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Abstract
Vocal motor development in infancy provides a crucial foundation for language development.
Some significant early accomplishments include learning to control the process of phonation (the
production of sound at the larynx) and learning to produce the sounds of one’s language. Previous
work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We
present a neural network model that provides an account of how vocal learning may be guided by
reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic
vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a
vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make
similar muscle activations increasingly likely to recur. We ran simulations of the model under
various reinforcement criteria and tested the types of vocalizations it produced after learning in the
differ-ent conditions. When reinforcement was contingent on the production of phonated (i.e.
voiced) sounds, the network’s post learning productions were almost always phonated, whereas
when reinforcement was not contingent on phonation, the network’s post-learning productions
were almost always not phonated. When reinforcement was contingent on both phonation and
proximity to English vowels as opposed to Korean vowels, the model’s post-learning productions
were more likely to resemble the English vowels and vice versa.
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1. Introduction
1.1. Human infant vocal development

During the first year of life, human infants make considerable progress in learning to
produce speech-like sounds. One of the first achievements in prelinguistic vocal
development is acquiring the ability to control phonation, producing voiced sounds at will
(Oller, 2000). Basic modal phonation is so readily produced by a healthy adult that its
complexities may easily be overlooked. In fact, phonation involves active settings of a
number of muscles that contribute to the positions, compressions, and stresses in the tissues
of the larynx (Titze, 1994). To further complicate things, it has recently become clear that
the larynx and the upper vocal tract interact nonlinearly (Titze, 2008). How infants learn to
control this system in order to support phonation is an open question.

Soon a number of other milestones are achieved, such as expansion of the range of pitches,
durations, and vocal qualities produced, and the emergence of syllabic consonant-vowel
timing (Oller, 2000; Stark, 1980; Koopmans-van Beinum & van der Stelt, 1986; Oller &
Lynch, 1992). Toward the end of the first year of life, infant vocalizations have been
reported to begin to show adaptation to the phonetic characteristics of the particular
language environment as opposed to those of other languages (de Boysson Bardies &
Vihman, 1991; de Boysson-Bardies, Halle, Sagart & Durand, 1989). For example, a study
by de Boysson-Bardies et al. (1989) of 10-month-old infants from monolingual French,
English, Cantonese, and Arabic speaking households compared the vowel sounds produced
during canonical babbling by each infant to the vowels and their frequencies in adult speech
in the household language. The study found that mean first and second formant frequencies
of vowels produced by infants were significantly different across language backgrounds and
that the patterns of differences matched those estimated for adult speech for the four
languages. The results were taken as evidence that a child’s language environment
influences the range of movements of the infant’s articulators, particularly the tongue and
lips, supporting the development of the vowel system of the target language.

1.2. Reinforcement in early vocal development
The human infant develops within a social environment of interaction with parents and other
adults and children. For this reason, the developing social brain has recently become a focus
in infancy research (e.g., Blakemore, 2010; Grossmann & Johnson, 2007). Speech
production development is one of the many behaviors that develops in the context of and is
shaped by social interaction. Caregivers direct vocalizations (such as acknowledgments,
imitations, playful vocalizations, and object labels) toward their infants as well as smiling at,
looking at, and touching their infants. These caregiver behaviors, particularly the vocal ones,
are modulated in response to infants’ vocalization behaviors (Papoušek & Papoušek, 1989;
Gros-Louis, West, Goldstein & King, 2006) and they serve as reinforcers to the infant:
experimental work has shown that contingency of maternal responses on infant vocalization
leads to increased infant rates of vocalizing (Goldstein, King & West, 2003).

In addition to social sources, reinforcement may also come from internal sources. For
example, the high auditory salience of a self-produced sound or its matching to the infant’s
auditory preferences may function as reinforcers. It is likely that auditory salience and
preference are influenced both by innate factors and by exposure to ambient language input.
Salience-based reinforcement-learning, though it has not been addressed in research on
development of vocalization abilities, has been shown to be feasible in a non-neural-network
computational models of eye movements for joint attention (Lewis, Déak, Jasso & Triesch,
2010). Whether it originates from social sources or from internal preferences, the idea is that
positive reinforcement for producing speech-like vocalizations facilitates the development
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and increased usage of the reinforced vocalizations, consistent with the principles of operant
conditioning (Domjan, 2010).

Functionally, positive reinforcement provides an agent with feedback that its vocalization
was on the right track, without directly indicating what the motoric target is. It is useful to
compare reinforcement-based learning to two other types of learning, unsupervised self-
organization (e.g., in learning by Kohonen maps and Hebbian networks) and supervised
learning (e.g., utilized by feed-forward and simple recurrent networks that learn via the delta
rule and backpropagation). On the one hand learning from reinforcement does, unlike
unsupervised learning, rely on the model’s receiving feedback about how well it performed.
However, this feedback is not as targeted as in supervised learning in that the exact desired
modeled behaviors are not assumed to be known by the entity providing the feedback.

Reinforcement-based learning is suitable for situations where the optimal behavioral or
motoric output is unknown, as in the case of a modeler or roboticist who wishes to make a
realistic synthesizer produce certain types of sounds. Infants as well may not have direct
access to the correct motor configurations for producing target vocalizations, so
reinforcement from care-givers or the infants’ own learned or innate auditory preferences
may serve as useful guides in the infants’ learning to produce vocalizations of a given type.

1.3. Previous vocal development models
Additional mechanisms likely also play important roles in learning to produce speech-like
sounds. One proposal is that adaptations of infant vocalizations to the ambient language
result from self-organized perceptual and perceptual-motor learning. For example, it has
been argued that by monitoring their own vocalizations, infants learn sensorimotor
mappings that enable them to reproduce sounds heard from others (Vihman, 1993; Kuhl &
Meltzoff, 1996). Most computational neural network modeling work to date has focused on
this mechanism and not on reinforcement (note that the two are not mutually exclusive)
(Guenther, Ghosh & Tourville, 2006; Yoshikawa, Asada, Hosoda & Koga, 2003;
Westermann & Miranda, 2004; Heintz, Beckman, Fosler-Lussier & Ménard, 2009;
Warlaumont, Westermann & Oller, 2011; Oudeyer, 2005).

The DIVA (Directions Into Velocities of Articulators) model (Guenther, Hampson &
Johnson, 1998, Guenther et al., 2006) focuses on self-organizing synaptic mappings between
primary auditory, higher-level auditory, somatosen-sory, and motor brain regions. The
DIVA model is assumed to have knowledge about which specific vowels and consonants
exist in its language and their acoustic properties (for example, the first three formant
frequencies). During a “babbling” phase, the model randomly moves its articulators, i.e., its
tongue, jaw, and lips. Learning consists of updating the synaptic mappings between the
motor and sensory cortices to reflect the associations between articulatory motor commands
and their somatosensory and auditory consequences discovered during the babbling
experience. When the model’s random movements happen to produce a synthesized sound
that corresponds acoustically to a sound in its language, the synaptic mappings from a pre-
motor speech sound layer to motor cortex and to sensory cortices are also updated. The
effect is that future activation of the speech sound simultaneously activates the appropriate
motor commands and inhibits the appropriate auditory and somatosensory expectations. The
inhibition of auditory and so-matosensory regions enables the model to detect if there is any
error in its production of the sound and if so to make appropriate motor corrections.

The DIVA model is the most comprehensive and well-tested model of human speech sound
learning to date. It has been compared to adult fMRI data and has been used to model
normal adult performance under various experimental manipulations, differences in hearing
impairment and stuttering, and robustness in the face of developmental changes across
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childhood in the size and shape of the vocal tract (Guenther et al., 2006; Perkell, Guen-ther,
Lane, Matthies, Perrier, Vick, Wilhelms-Tricarico & Zandipour, 2007; Max, Guenther,
Gracco, Ghosh & Wallace, 2004; Callan, Kent, Guenther & Vorperian, 2000). However,
there are a number of aspects of early vocal learning that it has not yet addressed. For one, it
has not yet been used to model self-initiated behavior; instead speech sounds are activated
directly by the modeler (Guenther et al., 2006). Relatedly, it does not directly address the
role that reinforcement might play in shaping spontaneous vocal behavior. Finally, it does
not address phonatory learning, i.e. learning to produce voicing and learning to control the
pitch, amplitude, etc. of vocalizations, despite this being a major aspect of early speech
development.

Several other models, narrower in scope than the DIVA model, aim to explain how infants
might learn to imitate vocalizations produced by others via Hebbian learning of perceptual-
motor connections (Yoshikawa et al., 2003; Heintz et al., 2009; Warlaumont et al., 2011).
These models each consist of two layers of neurons, one auditory and one motor, with
weighted connections between the two layers. As in the DIVA model, learning in these
models involves having the model produce random motor outputs, determining vocal tract
configurations, which in turn determine the acoustics of synthesized vocalizations. In
Yoshikawa et al. (2003), each model production is then imitated by a human adult, and
sensorimotor connections are updated in a Hebbian fashion so as to link the acoustics of the
adult imitation to the motor outputs of the model. After training, adult vowels can be input
and the model produces correct vowel imitations. In Heintz et al. (2009) and War-laumont et
al. (2011), learning from model productions is based on Hebbian associative learning
between the acoustics of the model’s own vocalization and its motor outputs. In addition to
learning based on self-production, these models include passive listening events, in which
the model receives external auditory input, as if from a caregiver, and the model self-
organizes its perceptual receptive fields and/or its Hebbian perceptual-motor connections as
a result. However, in these models, the utility of such passive learning from adult input for
improving imitation accuracy has not been established, although in a similar model by
Westermann and Miranda (2004) it has been shown that such adult input does produce
ambient language effects on perceptual representations. Presumably even if passive
perceptual input does not produce improvements in imitation accuracy, it is possible that
were the post-learning spontaneous vocalizations of these models to be explored, ambient
language effects of the sort shown in the literature on human infants might be observed. This
possibility has not yet been examined.

Kanda et al. (2009) have also addressed learning to produce the vowels of a given language.
The model is a recurrent neural network with parametric bias (RNNPB). In a first phase of
learning, inputs are sequences of adult vowels. The model is trained to predict, on the basis
of the acoustics and corresponding motor parameters at the current and previous time steps,
the acoustics and corresponding motor parameters that will be input at the next time step.
After this first phase of training, the model is able to segment sequences of vowels based on
where prediction errors are highest. In a second phase of learning, the model learns to
represent segmented vowels as constant values of two “parametric bias” neurons. After this
second phase of learning, the parametric bias neurons can be activated by the modeler and
the network accurately produces the correct vowels. Although the model performs well on
segmentation, recognition, and production tasks, its plausibility is questionable. It is
assumed that during training the model knows, for each adult vowel, both its acoustic
parameters and the precise articulatory motor parameters that generated the vowel. Such an
assumption is consistent with Liberman and Mattingly’s motor theory of speech perception
(Liberman & Mattingly, 1985), which posits that from birth, infants’ perception of speech
sounds is innately linked with the articulatory gestures that produce those speech sounds.
However, whether infants innately, without any prior learning, possess direct access to the
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precise motor commands they would need in order to produce a sound that they hear
someone else in their environment has produced is a strong assumption, especially given the
fact that infants do not at birth or even within the first few months of life produce
vocalizations that sound like speech, except perhaps accidentally (Oller, 2000).

Other work by Oudeyer (2005) is unique in that it does explicitly address ambient language
effects on spontaneous vocalizations. The model consists of multiple agents, each with a
layer of auditory neurons connected to a layer of motor neurons that in turn connect to three
articulatory parameters: lip rounding, tongue height, and tongue position. At each iteration,
an agent is randomly chosen and its motor neurons are randomly activated. The agent
adjusts, in a self-organizing manner, its neuro-articulator weights as well as the connection
weights between the two layers. The topographically closest neighbor hears the first agent’s
vocalization, has activation propagated from its auditory to its motor layer and then also
updates its neuro-articulator weights. In this way, the second agent becomes more likely to
spontaneously produce sounds similar to those of the first agent. The model provides an
impressive demonstration of how self-organized learning and interaction among agents can
affect clustering of the vowel space as well as adaptation of vocal productions to others in
the environment. However, by design it does not include modeling of either social or
intrinsic reinforcement effects. Also, like the other models, it does not address phonatory
learning.

Thus, despite the insights obtained from previous work, many aspects of early vocal motor
learning in human infancy remain to be modeled. For one, reinforcement has not been
incorporated, despite its important role in the empirical human infancy literature. Second,
the focus has been on responses to caregiver vocalizations or production of given sequences
of phones and has rarely (an exception being Oudeyer, 2005) addressed spontaneous
productions. Third, previous work has focused heavily on learning vowel sounds and has not
addressed development of control over phonation, which is also an important aspect of
speech production. In the present study, we introduce a neural network architecture that
addresses each of these three aspects of early vocal motor learning.

1.4. Our model
Our model consists of a topographically organized layer of neurons that control a
physiologically realistic vocalization synthesizer (Boersma & Wen-nink, 2010; Boersma,
1998) via neuromotor connections. During learning, the model explores its vocalization
capabilities. If and only if it produces a vocalization that is reinforced, its neuromotor
connections are updated to reflect its current neuronal and muscle activations. This
dependence of learning on reinforcement is consistent with neurophysiological findings that
learning in motor cortex is modulated by dopamine, a neurotransmitter strongly associated
with reinforcement (Molina-Luna, Pekanovic, Röhrich, Hertler, Schubring-Giese, Rioult-
Pedotti & Luft, 2009). Updating of neuromuscular weights follows the learning procedure
for the self-organizing map (Kohonen, 1990), a popular type of neural network consisting of
a layer of neurons with topographically-organized receptive fields that adapt to the
environment. The topographic organization corresponds to the topographic organization
observed throughout the brain.

The combination of self-organizing topographic map learning and reinforcement gating
represents a novel neural network modeling approach. Note that the approach has a different
emphasis from most computational reinforcement learning work such as those focusing on
temporal difference learning and related methods (Sutton & Barto, 1998). For example, we
do not consider reinforcement that is delayed. Another difference is that in our model the
primary function of reinforcement is to gate the learning of neuromotor connections. While
reinforcement learning systems have been developed that use neural networks for processing
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sensory inputs, only a few attempts have been made to make neural networks that use
reinforcement to learn how to produce behavioral outputs (Barto, 1995; Izhikevich, 2007).
Those that have have shown promising results, but have not to our knowledge used the self-
organizing map network or addressed problems of learning to produce complex motor
output patterns such as controlling over a dozen muscles as is done here. The benefit of
integrating reinforcement into neural networks is that, if successful, it could extend the
application of self-organized neural network learning to problems of motor learning. In
perceptual learning, self-organizing processes can take advantage of statistical regularities in
the sensory environment in order to learn structured representations. In motor learning that
is driven by random exploration, however, purely self-organized learning is of limited value
since there aren’t statistical regularities in the motor productions—they are produced at
random. Using reinforcement to gate learning is a simple modification of self-organized
learning that allows the self-organized learning process to take advantage of statistical
regularities in the motor space with regard to what actions lead to reward compared to what
actions do not.

2. Method
2.1. Vocalization synthesis and analysis

All of the simulations in the present study used Boersma’s articulatory speech synthesizer,
implemented in Praat, a free speech analysis and synthesis software (Boersma & Wennink,
2010; Boersma, 1998). The synthesizer consists of a model of the human vocal tract,
including the lungs, trachea, larynx, pharynx, oral cavity, and nasal cavity. The walls of the
vocal tract are modeled as coupled mass-spring systems. The synthesizer includes several
options for the number of masses used in modeling the vocal folds; for the present study, we
used the default two-mass option. The synthesizer also offers three sizes of vocal tract: adult
female, adult male, and child; we used the default adult female version, since our target
vowel acoustic measurements came from a study of adult female speakers. Based on the
volume of air in the lungs and the activation of laryngeal and upper vocal tract (i.e.,
pharynx, oral cavity, and nasal cavity) muscles, specified by the user, the synthesizer
calculates the positions and mechanical parameters of the vocal tract walls and the air
pressures at each section of the vocal tract over time. The fluctuating air pressure at the
mouth determines the synthesized sound. An advantage of using this synthesizer over the
synthesizers used in most previous models of infant vocal development is that it allows for
motor control of the larynx to be modeled, which is necessary for phonatory development to
be addressed.

For this study, all synthesized sounds lasted 0.5 s. Similar to the example given by Boersma
(1998), the Lungs parameter, which represents the speaker’s lung volume, was set to 0.2 at
time 0 s and to 0 at time 0.1 s (−0.5 corresponds to maximum exhalation and 1.5
corresponds to maximum inhalation). The activations of twenty muscle parameters, listed in
Table 1, varied across vocalization events according to the procedures described below.
Within a vocalization event muscle activations were static, i.e. there was no intra-
vocalization variation. How each muscle’s activation for a given vocalization event was
determined is described below in Section 2.3.

The synthesized sounds were analyzed automatically, also in Praat, to get estimated
measures of fundamental frequency (f0) and first and second formant frequencies (F1 and
F2) at 250 ms after the start of vocalization synthesis. When Praat could not identify an f0 at
this time in the sound, which tends to happen for example when the synthesized sound is
silent or breathy but lacking phonation, then the f0 was considered undefined. Ellis’s
RASTAMAT toolbox (Ellis, 2007) was used to convert frequencies from Hz to mel, as the
nonlinear mel scale better reflects the frequency scaling of the human auditory system. f0,
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F1, and F2 were the quantities that determined whether or not a given vocalization was
reinforced, as described in Section 2.5 below.

2.2. Neural network architecture
The neural network contained 25 neurons arranged on a 5 ×5 grid. Each neuron had a spatial
location defined by (x, y) coordinates (see Fig. 1) and each neuron had modifiable
connection weights to each of the twenty muscles. The connection weights from each
neuron to the set of all muscles determined a specific state of the synthesizer’s vocal tract. In
turn, each vocal tract state was associated with a synthesized vocalization for which f0, F1,
and F2 traces could be automatically estimated (although they could be undefined at the
measured point in time).

2.3. Learning
Prior to learning, the neurons’ connection weights to the vocal tract muscles were chosen
from a uniform random distribution ranging between 0 and 1. Each simulation had 1,000
learning events, each of which corresponded to a discrete time step. A learning event began
by randomly activating the motor neurons in an exploratory fashion. The extent of this
random exploration depended on whether the previous vocalization event had been
reinforced. If the model had not received reinforcement on the previous event, its activation
was drawn from a uniform random distribution ranging from zero to one. Alternatively, if
the model had indeed received reinforcement for its previous vocalization, instead of
resetting the neuronal activations, a small amount of noise, ranging from −0.25 to 0.25 was
added to the previous learning event’s neuron activations, subject to the constraint that the
resulting activations had to remain between 0 and 1. Thus, if the previous vocalization had
been reinforced, exploration was more precisely targeted. At this point, the most active node
(i.e. the node with the highest activation value as determined by the procedure just
described) and its closest neighbors were identified and local excitation and lateral inhibition
was effected as follows: The most active neuron had 2, 3, or 4 closest neighbors depending
on whether it was located on a corner, on an edge, or on the interior of the motor neuron
grid, respectively. These neurons remained excited. All other neurons besides that most
active neuron and its 2–4 neighbors were inhibited by setting their activations to zero.

Activation was then propagated from the neurons to the muscles. Muscle activations were
given by

where m̄ is a row vector representing the activation level of each vocal tract muscle, ā is a
column vector representing the activation of each neuron, and W is a matrix giving the
connection weights from each neuron (in rows) to each muscle (in columns). Thus, muscle
activations were a function of the normalized neuron activations propagated through the
weighted neuromus-cular connections. The n̄ is Gaussian noise added at the muscular level,
intended to model incidental variation in the shape of the vocal tract. Such variation would
correspond to changes in infants’ vocal tract positioning due to feeding, mouthing of objects
(Fagan & Iverson, 2007), or postural stabilization. Vocal-tract-level “noise” facilitated broad
exploration by the model of its full range of vocal capabilities. As with the exploratory
activation at the neuron level, noise at the muscular level was dependent on whether the
previous vocalization had been reinforced. Muscular noise was more restricted if the model
had previously been reinforced, having a standard deviation of 1 if the previous vocalization
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had not been rewarded and a standard deviation of 0.25 if it had. After the muscle
activations for the current event were determined, a vocalization corresponding to those
activations was synthesized, the vocalization’s f0, F1, and F2 were estimated, and based on
these values it was determined whether the network would receive reinforcement for the
vocalization event. The specific acoustic criteria for reinforcement are described in more
detail in Section 2.5.

If no reinforcement was given, the event concluded without any changes to the network
weights. However, if reinforcement was in fact given, the weights from the motor neurons to
the vocal tract muscles were modified according to a self-organizing map algorithm
(Kohonen, 1990),

where Wp,t gives the connection weights from neuron p to the vocal tract muscles at the time
of the current event, (x, y) are the coordinates on the motor neuron map for a given neuron,
and q is the most active motor neuron. α is the learning rate and was set to 0.8 for the
simulations presented here, based on pilot work indicating that compared to smaller learning
rates (e.g. α = 0.2) there was no substantial difference in performance other than slower
learning with the latter. θ is the size of the learning neighborhood and was set to 1. In other
words, the neuromotor connection weights were adjusted so that muscle activations similar
to those just produced would be more likely to be produced on subsequent events. At this
point, the learning event was complete.

2.4. Performance evaluation
At the beginning and end of each simulation, we tested the network to see what kinds of
vocalizations it would spontaneously produce. Each simulated network was made to
vocalize 25 times in the same manner as in training except that no reinforcement was ever
provided and there was no noise added at the muscular level. The muscular-level noise was
left out in order to provide a clear view on what the network learned at the neural level.

2.5. Reinforcement criteria
Seven different reinforcement conditions were evaluated, with the goal being to compare the
sounds produced and the neural representations developed across the different conditions.
We ran 50 simulations for each reinforcement condition.

In the first condition, reinforcement was always given, no matter what the network
produced. In the second condition, reinforcement was given if the sound produced by the
model had a defined f0 at time 0.25 s which had the effect of reinforcing voiced (i.e.
phonated) but not unvoiced (e.g., silent or breath-only) sounds. Although the reinforcement
criterion is quite simple, the act of phonation involves coordination of a number of muscles
(see Table 1) in order to cause vibration in a nonlinear system of laryngeal tissues (Buder,
Chorna, Oller & Robinson, 2008; Titze, 2008).

In the third condition, in order to be reinforced the model’s vocalization had to not only be
phonated (operationalized as having defined f0) but also had to be similar to one of thirteen
American English vowels. Similarity to a vowel was operationalized as Euclidean distance
in the two-dimensional space defined by F1-f0 and F2-F1). Most previous efforts to
characterize vowels quantitatively have focused on fundamental, first, second, and
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sometimes third formant frequencies, with this method of differencing bark-scaled or log
values (the mel scale is similar to the bark scale) having precedent in studies of both human
vowels and vowels produced by articulatory synthesizers (Johnson, 2005; Heintz et al.,
2009). The model had to become increasingly similar to one of the vowels, or else fall
within a threshold degree of similarity, in order to be reinforced. The threshold degree of
similarity was 3 mels (in other words, the target region around a vowel was a circle with a 3
mel radius). Throughout training, a record was kept, for each American English vowel, of
the top ten model vocalizations that were closest to that American English vowel. The
increasingly similar criterion for reinforcement was defined such that on a given trial, the
model’s production, if it did not fall within the 3-mel radius of an American English vowel,
had to at least be closer to one of the American English vowels than one of the top ten
previous model vocalizations.

The fourth condition was the same as the third except that ten Korean (instead of English)
vowel targets were used. The American English and Korean vowel targets were taken from a
prior study of vowels produced by adult female native speakers of the two languages (Yang,
1996).

The fifth reinforcement condition was the same as the third except that instead of all
American English vowels being targeted, only the vowel /a/ was reinforced. The sixth and
seventh conditions were the same as the fourth except that the individual target vowels
were /e/ and /u/, respectively. Focusing on single vowel targets allowed us to see how well
the model can learn to produce specific vowels, and to clearly visualize the effects of
reinforcement.

The reinforcement in any of these conditions could potentially model both extrinsic and
intrinsic reinforcement. An example of extrinsic reinforcement in this domain would be a
parent preferentially responding to voiced sounds as opposed to very quiet sounds or silence
(parents almost certainly do respond contingently in this way, as discussed in section 1.2).
Similarly, parents may respond contingently to vowel sounds that sound like those in their
own language(s), especially when they interpret the child’s sound as a word. An example of
intrinsic reinforcement would be when a child is made happy, engaged, curious, or some
other positive emotion when they produce a sound as opposed to silence—this seems highly
likely since the production of voiced sounds at the larynx will stimulate both the auditory
system and the so-matosensory system. With regard to vowels, intrinsic reinforcement is
also possible. In our model, reinforcement for production of vowels from a spe-cific
language could correspond to the satisfaction or interest generated in a child when they
produce a sound that they recognize as corresponding to sounds they have often heard
others, such as their caregivers and siblings, produce. Regardless of the source of
reinforcement, the same mechanism of reinforcement-gated learned utilized by our model
could be at play.

We tested both phonatory and articulatory performance after learning. Greater post-learning
tendency both to produce voiced sounds and to produce sounds resembling the target
language would indicate generalizability of the reinforcement-gated self-organized learning
approach. In particular, it would show that the model can, using a single learning
mechanism, simultaneously learn two foundational speech skills, phonation and vowel
articulation.
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3. Results
3.1. Phonation before and after learning

As shown in Fig. 2, before any learning, across simulations the mean number of
vocalizations that had identifiable f0 was approximately 5 (out of a possible 25). When the
model was reinforced at every trial, regardless of phonation, the mean number of
vocalizations with identifiable f0 after learning was only 2.28. For the various reinforcement
conditions where reinforcement was contingent on phonation, the mean number of
vocalizations with identifiable f0 after learning ranged between 20.2 and 24.5. For each
reinforcement condition, the difference between the number of sounds with f0 before versus
after training was highly significant, p < .001. This indicates that when reinforcement was
contingent on voicing (i.e. phonation), the model learned to reliably produce sounds that
were clearly voiced (not silent or purely breathy). When reinforcement was given all the
time, without regard to voicing, the model’s production of sounds that were voiced actually
decreased after learning.

Fig. 3 illustrates, for one of the networks that was reinforced for any sound with identifiable
f0, the sounds that were produced before and after learning when each of the 25 neurons was
activated in isolation. As can be seen in Fig. 3, most of the spectrograms of sounds produced
by the neurons before training showed little acoustic energy and were essentially silent. In
contrast, after learning, almost all of the neurons produced sounds with high acoustic
energy, indicating that the network has learned to produce audibly voiced sounds, that is, to
phonate. It can also be seen that there was a range of durations, spectral qualities, and
amplitudes: apparently, the simple requirement of defined f0 at time 0.25 left opportunity for
the neural network to develop representations for motor control of sounds with a variety of
different phonatory characteristics. Finally, note that after learning had taken place, the
network exhibited topographic organization—neurons located near each other tended to
produce sounds with similar-looking spectrograms.

Fig. 4 shows the laryngeal muscle activations responsible for producing the vocalizations
spectrograms in Fig. 3. The figure shows consistencies with what is known about roles of
the various laryngeal muscles in phonation. In particular, muscle number 4, the
thyroarytenoid, a muscle that courses beside each vocal fold and promotes phonation by
adducting the vocal folds (it also relaxes and shortens them), is highly activated, as would be
expected. Additionally, muscle number 6, the lateral cricoarytenoid, shows greater
activation than muscle number 5, the posterior cricoarytenoid; this corresponds to the fact
that the lateral cricoarytenoid is a vocal fold adductor and therefore promotes phonation
whereas the posterior cricarytenoid is a vocal fold abductor, inhibiting phonation.

3.2. Vowel types produced before and after learning
To investigate the types of vowels produced under the various vowel reinforcement
conditions, we used the same set of test vocalizations as was used for the phonation
evaluations. We compared the simulations in which any sound with identifiable f0 was
reinforced, in which vocalizations resembling any of the American English vowels were
reinforced, and in which vocalizations resembling any of the Korean vowels were
reinforced. The dependent variables were the number of sounds falling within 3 mel of the
American English vowels and the number of sounds falling within 3 mel of the Korean
vowels.

As can be seen in in Fig. 5, all of the networks produced fewer vowels resembling the vowel
targets before learning than after learning. This pattern may be driven in part by the fact that
before learning all networks produced fewer sounds with defined f0, and if a sound did not
have defined f0, it was automatically considered not similar to any of the target vowels.
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After learning, the American-English-reinforced model produced the most sounds falling
within the 3 mel target range of the American English vowels. A mixed-model regression
with vowel and simulation as random effects, reinforcement for American English versus
Korean as a fixed effect, and number of vowels resembling American English targets as the
dependent variable showed that the difference between reinforcement conditions in the
number of American-English-like productions after learning was statistically signifi-cant, β
= 0.23, p < .001. While the mean number of vowels falling within 3 mel of the Korean
targets was overall lower for all reinforcement conditions (some possible explanations for
this bias will be given in the Discussion), the Korean-reinforced model was the best-
performing. A mixed model regression with number or vowels resembling the Korean
targets as the dependent variable revealed the effect of the reinforced language to again be
statistically significant, β = 0.28, p < .001. Note that β, the standardized regression co-
efficient, is comparable across the two target languages, indicating that the effect of
reinforced language was similar in magnitude for both. Fig. 6 shows the relative formants of
the productions from each version of the model after training. In sum, the model learned to
produce more of the vowels from the language for which it was reinforced.

For a closer look at the model’s learning of specific vowels, we compared the simulations in
which only the American English /a/ was reinforced, in which only the American English /e/
was reinforced, and in which only the American English /u/ was reinforced. The dependent
variables were the number of sounds falling within 3 mel of /a/, /e/, and /u/. As can be seen
in Fig. 7, it was the simulations that were reinforced for /a/ that produced the most vowels
resembling /a/ after learning. The differences between /a/-reinforcement and /e/-
reinforcement and between /a/-reinforcement and /u/-reinforcement were both statistically
significant with p < .001 in both cases. Similarly, the simulations reinforced for /u/ produced
more vowels resembling /u/ than the simulations reinforced for /a/ and /e/, p < .001 in both
cases. The simulations reinforced for /e/ produced more vowels resembling /e/ than the
simulations reinforced for /a/, p = .02, and marginally more than the simulations reinforced
for /u/, p = .10. Overall, fewer productions were close to the /e/ target than were close to
the /a/ or /u/ targets. Fig. 8 shows the relative formants of each model’s productions after
training. The plots confirm that while the model readily learned to produce precise /a/’s
and /u/’s, it had more difficulty learning to produce /e/ as evidenced by the broad
distribution of vocalizations produced in simulations where /e/ was the target vowel.

4. Discussion
We have presented a new neural network model wherein exploration and reinforcement are
integrated with topographic self-organized learning. A layer of neurons is connected to the
muscle inputs of a realistic human vocal tract synthesizer. The model explores its
vocalization abilities by randomly activating neurons, with some noise added at the
muscular level. When it receives reinforcement for a vocalization, it updates its
neuromuscular connection weights so that similar motor commands become more likely to
be produced in the future. We show that the model can learn at least two foundational
speech-related skills: production of phonated sounds and production of specific vowel types.

One of the contributions of this work is that it specifies at a mechanistic level how
reinforcement, which is known to play a role in speech development (Gros-Louis et al.,
2006, Goldstein & Schwade, 2008; Goldstein, King & West, 2003), may be used by human
infants as they develop sounds with speech-like characteristics. For example, it has been
shown that when caregivers’ vocal reinforcement is contingent on infants’ production of
vocalizations, the frequency of infant vocalization increases (Goldstein et al., 2003). In our
model, reinforcement that is contingent on phonation (as measured by the sound having an
identifiable f0) signals the model to modify the connection weights from its motor neurons
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to its vocal tract muscles so that future neuronal activity will be more likely to result in
phonated sounds. As discussed in Results, the laryngeal muscle activation levels produced
after learning correspond to what would be expected based on previous physiological studies
of speech production.

Note, however, that our model is agnostic regarding the source of reinforcement.
Reinforcement could come directly from social sources, such as a mother vocalizing toward
her infant. It is also possible for an infant to be reinforced intrinsically, for example by
producing an appealing sound, where the appeal is based on auditory salience or similarity
to sounds that the infant has previously heard other individuals produce. In future work, it
would be good to model these distinct possible sources of reinforcement in more detail, for
example incorporating extrinsic reinforcement that has contingencies similar to those
observed in naturalistic parent-child interactions or in experiments with children. Intrinsic
reinforcement could perhaps be modeled by adding an auditory system that perceives
different sounds as having different levels of saliency, where reinforcement would increase
as saliency increases. In addition to or instead of saliency, information content could be
used. The auditory system could also learn from sounds produced by speakers of the target
language, perhaps altering its sense of saliency or desirability. In either case, the extrinsic or
intrinsic reward could be used to gate learning according to the model proposed here.

In addition to learning to phonate, the model also develops a propensity toward producing
vowels like those for which it has been reinforced, whether that be the whole set of
American English or Korean vowels or a single isolated vowel. A process of reinforcement-
gated learning may be one of the mechanisms underlying babbling drift findings, i.e. shifting
of vowels toward those that are most frequent in the infant’s language environment (de
Boysson-Bardies et al., 1989). Previous neural network models of speech production
learning have all depended critically on learning sensorimotor correspondences in order to
achieve ambient-language effects (Yoshikawa et al., 2003; Guenther et al., 1998; Heintz et
al., 2009; Warlaumont et al., 2011; Kanda et al., 2009; Westermann & Miranda, 2004).
None of those prior studies report data on spontaneous vocal productions, although those
that include learning of connections between motor neurons and the vocal tract would be
expected to exhibit ambient language effects on spontaneous productions. Our model, in
contrast, requires no learning of sensorimotor correspondences, relying instead on
reinforcement-gated learning of neuromotor connections and therefore illuminating an
additional pathway through which the ambient language environment may shape
spontaneous productions.

The model appears to exhibit not only learning effects but also biases with regard to the
sounds the realistic vocal tract simulator can learn to reliably produce.These are (1) a bias
against the vowel /e/ compared to the vowels /a/ and /u/ and (2) a bias toward better
performance on American English vowel targets compared to Korean targets. Regarding the
first bias, physiological vocal tract constraints are known to play a strong role in vowel
development, as Oudeyer discusses with regard to his own model of speech sound learning
and evolution (Oudeyer, 2005), and presumably play a role in the human system as well. In
support of this, it is observed that /e/, /i/, and /u/ are less frequent in human infants’
vocalizations than /a/ (de Boysson-Bardies et al., 1989; Ishizuka, Mugitani, Kato & Amano,
2007). Thus, the model’s weakness on /e/ and /i/ relative to /a/ fits with the human infant
data. However, the model’s strong performance on /u/ does not correspond to the pattern
from human data. Furthermore, the synthesizer used in the present study models an adult
female vocal tract and the acoustic vowel targets are based on average adult female
productions from the literature, making the particular pattern of difficulty on mid and high
front vowels such as /e/ in the present study even more surprising.
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We suspect the difficulty with /i/ and /e/ reflects issues with our acoustic measure for
evaluating vowel similarity. Although the geometry of the vocal tract model was intended to
be similar to that of a typical adult female, there are likely still a number of differences from
the vocal tracts of the adult females whose mean vowel fundamental and formant
frequencies were used as targets. It is known that any differences across speakers’ vocal
tract shapes can affect vowel perception (Johnson, 2005). Additionally, the sounds produced
after training in the /e/ target simulations to our ears tended to sound more similar to /e/ than
the sounds produced after training in the /u/ target simulations sounded similar to /u/. Thus,
it may be that a better metric for comparing the vowels produced by the model to those in
other languages is essential for performance that better reflects that of human infants. First
and second formant frequencies (F1 and F2) are the most popular metric for quantifying
vowel acoustics, which is consistent with the fact that they are the most prominent
perceptual dimensions identified through multidimensional scaling (Johnson, 2005). It has
been shown that perception of formant frequencies is sensitive to fundamental frequency
(f0), and there is support for the idea that measures that make formant frequencies relative to
each other and to f0, such as F1/f0 and F2/F1 or F1-f0 and F2-F1 (which become ratios rather
than differences when log frequencies or approximately log frequencies such as in the mel
or Bark scales are used), may prove to be better for vowel classification (Johnson, 2005).
Here we have taken this approach, using F1-f0 and F2-F1. We also tried using simply F1 and
F2, without any subtraction of other frequencies, and found roughly the same pattern of
results. It may be important that there is strong evidence from the human vowel acoustic
literature that the fundamental frequency and formant frequencies, regardless of which of the
above transformations are used, do not completely account for listener perceptions of vowel
type (Zahorian & Jagharghi, 1993; Ito, Tsuchida & Yano, 2001; Johnson, 2005; Heintz et
al., 2009).

Future research should explore other less traditional acoustic correlates of vowel productions
as well as human listener judgments to see if better results on /i/ and /e/ can be obtained
(e.g., using speaker-specific standardized formant values, Johnson, 2005). A particularly
useful approach might be to replace the a priori choice of acoustic features defining the
vowels with a system, such as a Hebbian network or a multilayer perceptron trained with
backpropagation, that learns the mappings between acoustic features and human listener
vowel labels for model-produced sounds.

The second bias, toward better performance on American English vowels compared to
Korean vowels, could be due in part to the way the vowels are distributed in the different
languages. The American English vowels tended to be clustered together more continuously
in formant space whereas there were distinct gaps between groups of Korean vowels (see
Fig. 6). The model’s productions tended to cover a fairly continuous region of space
regardless of which language it was trained on, and reinforcement for a particular language
tended to shift and reshape this region, but without breaking the continuity of the vowel
production space. Since we set a fixed 3 mel boundary for the vowels, the greater separation
between vowel formant means with Ko-rean than that within American English resulted in
more vowel productions landing in the spaces between the Korean vowel circles. This bias
might disappear if instead of evaluating the model based on the number of its vowels falling
within a fixed 3-mel circle, the model’s language-specific performance were evaluated
based on the number of its vowels falling within the borders of the complete vowel space.
Consistent with the observation of variability and overlap in model productions both before
and after learning, the vowels produced by children at various ages from 3 months up
through 5 years are observed also to occupy continuous regions of formant space (Kent &
Murray, 1982; de Boysson-Bardies et al., 1989; Ishizuka et al., 2007), as are the vowels
produced by adults during spontaneous speech (Harmegnies & Poch-Olivé, 1992;
Nicolaidis, 2003). Thus, although eventually children’s vowel productions shift over
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development toward those vowels characteristic of the language, a great deal of variability
and overlap among vowels is always present in spontaneous productions. Interestingly, some
of this variability in adult productions could potentially prove useful to infants during word
learning (Rost & McMurray, 2009).

Previous studies involving other neural network models of infant vocal development have
not reported quantitative results regarding ambient-language effects on spontaneous vocal
productions and have not addressed the development of phonation. In the future, doing so
would permit direct comparison of our results to those of the previous models discussed in
the Introduction. Additionally, more detailed comparison of the behavior of this and other
models to the behavior of human infants and their caregivers will be helpful in further
developing the work. Increased efforts to tie neural network modeling directly to
neurophysiological findings, to anatomical changes across the lifespan, and to patterns of
difference observed in clinically relevant groups, such as those with hearing impairment or
those with autism, would also be expected to improve the models and therefore increase
their scientific and clinical value.

Our mechanism and those of previous models are not mutually exclusive. Reinforcement-
gated motor learning, perceptual learning, and sensorimotor associative learning are likely
all involved in infant vocal development. The various mechanisms likely also interact with
each other. For instance, changes in perceptual representations as a result of exposure to
sounds from an ambient language may affect how the infant perceives sounds to be salient
or otherwise intrinsically rewarding. A model that combines perceptual learning with
reinforcement-guided motor learning would provide a more complete account of how infants
come to produce the vowels of their native language, since it would not assume as much
prior knowledge as the current model about what vowels should be reinforced. In the future,
a more comprehensive model of vocalization development that combines these various
mechanisms should be developed and evaluated. Additionally, all existing models of vocal
development must be extended in the future to address problems of the development of fine-
grained dynamic sequences, such as those required for the precise syllable timing that also
emerges in the first year of life and is a critical pre-speech skill. Finally, it is worth exploring
the possibility that the same principles exemplified by our model may generalize to domains
such as in the development of gestures and reaching skills.

5. Conclusions
We have presented the first neural network model to address how reinforcement may play a
role in human vocalization development. It introduces a new approach that combines self-
organization with selective reinforcement. The model exhibits several general characteristics
of human infant vocal development, including sensitivity of vocal productions to
reinforcement, development of phonatory skill, and development of a tendency of vowel
production acoustics to be more consistent with the vowels in the ambient language than
with vowels from other languages. These positive results warrant the further development
and improvement of our model and others that address the role of reinforcement in vocal
motor learning.
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Figure 1.
Schematic diagram of the neural network model.
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Figure 2.
Mean numbers of vocalizations with identifiable fundamental frequency before and after
learning. Means are over the 50 simulations within a given reinforcement condition. Error
bars indicate standard errors.
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Figure 3.
Spectrograms of sounds produced by individually activating each neuron in one of the
simulations from the second reinforcement condition, in which any sound with identifiable
f0 was reinforced. Before learning (pictured at top), three neurons’ productions were judged
as being voiced: these are located at row 2, column 4; row 4, column 1; and row 4, column
3. After learning (pictured at bottom), all neurons’ productions were judged as being voiced
except for one, located at row 3, column 1.
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Figure 4.
Connection weights from each neuron in one of the simulations from the second
reinforcement condition (the same simulation as in Fig. 3) to each of the laryngeal vocal
tract muscles (see Table 1). Darker colors indicate higher weights and thus higher muscle
activations.
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Figure 5.
Mean numbers of vowels within 3 mel of American English (left) and Korean (right) vowels
for models in three different reinforcement conditions before and after learning. Means are
over the 50 simulations within a given reinforcement condition. Error bars indicate standard
errors at the item level.
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Figure 6.
Relative vowel formants of the vocalizations produced by individually activating each motor
neuron from all the simulations in each of three different reinforcement conditions. Left:
reinforced for any sound with defined f0. Middle: reinforced for any American English
vowel. Right: reinforced for any Korean vowel. Each gray dot represents one neuron’s
vocalization. Vocalizations from the 50 simulations in the same condition are superimposed.
For each reinforcement condition, the targets of training are shown in black characters with
circles delineating the 3 mel radius around each target.
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Figure 7.
Mean numbers of vowels within 3 mel of /a/, /e/, and /u/ for models trained on /a/, /e/, and /
u/, before and after learning. Error bars indicate standard errors.
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Figure 8.
Relative vowel formants produced when activating neurons in isolation from networks in
trained on /a/, /e/, or /u/. Neurons from different simulations in the same reinforcement
condition are superimposed. For each condition, the targets of training are shown in black
characters with circles delineating the 3 mel radius around each target.
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Table 1

The vocal tract synthesizer muscles controlled by the neural network. Laryngeal muscles are those mainly
involved in phonation and articulatory muscles are those mainly involved in controlling the shape of the upper
vocal tract.

Muscle number Name Grouping

1 Interarytenoid Laryngeal

2 Cricothyroid Laryngeal

3 Vocalis Laryngeal

4 Thyroarytenoid Laryngeal

5 Posterior Cricoarytenoid Laryngeal

6 Lateral Cricoarytenoid Laryngeal

7 Styloglossus Articulatory

8 Masseter Articulatory

9 Upper Tongue Articulatory

10 Lower Tongue Articulatory

11 Orbicularis Oris Articulatory

12 Vertical Tongue Articulatory

13 Transverse Tongue Articulatory

14 Levator Palatini Articulatory

15 Risorius Articulatory

16 Genioglossus Articulatory

17 Hyoglossus Articulatory

18 Mylohyoid Articulatory

19 Lateral Pterygoid Articulatory

20 Buccinator Articulatory
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