Eq. 16), assuming equivalent squashing
functions fλj (Eq. B.12, cf. Eq. 2).

(B.11)

(B.12)
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Appendix B.1.3. Memory cells
Next we demonstrate the equivalence of memory cell states in LSTM and LSTM-g. Starting
again from the unit state equation for LSTM-g (Eq. B.13, cf. Eq. 15), we note first that the
self-connection weight is fixed at 1 and the self-connection gate is the associated forget gate
(Eq. B.14). Next we note that all of the connections coming into the memory cell in question
are gated by the memory cell’s associated input gate, so gcji = yιj∀i and we can bring the
term outside the sum (Eq. B.15). Finally, we note that the remaining sum is equal to the net
(ungated) input to the memory cell, leaving us with the equation for LSTM memory cell
states (Eq. B.16, cf. Eq. 3).

(B.13)

(B.14)

(B.15)

(B.16)

The activation variable ycj does not line up directly in LSTM-g and LSTM, since LSTM
requires the output gate to modulate the activation of the memory cell directly, while LSTM-
g defers the modulation until the activation is passed on through a gated connection. The
distinction has already been noted and appropriately dealt with in the discussion of Eq. B.8,
and is not problematic for the proof at hand.

Appendix B.2. Weight change equivalence
We have shown the equivalence of activation dynamics when LSTM-g is used on the LSTM
architecture. We now must show the equivalence of the weight changes performed by each
algorithm.

Appendix B.2.1. Output units
Since the output units in LSTM-g get the same error responsibility from the environment as
in LSTM, we need only consider whether each connection in question has the same
eligibility trace in the two schemes; proving this will trivially show weight change
equivalence. We need only consider the general LSTM-g eligibility trace equation, as the
output units perform no gating (Eq. B.17, cf. Eq. 17). The first term drops out since the
output units have no self-connections (Eq. B.18). Since the connection in question is from
the memory cell layer, the gating term becomes the output gate activation (Eq. B.19). The
two remaining factors are equal to LSTM’s definition of the memory cell activation (Eq. B.
20), which is consistent with LSTM using only the sending unit’s activation as an output
unit eligibility trace (Eq. B.21, cf. Eq. 5).

(B.17)
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(B.18)

(B.19)

(B.20)

(B.21)

Appendix B.2.2. Output gates
To prove equivalent changes to weights into the output gate units, we begin with the
generalized eligibility trace equation from LSTM-g (Eq. B.22, cf. Eq. 17). Output gate units
have no self-connections, so the first term drops out (Eq. B.23). The incoming connections
to the output gate are not gated, so the gating term is 1 (Eq. B.24). The result is the most
recent activity of the sending unit on this connection, which is the same eligibility trace as in
LSTM (Eq. B.25, cf. Eq. 5).

(B.22)

(B.23)

(B.24)

(B.25)

Next, we can simplify the extended eligibility traces for output gates, starting from LSTM-g
(Eq. B.26, cf. Eq. 18). Output gates only modulate connections to the output layer, so we
know k ∈ θ, and none of these units have self-connections, so we drop the first term outside
the parentheses as well as the first term inside the parentheses (Eq. B.27). Each output gate
will modulate only a single connection into each output unit—the connection from its
associated memory cell to the output unit in question—so the sum reduces to a single term
(Eq. B.28).

(B.26)

(B.27)
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(B.28)

Finally, starting from the LSTM-g weight change equation (Eq. B.29, cf. Eq. 24) we can
simplify to find the LSTM weight change. First we note that for output gates, which project
no weighted connections, the set Pj is empty, making δPj zero and eliminating the first term
(Eq. B.30). Noting that, for output gates, the set Gj is precisely the set of output units θ, we
replace the eligibility trace term with the simplified version from Eq. B.28, moving common
terms in the sum to the outside (Eq. B.31). Rearranging the equation, we find a term (in
parentheses, Eq. B.32) that is equal to LSTM’s formulation of the error responsibility for an
output gate (Eq. 11). Making that replacement and the replacement of the eligibility trace
shown above (Eq. B.33), we now have the exact weight change prescribed by LSTM (Eq. B.
34, cf. Eq. 13).

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

Appendix B.2.3. Memory cells
As with the output units, with the memory cells we need only consider the basic eligibility
trace (Eq. B.35, cf. Eq. 17), since the memory cells perform no gating functions. We note
that the self-connection weight is 1, and the self-connection gate is the associated forget gate
(Eq. B.36). We also note that the input connection must be gated by the appropriate input
gate (Eq. B.37), leaving us with precisely the form of the eligibility trace from LSTM (Eq.
B.38, cf. Eq. 6).

(B.35)
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(B.36)

(B.37)

(B.38)

Again due to the lack of gating, we need only consider δj = δPj (Eq. B.39, cf. Eq. 21).
Recognizing that all connections forward are gated by the associated output gate, we can
replace all the gkj terms in the sum with yωj, making this a factor outside the sum (Eq. B.40).
Now we simply rename derivative and weight terms based on the architecture (Eq. B.41),
and we have recovered δcj from LSTM (Eq. B.42, cf. Eq. 12).

(B.39)

(B.40)

(B.41)

(B.42)

Starting with the weight change equation from LSTM-g (Eq. B.43, cf. Eq. 24), we remove
the second term since Gj is empty (Eq. B.44) and substitute the equal quantities derived
above (Eq. B.45) to reproduce LSTM’s weight change for memory cells (Eq. B.46, cf. Eq.
13).

(B.43)

(B.44)

(B.45)

(B.46)
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Appendix B.2.4. Forget gates
Similarly for forget gates, we first simplify the general LSTM-g eligibility trace (Eq. B.47,
cf. Eq. 17), noting that the forget gates themselves do not self-connect (Eq. B.48), and the
inputs are not gated (Eq. B.49).

(B.47)

(B.48)

(B.49)

Next we expand the extended eligibility trace (Eq. B.50, cf. Eq. 18), noting first that the only
k we need to worry about is the single memory cell whose self-connection this unit gates.
This leads us to rewrite the first gate term as the forget gate activation. In the parentheses,
the derivative term and wkk both go to 1, and since there are no non-self-connections that
this unit gates, the sum is empty (Eq. B.51). Reorganizing and renaming some terms—as
well as replacing the eligibility trace as calculated in Eq. B.49—we end up with the form in
Eq. B.52. If we make the inductive assumption that the eligibility trace from the previous

time-step, , is equal to the previous LSTM eligibility trace  (Eq. B.53), we see that we
in fact have the same eligibility traces for the current step as well (Eq. B.54, cf. Eq. 7).

(B.50)

(B.51)

(B.52)

(B.53)

(B.54)

As it was for the output gates, δPj is zero in Eq. B.55 (cf. Eq. 24) since Pj is empty for the
forget gates, leaving us with Eq. B.56. For forget gates, Gj has a single element—the
memory cell whose self-connection this unit gates (Eq. B.57). As show above, the eligibility
traces are equal (Eq. B.58), and δcj = δφj as shown in Eq. 12, leaving us with the LSTM-
prescribed weight change for forget gate connections (Eq. B.59, cf. Eq. 13).
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(B.55)

(B.56)

(B.57)

(B.58)

(B.59)

Appendix B.2.5. Input gates
As for forget gates, for input gates we start by simplifying the LSTM-g eligibility trace (Eq.
B.60, cf. Eq. 17), dropping the first term since input gates do not self-connect (Eq. B.61) and
letting gji go to 1 since the inputs are not gated (Eq. B.62).

(B.60)

(B.61)

(B.62)

The extended eligibility trace again begins as Eq. B.63 (cf. Eq. 18), where the only k in play
is the single memory cell whose input connections are modulated by this input gate. Thus,
the first gain term can be replaced by the forget gate activation, and the derivative term

inside the parentheses goes to zero (Eq. B.64). Next we rename the  term appropriately,
replace the eligibility trace with its simplification from Eq. B.62, and recognize that the sum
we have left is in fact the ungated net input to the memory cell in question (Eq. B.65). If we
make the inductive assumption that the previous step’s eligibility traces are equal (Eq. B.
66), we see immediately that those of the current step are equal as well (Eq. B.67, cf. Eq. 8).

(B.63)
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(B.64)

(B.65)

(B.66)

(B.67)

Starting again with the unified LSTM-g weight update equation (Eq. B.68, cf. Eq. 24), we
drop the first term since δPj is zero (Eq. B.69). Next we recognize that the only cell in the set
Gj is the associated memory cell cj of this input gate, simplifying the sum to a single term
(Eq. B.70). Using Eq. 12, we note that δcj = διj for this network, so we make that

replacement as well as replacing  according to Eq. B.67 to obtain Eq. B.71. We end up
with precisely the weight changes specified by LSTM for input gate connections (Eq. B.72,
cf. Eq. 13).

(B.68)

(B.69)

(B.70)

(B.71)

(B.72)

This section has shown that every unit in a canonical LSTM network architecture calculates
identical activations and weight updates under LSTM and LSTM-g, thus concluding the
proof that LSTM is a special case of LSTM-g.
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Figure 1.
Architectural comparison of LSTM’s memory block to the equivalent in an LSTM-g
network. Weighted connections are shown as black lines, and gating relationships are shown
as thicker gray lines. The elongated enclosure represents the extent of the memory cell. In
(a), connections into the LSTM memory cell are first summed (the input-squashing function
is taken to be the identity); the result is gated by the input gate. The gated net input
progresses to the self-recurrent linear unit, whose activity is gated by the forget gate. The
state of the recurrent unit is passed through the output-squashing function, which is then
modulated by the output gate. This modulated value is passed to all receiving units via
weighted connections. Note that the peephole connections project from an internal stage in
the memory cell to the controlling gate units; this is an exception to the rule that only the
final value of the memory cell is visible to other units. In (b), the weights on the input
connections to the LSTM-g memory cell are modulated directly by the input gate before
being summed by the linear unit. Unmodulated output leaves the memory cell via weighted
connections. Connections to downstream units can have their weights modulated directly by
the output gate, but this is not required, as can be seen with the equivalent of LSTM’s
peephole connections proceeding normally from the output of the memory cell. This scheme
is capable of producing the same results as the LSTM memory block, but allows greater
architectural flexibility.
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Figure 2.
The standard LSTM architecture in terms of layers. The memory block assemblies are
broken up into separate layers of memory cells, input gates, forget gates, and output gates, in
addition to the input and output layers. Solid arrows indicate full all-to-all connectivity
between units in a layer, and dashed arrows indicate connectivity only between the units in
the two layers that have the same index (i.e., the first unit of the sending layer only projects
to the first unit of the receiving layer, the second unit only projects to the second, and so
forth). The gray bars denote gating relationships, and are displayed as they are conceived in
LSTM-g, with the modulation occurring at the connection level. Units in each gate layer
modulate only those connections into or out of their corresponding memory cell. The
circular dashed connection on the memory cell layer indicates the self-connectivity of the
units therein. This diagram shows the optional peephole connections—the dashed arrows
originating at the memory cells and ending at the gate layers—as well as the optional direct
input-to-output layer connections on the left.
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Figure 3.
Plot of the results of an experiment that pitted LSTM-g against LSTM, each training an
identical standard peephole LSTM architecture to perform the Distracted Sequence Recall
task. Small points are individual network runs, jittered to highlight their density. The large
black point for each network type is the mean over all 50 runs, with standard error (small
bars) and standard deviation (large bars). The results show clearly the beneficial impact of
the way LSTM-g utilizes extra error information.
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Figure 4.
The network architectures used in the second experiment (c.f. Fig. 2). In (a), the previous
LSTM architecture is augmented with a full complement of recurrent connections from each
memory cell to each gate, regardless of memory block associations; all these connections are
gated by the appropriate output gate. In (b), we strip the (now redundant) peephole
connections from the original architecture and in their place put a full complement of
ungated connections from each memory cell to every gate. This second architectural variant
is incompatible with the LSTM training algorithm, as it requires all connections out of the
memory cell layer to be gated by the output gate. The network can still be trained by LSTM-
g, however.
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Figure 5.
Plot of the results on the Distracted Sequenced Recall task for three networks: an LSTM
network augmented with peephole connections and gated recurrent connections from all
memory cells to all gates; and an LSTM-g network with ungated recurrent connections from
all memory cells to all gates. The graph clearly shows that the ungated recurrence network,
trainable only with LSTM-g, reaches the performance criterion after less training than the
comparable gated recurrence network as trained by either LSTM or LSTM-g.
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Figure 6.
The two-stage network architecture, used in the third experiment. This architecture is a
variant of the standard LSTM architecture with peephole connections (Fig. 2) that has a
second layer of memory block assemblies in series with the first. The traditional LSTM
training algorithm cannot effectively train this architecture due to the truncation of error
signals, which would never reach the earlier layer of memory blocks. Intuition suggests that
the two self-recurrent layers allow this network to excel at hierarchically decomposable
tasks such as the Language Understanding task.
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Figure 7.
Plot of the performance results on the Language Understanding task produced by a standard
LSTM network and the two-stage architecture trained by LSTM-g. We see that the standard
LSTM networks were able to produce approximately 87% of predicates correctly at peak
performance, while the two-stage LSTM-g networks garnered 94% on average.
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Figure 8.
Plot of the training duration required for each type of network to reach the criterion of
producing 80% of the required predicates for input sentences. The standard LSTM network
required an average of about 220,000 sentence presentations to reach this performance
criterion, while the two-stage network trained by LSTM-g required fewer than 60,000.
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