
Comparing Error Minimized Extreme
Learning Machines and Support Vector

Sequential Feed-forward Neural Networks ∗

Enrique Romero and René Alquézar

June 2, 2010

Abstract

Recently, error minimized extreme learning machines (EM-ELMs) have been
proposed as a simple and efficient approach to build single-hidden-layer feed-
forward networks (SLFNs) sequentially. They add random hidden nodes one by
one (or group by group) and update the output weights incrementally to minimize
the sum-of-squares error in the training set. Other very similar methods that also
construct SLFNs sequentially had been reported earlier with the main difference
that their hidden-layer weights are a subset of the data instead of being random.
By analogy with the concept of support vectors original of support vector ma-
chines (SVMs), these approaches can be referred to as support vector sequential
feed-forward neural networks (SV-SFNNs), and they are a particular case of the
Sequential Approximation with Optimal Coefficients and Interacting Frequencies
(SAOCIF) method. In this paper, it is firstly shown that EM-ELMs can also be cast
as a particular case of SAOCIF. In particular, EM-ELMs can easily be extended to
test some number of random candidates at each step and select the best of them,
as SAOCIF does. Moreover, it is demonstrated that the cost of the calculation of
the optimal output-layer weights in the originally proposed EM-ELMs can be im-
proved if it is replaced by the one included in SAOCIF. Secondly, we present the
results of an experimental study on 10 benchmark classification and 10 benchmark
regression data sets, comparing EM-ELMs and SV-SFNNs, that was carried out
under the same conditions for the two models. Although both models have the
same (efficient) computational cost, a statistically significant improvement in gen-
eralization performance of SV-SFNNs vs. EM-ELMs was found in 12 out of the
20 benchmark problems.

∗This work was supported in part by the Ministerio de Ciencia e Innovación (MICINN), under project
TIN2009-13895-C02-01.

1



1 Introduction
Feed-forward Neural Networks (FNNs) are a popular machine learning approach for
classification and regression problems with very interesting properties (see, for exam-
ple, [2]). As a specific type of FNNs, the single-hidden-layer feed-forward networks
(SLFNs) play an important role in practical applications. Since the optimal number
of hidden nodes is problem dependent and unknown in advance, users usually choose
the number of hidden nodes by trial-and-error. Once the architecture is fixed, an itera-
tive learning algorithm such as back-propagation gradient descent is usually applied to
adjust the weights in the output and hidden layers simultaneously.

There exist, however, FNN models that construct the network sequentially, so that
the number of hidden units is a result of the learning process rather than being fixed
a priori. For a review of constructive FNNs see, for example, [8]. Recently, error
minimized extreme learning machines (EM-ELMs) have been proposed as a simple
and efficient approach to build SLFNs sequentially [4]. EM-ELMs are an incremental
extension of the previously presented extreme learning machines (ELMs) [6]. Both
methods use random hidden nodes and find the output weights to minimize the sum-
of-squares error in the training set by solving a linear system of equations. The specific
features of EM-ELMs with respect to ELMs are that they add random hidden nodes
one by one (or group by group) and update the output weights incrementally in an
efficient way by taking advantage of the incremental construction of the hidden-layer
output matrix involved in the linear system. Other recent extensions of ELMs can be
found in [17, 9].

Very similar methods that also construct SLFNs sequentially had been reported
earlier ([3], [16], [12]). They all find the optimal linear weights of the output layer by
solving the same linear system. In fact, the idea of adding random hidden units was
already stated in the Sequential Approximation with Optimal Coefficients and Interact-
ing Frequencies (SAOCIF) algorithm ([11], [12]) as a possible strategy to be used and,
as shown in [12], the solution of the linear system can be computed efficiently thanks
to the incremental construction of the hidden-layer output matrix. The EM-ELMs and
SAOCIF with random selection strategy can easily be shown to be essentially equiv-
alent (see Section 2), although it will be demonstrated in Section 3.1 that the cost of
the output-layer weight computation described in [4] is greater than the cost of the
corresponding one in SAOCIF described in [12].

Another strategy proposed in [11], [12] to be used within SAOCIF was to take
hidden-layer weights always as a subset of the data (input strategy). In this case, the
resulting method is equivalent to the Orthogonal Least Squares Learning algorithm [3]
and to Kernel Matching Pursuit with pre-fitting [16]. All of them select the hidden-
layer weights among the input vectors. By analogy with the concept of support vectors
original of support vector machines (SVMs) [15], these approaches can be referred to
as support vector sequential feed-forward neural networks (SV-SFNNs) [13].

SV-SFNNs and SVMs were compared experimentally in [13]. Very similar accu-
racies were found, although computational times were lower for SVMs. Regarding
the number of support vectors, SV-SFNNs constructed models with less hidden units
than standard SVMs and in the same range as ”sparse” SVMs [7]. On the other hand,
EM-ELMs were compared in [4] with other sequential algorithms, namely resource al-

2



location network (RAN) [10] and minimum resource allocation network (MRAN) [18],
as well as with the original ELMs [6]. EM-ELMs obtained better performance and less
training time than RAN and MRAN, and a similar performance but less training time
than ELMs.

This work focuses on the comparison of EM-ELMs (i.e. SAOCIF with random
strategy) and SV-SFNNs (i.e. SAOCIF with input strategy). An experimental study
on 10 benchmark data sets for classification problems and 10 benchmark data sets for
regression problems is presented in which the two methods are compared in the same
conditions and using the same software. Since both approaches can be adjusted to have
the same computational cost (each candidate weight vector for a hidden unit is either
generated randomly or selected randomly among the input vectors), the goal is finding
out whether there is any difference in generalization performance between EM-ELMs
and SV-SFNNs. In other words, does the use of inputs (support vectors) as hidden unit
weights provide any advantage over pure random selection?

Although it may be argued that the input strategy is using some sort of informa-
tion present in the training data (to set the hidden-layer weights) whereas the random
strategy is not, this does not necessarily imply that the generalization performance of
the former has to be better than that of the latter. Therefore, an empirical compara-
tive study on a wide range of problems is interesting to assess this point. Moreover, it
should be noted that, on one hand, EM-ELMs have been proposed to build SLFNs as
an alternative superior (due to their simplicity, efficiency and effectiveness) to common
neural net approaches like backpropagation gradient descent [4] and, on the other hand,
input vectors are rarely used as hidden-layer weights in SLFNs, especially in the case
of additive units (i.e. two-layer perceptrons).

2 Background
The output function of an SLFN (i.e. a fully connected FNN with a single hidden layer
of Nh units and m linear output units) can be expressed as a linear combination of
simple (basis) functions:

fNh
(x) = λ0 +

Nh∑
i=1

λiϕ (ωi, bi, x) (1)

where ωi ∈ Rn and bi ∈ R are the learning parameters of the hidden units, λi ∈ Rm

are the output-layer weights connecting the i-th hidden unit to the m output units, ϕ is
the activation function of the hidden units, ϕ(ωi, bi, x) is the output of the i-th hidden
unit with respect to the input x, and λ0 ∈ Rm denotes the bias terms (if any) of the
linear output units.

Although a lot of activation functions ϕ (even not neuron alike) can be used that
allow universal approximation capability, the more usual choices are the Gaussian RBF
applied to a distance between an input vector and a centre

ϕ (ωi, bi, x) = gau (bi ||x − ωi||) (2)

3



and the sigmoid (e.g. hyperbolic tangent) applied to a scalar product of the input and
weight vectors (this will be referred to as a sigmoid additive unit [4])

ϕ (ωi, bi, x) = tnh (ωi · x + bi) . (3)

For Gaussian RBF units, ωi ∈ Rn and bi ∈ R+ are the centre and the impact
factor of the i-th RBF unit. For sigmoid additive units, ωi ∈ Rn is the weight vector
connecting the input layer to the i-th hidden unit and bi ∈ R is the bias of the i-th
hidden unit. In our experiments presented in Section 3, a third activation function has
also been tested, the sin applied to the scalar product (i.e. a sin additive unit)

ϕ (ωi, bi, x) = sin (ωi · x + bi) . (4)

For a given set of training examples {(xj , tj)}L
j=1 ⊂ Rn × Rm, if the outputs of

the network are equal to the targets, we have

fNh
(xj) =

Nh∑
i=1

λiϕ (ωi, bi, xj) = tj , j = 1, . . . , L. (5)

Equation (5) can be written compactly as

Hλ = T (6)

where H is an L × Nh matrix called the hidden-layer output matrix of the network
(Hji = ϕ (ωi, bi, xj)), λ is an Nh × m matrix containing the output-layer weights,
and T is an L × m matrix containing the target values in the training set. The output
layer biases can be added by including in H a first column with a fixed value of 1 (and
increasing Nh by 1).

Normally, the number of training examples L will be much greater than the number
of hidden units Nh and an exact solution of (6) cannot be expected. Then, the usual
cost function in SLFNs (and in general in FNNs) is the sum-of-squares error

E =
1
2

L∑
j=1

||fNh
(xj) − tj ||2. (7)

It is well known (e.g. [2]) that, to minimize E, the optimal output-layer weights
can be computed as

λ̂ = H†T where H† =
(
HT H

)−1
HT (8)

is the pseudo-inverse (or Moore-Penrose generalized inverse) of the hidden-layer out-
put matrix H. The sum-of-squares error can be expressed as

E(H) =
1
2
||Hλ − T||2 =

1
2
||HH†T − T||2. (9)

4



2.1 Error Minimized Extreme Learning Machines (EM-ELMs)
Huang et al. [5] have shown that SLFNs with random weights in the hidden layer
have universal approximation capability for many different choices of the activation
function, including the ones stated in eqs. 2 to 4. Based on this result, they propose the
ELMs learning algorithm [6], which can be summarized as follows:

Algorithm for ELMs: Given a set of training examples {(xj , tj)}L
j=1 ⊂ Rn × Rm,

the hidden-layer activation function ϕ (ω, b, x), and an a-priori fixed number Nh of
hidden units:

1) randomly assign hidden-unit parameters (ωi, bi), i = 1, . . . , Nh

2) calculate the hidden-layer output matrix H

3) calculate the output-layer weight matrix λ using (8)

In order to avoid the need of setting in advance the number Nh of hidden units
and to reduce the training computational time, a fast sequential extension of the ELMs
algorithm called EM-ELMs has been recently reported by Feng et al. [4].

Algorithm for EM-ELMs: Given a set of training examples {(xj , tj)}L
j=1 ⊂ Rn ×

Rm, the maximum number of hidden units Nmax, and the expected learning accuracy ε:

1) Initialization phase:
- initialize the SLFN with a small group of N0 randomly generated hidden units

(ωi, bi), i = 1, . . . , N0

- calculate the hidden-layer output matrix H0

- calculate the corresponding output error
2) Recursively growing phase:

- let k := 0
- while Nk < Nmax and E(Hk) > ε do

- let k := k + 1
- randomly add δNk hidden units to the existing SLFN; the total number of hidden

units becomes Nk = Nk−1 + δNk and the corresponding hidden-layer output
matrix Hk = [Hk−1, δHk], where δHk contains the new δNk columns computed

- the output-layer weights λ are updated as

λk = H†kT =
[

Uk

Dk

]
T, where

Dk =
((

I − Hk−1H†k−1

)
δHk

)†
and

Uk = H†k−1 (I − δHkDk)
- end while

2.2 Sequential Approximation with Optimal Coefficients and In-
teracting Frequencies (SAOCIF)

A rather general constructive method for SLFNs, called SAOCIF, was proposed in [11],
[12] by Romero and Alquézar. The specific features of SAOCIF are: i) the optimal (in
a least squares sense) output-layer weights are recalculated each time a hidden unit is

5



added by solving a linear equations system, and ii) the added hidden unit is selected
among a set of candidates taking into account its interaction with the previously added
hidden units (i.e. to minimize together the training error). The SAOCIF algorithm can
be described as follows:

Algorithm for SAOCIF: Given a set of training examples {(xj , tj)}L
j=1 ⊂ Rn×Rm,

the maximum number of hidden units Nmax, a strategy to generate the candidates, the
maximum number of candidates for any hidden unit Cmax, and the expected learning
accuracy ε:

- let N := 0 // in this case, N is equivalent to both k and Nk in EM-ELMs, because
δNk = 1 for SAOCIF

- let H0 = [ ]
- repeat

- let N := N + 1
- let c := 0 // c is the number of valid candidates tested for the N th hidden unit
- while c < Cmax do

- generate a candidate (ω, b) for the N th hidden unit with the given strategy,
and store in a temporary matrix H the corresponding hidden-layer output
matrix H = [HN−1, δH], where δH contains the new column computed

- find the optimal output-layer weights λ = H†T for the current candidate
(ω, b) using the incremental method described in [12] (equivalent in essence
to the incremental method described in the algorithm for EM-ELMs, see
Section 3.1)

- if the current candidate is considered valid (linear system without numerical
problems, etc) then
- let c := c + 1
- calculate the corresponding output error

E(H) = 1
2 ||HH†T − T||2

- if E(H) is the minimum error found for the tested candidates in the
current loop then
- let (ωN , bN ) = (ω, b); λN = λ; HN = H

- end if
- end if

- end while
- until N = Nmax or E(HN ) 6 ε

Note that if we set Cmax = 1 and a random strategy to generate the candidates in
the SAOCIF algorithm and we set δNk = 1 (for all k) in the algorithm for EM-ELMs,
then both algorithms are essentially equivalent.

2.3 Support Vector Sequential Feed-forward Neural Networks (SV-
SFNNs)

Apart from the random strategy, other possibilities are allowed in the SAOCIF ap-
proach to generate the candidates. In particular, let us define the input strategy as the

6



one in which the candidates are only selected among the input examples in the training
set; more precisely, ω = xj , for some j not already used, and b is a constant depending
on the activation function (e.g. b = 1 for RBF units and b = 0 for additive units).
Then, if we set Cmax = L − N + 1 and generate the candidates using the input strat-
egy, then the resulting method, which has been called SV-SFNNs [13], is equivalent to
the Orthogonal Least Squares Learning (OLSL) algorithm [3] and to Kernel Matching
Pursuit with pre-fitting (KMP-prefit) [16]. Actually, OLSL was only proposed for RBF
units and KMP-prefit for kernel-based activation functions, while SAOCIF with input
strategy permits as well any other activation function with universal approximation
capabilities (e.g. sinusoidal additive units).

3 Comparing EM-ELMs and SV-SFNNs
This section compares EM-ELMs with SV-SFNNs and explains the methodology fol-
lowed in the experiments.

3.1 Analysis of the Computational Cost
The computational complexity of the algorithm for EM-ELMs is dominated by the
computation of Dk and Uk, which involves, as intermediate steps, the computation of
L × L matrices, that is expensive in terms of time and memory. Since L will usually
be much larger than Nmax, and assuming that Nk−1 > δNk, the computational cost to
obtain Dk and Uk is O(L2 ·Nk−1). However, this computation can be done with lower
computational cost, as explained next.

Defining A = HT
k−1Hk−1, v = HT

k−1δHk, u = δHT
k δHk, α = HT

k−1T and
β = δHT

k T, it is very easy to verify that

DkT =
(
u − vT A−1v

)−1 (
β − vT A−1α

)
= η (10)

UkT = A−1(α − vη) (11)

that is a generalization of the incremental method described in [12] for m outputs and
adding δNk hidden units in the same step. The computation of (10) and (11) is faster
than those of the original algorithm for EM-ELMs because its computational cost is
O(L · N2

k−1).
Therefore, although the computational cost of the original algorithms EM-ELMs

and SV-SFNNs is not the same, they can be easily made equivalent.
For Cmax > 1, A can be computed for the first candidate, kept in memory and

recovered for the rest of candidates. Therefore, the computational cost for Cmax > 1 is
lower than Cmax times the computational cost for Cmax = 1. More precisely, with this
optimization the computational cost of the first iteration in the inner loop of SAOCIF
is O(L · N2

k−1), and O(L · Nk−1 · max(δNk,m)) for the rest of iterations.

3.2 Compared Methods and Settings
At first, the original algorithms can only be directly compared if we set Cmax = 1, just
because in EM-ELMs the inner while loop of SAOCIF is not carried out. However, in

7



order to make a more general comparison with the only difference residing on whether
the candidates are randomly generated or taken randomly from the input patterns (i.e.
random versus input strategy), we have defined two settings. In the former, Cmax = 1,
so the original EM-ELMs are confronted with a very limited version of SV-SFNNs in
which a randomly selected input (not the best) yields the single candidate. In the latter,
Cmax = 59, so an extended version of EM-ELMs (with the upgrade of selecting the
best random candidate among Cmax at each step) is confronted with a not so limited
version of SV-SFNNs in which not the best of the remaining candidates but the best
of a randomly selected subset (of size Cmax) of the remaining candidates is added.
The choice of Cmax = 59 is justified because, in order to obtain a candidate that is
with probability 0.95 among the best 5% of all candidates, a random subset of size
dlog0.05/log0.95e = 59 suffices [14].

These settings allow to make a fair comparison of EM-ELMs and SV-SFNNs, since
they work in the same conditions and taking the same computation time.

3.3 Software
We have used our own implementation in C setting the algorithm parameters as ex-
plained in the preceding paragraph. The optimal output-layer weights were computed
using (10) and (11).

3.4 Data Sets
The comparison was performed using 20 benchmark data sets, 10 for classification
and 10 for regression problems. The classification data sets were Australian Credit,
Splice-junction Gene Sequences, German Credit, Ionosphere, Iris, Landsat Satellite
(Satimage), Image Segmentation, Sonar, Vehicle Silhouettes and Wine, and can be
found in the UCI repository [1]. The features of these data sets are summarized
in Table 1. The regression data sets were Abalone, Auto Price, Boston Housing,
California Housing, Census House, Delta Ailerons, Delta Elevators, Machine CPU,
Servo and Stock, that can be found at http://www.liaad.up.pt/∼ltorgo/
Regression/DataSets.html. The features of these data sets are summarized in
Table 2.

3.5 Methodology
• Preprocessing. Categorical attributes were converted to dummy variables. The

rest of the attributes (including the target variable for regression data sets) were
scaled to mean zero and variance one.

• Random weights. In the random strategy, hidden-layer weights were uniformly
chosen within the same range of values that the input values (after scaling). In
this way, the ranges of the hidden-layer weights were the same for both strategies.

• Activation functions. Three types were used: Gaussian RBF (2), sigmoid ad-
ditive (3) and sin additive (4) units, but with a further multiplicative positive

8



Data Set #Inputs #Exa. #Classes
Australian 43 690 2
Gene 120 3175 3
German 56 1000 2
Ionosphere 34 351 2
Iris 4 150 3
Satimage 36 6435 6
Segmentation 16 2310 7
Sonar 60 208 2
Vehicle 18 846 4
Wine 13 178 3

Table 1: Features of the classification benchmark data sets

Data Set #Inputs #Exa. Target Mean StdDev
Abalone 8 4177 9.93 3.22
Auto Price 15 159 11445.73 5877.85
Boston Housing 13 506 22.53 9.20
Calif. Housing 8 20640 206854.97 115395.58
Census House 8 22784 50073.10 52846.16
Delta Ailerons 5 7129 -0.000007 0.0003
Delta Elevators 6 9517 -0.000133 0.0023
Machine CPU 6 209 105.62 160.83
Servo 4 167 1.39 1.56
Stock 9 950 46.99 6.54

Table 2: Features of the regression benchmark data sets

parameter γ introduced for a wider search. Specifically, γ multiplies the dis-
tance ||x − ωi|| in the RBF units and the scalar product ωi · x in the additive
units.

• Parameters and model selection. A hidden-unit candidate weight vector was
not considered valid if the associated linear equations system could not be solved
or if the 1-norm of the solution (the output-layer weights) was greater than a
certain value M . This can be seen as a form of regularization. M was set to 1024.
We fixed Nmax = 99 and ε = 0, so that Nmax hidden units were always added.
In order to get an adequate value for the γ parameter, a search was performed
ranging γ from 2−10 to 25. The same search was performed for all the models,
and repeated for every activation function.

• Model training and testing. The methods were trained and tested over 30
training-validation-test different random partitions (80% training, 10% valida-
tion, 10% test) of the whole data set. For every configuration (defined by a given
strategy, Cmax, activation function and γ), the networks with the lowest errors in
the validation subsets were selected as the final models. For classification data

9



sets, the accuracies of the final models were given by the average accuracies
measured in the test subsets. For regression data sets, the performance of the
finel models was measured by the following Normalized Squared Error (NSE)
[2]:

NSE =

∑K
j=1 ||f(xj) − tj ||2∑K

j=1 ||t − tj ||2
,

where K is the number of examples in the test subset, f(x) is the final model
and t is the mean target value in the test subset. The sizes of the final models are
defined by their average number of hidden units.

3.6 Experimental Results
Tables 3 and 4 show the average accuracies of the best final models (among all γ) for
the two strategies (input and random) and the three activation functions tried (Gaussian
RBF, sin additive, sigmoid additive) using the methodology previously described for
the 10 classification data sets studied. Table 3 displays the results of the methods for
Cmax = 1, where the input strategy is fully comparable to EM-ELMs, and Table 4
displays the results for Cmax = 59. For the 10 regression data sets studied, tables 5
and 6 show the average NSE of the best final models for Cmax = 1 and Cmax = 59
respectively. Tables 7, 8, 9 and 10 show the average number of hidden units in the final
models selected for each combination of strategy and activation function for Cmax = 1
and Cmax = 59.

It can be observed that Iris and Wine data sets correspond to easy problems that
have been learnt perfectly using both strategies. For the other data sets, test results
look similar between the two strategies in some cases and a superior performance of
the input strategy can be appreciated in the rest, except for the Stock data set. Not
surprisingly, the best values for each strategy and data set are included in tables 4 and
6 (i.e. they have been obtained using Cmax = 59) except, again, for the Stock data set.
Note that the low number of hidden units of the best final models for the Stock data set
(see tables 9 and 10) is a clear indication of a strong tendency to overfitting in this data
set.

In order to obtain an objective statistical measure, a Student’s t-test was applied
to each data set to check if the difference between the best mean results of the two
strategies was statistically significant (p-value = 0.05, i.e. confidence of 95%). The
test was applied to the best models obtained with Cmax = 59, which are marked in
bold (all of them are the best results for each strategy and data set, except for the Stock
data set). Results of the test are shown in table 11. In six of the classification data sets
(Australian Credit, Gene, Ionosphere, Satimage, Segmentation, Sonar) and six of the
regression data sets (Auto Price, California Housing, Census House, Delta Elevators,
Machine CPU, Servo) the t-test gave a significant difference with a superior mean
accuracy of the input strategy, whereas no significant difference was found in the other
ones (German Credit and Vehicle for classification and Abalone, Boston Housing, Delta
Ailerons and Stock for regression). Small differences (see Gene, California Housing,
Delta Elevators, for example) are sometimes more significant than larger ones (Stock,
for example) because the former have very small variances.

10



Although no clear trend is observed about the number of hidden units selected by
both strategies (it depends quite a lot on the specific activation function), the input
strategy seems to need more units than the random strategy in the case of Gaussian
RBF hidden units (this can be seen easily in Table 8). Regarding the number of candi-
dates, final models obtained with Cmax = 1 usually have more hidden units than those
obtained with Cmax = 59.

As a reference, the mean execution times to obtain every final model were 58.8
seconds for Satimage and 99 seconds for Census House (carried out in a node of a
computation cluster with Intel R© Xeon R© CPUs at 2.66GHz).

4 Conclusions and Future Work
First, it has been shown that EM-ELMs can be cast as a particular case of the SAOCIF
method (with Random strategy) for constructing SLFNs. The two only differences
between the original EM-ELMs proposed in [4] and the SAOCIF method with Random
strategy proposed previously in [12] are: i) the incremental method in which the same
optimal (in a least squares sense) output-layer weights are recalculated each time a
random hidden unit is added (or tested), and ii) the number of random candidates tested
for each hidden unit. Regarding the first difference, it has been demonstrated in Section
3.1 that the cost of the computation described in [4] is greater than the corresponding
one in the (generalized) method described in [12]. Since both methods compute the
same optimal output-layer weights, there is no problem in using the more efficient
one also for EM-ELMs, thus removing the difference. The second difference can also
be eliminated either by restricting SAOCIF to test a single candidate at each step (as
the original EM-ELMs do) or extending EM-ELMs to test some number of random
candidates at each step and select the best of them (as SAOCIF does). Both possibilities
have been explored in the experimental study carried out in this work.

Second, we have claimed that an alternative sequential method to construct SLFNs
can be based on selecting the hidden-layer weights among the input vectors in the train-
ing set. This method, which has been referred to as SV-SFNNs [13] or SAOCIF with
Input strategy [12], is essentially equivalent to the Orthogonal Least Squares Learning
algorithm [3] and to the Kernel Matching Pursuit with pre-fitting method [16]. In order
to assess the relative performance of both approaches (EM-ELMs vs. SV-SFNNs) in a
fair manner, an empirical study has been realized on twenty benchmark data sets, 10
for classification and 10 for regression, under the same conditions and using the same
software.

The experimental comparison between EM-ELMs and SV-SFNNs presented in the
paper draws two interesting conclusions that can be further investigated in future re-
search. The first one is that selecting the hidden-layer weights as a subset of the input
data, even if this selection is done randomly, yields better generalization results than
selecting the hidden-layer weights in a purely random manner from scratch (like EM-
ELMs do). As discussed at the end of Section 1, this is not an obvious result. Indeed,
no statistically significant difference between the average performances obtained by the
two strategies was found in eight of the benchmark problems, but SV-SFNNs showed a
statistically significant improvement in generalization performance in the other twelve.

11



One might ask whether there is any noticeable difference between these two groups of
problems. For classification problems, data sets with a higher number of variables (see
Table 1 and imagine for instance an arbitrary threshold of 20 inputs) were the ones in
which SV-SFNNs outperformed EM-ELMs (with the exceptions of the German credit
and the Segmentation problems). Although this can be considered as a reasonable re-
sult, which may be justified by the difficulty in finding adequate decision boundaries in
high-dimensional input spaces from randomly distributed hidden-layer weights, the un-
derlying hypothesis needs further validation in future studies. For regression problems
this trend is not so clear.

The second conclusion of the experimental study is that, independently of the strat-
egy used (input or random), the number of candidates for the hidden-layer weights is a
parameter that controls the trade-off between the generalization performance, the com-
putational cost and the number of hidden units of the final models. In general terms, by
increasing the number of candidates at each step of the sequential algorithm (recall that
in the originally proposed EM-ELMs this number is 1), the generalization is improved
and the final number of hidden units is reduced, at the expense of a higher training time.
However, as pointed in Section 3.1, the computational cost of trying C candidates is
lower than C times the cost of trying a single candidate, due to the incremental way in
which the optimal output-layer weights are calculated.

References
[1] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

University of California, Irvine, School of Information and Computer Science.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press
Inc., New York, 1995.

[3] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal Least Squares Learning
Algorithm for Radial Basis Function Networks. IEEE Transactions on Neural
Networks, 2(2):302–309, 1991.

[4] G. Feng, G. B. Huang, Q. Lin, and R. Gay. Error Minimized Extreme Learning
Machine with Growth of Hidden Nodes and Incremental Learning. IEEE Trans-
actions on Neural Networks, 20(8):1352–1357, 2009.

[5] G. B. Huang, L. Chen, and C. K. Siew. Universal Approximation using Incre-
mental Constructive Feedforward Networks with Random Hidden Nodes. IEEE
Transactions on Neural Networks, 17(4):879–892, 2006.

[6] G. B. Huang, Q. Y. Zhu, and C. K. Siew. Extreme Learning Machine: Theory and
Applications. Neurocomputing, 70(1-3):489–501, 2006.

[7] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building Support Vector Machines
with Reduced Classifier Complexity. Journal of Machine Learning Research,
7:1493–1515, 2006.

12



[8] T. Y. Kwok and D. Y. Yeung. Constructive Algorithms for Structure Learning in
Feedforward Neural Networks for Regression Problems. IEEE Transactions on
Neural Networks, 8(3):630–645, 1997.

[9] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse. OP-ELM:
Optimally Pruned Extreme Learning Machine. IEEE Transactions on Neural
Networks, 21(1):158–162, 2010.

[10] J. Platt. A Resource-Allocating Network for Function Interpolation. Neural Com-
putation, 3(2):213–225, 1991.

[11] E. Romero and R. Alquézar. A New Incremental Method for Function Approxi-
mation using Feed-forward Neural Networks. In International Joint Conference
on Neural Networks, volume 2, pages 1968–1973, 2002.

[12] E. Romero and R. Alquézar. A Sequential Algorithm for Feed-forward Neural
Networks with Optimal Coefficients and Interacting Fr equencies. Neurocomput-
ing, 69(13-15):1540–1552, 2006.

[13] E. Romero and D. Toppo. Comparing Support Vector Machines and Feed-forward
Neural Networks with Similar Hidden-layer Weights . IEEE Transactions on
Neural Networks, 18(3):959–963, 2007.

[14] A. J. Smola and B. Schölkopf. Sparse Greedy Matrix Approximation for Machine
Learning. In International Conference on Machine Learning, pages 911–918,
2000.

[15] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, NY,
1995.

[16] P. Vincent and Y. Bengio. Kernel Matching Pursuit. Machine Learning, 48(1-
3):165–187, 2002. Special Issue on New Methods for Model Combination and
Model Selection.

[17] Liang N. Y., G. B. Huang, P. Saratchandran, and N. Sundararajan. A Fast and Ac-
curate Online Sequential Learning Algorithm for Feedforward Networks. IEEE
Transactions on Neural Networks, 17(6):1411–1423, 2006.

[18] L. Yingwei, N. Sundararajan, and P. Saratchandran. A Sequential Learning
Scheme for Function Approximation using Minimal Radial Basis Function Neu-
ral N etworks. Neural Computation, 9(2):461–478, 1997.

13



Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 83.86 83.00 83.67 83.14 84.25 83.48
Gene 84.71 83.38 84.75 83.13 84.82 82.95
German 77.37 78.23 77.73 77.20 77.83 77.10
Ionosphere 93.87 90.19 90.10 88.67 90.19 88.67
Iris 100 99.11 100 99.78 100 99.56
Satimage 82.98 80.57 79.17 77.73 79.40 77.62
Segmentation 86.62 81.65 86.42 86.08 86.70 86.39
Sonar 89.84 80.83 77.17 76.17 77.50 75.83
Vehicle 85.48 85.52 86.11 84.80 85.87 85.20
Wine 99.61 100 99.80 100 100 100

Table 3: Comparison of average test accuracy for classification data sets - One candidate

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 84.49 83.48 83.77 83.43 85.02 83.82
Gene 86.60 86.05 86.34 85.86 86.36 85.92
German 77.13 78.33 77.60 77.30 78.03 77.37
Ionosphere 93.90 90.67 89.52 88.67 90.00 88.83
Iris 100 100 100 100 100 100
Satimage 86.35 83.31 82.83 77.56 81.73 77.50
Segmentation 88.56 83.39 86.61 86.64 87.30 86.83
Sonar 96.50 81.83 87.67 76.67 75.00 74.17
Vehicle 86.67 85.56 86.87 86.11 86.75 86.63
Wine 100 100 100 100 100 100

Table 4: Comparison of average test accuracy for classification data sets - Best of 59 candidates

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Abalone 0.517 0.526 0.521 0.553 0.514 0.550
Auto Price 0.341 1.570 0.270 0.870 0.280 0.917
Boston Housing 0.725 0.726 0.941 1.166 0.871 1.162
Calif. Housing 0.344 0.369 0.367 0.367 0.367 0.366
Census House 0.404 1.070 0.484 0.580 0.457 0.502
Delta Ailerons 0.292 0.297 0.305 0.301 0.304 0.302
Delta Elevators 0.376 0.377 0.375 0.377 0.376 0.376
Machine CPU 0.364 0.404 0.358 0.394 0.330 0.378
Servo 0.214 0.248 0.228 0.329 0.246 0.337
Stock 1.689 1.689 2.023 9.883 8.897 7.796

Table 5: Comparison of average test NSE for regression data sets - One candidate

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Abalone 0.512 0.524 0.512 0.537 0.511 0.537
Auto Price 0.177 0.840 0.275 0.456 0.299 0.517
Boston Housing 0.657 0.620 0.762 0.898 0.745 0.921
Calif. Housing 0.332 0.345 0.368 0.366 0.369 0.365
Census House 0.383 0.508 0.425 0.528 0.403 0.470
Delta Ailerons 0.293 0.295 0.303 0.303 0.299 0.301
Delta Elevators 0.375 0.376 0.374 0.375 0.375 0.375
Machine CPU 0.299 0.348 0.370 0.385 0.345 0.380
Servo 0.158 0.206 0.185 0.289 0.171 0.300
Stock 1.714 1.608 2.896 2.147 3.318 1.807

Table 6: Comparison of average test NSE for regression data sets - Best of 59 candidates14



Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 43.53 30.33 25.17 37.40 61.33 44.90
Gene 97.07 98.87 97.40 98.60 97.20 98.00
German 40.47 43.23 44.53 33.87 36.77 36.80
Ionosphere 73.10 40.63 19.40 24.30 14.97 24.60
Iris 55.97 31.63 3.87 3.60 3.87 3.67
Satimage 95.30 96.80 97.93 97.13 95.47 97.73
Segmentation 41.53 25.90 63.10 74.30 53.40 82.07
Sonar 66.53 64.00 47.67 43.97 38.13 42.10
Vehicle 74.77 38.00 67.30 61.73 64.03 63.97
Wine 11.57 11.77 7.73 10.00 7.90 10.90

Table 7: Average number of hidden units for classification data sets - One candidate

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 50.63 23.33 15.53 32.67 24.93 21.77
Gene 95.23 89.87 90.33 87.07 88.33 84.80
German 12.20 12.20 12.97 14.23 13.83 16.90
Ionosphere 65.73 29.03 10.40 12.10 12.53 12.67
Iris 19.13 4.50 3.87 2.97 3.97 2.77
Satimage 97.67 89.73 96.23 96.83 95.40 97.43
Segmentation 95.83 32.00 75.33 63.57 91.87 68.27
Sonar 88.27 55.43 31.17 10.57 25.13 21.13
Vehicle 81.73 37.13 44.80 50.77 58.37 54.27
Wine 4.90 7.13 5.00 6.13 5.13 6.23

Table 8: Average number of hidden units for classification data sets - Best of 59 candidates

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Abalone 55.60 22.27 61.13 10.17 78.23 78.70
Auto Price 8.40 5.07 7.43 10.70 7.53 10.80
Boston Housing 18.57 23.23 4.03 5.00 3.80 4.50
Calif. Housing 36.40 34.13 8.10 30.17 8.67 31.43
Census House 87.67 6.00 94.70 82.80 93.03 92.20
Delta Ailerons 81.40 51.63 32.03 39.70 33.67 36.33
Delta Elevators 66.10 80.33 52.10 50.37 58.00 64.13
Machine CPU 4.33 5.73 7.63 4.97 7.50 5.17
Servo 60.43 42.27 65.67 14.40 65.50 14.57
Stock 1.07 1.07 1.80 4.53 3.20 2.97

Table 9: Average number of hidden units for regression data sets - One candidate

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Abalone 34.60 48.17 54.67 40.13 31.70 56.23
Auto Price 7.37 4.20 3.47 5.43 3.00 4.87
Boston Housing 11.93 14.90 1.53 2.33 1.30 8.80
Calif. Housing 88.87 54.00 7.57 19.07 7.10 14.47
Census House 95.13 37.00 96.43 36.97 91.23 78.27
Delta Ailerons 54.73 34.43 21.83 30.07 72.20 72.20
Delta Elevators 40.17 57.90 31.50 28.97 36.20 29.20
Machine CPU 5.37 3.97 5.97 3.07 5.27 3.53
Servo 61.57 21.17 54.00 32.47 57.37 30.63
Stock 4.93 1.00 1.10 2.07 1.13 1.33

Table 10: Average number of hidden units for regression data sets - Best of 59 candidates15



Input Random t-test
Data Set Mean Std Mean Std p-value
Australian 85.02 1.6304 83.82 1.3237 0.002616
Gene 86.60 0.9905 86.05 0.8409 0.022246
German 78.03 1.9205 78.33 2.0398 0.559828
Ionosphere 93.90 1.9466 90.67 2.7003 0.000002
Iris 100 0.0 100 0.0 -
Satimage 86.35 0.6592 83.31 1.2996 0.000000
Segmentation 88.56 0.9289 86.83 0.8342 0.000000
Sonar 96.50 8.6253 81.83 9.6921 0.000000
Vehicle 86.87 2.3103 86.63 3.2014 0.744651
Wine 100 0.0 100 0.0 -
Abalone 0.511 0.0118 0.524 0.0348 0.053008
Auto Price 0.177 0.0619 0.456 0.3090 0.000032
Boston Housing 0.657 0.1101 0.620 0.0954 0.172238
Calif. Housing 0.332 0.0092 0.345 0.0182 0.000894
Census House 0.383 0.0045 0.470 0.0323 0.000000
Delta Ailerons 0.293 0.0057 0.295 0.0031 0.057887
Delta Elevators 0.374 0.0020 0.375 0.0020 0.023594
Machine CPU 0.299 0.0431 0.348 0.0981 0.015547
Servo 0.158 0.0308 0.206 0.0538 0.000116
Stock 1.714 0.0004 1.608 0.5498 0.298702

Table 11: Results of Student’s t-test for all data sets - Best of 59 candidates (and best activation
function)

16


