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Abstract

A long standing debate in cognitive neuroscience has been the extent to which perceptual processing is influenced by
prior knowledge and experience with a task. A converging body of evidence now supports the view that task does influence
perceptual processing, leaving us with the challenge of understanding the locus of, and mechanisms underpinning, these
influences. An exemplar of this influence is learned categorical perception (CP), in which there is superior perceptual
discrimination of stimuli that are placed in different categories. Psychophysical experiments on humans have attempted
to determine whether early cortical stages of visual analysis change as a result of learning a categorization task. However,
while some results indicate that changes in visual analysis occur, the extent to which earlier stages of processing are
changed is still unclear. To explore this issue, we develop a biologically motivated neural model of hierarchical vision
processes consisting of a number of interconnected modules representing key stages of visual analysis, with each module
learning to exhibit desired local properties through competition. With this system level model, we evaluate whether a
CP effect can be generated with task influence to only the later stages of visual analysis. Our model demonstrates that
task learning in just the later stages is sufficient for the model to exhibit the CP effect, demonstrating the existence of
a mechanism that requires only a high-level of task influence. However, the effect generalizes more widely than is found
with human participants, suggesting that changes to earlier stages of analysis may also be involved in the human CP
effect, even if these are not fundamental to the development of CP. The model prompts a hybrid account of task-based
influences on perception that involves both modifications to the use of the outputs from early perceptual analysis along
with the possibility of changes to the nature of that early analysis itself.
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1. Introduction

Understanding and modeling human vision is a highly
challenging area of computational intelligence given the
complexity and scale of the processing involved. One key
question regarding vision is to what extent does prior know-
ledge and experience with a given task influence percep-
tual processing? Evidence suggests that such task influ-
ences happen as early as the primary visual cortex for
visual discrimination (Li, Piëch, & Gilbert, 2004; Sowden
& Schyns, 2006), and earlier for other activities including
multi-sensory integration in the superior colliculus (Stein,
2005), cortical moderation of fear responses in the amyg-
dala (Shi & Davis, 2001), and decision making in visual
tasks with the basal ganglia (Bogacz & Gurney, 2007).
What is interesting about this feedback is that it is be-
tween functional areas, is adaptive, and often changes as
a function of task. It is therefore clear that feedback is a
key component of visual analysis, but what is its compu-
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tational role (Olshausen & Field, 2005) and at what stage
does it occur in order to produce observed behavior?

Work on visual categorization has been one fruitful
area for exploring the links between task and visual per-
ception. For instance, psychophysical work suggests that
the spatial frequency analysis carried out in the initial cor-
tical stages of visual processing varies as a function of the
categorization task that an individual is trying to perform
(Sowden & Schyns, 2006). Categorization is a fundamen-
tal mechanism for dealing with the infinite variation in
stimulation from our environment. By quickly identifying
the category to which a visual stimulus belongs, we can
rapidly access information about the likely properties of
that stimulus and how we might interact with it. With-
out such abstracted knowledge we would have to deal with
each visual event as entirely new, losing the benefit of pre-
vious learning about other similar stimuli.

In order to make rapid and consistent categorizations
it is helpful if members of a category share many features
in common that have low overlap with members of other
categories. One approach is to attempt to ‘carve nature
at its joints’ (Harnad, 1987) finding natural discontinuities
in the dimensions of visual stimulation along which stimuli
vary. However, in many cases there will be no ready joints
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at which to separate visual stimuli into distinct and func-
tional categories. It has been argued that in such circum-
stances, an individual learns to place stimuli which vary
along such a dimension(s) into separate categories, with
the relevant dimension(s) of variation becoming warped.
This warping is such that stimuli that are placed into the
same category come to appear more similar, while stimuli
that are placed into different categories become less simi-
lar. This warping process marks an important difference
between semantic categorization processes and the cate-
gorization of visual stimuli. Whereas semantic categories
are defined by the abstract relations between objects (e.g.
‘desk’ and ‘computer’ are both members of the category
of equipment used for academic work) visual categories
are defined by the perceptual relationships between stimuli
and only these categories acquire changes in the perception
of physical stimulus properties through experience, result-
ing in the phenomenon of categorical perception (CP).

Behaviorally, learned CP effects are shown as more ac-
curate and rapid discrimination of stimuli that are placed
in different categories compared to discrimination of equally
different (on some physical metric) stimuli that are placed
in the same category. Put simply between category dis-
crimination is superior to within category discrimination.
CP therefore provides a key example of how task can in-
fluence perceptual analysis. By exploring how and where
neural processing changes in order to facilitate the sharp-
ening of the distinction between categories, we can improve
our understanding of the feedback that occurs between
neural circuits.

So where is the locus of change in visual CP? Evidence
points to a wide range of brain areas involved in visual cat-
egorization and therefore potentially CP. It is known that
cells in the pre-frontal cortex form strong categorical rep-
resentations (Freedman, Riesenhuber, Poggio, & Miller,
2001, 2003); that patterns of activity in the inferotempo-
ral cortex code for different object categories (Freedman,
Riesenhuber, Poggio, & Miller, 2006; Kiani, Esteky, Mir-
pour, & Tanaka, 2007; Op de Beeck, Deutsch, Vanduffel,
Kanwisher, & DiCarlo, 2008); and that cells there become
tuned along diagnostic category dimensions (Sigala & Lo-
gothetis, 2002). Further, changes to early visual analysis
in the occipital lobe could serve to amplify/attenuate dif-
ferences in basic visual properties that serve to distinguish
members of different categories. Any or all of these sites
could be involved in the development of CP effects, from
pre-cortical areas, through the occipital lobe, to ventral
visual processing and beyond.

Notman, Sowden, & Özgen (2005) attempted to de-
termine the possible neural locus of the CP effect. They
trained human observers to categorize Gabor patch stimuli
that varied in spatial phase and measured their ability to
discriminate within and between category differences be-
fore and after training. They found that a CP effect devel-
oped as a result of training and that it did not generalize
to exactly the same stimuli rotated to a different visual
orientation. Because it is known that cells in the primary

visual cortex are highly selective for stimulus orientation,
Notman et al. deduced that the pattern of specificity of
CP to stimulus orientation was consistent with changes
to the processing conducted in these initial cortical visual
processing stages. These may be implemented as dynamic
task specific changes to the strengths of connections in
these areas driven through feedback connections from later
categorical processing stages. However, another possibility
is that later stages in the visual processing hierarchy learn
to make better use of the information being fed forwards
from these initial processing stages (Mollon & Danilova,
1996; Petrov, Dosher, & Lu, 2005).

In this paper, our hypothesis is that only changes to the
later stages of processing are required to induce CP; that
is, feedback to initial cortical processing is not required.
In order to evaluate this hypothesis, we need to develop
a sufficiently plausible model of vision that demonstrates
key properties needed for categorization, namely feature
selection through localized receptive fields, and categoriza-
tion through a global combination of features. There have
been many attempts at building models of such aspects
of visual analysis as well as those that model the combi-
nation of different visual functions (for example, von der
Malsburg, 1973; Grossberg, 1976; Kohonen, 1982; Linsker,
1988; Jacobs, Jordan, & Barto, 1991; Miikkulainen, Bed-
nar, Choe, & Sirosh, 2005; Serre, Oliva, & Poggio, 2007).
Some common attributes of these models include hierar-
chical modules performing successive visual analysis, and
self-organization through competition.

An exemplar of hierarchical vision is the modular model
of early visual cortical processing developed by Itti, Koch,
& Braun (1999), which exhibited equivalent psychophysi-
cally observed results. Their model consisted of layers rep-
resenting orientation columns in V1, connected together to
represent the interactions between feature selectors, which
then fed a decision process. While the later stages are
loosely based on mechanisms thought to occur in the brain,
the model parameters are estimated by minimizing the er-
ror to the training data, rather than a more concrete un-
derstanding of the processing. However, this model does
show that a simple modular architecture can demonstrate
known psychophysical phenomena through the interaction
of the different layers. Furthermore, it has been extended
to explore task-driven attention, albeit using representa-
tions for long term and working memory (Navalpakkam
& Itti, 2005). Although these models successfully demon-
strate the properties we are looking for, we are motivated
to find a more biologically plausible approach to modeling
the modular nature of vision that uses neuronal principles
to learn, and which can encode the influence of task. One
such model is reported by Deco & Zihl (2001), which is a
hierarchical model of visual attention which uses a recur-
rent network for feedback to guide attention. Other simi-
lar models have also been proposed (Spratling & Johnson,
2004; Hamker, 2007). Each of these builds on biological
principles to provide a system level model of attention that
compares well with behavioral data. Spratling & Johnson
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(2006) go one step further and explore feedback in percep-
tual learning. By using a biologically plausible model of
feedforward and feedback ‘cortical regions’, they demon-
strated how task influence could induce a simple CP effect.
However, while showing that feedback can induce a CP ef-
fect, they did not explore the interaction between different
stages of visual analysis and task influence.

How do we model visual analysis so that we can test
for an induced CP effect? One possible modular archi-
tecture which is both biologically motivated and encodes
task training has been developed by Armony et al. (1995).
While their approach is much simpler than the attentional
models that have been developed, their uniform architec-
ture of layers of identical, interconnected neurons uses
Hebbian adaptation (Hebb, 1949) with lateral inhibition
through competition (Rumelhart & Zipser, 1986) to train
neurons to become sensitive to different, overlapping pat-
terns. Similar competitive architectures built on biolog-
ical principles have proven effective at modeling vision
(Linsker, 1988; Miikkulainen et al., 2005), but have not
been used for task training. Armony et al. (1995) used the
competitive principle to model sub-cortical and cortical
auditory pathways leading to the amygdala, the response
from which could be adapted through the use of a condi-
tioning signal. The idea of conditioning being used for cat-
egory learning has been applied by Gluck & Bower (1988).
In Armony et al.’s model, the conditioning signal is applied
as an additional input to selected modules, modifying the
response from their neurons as well as subsequently con-
nected modules. While each module is formed by a single
layer of neurons only, each learns to exhibit desired local
properties (feature selection) as well as the whole model
exhibiting the required global properties (conditioned re-
sponses).

Of particular interest to us is that the architecture de-
fined by Armony et al. has been used to make biologi-
cal processing predictions, which have subsequently been
tested (Armony, Servan-Schreiber, Cohen, & LeDoux, 1997a;
Armony, Servan-Schreiber, Romanski, Cohen, & LeDoux,
1997b), thereby validating the model and closing the circle
between computational modeling and neuroscience. For
us, this model provides a way in which different stages
of vision can be modeled (modules) with task influence
(categorization) being learned through association (condi-
tioning). Both the local properties of the modules (fea-
ture detectors) and the global properties (categorization)
can then be analyzed and compared with observed hu-
man data, building upon the successful use of such ap-
proaches before to model aspects of visual, cortical pro-
cessing (Linsker, 1988; Miikkulainen et al., 2005). This
approach for the first time therefore allows us to build a
model of the different stages of visual analysis so that we
can explore whether CP emerges as a result of changes to
later stages of visual processing only, comparing this with
relevant behavioral experiments.

In this paper we present an adaptive model of hierarchi-
cal vision processes (section 2) that is trained to perform

a categorization task. This model is based upon the work
by Armony et al. (1995), and hence we model hierarchi-
cal vision at a system level, and include task training to
generate a CP effect. This work is novel because we are
1) evaluating whether an abstract, system level model of
visual processing can sufficiently model early visual analy-
sis such that it exhibits both local (feature detection) and
global (categorization) behavior, 2) whether a CP effect
can be induced through task influence to the later stages
of processing, and 3) comparing our results systematically
with behavioral experiments. This will allow us to pro-
vide computational evidence for the extent to which task
influence is required through later or earlier stages of vi-
sual analysis in humans for categorical perception to arise.
To achieve this, we execute the experiments conducted by
Notman et al. (2005) on the model. These experiments
tested whether early visual analysis changed as a result
of learning a categorization. Our results show that the
model is capable of reproducing the desired visual analy-
sis behavior (section 3). We then go on to show that task
influence is only needed in the highest level of analysis
that we model (ventral visual processing), rather than at
early stages of analysis as hypothesized in humans. How-
ever, while our model shows an existence proof for CP
without early perceptual changes, we note that this effect
does not fully replicate the specificity of the human data to
stimulus orientation, suggesting that some other change at
early stages of analysis (for example, see Furmanski et al.,
2004; Schoups et al., 2001; Yang & Maunsell, 2004) may
be needed to fine-tune the CP effect.

2. Modeling learned categorical perception

The model we present in this paper explores whether
task influence to later stages in the visual processing hier-
archy is sufficient to drive CP effects. As such, the model
must provide sufficient capability to explicitly encode dif-
ferent hierarchical vision processes and allow for task in-
fluence to be input into these at relevant stages. Fur-
thermore, the model needs to clearly represent these dif-
ferent processing stages without being overly complex to
allow for interpretation and understanding of the results.
Key elements are therefore the input representation, the
modularity of the processing, and finally how it can adapt
when repeatedly performing the human equivalent task.
All these must come together to allow the model to plausi-
bly (as much as can be achieved with a system level model)
represent how human vision behaves when performing the
selected task.

To achieve this, we base our model on the modular ar-
chitecture developed by Armony et al. (1995). While there
are successful neural models of category learning (Gluck &
Bower, 1988; Kruschke, 1992; Jäkel, Schölkopf, & Wich-
mann, 2008), one question that arises from selecting a
neural model is whether it will be sufficient to allow a
CP effect to be generated? Damper & Harnad (2000) con-
ducted a systematic review and comparative experiments
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to determine if neural models are valid in such studies.
They concluded that if categorization is in some way built
into a sensory stimulus, “any general learning system op-
erating on broadly neural principles ought to exhibit the
essentials of CP” (p.862). This is backed up by evidence
for a number of key architectures with synthetic CP, as
Damper & Harnad term it, occurring to some degree irre-
spective of the way in which the model is defined or the
parameters that are used. Instead, for synthetic CP to
emerge, specialized processing is not required because of
the potential for categorization in the input. So if such a
general, neural learning system is sufficient, a competitive
model that consists of hierarchical visual processing mod-
ules should also be capable of exhibiting CP. However, no
such model has yet been developed to explore CP in hier-
archical vision.

For us, the use of a simple Hebbian learning model
that can be studied at both a behavioral and physiolog-
ical level is key because it allows us to observe whether
the CP effect has been learned, while ensuring that the
components of the model themselves are acting at least
plausibly as individual populations of neurons (for exam-
ple, visual receptive fields). A schematic of our model of
learned categorical perception in human vision is shown in
Fig. 1.

[Figure 1 about here.]

2.1. Input representation

In the first human experiment by Notman et al. (2005),
eight images were constructed, each comprised of a pair
of Gaussian windowed gratings (Gabor patches) with dif-
ferent spatial frequencies (f and 3f) that were combined
to form compound Gabors varying in the relative spatial
phase of the two components (Fig. 2). During the ex-
periment, the observers’ ability to discriminate pairs of
images presented side-by-side on a computer display at a
fixed viewing distance was measured before and after they
had learned to categorize the images displayed at a single
orientation (45◦ from vertical) on the basis of the spatial
phase variation. A given pair of images could either be
identical or different in spatial phase.

[Figure 2 about here.]

While presenting the same images to the computational
model would be desirable, even simple images such as these
would require significant pre-processing in order to extract
separate information channels for spatial frequency and
phase, something achieved in humans at early stages of vi-
sion. Therefore, because the images are designed to vary
the 3f phase only, for the model we chose to represent
each image as a pattern of phase activity for 3f phases as
P = {0◦, 45◦, ..., 315◦}. For completeness, we also include
an f phase input with a constant value of 0 to represent
the combination of phase information. Each of the eight
images was therefore represented as a 9-dimensional vec-
tor.

For a given phase, the appropriate input is formed as
the center of a Gaussian pattern of activity with mean
equal to the selected phase Sp and bandwidth λp = 106◦

(to match approximate phase selectivity of early cortical
neurons), decreasing in strength with increasing difference
in phase and wrapping around so that a phase of 360◦ is
equivalent to 0◦. Here then, an input x corresponding to
an activation for phase p ∈ P and orientation o ∈ O is
given by:

xpo = e−Λp(p− Sp)
2 − Λo(o− So)

2
(1)

Λp =
− ln 1/2

(λp/2)2
(2)

Λo =
− ln 1/2

(λo/2)2
(3)

where Sp and So are the stimulus phase and orientation,
and λp and λo the phase and orientation bandwidth, re-
spectively. Note that the values Λp and Λo are chosen so
that the associated bandwidth is achieved with the Gaus-
sian at half the height of the curve. Two example inputs
are shown in Fig. 3.

[Figure 3 about here.]

In a second experiment, Notman et al. extended their
initial approach to explore the effect of orientation on
CP. They modified the stimuli described above by rotat-
ing each image to provide distinct orientations. Category
training carried out with the subjects during the task still
only used examples with an orientation of 45◦ relative to
vertical. The additional orientations were designed to test
what generalization of CP had occurred to increasingly dif-
ferent orientations of ±2◦, ±5◦, ±15◦ and ±30◦ relative to
the 45◦ training orientation, to give the set of images with
orientation O = {0◦, 15◦, 30◦, 40◦, 43◦, 45◦, 47◦, 50◦, 60◦,
75◦, 90◦} (extended here to 0◦ and 90◦ for completeness).

For our model, the addition of stimuli at different ori-
entations is encoded by extending the Gaussian pattern of
activity used for phase into a two dimensional represen-
tation for phase versus orientation. Fig. 4 shows a plot
of the 3f phase versus orientation input data for orienta-
tions 0◦ to 90◦, with an input centered on a 3f phase of
Sp = 135◦ at orientation So = 45◦. An orientation band-
width of λo = 30◦ was chosen for the Gaussian, again to
match human data (for example, Campbell & Kulikowski,
1966; De Valois & De Valois, 1988).

[Figure 4 about here.]

The overall input to the model consists of four ele-
ments: the left and right visual field inputs together with
the associated left and right category signals (Fig. 1). Each
visual field input is selected to represent a chosen grating
image, with a zero input used if no grating image is being
presented. If more than one orientation is being input to
the model, then the associated set of 9 dimensional vectors
are combined in orientation order for each visual field by
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concatenation into a single vector. The category signal is
a single binary value per orientation representing whether
the associated visual field input belongs to category A (‘0’)
or category B (‘1’). The category signal is only used dur-
ing the category training stage, and is otherwise always
presented as a ‘0’.

2.2. Modeling visual processing

Our model consists of three pairs of modules repre-
senting key stages in human vision processing (Fig. 1):
pre-cortical (PC) processing (such as retina and LGN),
early visual cortical (EC) processing (such as V1, V2) and
ventral visual (VV) processing (for example, PIT, AIT).
Matching the human experiments, we present two images
to the model, one in the left and one in the right vi-
sual field. Image (and hence category) discrimination is
then achieved by comparing the responses to these sepa-
rate streams of processing, representing the left and right
hemispheres of the brain (left processing the right visual
field and vice versa). Here, the left PC feeds its output to
the left EC, which in turn feeds its output to the left VV.
Similarly for the right hemisphere.

According to Gross and colleagues (Gross, Bender, &
Rocha-Miranda, 1969; Gross, Rocha-Miranda, & Bender,
1972), unlike earlier visual areas, the receptive fields of
cells in inferotemporal cortex are often somewhat bilateral
(56%), extending across the midline. Other IT cells re-
spond only to the contralateral visual field (34%) and some
only to the ipsilateral field (20%). However, in the case of
bilateral cells, the receptive field centres rarely extended
more than 4◦ into the ipsilateral visual field (less than
2% of cells), and were predominantly located in the con-
tralateral field (79%) and generally showed a stronger re-
sponse to contralateral stimulation. Since the human data
we are comparing with are based upon responses to Ga-
bor patches 7.1◦ away from the foveated fixation marker,
the only predominant responses are contralateral, since in
the ipsilateral visual field, these stimuli would only have
been optimal for a tiny minority of bilateral IT cells. To
therefore keep the model simple, we model only contralat-
erally responsive units. This very simplified view of visual
processing therefore culminates in the VV, where neurons
have been shown to become tuned along diagnostic cate-
gory dimensions (Sigala & Logothetis, 2002).

Following the architecture defined by Armony et al.
(1995), each module consists of a single layer of rate coded
neurons fully connected to the input. The activation for a
neuron j for an d-dimensional input x is calculated as:

uj =

d∑
i=1

xiwij(t) (4)

yj =

{
f(uj) if j = argmaxi f(ui)
f(uj − μywin) otherwise

(5)

f(u) =

⎧⎨
⎩

1 u ≥ 1
u 0 < u < 1
0 u ≤ 0

(6)

where wij(t) is the weight for input i to neuron j, 1 ≤ j ≤
M , at time step t, which are all initialized uniformly to
small random values (when t = 1), ywin is the activation
value of the winning neuron so that ywin = maxi f(ui),
and μ is the inhibition rate. The time step t varies such
that 1 ≤ t ≤ N , where N is a multiple (epochs) of the
number of inputs being presented.

Armony et al.’s model uses competitive learning to
form feature detectors, and is itself a development of the
competitive algorithm developed by Rumelhart & Zipser
(1986). Competition is achieved through lateral inhibition
in a module. Having calculated the activation y for all
of the neurons in the module (M), the neuron with the
maximum activation is chosen as the winner, with the ac-
tivation value then used to suppress the activation of all
other neurons (equation 5). The inhibition rate μ deter-
mines the rate at which the winner suppresses the other
neurons, such that if μ = 0 no inhibition is applied, versus
μ = 1 where effectively only the winning neuron is active.
Therefore, μ controls the number of neurons active for a
given input, determining the spread of activity in the mod-
ule. For the case of the left and right PC and EC modules,
these output activations are then fed as inputs to the next
module.

2.3. Learning: feature selectors and category training

Competitive learning in each module is achieved thro-
ugh a simple Hebbian learning rule applied to all weights
that have input values above a defined threshold:

w′
ij(t) =

{
wij(t) + ηxiyj if xi > ρx̄
wij(t) otherwise

(7)

x̄ =
1

m

m∑
i=1

xi (8)

wij(t+ 1) =
w′

ij(t)∑d
k=1 w

′
kj

(9)

where η is the learning rate. Armony et al. (1995) just use
the mean x̄ of all the inputs to the module as the threshold,
with the effect that the weights that have above average
input are increased in strength, whereas those with below
average input are decreased through normalization with
respect to all of the inputs to a neuron j (equation 9).
We modify the threshold to include the factor ρ so that
we can vary the threshold above which an increase in the
weight is made to determine what effect this has on feature
selection.

While this Hebbian learning rule provides the ability
for the modules to become feature selectors, we have not
yet dealt with how task influence during category training
can be incorporated into the learning process. For Ar-
mony et al., this change in the association was formed as
a pairing between the conditioned stimulus (a selected in-
put) and an unconditioned stimulus (for example a foot
shock in animal studies). The effect is to bias learning for
a particular conditioned stimulus, changing the pattern of

5



activation by causing associated neurons to become the
winners and hence their weights to be strengthened. For
us, our task influence is category training, where, in the
human studies, the subjects are given feedback on whether
a particular image belongs to category A or B. Here then,
we use Armony et al.’s conditioning as category training by
associating a category signal with a category’s four exam-
ple inputs. This is simply achieved by including a category
input to the VV (Fig. 1) which is then active during cat-
egory training for all category B examples. At all other
times, the category input remains ‘0’ (including for cate-
gory A examples). The category input to VV is similar
to the category signal thought to be fed back from the
pre-frontal cortex, where strong category representations
are held in memory (Freedman, Riesenhuber, Poggio, &
Miller, 2003).

To ensure that the category signal always has an influ-
ence on the competitive process during learning, the cate-
gory input weights are fixed at a predefined value Wc and
are not subject to learning, however they do still influence
weight normalization (equation 9). For both non-category
and category training, learning is repeated on the training
data set until stability in the weights is achieved.

2.4. Measuring CP

Our description of the model so far has shown how we
present a series of paired inputs, feed forward activation
through the left and right hemisphere modules, and train
each module to form receptive fields with a category bias
(details in section 3). However, how do we measure the be-
havior of this model and compare it to the human results?
The human experiments were conducted in such a way
as to allow changes in the participants’ discrimination be-
tween categories to be measured (see Notman et al., 2005,
for full details). For our model we will conduct a similar
comparison.

Discrimination performance was measured by the num-
ber of hit and false alarm responses to the same-different
image task. Hits are measured separately for within and
between category image pairs. A Hit(W ) was counted if
the participant correctly identified two images as being dif-
ferent for each pair of images taken from within the same
category. Similarly, a Hit(B) was counted if the subject
correctly identified images as being different for each pair
of images taken from between categories. Lastly, a False
Alarm was counted if the subject identified the images as
being different when they were identical. The ability of the
participants to discriminate was then calculated as an A′

score (Pollack & Norman, 1964), which is a non-parametric
measure of the area under the single-point Receiver Oper-
ating Characteristic (ROC) curve. This is calculated from
the probabilities of Hits and False Alarms separately for
the within and between responses:

A′ =

{
1
2 if H < F
1
2 + (H−F )(1+H−F )

4H(1−F ) otherwise
(10)

where H is the probability of a Hit (separately within or
between) occurring, and F is the probability of a False
Alarm. We therefore obtain an A′(W ) for within and an
A′(B) for between that estimate the discrimination ability
of the subject.

For our model, we attempt to carry out the same exper-
imental method by using the relevant testing and training
phases. As a consequence, once a stable model of human
vision is established, we conduct discrimination testing to
record the baseline performance, we then perform category
training, and finally we test the model again to note the
change in discrimination.

To obtain a Hit or False Alarm count, we compare the
responses of the left and right modules at each processing
stage. As in the human experiments, these values are ob-
tained over 10 trials of the same pairs of images presented
randomly to either visual field. For a given image pair, the
sum of the outputs of the left and right module neurons
are calculated separately, normalized, then compared with
each other to determine if they are producing a similar or
different value:

Y ′ =

n∑
i=1

yi (11)

Y =
Y ′ −mini(yi)

maxi(yi)−mini(yi)
(12)

where Y is the normalized sum of the outputs for either
the left or right module for a given input. The responses
are treated as different if

|Yleft − Yright| > δ (13)

where δ is a pre-defined difference threshold.

3. Experiments and results

We now consider the results from the model for two
sets of experiments mimicking those performed on humans.
The first performs category training on a single orientation
to determine if we can model the development of the CP
effect. The second determines whether the CP effect gen-
eralizes over multiple orientations.

3.1. Training data

While the range of stimuli for discrimination testing
and category training are defined for us by the psychophys-
ical experiments, we need to select an appropriate set of
input data to develop a stable model in the pre-training
phase. Since we first have to develop a model that is capa-
ble of discriminating at the neuronal level in each module
between stimuli of different phases, a natural choice of
training data at this stage is the set of all possible inputs.
We therefore use a pre-training data set that consists of all
eight inputs representing images 1 to 8 as shown in Fig. 2.
Since the model has two visual fields, we need to present an
input to both. To ensure that the model can discriminate
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the absence of an input to a visual field, we pair each im-
age with the zero-vector representing this, such that each
input consists of an input representing a particular phase
to one visual field, and the zero-vector to the other visual
field. Which visual field receives which input is randomly
chosen for each presentation. One training epoch therefore
corresponds to the presentation of all eight phase inputs to
one of the visual fields. Example responses from a model
pre-trained for 10000 epochs are shown in Fig. 5.

[Figure 5 about here.]

For category training, we use the same range of stim-
uli as used for the psychophysical experiments. Here we
restrict ourselves to the case when we have a single ori-
entation So = 45◦. One run of category training consists
of a single block of the double and then the single train-
ing task. The double training input therefore consists of
stimuli representing all possible image pairs (12 from the
same category and 16 from different categories). An im-
age from each pair (at random) is presented to the left
and right visual hemifields. For single training, each pre-
sentation consisted of each phase input presented to one of
the visual fields, randomly selected, with the other visual
field receiving a zero-vector input representing no image.
A training epoch therefore consisted of 28 double followed
by three lots of 8 single inputs selected in random order
(a total of 52 inputs). When providing category feedback,
the corresponding category value for the visual field’s in-
put is given to the VV module. When not giving category
feedback, zero is input.

3.2. Learned categorical perception

Key parameters in the model (Table 1) were deter-
mined through a systematic evaluation of the model’s dis-
crimination performance, coupled with assumptions about
the values of the fixed weight and the learning rate, which
are as per Armony et al. (1995). Discrimination testing
matches that used for the human experiments, with pairs
comprising the same input presented to both visual fields
(images 1 to 8 in Fig. 2), and each consecutive pair (pairs
9 to 16). The within and between category responses for
the relevant pairs are recorded by determining the differ-
ence between the left and right VV modules (equation 13)
using a value of δ = 0.2.

To determine if the model can exhibit the CP effect,
we trained 100 models, all with different initial random
weights, using the parameters in Table 1. Pre-training
was conducted using the data set described in section 3.1,
which was then followed by category training.

[Table 1 about here.]

The mean A′(W ) and A′(B) values derived from the
PC, EC and VV over the 100 networks are shown in Fig. 6a),
b) and c), compared to the human data over 16 observers
in Fig. 6d). We can see that the models’ VV modules ex-
hibit a similar profile of behavior to the humans in that

before category training there is little difference between
the mean A′(W ) = 0.56 and A′(B) = 0.58 values. Af-
ter category training, the influence of the category signal
shows that the mean A′(W ) has dropped to 0.52, whereas
the A′(B) has increased significantly to 0.86. This is the
CP effect. To determine whether changes to PC and EC
during category training had any effect on the A′ scores
in VV we replaced the weights of the PC, EC and the PC
and EC with their pre-category training weights. This had
no effect on A′ scores.

[Figure 6 about here.]

In order to facilitate comparison with the human data
we assessed the statistical significance of these observa-
tions using analysis of variance (see Table 2). In the fol-
lowing description any differences referred to were statis-
tically significant (p < 0.001) as assessed using Bonferroni
post-hoc analyses. Overall these analyses confirmed the
statistical significance of the observations made above.

[Table 2 about here.]

A′(B) scores in the VV improved as a result of cate-
gory training and this was true even when the weights in
the PC and EC modules or both together were replaced
with their pre-category-training values. The improvement
in between category discrimination is consistent with the
often observed between category expansion effects seen in
humans where objects that are placed in different cate-
gories become perceptually less similar (also known as ac-
quired distinctiveness).

A′(W ) scores in the VV actually reduced as a result of
category training and again this was true when the weights
in PC, EC or both together were replaced with their pre-
training values. This decline in within category discrim-
ination is consistent with the sometimes observed within
category compression effects seen in humans where objects
that are placed in the same category become perceptually
more similar to each other (also known as acquired equiv-
alence).

In summary, what this detailed analysis shows is that
the model is capable of exhibiting the categorical percep-
tion effect under matched conditions to that of humans.
That is, when discriminating between images that encode
phase, and which are divided into two distinct categories
based on these phases, the model has enhanced between
category discrimination, versus unchanged (or suppressed)
within category discrimination, and this is exhibited in the
VV module only. This is in contrast to the results of Not-
man et al., who provided results suggesting that the CP
effect occurred as a result of changes to earlier stages of
perceptual processing, possibly as early as V1. Our model
learns CP by the application of a category signal to the last
module in our abstract visual processing stream, namely
VV. However, in the present model there were no explicit
connections back from VV to the EC and this may limit
the possibility of observing CP at these earlier stages. This
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leaves us to ask what influence the PC and EC modules
have on our results, since the human evidence suggests
that this earlier processing could be important? The anal-
ysis shows that replacing the PC, the EC and finally the
PC and EC modules with their pre-trained variants does
not affect the strength of the CP effect observed in VV.
However, no CP effect is observed in VV prior to cate-
gory training. This suggests that the CP effect may arise
because during category training the VV module learns
to make use of the phase selective outputs from PC and
EC, which are present after pre-training. This is consis-
tent with the hypotheses that CP may be based upon
changes to the use of information from early visual fil-
ters by later stages of analysis (Mollon & Danilova, 1996;
Petrov, Dosher, & Lu, 2005). However, a key result of
the human studies was the high degree of specificity of the
learned CP effect to the orientation of the visual stimulus
during training. Consequently, we next explored whether
the present model showed this same specificity.

3.3. Orientation generalization of categorical perception

Having shown that we can reproduce the CP effect in
the model when discriminating between inputs represent-
ing phases in a single orientation, we now turn our at-
tention to the second psychophysical experiments run by
Notman et al. to determine how far this effect generalizes
to inputs representing other orientations. Their experi-
ments show that the CP effect is specific within a 6.5◦

orientation bandwidth (at half amplitude), when category
training on a single orientation. We therefore repeat these
experiments with our model to determine the specificity of
CP to stimulus orientation.

To test our model on a variety of orientations, we use
the input representation extended for orientations 0◦ thro-
ugh 90◦ as described in section 2.1. Here, to keep the input
small (18 dimensional vectors), we pair an orientation of
45◦ with each of the orientations O = {0◦, 15◦, 30◦, 40◦,
43◦, 47◦, 50◦, 60◦, 75◦, 90◦}, and then combine the results.

[Figure 7 about here.]

For each pair of orientations, we trained 100 models
with the same parameters as before, all with different ini-
tial random weights. Pre-training was conducted using
the same data set, but with both orientations represented
from the pair. However, category training was carried out
with just the single orientation So = 45◦. The average dif-
ference, over the 100 models, in mean A′(B) values before
and after category training for the VV module is shown in
Fig. 7a). Here, we show the effect of the difference thresh-
old on the A′(B) values. Using the value of δ = 0.2, the
resulting orientation responses show a dip surrounding the
category training orientation So = 45◦. This is different to
the observed human results, where the peak difference sur-
rounds the trained orientation. However, when we vary the
difference to make it smaller, the peak rises in the middle,
and with δ = 0.01, it is at its maximum. This parameter

affects the way in which we calculate the same/difference
response given by the model (equation 13). By making
this smaller, we are looking for a normalized value from
the left and right VV that differs by less to indicate a
same response, and hence we are increasing the number of
different responses with this smaller tolerance. In contrast,
Fig. 7b) shows the effect of the weight change threshold ρ
on the orientation generalization when δ = 0.01. Whereas
values of ρ from 1.5 and below tend to give sharp bound-
aries between orientation responses, values of ρ of 2 and 2.5
give a response that is closer in profile to the human data
(normally distributed), albeit wider. Here we select ρ = 2,
since this also maintains a stable value for the A′(B) for
45◦ for all pairs, while higher values degrade the response
to 0.

Having varied the difference and weight change thresh-
olds to obtain an orientation tuned profile, we can compare
the obtained results with the selected parameters. Fig. 8a)
shows the change in the A′(W ) and A′(B) responses over
the 100 models in the VV module, compared to the human
observations in Fig. 8b) for 12 observers. First, we note
that the model clearly shows orientation specificity, with
graded responses surrounding the trained orientation in
a similar way to that observed in humans. This holds for
both the within (suppression) and between (enhancement)
responses. For the model responses, perhaps due to its de-
terministic nature and larger number of trials, the curves
shown are far smoother. Second, whereas the CP effect
is specific within a 6.5◦ bandwidth with humans, in the
model we obtain a bandwidth of approximately 35◦. No
further tuning of the parameters could obtain a narrower
response without degrading the learned CP, so although
specificity has been demonstrated, the model’s behavior
differs from the humans in this respect.

[Figure 8 about here.]

To further facilitate comparison of the specificity of CP
across orientation with the human data we assessed the
statistical significance of these observations using four-way
analysis of variance (orientations (11) – 0◦, 15◦, 30◦, 40◦,
43◦, 45◦, 47◦, 50◦, 60◦, 75◦ or 90◦; model variants (2) – af-
ter pre-training, after category training; modules (3) – PC,
EC, VV; category positions (2) – within, between), which,
importantly for the present analysis, showed a significant
four way interaction (F (20, 1980) = 67.4, p < 0.0000001,
observed power 1.0, partial η2 = 0.40). Post-hoc analysis
using three-way ANOVAs for each module and Bonferroni
tests showed that only in the VV module did the CP ef-
fect vary as a function of stimulus orientation. Prior to
category training there was no significant difference be-
tween within category and between category discrimina-
tion at any orientation, whilst after training these differ-
ences were significant for several orientations (from 30◦ to
60◦, inclusive) that were closer to the training orientation.
A between category expansion effect is seen as a result
of category training for orientations between 30◦ and 60◦
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and a more narrowly tuned within category compression
effect is seen for orientations between 40◦ and 50◦. It is
interesting to note that a similar, albeit more narrowly
tuned, compression effect can be seen in the human data
(Fig. 8b).

3.4. Discussion

Previous models of CP have tended to focus on speech,
such as vowel (Anderson, Silverstein, & Ritz, 1977) and
phoneme categorization (McClelland & Elman, 1986), and
speech production (Kröger, Birkholz, Kannampuzha, &
Neuschaefer-Rube, 2007). However, Goldstone, Steyvers,
& Larimer (1996) explored categorization of visual stimuli
in the form of Bezier curves, Padgett & Cottrell (1998)
facial expressions and Spratling & Johnson (2006) a simple
square of nine, joined dots. Our model falls somewhere
between these two approaches by using visual stimuli, but
which are represented in an abstract form to present phase
information only from the Gabor patterns.

In addition to the types of task that have been mod-
eled, various different architectures have been used to sim-
ulate CP. In the simulations conducted by Anderson et al.
(1977), CP was modeled using Hebbian learning for pos-
itive feedback (the brain-state-in-a-box model). McClel-
land & Elman (1986) focused on using excitatory and
inhibitory connections between neurons, whereas Kröger
et al. (2007) used self-organizing maps. The model devel-
oped by Spratling & Johnson (2006) is perhaps the most
plausible so far presented in that it consists of interacting
layers of ‘cortical regions’ based on pyramidal neurons. In
contrast to these simulations, which have some degree of
biological plausibility in that they are each based around
competitive learning or similar, other less plausible archi-
tectures have been used, such as Padgett & Cottrell (1998),
who used an ensemble of multi-layered perceptrons trained
using backpropagation.

In this paper we have gone beyond these existing mod-
els of CP. We have developed a biologically motivated
model of the key stages of visual analysis that is capable of
exhibiting local properties in each layer (feature selection)
and global properties of the whole system (category learn-
ing). While this is similar to other models of hierarchical
vision and categorization (Deco & Zihl, 2001; Spratling &
Johnson, 2004; Hamker, 2007), our approach is novel be-
cause we then went on to demonstrate how the model can
exhibit a CP effect as a result of sequential stages of visual
analysis. These stages convert the input data into a form
which can be categorized by our model of VV processing,
which is coupled with a category signal as feedback.

In addition to developing a biologically inspired model
of visual CP, we have also followed an equivalent train-
ing and testing regimen to that of a set of psychophysics
experiments. Despite using simple neural structures and
an abstract image representation, the results have both
demonstrated a CP effect and its orientation specificity
which compares well with human data. Here, our simple
neural model applied a category signal only to the VV

module, representing ventral visual processing, despite ev-
idence from human data suggesting that the CP effect oc-
curs as a result of changes at earlier stages of processing
(for example, V1). If we treat our model as sufficiently
plausible, our results provide evidence for the CP effect to
occur as a result of changes to ventral processing only, al-
though with some variation in the observed values and, in
particular, the orientation bandwidth of the effect. These
two different aspects of our findings may reconcile two dif-
ferent views of perceptual learning and categorical percep-
tion effects. One view, consistent with our finding that CP
can arise frommodifications to VV alone, posits that learn-
ing effects arise primarily because later stages of analysis
learn to make better use of the fine grained information
coming from early visual analysis (cf. Mollon & Danilova,
1996; Petrov et al., 2005). However, a second view pro-
poses that learning more difficult tasks, or equivalently
fine-tuning performance to a high degree, recruits succes-
sively earlier stages of analysis (cf. Ahissar & Hochstein,
2004). This latter view is consistent with the failure of
our model to achieve the same degree of orientation tun-
ing that is observed for the human data implying that, in
humans, modifications are also driven to earlier stages of
visual analysis to achieve this fine tuning.

Evidence in support of the likely involvement of early
cortical stages of visual analysis in tasks involving orien-
tation specific learning has come from perceptual learning
research, which has sought to identify the neural correlates
of such learning. For instance, Furmanski et al. (2004)
showed that practice improved observers’ ability to detect
low contrast gratings in an orientation specific way and
that activity in V1 in response to the practiced grating
orientation increased following training. Further, Schoups
et al. (2001) showed that in monkeys, practising orienta-
tion identification narrowed the tuning of orientation se-
lective V1 neurons for practised orientations. In addition,
Yang & Maunsell (2004) reported that practicing orienta-
tion discrimination produced narrower orientation tuning
curves for units in V4 responding to the practised orienta-
tion at the practised stimulus location.

However, we must recognize that our model has three
main limitations that we must consider along with this ev-
idence. First, we must acknowledge that the model is an
abstraction of a complex neural hierarchy, with arbitrary
labels delineating broadly different stages of processing.
What we have shown is that these three successive stages
of processing can exhibit behavior which can be mapped
to human data through the tuning of parameters, and that
this behavior can be modified by the application of a cat-
egory signal. The model also abstracts temporal informa-
tion through the use of a rate coding architecture. How-
ever, despite these limiting factors, what the results have
shown is that modeling can be used to explore complex
biological processes and, more importantly, can be used to
make predictions about these processes, namely that the
CP effect appears to be possible without changes to early
perceptual processing.
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Second, in order to test orientation specificity, we paired
orientations to keep the size of the input vectors small.
While this is a valid and often used strategy for psycho-
physics experiments, humans are capable of processing
multiple orientations at once. Tests that included all orien-
tations in the input to our model did demonstrate the CP
effect, but they did not show a decreasing profile of orienta-
tion generalization, with all orientations gaining the same
A′(B) values instead. This suggests that the model cannot
adequately cope with significantly increased input dimen-
sions (perhaps the curse of dimensionality being felt).

Third, one striking result is that we could not find pa-
rameters that would sufficiently tune the orientation band-
width to the desired 6.5◦. While we could dismiss this as a
result of a fundamental limit of the architecture, this could
also suggest that the model does not sufficiently represent
the underlying biology. Here, the role of feedback connec-
tions underlying the CP effect is thought to be important
to enable changes to be made to perceptual processing (for
example, although not explicitly for CP, Crist & Gilbert,
2001; Gilbert, Sigman, & Crist, 2001). In our model, con-
nections between modules are feedforward only; feedback
connections may be important in achieving a smaller orien-
tation bandwidth by modulating activation within layers
as a result of category learning. This remains an important
goal for future work.

4. Conclusions

In this paper we have provided computational evidence
for the way in which prior knowledge of a task can influence
perceptual processing. We have done this by presenting an
adaptive model of hierarchical vision processes trained on
a visual categorization task. In defining the model and
establishing our experimental method, we have attempted
to provide an equivalence between the model and human
vision. To achieve this we have used biological inspiration
in our choice of architecture and algorithm, systematically
parameterized the model, executed equivalent experimen-
tal steps to that of the human experiments, and finally,
rigorously analyzed the results using statistical approaches
applied in psychophysics.

Contrary to current debate on the influence of task on
visual analysis, our results demonstrate that a visual CP
effect can be established with only task influence to the
latter stages of analysis that we have modeled: ventral vi-
sual processing. However, our model also shows that the
developed CP effect is less specific to the stimulus orien-
tation than found in humans. So, while we propose that
a basic CP effect may arise in later stages of processing
learning to make better use of the phase selective outputs
from early stages, a more complex form of CP may still
require changes to perceptual processing in these earlier
stages.

We have drawn this conclusion based upon the evidence
that the model provides. Here, we find that the strength

of the CP effect observed in VV is not affected by replac-
ing the after category-training connection weights in PC,
EC or both with their pre-training values. The phase se-
lective outputs, which are present following pre-training
and before any category training takes place, appear to
be sufficient for CP when coupled with the learning that
takes place in VV following application of the category sig-
nal. This proposal is consistent with late selection models
of CP and perceptual learning (Mollon & Danilova, 1996;
Petrov, Dosher, & Lu, 2005). However, this basic CP ef-
fect shows far less specificity to the orientation of the vi-
sual stimulus than is the case for the human data implying
that some additional changes to perceptual analysis, pos-
sibly localized to earlier stages of processing, are involved
in the human CP effect in line with the conclusions of
Notman et al. (2005) and the Reverse Hierarchy Theory
of Ahissar & Hochstein (2004). Such modifications might
include changes to the strengths of intra-cortical connec-
tions (i.e. within module) under the influence of feedback
connections from later stages of analysis (Crist & Gilbert,
2001; Gilbert, Sigman, & Crist, 2001).

Our results prompt further human experiments to test
the hybrid account of CP effects proposed above involv-
ing both early and late stage modifications to perceptual
analysis. For example, Transcranial Magnetic Stimulation
designs might be used to selectively disrupt the processing
at different stages of visual analysis at the point in time
when task feedback is provided, and the effects of this on
CP observed. Our model might predict that disruptions
to early visual analysis could increase the generalization of
CP effects across stimulus dimensions such as orientation.

However, in drawing these conclusions, we recognize
that the model suffers from a number of limitations. For
example, more capable models of vision may be built by
considering the role of inter-module feedback, temporal
coding (pulse coded networks) and the use of more so-
phisticated techniques to decrease the levels of abstraction
(better models of receptive fields and the implementation
of earlier stages of visual processing). Work on this has
already started with, for example, the inclusion of topo-
graphic properties within the modules (Pavlou & Casey,
2009). Despite these limitations, the model does have a
sufficient level of plausibility and replication of behavior
to provide an existence proof that the CP effect can de-
velop with only simple feedback to later stages of visual
analysis.
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Li, W., Piëch, V., & Gilbert, C. D. (2004). Perceptual Learning and
Top-down Influences in Primary Visual Cortex. Nature Neuro-
science, 7 (6), 651–657.

Linsker, R. (1988). Self-organization in a perceptual network. Com-
puter , 21 (3), 105–117.

McClelland, J. L., & Elman, J. L. (1986). The trace model of speech
perception. Cognitive Psychology , 18 , 1–86.

Miikkulainen, R., Bednar, J. A., Choe, Y., & Sirosh, J. (2005). Com-
putational Maps in the Visual Cortex . New York: Springer Sci-
ence+Business Media.

Mollon, J. D., & Danilova, M. V. (1996). Three remarks on percep-
tual learning. Spatial Vision, 10 , 51–58.

Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task
on attention. Vision Research, 45 (2), 205–231.

Notman, L. A., Sowden, P. T., & Özgen, E. (2005). The nature of
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Figure 1: Schematic of the model of learned categorical perception in human vision. Left and right processing streams are shown with neural
modules representing pre-cortical (PC), early visual cortices (EC) and ventral visual (VV) processing. When the model is being trained on
the categories, the category signal is activated in VV.
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Figure 2: The set of eight images used for the human experiments, each constructed from two sets of Gaussian windowed compound gratings
(Notman et al., 2005). The gratings consisted of sinusoids with spatial frequency f = 0.32 and 3f cycles per degree (cpd) each. The eight
images were then constructed with a fixed f phase and varying 3f phase to form compound gratings, so that category A images had 3f
phase {90◦, 135◦, 180◦, 225◦} and category B images {0◦, 45◦, 270◦, 315◦}. For convenience, each image is numbered (clockwise from 1 to
8), and also each image pair (again clockwise from 9 to 16). During discrimination testing, images are presented as pairs, in random order,
with either the same image on the left and right visual field (1 to 8), or pairs made up of consecutive images (9 to 16), noting the difference
in within (9, 11, 12, 13, 15, 16) and between category (10, 14) pairs.
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a) 0◦ b) 135◦

Figure 3: The visual field inputs representing a 3f phase of a) 0◦ and b) 135◦, both for orientation 45◦. Each input consists of an f component
(not shown) and components for each of the 3f phases. The values for each 3f phase component are calculated using a Gaussian with mean
corresponding to the input’s 3f phase and bandwidth 106◦ to match the human data on phase selectivity. Note that a phase of 360◦ is
equivalent to a phase of 0◦, hence the values wrap around.
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Figure 4: Surface plot showing an example input with a 3f phase of 135◦ and orientation 45◦, spanning orientations 0◦ to 90◦. The constant
f phase value is not shown. The values for each phase and orientation are calculated using a Gaussian with mean corresponding to the input’s
3f phase and orientation, phase bandwidth of 106◦ and orientation bandwidth of 30◦ to match human data.
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a) Random initialization b) After pre-training

Figure 5: Responses from the left PC of an example model which has 7 neurons in each module. Activity is shown for each 3f phase test
pattern: a) using the randomly initialized weights, and b) after pre-training for 10000 epochs.
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a) PC b) EC

c) VV d) Human

Figure 6: Mean A′(W ) and A′(B) values for the computational model over 100 trials: a) PC, b) EC and c) VV, and b) human results over 16
observers (Notman et al., 2005). The lines depict the change in the A′ values from those obtained after pre-training, to those after category
training. Values are also shown for when the PC, EC, and PC and EC together were replaced in the model.

19



a) Difference threshold b) Weight change threshold

Figure 7: Difference in mean A′(B) values before and after category training spanning orientations 0◦ to 90◦ with varying a) difference
threshold δ = {0.8, 0.4, 0.2, 0.1, 0.01}, and b) weight change threshold ρ = {0, 1, 1.5, 2, 2.5, 3} when δ = 0.01. The thick line denotes the
selected values δ =0.01 and ρ = 2.
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a) Model b) Human

Figure 8: Difference in mean A′(W ) and A′(B) values for the a) computational model over 100 trials with difference threshold δ = 0.01 and
weight change threshold ρ = 2, and b) human experiments over 12 subjects (Notman et al., 2005).
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Parameter Value

Neurons per module
MEC 7
MPC 7
MV V 7

Inhibition rate
μEC 0.6
μPC 0.4
μV V 0.2

Category input fixed weight Wc 0.4
Learning rate η 0.1
Pre-training epochs Np 10000
Category training epochs Nc 11
Weight change threshold ρ 1
Difference threshold δ 0.2

Table 1: Parameters used for the computational experiments to explore whether the model learns the categorical perception effect.
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Effect F dF Partial η2

Model 18.29 2.40 237.54 0.16
Module 88.98 1.85 182.76 0.47
Category 581.39 1.00 99.00 0.85
Model × Module 23.76 4.33 428.71 0.19
Model × Category 43.13 2.30 227.72 0.30
Module × Category 181.93 1.78 176.51 0.65
Model × Module × Category 48.41 4.04 400.21 0.33

Table 2: Results from analysis of variance to explore A′ scores for within and between category discriminations, in each visual area as a
function of training. Here, we show analyses for five different variants of the model (after pre-training, after category training, then with the
PC, EC and the PC and EC replaced), the three different modules in each processing stream (PC, EC and VV) and the category position
(within and between). The Mauchley Sphericity Test showed that the assumption of sphericity was violated for all effects. Consequently,
the Greenhouse Geisser correction was made to the degrees of freedom in every case. In all cases, p < 0.0000001 and the observed statistical
power is very high (1.0) because each model was run a large number of times (100). With such high power even a very small difference will
be statistically significant. A separate question is whether the difference is meaningful. An indication of this is given by measures of effect
size such as partial η2. Values for this can range between 0 and 1 with larger values indicating a bigger effect and a value of less than 0.2 a
very small effect. In the present case most effects were moderate to large in size and importantly, this is true of the crucial interactions with
category position.
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