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a b s t r a c t

Weconsider themultitasking associative network in the low-storage limit andwe study its phase diagram
with respect to the noise level T and the degree d of dilution in pattern entries. We find that the system is
characterized by a rich variety of stable states, including pure states, parallel retrieval states, hierarchically
organized states and symmetric mixtures (remarkably, both even and odd), whose complexity increases
as the number of patterns P grows. The analysis is performedboth analytically andnumerically: Exploiting
techniques based on partial differential equations, we are able to get the self-consistencies for the
order parameters. Such self-consistency equations are then solved and the solutions are further checked
through stability theory to catalog their organizations into the phase diagram, which is outlined at the
end. This is a further step towards the understanding of spontaneous parallel processing in associative
networks.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The paradigm, introduced almost three decades ago by Amit,
Gutfreund and Sompolinsky (Amit, 1989; Amit, Gutfreund, &
Sompolinsky, 1985), of analyzing neural networks through tech-
niques stemming from statistical mechanics of disordered systems
(mainly the celebrated Replica Trick Mézard, Parisi, & Virasoro,
1987 for the Hopfield model Hopfield, 1982) has been so prolific
that its applications went far beyond Artificial Intelligence and
Robotics, overlapping Statistical Inference (Cheng & Titterington,
1994), System Biology (Nolfi & Floreano, 2000), Financial Market
Planning (Trippi & Turban, 1992), Theoretical Immunology (Agliari,
Barra, Guerra, & Moauro, 2011) and much more.

As a result, research in this field is under continuous devel-
opment, ranging from the diverse applications outlined above, to
a deeper and deeper understanding of the core-theory behind.
For the sake of reaching results closer to experimental neuro-
science outcomes, scientists involved in the field tried to bypass
the rather crude mean field description of a fully connected net-
work of interacting neurons, embedding them in diluted topolo-
gies as Erdös–Rényi graphs (Sompolinsky, 1986), small-worlds
(Nikoletopoulos et al., 2004) or even finitely connected graphs
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(Wemmenhove & Coolen, 2003). The main point was showing ro-
bustness of the mean-field paradigm even in these diluted, and in
some sense ‘‘closer to biology’’, versions and this was indeed suc-
cessfully achieved (with the exception of too extreme degrees of
dilution, where the associative capacities of the network trivially
break down).

Recently, a mapping between Hopfield networks and Boltz-
mann machines (Barra, Bernacchia, Santucci, & Contucci, 2012) al-
lowed the introduction of dilution into associative networks from
a different perspective with respect to standard link removal à la
Sompolinsky (1986) or à la Coolen (Nikoletopoulos et al., 2004;
Wemmenhove & Coolen, 2003). In fact, while in their papers these
authors performdilutiondirectly on theHopfield network, through
the equivalence with the Boltzmann machine, one may perform
link dilution on the Boltzmann machine and then map the latter
back into the associative Hopfield-like network (Agliari, Barra, Gal-
luzzi, Guerra, & Moauro, 2012). Remarkably, the resulting model
still works as an associative performer, as the Hebbian structure is
preserved, but its capabilities are quite different from the standard
scenario. In particular, the resulting associative network may still
be fully connected but the stored patterns of information display
entries which, beyond coding information through digital values
±1, can also be blank (Agliari, Barra, De Antoni, & Galluzzi, 2012;
Agliari, Barra, Galluzzi et al., 2012). In fact, any missing link in the
bipartite Boltzmann machine corresponds to a blank entry in the
related pattern of the associative network.

Now, while standard (i.e., performed directly on the Hopfield
network) dilution does not change qualitatively the system
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performances, the behavior of the system resulting from hidden
(i.e., performed on the underlying Boltzmann machine) dilution
becomes ‘‘multitasking’’ because retrieval of a single pattern, say
ξ 1, does not exhaust all the neurons, and the ones coupled with
the blank entries of ξ 1 are free to align with ξ 2, whose entries will
partially be blank aswell, hence eliciting, in turn, the retrieval of ξ 3
and so on up to a parallel logarithmic (with respect to the volume
of the network N) load of all the stored patterns.
As a consequence, by tuning the degree of dilution in the hidden
Boltzmann network and the level of noise in the directed network,
the system exhibits a very rich phase diagram,whose investigation
is the subject of the present work.

The paper is organized as follows. In Section 2, we review the
multitasking networks introduced in Agliari, Barra, Galluzzi et al.
(2012) highlighting their main features and providing a rigorous
solution for their thermodynamics through a novel technique
based on mapping the statistical mechanical problem into a
diffusion problem and then solving the latter through standard
partial differential equation methods. In Section 3, the solutions
obtained in the previous section are investigated. In particular, we
discuss the emergence of spurious states for these multitasking
networks. Then, in Section 4, we describe the analytical technique
used to study the stability of the retrieval states, which are found
to be solutions of the system. In Section 5, agreement with Monte
Carlo simulations is presented, while, finally, Section 6 is devoted
to a summary and a discussion of the results.

2. The multitasking associative network

In the conventional Hopfield model (see, e.g., Amit, 1989,
Coolen, Kühn, & Sollich, 2005), one considers a network of N neu-
rons, where each neuron σi can take two states, namely, σi = +1
(firing) and σi = −1 (quiescent). Neuronal states are given by the
set of variables σ = (σ1, . . . , σN). Each neuron is located on a node
of a complete graph and the synaptic connection between two ar-
bitrary neurons, say,σi andσj, is defined by the followingHebb rule
(Amit, 1989):

Jij =
1
N

P
µ=1

ξ
µ

i ξ
µ

j , (1)

where ξµ = (ξ1, . . . , ξN) denotes the set of memorized patterns,
each specified by a labelµ = 1, . . . , P . The entries are dichotomic,
i.e., ξµi ∈ {+1,−1}, chosen randomly and independently with
equal probability, namely, for any i and µ,

P(ξµi ) =
1
2
(δξµi −1 + δξµi +1), (2)

where the Kronecker delta δx equals 1 iff x = 0, otherwise it is zero.
Patterns are assumed as quenched, that is, the performance of the
network is analyzed keeping the synaptic values fixed.

The Hamiltonian describing this system is

HN(σ, ξ) = −

N
i=1

N
i>j=1

Jijσiσj

= −
1
2N

N,N
i,j=1
j≠i

P
µ=1

ξ
µ

i ξ
µ

j σiσj, (3)

so that the signal (i.e. the field) acting on neuron i is

hi(σ, ξ) =

N
j=1
j≠i

Jijσj. (4)

The evolution of the system is ruled by a stochastic dynamics,
according to which the probability that the activity of a neuron i
assumes the value σi is

P(σi; σ, ξ, β) =
1
2
[1 + tanh(βhiσi)], (5)

where β ≡ T−1 tunes the level of noise (hence T plays as tem-
perature as in classical physics) such that for β → 0 the system
behaves completely randomly,while forβ → ∞ it becomes noise-
less and deterministic; notice that the noiseless limit of Eq. (5) is
σi(t + 1) = sign[hi(t)].

The main feature of the model described by Eqs. (3) and (5)
is its ability to work as an associative memory. More precisely,
the patterns are said to be memorized if each of the network
configurations σi = ξ

µ

i for i = 1, . . . ,N , for every one of the P
patterns labeled byµ, is a fixed point of the dynamics. Introducing
the overlap mµ between the state of neurons σ and one of the
patterns ξµ, as

mµ
=

1
N
(σ · ξµ) =

1
N

N
i=1

σiξ
µ

i , (6)

such a pattern is said to be retrieved if, in the thermodynamic limit,
mµ

= O(1). Given the definition (6), the Hamiltonian (3) can also
be written as

HN(σ, ξ) = −N
P

µ=1

(mµ)2 + P = −Nm2
+ P. (7)

The analytical investigation of the system is usually carried
out in the thermodynamic limit N → ∞, consistently with the
fact that real networks are comprised of a very large number of
neurons. Dealing with this limit, it is convenient to specify the
relative number of stored patterns, namely P/N and to define the
ratio α = limN→∞ P/N . The case α = 0, corresponding to a
number P of stored patterns scaling sub-linearly with respect to
the amount of performing neurons N , is often referred to as ‘‘low
storage’’. Conversely, the case of finiteα is often referred to as ‘‘high
storage’’. In particular, in the former case (α = 0), the overall
behavior of the standard Hopfield model is ruled only by the noise
T ≡ 1/β and the so-called pure-state ansatz

m = (m, 0, . . . , 0), (8)

always corresponds to a stable solution for T < 1; the order in the
entries is purely conventional and here we assume that the first
pattern is the one stimulated.

Let us nowmove on and generalize the system described above
in order to account for the existence of blank entries in the patterns
ξ . More precisely, we replace Eq. (2) by

P(ξµi ) =
1 − d
2

δξµi −1 +
1 − d
2

δξµi +1 + dδξµi , (9)

where d encodes the degree of ‘‘dilution’’ in pattern entries. Pat-
terns are still assumed as quenched and, of course, the definitions
of the Hamiltonian (3) and of the overlaps (6), with the dynamics
provided by (5) still hold.

As discussed in Agliari, Barra, De Antoni et al. (2012), Agliari,
Barra, Galluzzi et al. (2012), this kind of extension has strong
biological motivations and also yields highly non-trivial thermo-
dynamic outcomes. In fact, the distribution in Eq. (2) necessarily
implies that the retrieval of a unique pattern does employ all the
available neurons, so that no resources are left for further tasks.
Conversely, with Eq. (9) the retrieval of one pattern still allows
available neurons (i.e., those corresponding to the blank entries of
the retrieved pattern), which can be used to recall other patterns
up to the exhaustion of all neurons. The resulting network is there-
fore able to process several patterns simultaneously.

In particular, in the low-storage regime, it was shown both
analytically (via density of states analysis) and numerically (via
Monte Carlo simulations) (Agliari, Barra, Galluzzi et al., 2012), that
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the system evolves towards an equilibrium state where several
patterns are simultaneously retrieved. In the noiseless limit T = 0
and for d not too large, the equilibrium state is characterized by a
hierarchical overlap

m = (1 − d)(1, d, d2, . . . , 0), (10)

hereafter referred to as the ‘‘parallel ansatz’’. On the other hand,
in the presence of noise or for large degrees of dilution in pattern
entries, this state ceases to be a stable solution for the system and
different states, possibly spurious, emerge. The aim of this work
is to highlight the equilibrium states of this system as a function
of the parameters d and T , and finally build a phase diagram; for
this task we develop, first, a rigorous mathematical treatment for
calculating the free energy of the model and then obtain the self-
consistencies constraining the phase diagram; then,we solve these
equations both numerically and with a stability analysis. In this
way we are able to draw the phase diagram, whose peculiarities
lie in the stability of both even and odd mixtures of spurious
states (in proper regions of the parameters) and the formation of
parallel spurious states. Both these results generalize the standard
counterpart of classical Hopfield networks.

Findings are double-checked throughMonte Carlo runs that are
in excellent agreement with the picture we obtained.

2.1. Statistical mechanics analysis through Fourier technique

We solve the general model described by the Hamiltonian (3),
with patterns diluted according to (9), in the low storage regime
P ∼ logN , such that the limit α = limN→∞ P/N = 0 holds.1

Due to the formal analogywith statistical-mechanicsmodels for
magnetic systems (Amit, 1989), in the following neurons will be
also referred to as spins.

As standard in disordered statistical mechanics, we introduce
three types of average for an observable o(σ, ξ):
(i) the Boltzmann average ω(o) =


σ o(σ, ξ) exp[−βH(σ; ξ)]

/ZN,P(β, d), where

ZN,P(β, d) =


{σ }

exp [−βHN(σ, ξ)]

is called the ‘‘partition function’’, (ii) the average E performed over
the quenched disordered couplings ξ , (iii) the global expectation
Eω(o) defined by the brackets ⟨o⟩ξ .

Given these definitions, for the average energy of the system E
we can write E ≡ limN→∞(⟨HN(σ, ξ)⟩/N).

Also, we are interested in finding an explicit expression for
the order parameters of the model, namely the averaged P Mattis
magnetizations

⟨mµ
⟩ = lim

N→∞

Eω


1
N

N
j=1

ξ
µ

j σj


. (11)

For this task we need to introduce the statistical pressure

α(β, d) = lim
N→∞

1
N

ln(ZN,P(β, d)),

which is immediately related to the free energy per site f (β, d)
by the relation f (β, d) = −α(β, d)/β because, by maximizing
α(β, d)with respect to the P magnetizations ⟨mµ

⟩, we get exactly

1 Results outlined within this scaling can be extended with little effort to the
whole region P ∼ Nγ , with γ < 1, such that the constraint α = 0 is preserved, as
realized in the Willshaw model (Willshaw & von der Malsburg, 1976) concerning
neural sparse coding.

Note further that there is a deep similarity with the Potts model with pairwise
interaction (Wu, 1982).
the self-consistency equations for these order parameters, whose
solutions will give us a picture of the phase diagram.

In the past decades, scientists involved in disordered statistical
mechanics investigations, even beyond Artificial Intelligence, laid
down several strands for solving this kind of problems, and
nowadays a plethora of techniques is available. We extend early
ideas of Guerra, on the lines developed in Genovese and Barra
(2009), consisting of modeling disordered statistical mechanics
through dynamical system theory and in particular, here, we are
going to proceed as follows:

Our statistical-mechanics problem is mapped into a diffusive
problem embedded in a P-dimensional space and with given,
known, boundaries. We solve the diffusive problem via a standard
Green-propagator technique, and then we will map back the
obtained solutions in terms of their original statistical mechanics
meaning.

For this task, let us introduce and consider a generalized Boltz-
mann factor BN(x, t) depending on P + 1 parameters x, t (which
we think of as generalized P-dimensional Euclidean space and time)

BN(x, t; ξ, σ)

= exp


t
2N

N
i≠j

σiσj

P
µ=1

ξ
µ

i ξ
µ

j +

P
µ=1

xµ
N
j=1

ξ
µ

j σj


, (12)

and the generalized statistical pressure

αN(x, t) =
1
N

ln


{σ }

BN(x, t; ξ, σ)


. (13)

Notice that, for proper values of x, t , namely x = 0 and t = β ,
classical statistical mechanics is recovered as

α(β, d) = lim
N→∞

αN(x = 0, t = β)

= lim
N→∞

1
N

ln


{σ }

BN(x = 0, t = β; ξ, σ)


.

In the same way, the average ⟨·⟩(x,t) will be denoted by ⟨·⟩, wher-
ever evaluated in the sense of statistical mechanics, namely

⟨o⟩(x,t) =


{σ }

o(σ, ξ)BN(x, t; ξ, σ)
{σ }

BN(x, t; ξ, σ)
, (14)

⟨o⟩ =


{σ }

o(σ, ξ) exp[−βH(σ, ξ)]
{σ }

exp[−βH(σ, ξ)]
= ⟨o⟩(x=0,t=β). (15)

It is immediate to see that the following equations hold:

∂tαN(x, t) =
1
2


µ

⟨m2
µ⟩(x,t),

∂xµαN(x, t) = ⟨mµ⟩(x,t),

(16)

and, defining a vectorΓN(x, t)of elementsΓ µ

N (x, t) ≡ −∂xµαN(x, t),
by construction Γ µ

N (x, t) obeys the following equation:

∂tΓ
µ

N (x, t)+

P
ν=1

Γ ν
N (x, t)[∂xνΓ

µ

N (x, t)]

=
1
2N

P
ν=1

∂2
x2ν
Γ
µ

N (x, t), (17)

which happens to be in the form of a Burgers equation for the vec-
tor ΓN(x, t) with a kinematic viscosity (2N)−1. As is well known,
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the Burgers equation can bemapped into a P-dimensional diffusive
problem using the Cole–Hopf transformation (Genovese & Barra,
2009) as follows:

ψN(x, t) = exp

−N


dxµΓ

µ

N (x, t)


= exp[NαN(x, t)], (18)

and its t and x streaming read off as

∂tψN(x, t) = N(∂tαN(x, t))ψ(x, t),
∂xµψN(x, t) = N(∂xµαN(x, t))ψ(x, t),

(19)

in such a way that

∂2xµxνψN(x, t) = NψN(x, t)

∂2xµxναN(x, t)+ N[∂xµαN(x, t)]

× [∂xναN(x, t)]

. (20)

Now, from Eqs. (19), (20) we get

∂tψN(x, t)−
1
2N


µ


∂2
x2µ
ψN(x, t)


= 0. (21)

Therefore, we established a reformulation of the problem of calcu-
lating the thermodynamic potential α(β, d) over the equilibrium
configuration of the order parameters for an attractor network
model in terms of a diffusion equation for the function ψN(x, t),
namely the Cole–Hopf transform of the Mattis magnetizations,
with a diffusion coefficient D = (2N)−1, that is

∂tψN(x, t)− D∇
2ψN(x, t) = 0,

ψN(x, 0) =


{σ }

exp


µ

xµ


j

ξ
µ

j σj


. (22)

We solve this Cauchy problem (22) through standard techniques:
first, we map the diffusive equation in the Fourier space, then we
calculate the Green propagator for the homogeneous configura-
tion, and finally we will inverse-transform the solution.

Let us consider the Fourier transform:

ψN(k, t) =


RP

dPx exp


−i

µ

xµkµ


ψN(x, t),

ψN(x, t) =
1

(2π)P


RP

dPk exp

i

µ

xµkµ

ψN(k, t),
(23)

and the related Green problem:

∂tG(k, t)+ Dk2G(k, t) = δ(t), (24)

whereG(k, t) is the Green propagator in the k-space, which can be
decomposed asG(k, t) =GR(k, t)+GS(k, t), (25)

with GR(k, t) the general solution of the homogeneous problem
andGS(k, t) a particular solution of the non-homogeneous prob-
lem. Hence, the full solution will be

ψN(x, t) =


RP

dPx′GR(x − x′, t)ψN(x′, 0), (26)

where the functionGR(k, t) fulfills

∂tGR(k, t)− Dk2GR(k, t) = 0,GR(k, 0) = 1,
(27)

henceG(k, t) = exp(−Dk2t),

G(x, t) =
1

(2
√
πDt)P

exp


−x2

4Dt


.

(28)
Therefore, we get

ψN(x, t) =


N

2π t

 P
2
 

P
µ=1

dx′

µ


exp


−NΦ(x′, x, t)


, (29)

Φ(x′, x, t) =

P
µ

(xµ − x′
µ)

2

2t
− ln 2

−
1
N

N
j=1

ln


cosh


P

µ=1

x′

µξ
µ

j


(30)

and

αN(x, t) =
1
N

ln [ψN(x, t)] . (31)

We can solve now the saddle-point equation

α(x, t) = lim
N→∞

αN(x, t) = Extr{Φ}, (32)

where we neglected O(N−1) terms, as we performed the ther-
modynamic limit. Finally, by replacing t = β and x = 0 and
x′
ν = β⟨mν⟩ (hence the original statistical mechanics framework),
we obtain the following expressions for the statistical pressure

α(β, d) =
β

2


µ

⟨mµ⟩
2
− ln(2)

−


ln


cosh


β

µ=1

⟨mµ⟩ξ
µ


ξ

, (33)

whose extremization offers immediately the P desired self-
consistency equations for all the ⟨mν⟩,

⟨mν⟩ =


ξ ν tanh


β

µ=1

ξµ⟨mµ⟩


ξ

∀µ ∈ [1, P], (34)

where with the index ξ we emphasized once more that the disor-
der average over the quenched patterns is performed as well.

Of course, the self-consistency equations (34) recover those
obtained in Agliari, Barra, Galluzzi et al. (2012) via different
analytical techniques, where they were also shown to yield the
parallel ansatz (10), which, in turn, can be formally written as

σi = ξ 1i +

P
ν=2

ξ νi

ν−1
µ=1

δ(ξ
µ

i ), (35)

and it will be referred to as σ (P).
The parallel ansatz (10) can be understood rather intuitively. To

fix ideas let us assume zero noise level and that one pattern, say
µ = 1, is perfectly retrieved. This means that the related average
magnetization is m1 = (1 − d), while a fraction d of spins is
still available and they can arrange to retrieve a further pattern,
say µ = 2. Again, not all of them can match non-null entries in
pattern ξ 2 and the related averagemagnetization ism2 = d(1−d).
Proceeding in the same way, for all spins, we get the parallel state.
Notice that, the number K of patterns which are, at least partially,
retrieved does not necessarily equal P . In fact, due to discreteness,
it must be dK−1(1 − d) ≤ 1/N , namely at least one spin must be
aligned with ξK , and this implies K . logN .

Such a hierarchical, parallel, fashion for alignment, providing an
overall energy (see Eq. (7))

E(P) = −N
P

k=1

[(1 − d)dk−1
]
2
+ P

= −N
(1 − d2P)(1 − d)

1 + d
+ P, (36)
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is more optimal than a uniform alignment of spins amongst the
available patterns, as this case would yield mk = (1 − d)/P for
any k and an overall energy

E(U) = −N
P

k=1


1 − d
P

2

+ P = −
(1 − d)2N

P
+ P, (37)

being (1 − d2+2P) > (1 − d2)/P .
On the other hand, as we will see in Section 3.1, when d >

dc ≈ 1/2, the state (10) is no longer stable and spurious states
do emerge.

Before proceeding, it is worth stressing that, although the
parallel state (10) displays non-zero overlap with several patterns,
it is deeply different from, and must not be confused with, a
spurious state in standard Hopfield networks. In fact, in the former
case, at least one pattern is completely retrieved, while in spurious
states, the overlap with each memory pattern involved is only
partial.

Moreover, in standard Hopfield networks, spurious states are
somewhat undesirable because they provide corrupted informa-
tion with respect to the best retrieval achievable where one, and
only one, pattern is exactly retrieved. Conversely, in ourmodel, the
retrieval of more than one pattern is unavoidable (for finite d and
β → ∞) and the quality of retrieval may be excellent (perfect) in
the case of patterns poorly (not) overlapping.

Finally, and most importantly, for β → ∞ and in a wide region
of dilution, the parallel state σ (P) corresponds to a globalminimum
for the energy. This is not the case for an arbitrarymixture of states.

3. The emergence of spurious states

In Section 2.1, we explained why we expect the parallel state
(35) to occur, exploiting the fact that each pattern tends to align
as many spins among those still available. Actually, this intuitive
approach yields the correct picture for T = 0 (no fast noise)
and not-too-large d, while when either T or the degree of dilution
are large enough, the system can relax to a state where only one
pattern is retrieved or fall into a spurious state where several
patterns are partially retrieved, but none exactly. For instance,
when patterns are sparse, none of them can generate an attraction
basin strong enough to align all available spins, in such a way that
stationary, mixture states can emerge.

These states are discussed in the following subsections and in
Section 4 the analysis will be made quantitative.

3.1. The failure of parallel retrieval

Let us start from the noiseless case and consider the state
(35) corresponding to the parallel ansatz (10): we notice that,
on average, there exists a fraction 2[(1 − d)/2]P of spins σi
corresponding to the entries ξ 1i = 1, ξ ki = −1,∀k ∈ [1, P]

(and analogously for the ‘‘gauged’’ case ξ 1i = −1, ξ ki = +1) and
expected to be aligned with the first entry ξ 1i , in such a way that
the overall field insisting on each of them is hi = m1 −m2 −m3 −

· · · − mP . Of course, such spins are the most unstable, and, at zero
noise level, they flip whenever hi happens to be negative, that is,
whenm1 <

P
k=2 mk. Exploiting the ansatzmk = dk−1(1−d), this

can be written as

hi = (1 − d)

1 −

d − dP

1 − d


= 1 − 2d + dP , (38)

which becomes negative for a value of dilution dc(P), which con-
verges exponentially from above to 1/2 as P gets large. From this
point onwards, the first pattern is no longer completely retrieved
and the system fails to parallel retrieve (according to the definition
in Eq. (35)). Therefore, when d ≥ dc(P), genuine spurious states
emerge and the system relaxes to states which correspond to mix-
tures of p ≤ P patterns, but none of them is completely retrieved
(at least up to extreme values of dilution). As we will see in Sec-
tion 4.4, the transition at dc(P) is first order.

Moreover, from Eq. (38) we find that the case P = 2 has no
solution in the range d ∈ [0, 1], meaning that the parallel-retrieval
state is always a stable solution in the zero noise limit; on the other
hand, dc(3) ≈ 0.62, dc(4) ≈ 0.54 and so on.

Such phenomenology concerns relatively large degrees of
dilution, yet, the presence of noise can also destabilize the true
parallel-retrieval state (10) in the regime of small degrees of
dilution. In fact, we expect that the spins aligned according to the
kth pattern associated with a magnetization mk = dk−1(1 − d)
will lose stability at noise levels T > dk−1(1 − d). In particular, at
T > d(1− d), only one pattern will be retrieved and the pure state
is somehow recovered. Aswewill see in Section 4.4, such estimates
are correct for small d.

3.2. Symmetric mixtures

Typical spurious states emerging in standard associative net-
works are the so-called symmetric mixtures of p ≤ P states, which
can be described as

σi = sign


p

µ=1

ξ
µ

i


, (39)

and it will be referred to as σ (S). We anticipate that the symmet-
ric mixture turns out to emerge also in the diluted model under
investigation.

Now, in the standard Hopfield model, odd mixtures of p pat-
terns, are metastable, i.e. their energies are higher than those of
the pure patterns, and, moreover, the smaller p, the more energet-
ically favorable the mixture. On the other hand, even mixtures of
p patterns are unstable (they are saddle-points of the energy). The
instability of even mixtures is often associated with the fact that,
for a macroscopic fraction of spins, σ (S) is not defined due to the
ambiguity of the sign. For instance, when p = 2,

p
µ=1 ξ

µ

i turns
out to be null for half of the spins and the related values are de-
fined stochastically according to the distribution

P(σi) =
1
2
(δσi+1 + δσi+1). (40)

However, as we will show in Section 4.3, this is not the case
for this diluted model as it displays wide regions in the parameter
space (d, T )where even and/or odd symmetricmixtures are stable.

3.3. A ‘‘hybrid’’ spurious state

As we will see in Section 4.3, the symmetric mixture σ (S) can
become unstable and relax to a different spurious state which
is a ‘‘hybrid’’ state between the symmetric mixture σ (S) and the
parallel state σ (P).

To begin and fix ideas, let us set P = 3 and start from the state
σi = sign(ξ 1i + ξ 2i + ξ 3i ). In the presence of dilution the argument
ξ 1i + ξ 2i + ξ 3i can be zero and in that situation one can adopt the
following hierarchical rule: take σi = ξ 1i provided that ξ 1i ≠ 0;
otherwise, if ξ 1i = 0, then take σi = ξ 2i provided that ξ 2i ≠ 0;
otherwise, if also ξ 2i = 0, then take σi = ξ 3i provided that ξ 3i ≠ 0;
otherwise, if also ξ 3i ≠ 0, then put σi = ±1 with probability 1/2.
In this way we can build a state, generally defined for any P , and,
beingΞ =


µ ξ

µ

i , it can written as

σi = (1 − δΞ ,0)sign(Ξ)+ δΞ ,0[ξ
1
i + δξ1i ,0

ξ 2i

+ δξ1i ,0
δξ2i ,0

ξ 3i + · · · ], (41)

which will be referred to as σ (H).
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Fig. 1. Mattis magnetizationsm versus dilution d, according to the analytical expression derived in Section 3.3. Each panel refers to a different value of P , as specified.
The related average Mattis magnetizations can be calculated
as the sum of one contribution m0 (the same for any µ) deriving
from the spins corresponding to non-ambiguous sign function (i.e.,
Ξ ≠ 0), and another contribution accounting for hierarchical
corrections (i.e.,Ξ = 0). Let us focus on the first term:

m0 = ⟨ξµsign(Ξ)⟩ξ

=
1 − d
2


sign


1 +

P
ν≠µ

ξµ


− sign


−1 +

P
ν≠µ

ξµ


ξ

(42)

= (1 − d)


P


P

ν≠µ

ξ ν < 1


− P


P

ν≠µ

ξ ν > 1


, (43)

where, in the last step, we exploited the implicit symmetry in
pattern entries and P (

P
ν≠µ ξ

ν ≷ 1) represents the probability
that the specified inequality is verified over the distribution (9).
The latter quantity can also be looked at as the probability for
a symmetric random walk with holding probability d to be at
distance ≷ 1 from its origin after a time span P − 1. Hence, we
get

m0 = (1 − d)[P (0 → 0, P − 1)+ P (0 → 1, P − 1)], (44)

where P (x0 → x, t) is the probability for a symmetric random
walk with stopping probability d to move from site x0 to site x in t
steps, namely

P (x0 → x, t) =

t−(x−x0)
s=0

t!

s!


t−s−(x−x0)
2


!


t−s+(x−x0)

2


!

× ds

1 − d
2

t−s

. (45)

The second contribution to themagnetization is (1−d)
P−1

k=1 P

(0 → 1, P − k)dk−1.
Finally, by summing the two contributions we find the follow-
ing expressions for P = 3

m1 =
1
2
(1 + d − 3d2 + d3), (46)

m2 =
1
2
(1 − d)(1 + d2), (47)

m3 =
1
2
(1 − 3d + 5d2 − 3d3), (48)

and for P = 5

m1 =
1
8
(3 + 9d − 42d2 + 74d3 − 65d4 + 21d5), (49)

m2 =
1
8
(1 − d)(3 + 6d2 − d4), (50)

m3 =
1
8
(1 − d)(3 − 4d + 18d2 − 20d3 + 11d4), (51)

m4 =
1
8
(1 − d)(3 − 4d + 18d2 − 28d3 + 19d4), (52)

m5 =
1
8
(1 − d)(3 − 4d + 18d2 − 36d3 + 27d4). (53)

The expressions for arbitrary P can be analogously calculated ex-
actly and some examples are shown in Fig. 1.

We expect σH to become globally stable in the region of very
large dilutions (d > dH(P)); intuitively, the dilution must be
large enough to make magnetizations rather close to each other
in such a way that the least signaled spins corresponding to
(−,−, . . . ,−,+,+, . . . ,+) (overall (P − 1)/2 negative entries
and (P + 1)/2 positive entries) are stable. This means


i(1 −

δΞ ,0)sign(Ξ)ξ
µ

i /N >
(P−1)/2

k=1 ϕk(P + 1)/(P − k), where ϕk =

2


l[(1 − d)/2]2ldP−2l(P − k)!/[l!(l − 1)!(P − k − 2l + 1)!] and P
is odd. This condition is fulfilled for values of dilution larger than
dH(P), which converges to 1 as P gets larger, hence, in order to
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tackle this limit, dilutionmust become a function of the system size
d → d(N). In this case the network itself becomes diluted as well
and different techniques are required; this will not be discussed in
this paper.

4. Stability analysis on the organization of the states

The set of solutions for self-consistent equations (34) describes
states whose stability may vary strongly. In fact, provided the
networkhas reached them, in thenoiseless limit (ofwhatever kind)
it would persist in those states. However, the equations do not
contain any information about whether the solutionswill be stable
against small perturbations, that is to say if the systemwill indeed
really thermalize on these states or will fall apart more or less
quickly. In order to evaluate their stability we need to check the
second derivative of the free energy (Amit, 1989). More precisely,
we further need to build up the so called ‘‘stability matrix’’ A with
elements

Aµν =
∂2fβ(

−→m )
∂mµ∂mν

. (54)

Then, we evaluate and diagonalize A at a point m̃, representing a
particular solution of the self-consistency equation (34), in order
to determine whether m̃ is stable or not. With {Eµ}µ=1,...,P , the
set of related eigenvalues, m̃ is stable whenever all of them are
positive.

Now, from Eqs. (33) and (54), remembering that α(β, d) =

−βf (β, d), we find straightforwardly

Aµν = [1 − β(1 − d)]δµν + βQµν, (55)

where

Qµν
= ⟨ξµξ ν tanh2(β

−→
ξ ·

−→m )⟩ξ . (56)

Of course when d = 0 we recover Aµν = (1 − β)δµν + ⟨ξµξ ν

tanh2(β
−→
ξ ·

−→m )⟩ξ , namely the result known for the standard
Hopfield model.

We now consider several states, known to be solutions of self-
consistency equation (34) and check their stability. In this way we
will find constraints in the region (T , d) where those states are
stable and then we will build up the phase diagram.

4.1. Paramagnetic state

Let us start with the paramagnetic state, which is described
by

−→m =
−→
0 ; (57)

this state trivially fulfills Eq. (34).
By replacing this expression in Eqs. (55) and (56) we find

Aµν = δµν[1 − β(1 − d)]. (58)

Therefore, in this case,A is diagonal and its eigenvalues are directly
Eµ = Aµµ = 1 − β(1 − d),∀ν ∈ [1, P]. We can conclude the
paramagnetic state exists and is stable in the region 1−β(1−d) >
0, that is (remembering that T = β−1)

PM stability ⇒ T > 1 − d. (59)

This region is highlighted in Fig. 2.

4.2. Pure state

Let us now consider the pure state, that is any of the P configu-
rations
−→m = m(1,

−→
0 ), (60)
Fig. 2. (Color online) In the parameter space (T , d)wehighlighted the regionwhere
the paramagnetic state exists and is stable. As proved in Section 4.1, this region
includes points fulfilling T < 1 − d; notice that this result is independent of P .

m being the extent of the overlap, which, in general, depends on d
and on T . The related self-consistency equations are

mµ
= (1 − d) tanh(βmµ), (61)

mν≠µ
= 0. (62)

The first equation has a solution in the whole half-plane T > 1−d,
and this ensures that, in the same region, the pure state exists. In
order to check its stability, we calculate the stabilitymatrix finding

Aµν = 0 ∨ µ ≠ ν (63)

Aµµ = 1 − β(1 − d)[1 − tanh2(βmµ)] (64)

Aνν = 1 − β(1 − d)[1 − (1 − d) tanh2(βmµ)]. (65)
Therefore A is diagonal and the eigenvalues are Eµ = Aµµ and
Eν = Aνν . Notice that these eigenvalues do not depend on P and
that Eµ ≥ Eν , so that the analysis can be restricted on Eν . Requiring
the positivity for Eν , we get the region in the plane (T , d), where
the pure state is stable; such a region is shown in Fig. 3. We stress
that this result is universal with respect to P (in the low-storage
regime).

4.3. Symmetric state

A symmetric mixture of states corresponds to configurations
leading to
−→m = m(d, T )(1, 1, 1, . . . , 1, 0, . . . , 0), (66)
where p ≤ P order parameters are equivalent and non-null, while
the remaining P − p are vanishing.

Let us start with the case p = P = 3, yielding −→m = m(d, T )
(1, 1, 1). In this special case the three self-consistency equations
collapse on

m(d, T ) = 2

1 − d
2

3 
tanh2(3βm)+ tanh2(βm)


+ d


1 − d
2

2

tanh2(2βm)

+ 2

1 − d
2


d2 tanh2(βm) (67)
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Fig. 3. (Color online) In the parameter space (T , d)wehighlighted the regionwhere
the pure state exists and is stable. This result was found by numerically solving
the self-consistency equation (34) and the inequality Eν > 0, where Eν is the
smallest eigenvalues of the stability matrix A (see Eq. (65)); notice that this result
is independent of P .

and the matrix A reads asa b b
b a b
b b a


(68)

a and b being parameters related tom, d and β . More precisely, the
eigenvalues of A are (a + 2b, a − b, a − b), which can be written
as

a − b = 1 − β(1 − d)+ 2β

tanh2(2βm)d


1 − d
2

2

+ tanh2(βm)

d2(1 − d)

2
+ 4

1 − d
2

3
,

a + 2b = 1 − β(1 − d)+ 2β

tanh2(3βm)3

1 − d
2

3
+ tanh2(βm)


d2(1 − d)

2
+

1 − d
2

3
+ 8dβ tanh2(2βm)


1 − d
2

2

. (69)

The conditions for the existence and the stability of the symmetric,
odd mixture with p = P = 3, yield a system of equations which
was solved numerically and the region where such conditions are
all fulfilled is shown in Fig. 4. Notice that the region is actuallymade
up of two disconnected parts, each displaying peculiar features, as
explained later.

This result is robust with respect to P , with P odd and p = P .
We can further generalize the analysis by considering P >

p, p still being odd. In this case we get the following stability
matrixa b b 0

b a b 0
b b a 0
0 0 0 c

 (70)
Fig. 4. (Color online) In the parameter space (T , d)wehighlighted the regionwhere
the symmetric state σ (S) , for the special case p = P = 3, exists and is stable. Notice
that two disconnected regions emerge: the one corresponding to lower values of
dilution derives from the fact that p is odd, while the one corresponding to larger
values of dilution from the fact that p = P .

with eigenvalues (a − b, a − b, a + 2b, c), where

c = 1 − β(1 − d)

1 − 2

1 − d
2

3
[tanh2(3m)+ 3 tanh2(m)]

+ d
1 − d

2

2
3 tanh2(2m)+ 3

1 − d
2

d2 tanh2(m)


×


1 − 2

1 − d
2

3
[tanh2(3βm)+ 3 tanh2(βm)]

+ 3d
1 − d

2

2
tanh2(2βm)+ 3

1 − d
2

d2 tanh2(βm)


(71)

has degeneracy P − p.
Such states (p < P, p odd) are stable only at small d. This is due

to the fact that the eigenvalue c occurs only when p < P and it
reads as (µ > p):

Aµµ = [1 − β(1 − d)] + β⟨(ξµ)2⟩ξ


tanh2


βm

p
ν

ξ ν


ξ

= [1 − β(1 − d)] + β(1 − d)


tanh2


βm

p
ν

ξ ν


ξ

. (72)

Thus, one can see that the r.h.s. term contains factors (1 − d) at
least of second order in such a way that when d is close to 1, i.e. for
high dilution, and T < 1 − d, such a term becomes negative. On
the other hand, in the case µ ≤ p, we get

Aµµ = [1 − β(1 − d)] + β


(ξµ)2 tanh2


βm

p
ν=1

ξ ν


ξ

and therefore the r.h.s. term contains even first order terms (1−d),
which are comparable with β(1 − d).

Moreover, we find that the p-component, odd symmetric state
exists and is stable in a region of the space (T , d), which gets
smaller and smaller as p grows (see Fig. 5). The emergence of such
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Fig. 5. (Color online) In this plot we focused on the region of the parameter space
(T , d), where odd symmetric spurious states exist and are stable. In particular, we
chose P = 7 and we considered any possible odd mixture, i.e. p = 3, p = 5 and
p = 7; each value of p is represented by a different curve. Notice that the smaller p
the wider the region, analogously to the standard Hopfield model.

Fig. 6. (Color online) In this plot we focused on the region of the parameter space
(T , d), where symmetric spurious statewith p = P exist and are stable. In particular,
we chose P = 7 and we considered any possible mixture, i.e. p = 3, p = 4, p = 5,
p = 6 and p = 7; each value of p is represented by a different curve. Notice that the
smaller p the wider the region, yet the region tends to an ‘‘asymptotic shape’’.

states can be seen as a feature of robustness of the standard Hop-
field model with respect to dilution.

Finally, the case P = p always admits a region of existence
and stability in the regime of high dilution. The latter region is
independent of the parity and depends slightly on P (see Fig. 5).
The emergence of such states is due to the failure of hierarchical
retrieval, namely uniformity prevails (see Fig. 6).
4.4. Parallel state

The parallel-retrieval state can be looked at as the extension to
arbitrary values of d of the pure state holding for the special case
d = 0. We recall that in the noiseless limit the parallel-retrieval
state can be described as
−→m = (1 − d, (1 − d)d, (1 − d)d2, . . . , (1 − d)dP). (73)

In this case the stability matrix is diagonal with terms:

Aµµ = 1 − β(1 − d)+ β⟨(ξµ)2 tanh2
[β(1 − d)

× (ξ 1 + dξ 2 + · · · + dPξ P)]⟩, (74)

and, consistently, taking the limit β → ∞, we get the simplified
form

Aµµ = lim
β→∞

= 1 − β(1 − d)+ β⟨(ξµ)2

× (1 − δ[(ξ 1 + dξ 2 + · · · + dPξ P)])⟩. (75)

Now, the third term in the r.h.s. is either β⟨(ξµ)2⟩ = β(1 − d)
(when the polynomial of order P is zero) or 0; the latter casewould
trivially yield Aµµ < 0. Therefore, in the limit β → ∞ the stability
of the parallel-retrieval state is constrained by the smallest real
root ∈ [0, 1] of the polynomial ξ 1 + dξ 2 + · · · + dPξ P with
ξ i = 1, 0,−1. This corresponds to ξ 1 = 1 and ξ i = −1,∀i > 1,
under gauge symmetry and returns the same result found, from a
more empirical point of view, in Section 3.1. More precisely, the
critical dilution converges exponentially to 1/2 as P grows.

In particular, for P = 3 we find that the parallel-retrieval state
exists and is stable in the interval d ∈ (0,

√
5−1
2 ) ≃ (0, 0.618). The

point dc(3) =

√
5−1
2 corresponds to the unique real root in (0, 1).

When noise is introduced, the critical dilution dc , separating
the parallel-retrieval state from spurious states, is shifted towards
larger values, as suggested by Eq. (74). On the opposite side, namely
in the regime of small dilution, the parallel state is progressively
depleted and, as the temperature is increased, magnetizations
vanish, starting from mP , and proceeding up to m2. One can
distinguish a set of temperatures TP(d) < TP−1(d) < · · · <
T2(d) < T1(d), such that when T > Tk(d), all magnetizations
mi,∀i ≤ k are null on average. Hence, above T2(d) the pure state
retrieval is recovered, while above T1(d) = 1−d the paramagnetic
state emerges.

In Fig. 7 we highlight the region of the parameter space (T , d)
where such parallel states exist and are stable. This was obtained
numerically for the case P = 5; for larger values of P the region is
slightly restricted to account for the shift in dc .

5. Monte Carlo simulations

In this section we discuss details of Monte Carlo simulations.
All the simulations were performed on an Ubuntu Linux system

with Intel Core I7, 3.2 GHz, 12 CPU, Nvidia-Fermi technology, 12
Gb RAM and OpenMP libraries. The simulations were carried out
sequentially according to the following algorithm:

1. Building and storing of the coupling matrix.
First, we generate P patterns according to the distribution
(d = 0):

P(ξµi ) =
1
2
δ(ξµi −1) +

1
2
δ(ξµi +1), (76)

then, we build a char-matrix Jij =


µ ξ
µ

i ξ
µ

j with entries rang-
ing ∈ [0, 2P + 1] and acting as key pointing to another hash-
matrix J̃ij where the N(N − 1)/2 real numbers accounting for
the Hebb interactions (see Eq. (16)) are stored. If the amount of
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Fig. 7. (Color online) In this plot we focused on the region of the parameter space
(T , d), where parallel retrieval states exist and are stable. In particular, we chose
P = 5 and we considered any possible state with k = 2, k = 3, k = 4 and k = 5
non-null magnetization.

patterns does not exceed P = 256, i.e. one byte, it is then pos-
sible to account for 105 neurons with no need of swapping on
the hard disk (which would noticeably affect the performance
of the simulation). This condition is fulfilled for the low storage
regime we are interested in.

2. Initialize the network status.
We checked the two standard approaches: The first is to ini-
tialize the network in a (assumed) fixed point of the dynamics,
namely

σi = ξ 1i ∀i ∈ [1, . . . ,N], (77)

and check its evolution: This gives information on the structure
of the basins of attraction of the minima as we vary the dilution
(see Point 5).
The second approach is to initialize the network randomly: We
set σi = 1 with probability 0.5 and σi = −1 otherwise. This is
a standard procedure to follow the relaxation to a fixed point
with no initial assumption and gives information on the struc-
ture of the basins of attraction of the minima at fixed dilution.

3. Evolution dynamics.
The spin status evolves according to a standard (randomand se-
quential) Glauber dynamics for Ising-like systems (Amit, 1989):
At each time interval, the neuronal state is updated according
to its input signals, where the probability of the unit’s activity
is equal to a rectified value of the input (logit transfer function),
i.e.

Pr[σi(t) = ±1] =
1

1 + exp


∓2β


j
Jijσj

 . (78)

The field-updating process is managed by a linked list whose
parsing is parallelized through OpenMP.

4. Convergence of the simulation.
Due to the peculiar structure of the fields induced by pattern
dilution, the field insisting on a given neuron may be zero and
the related spin would flip indefinitely. To avoid this pathologi-
cal situationwe skip the updating of these ‘‘paramagnetic’’ spins
Fig. 8. (Color online) Data from Monte Carlo simulations (symbols) and analytical
predictions (solid lines) obtained for a system with P = 3 patterns and set at a
temperature T = 0.06 are compared. Simulations are performed on a set of 105

spins. The dashed line at d ≈ 0.06marks the boundary of the pure state regime; the
dotted line at d ≈ 0.78 marks the onset of the symmetric phase; the semi-dashed
line at d ≈ 0.94 marks the onset of the paramagnetic phase.

and focus on the remaining ones: In the zero noise limit conver-
gence is almost immediate, such thatwhen thewhole ensemble
of neurons remains unchanged for the whole N-length of the
update cycle, dynamics is stopped and the resulting P pattern
overlaps are printed on a file.
Relaxation at non-zero noise is checked through the linked list
(see next step): The pointer of each neuron that is aligned with
its own field is stored, the ones of neurons with no net fields
are removed from the linked list, while all the other spins, mis-
matched to their own fields, are added to the linked list.

5. Making the P patterns sparser.
There can be two deeply different ways of increasing dilution.
The first is a Bernoullian approach and essentially if one starts
from a dilution d = 0.45 towards a dilution d = 0.5 (just as a
concrete example) one may forget the starting information and
generate a random pattern with on average one half of zero en-
tries; the second is a Markovian dilution by which one needs to
start from the previous coupling matrix (and patterns) diluted
at d = 0.45 and increases dilution on that structure.
Dilution is tuned at steps of 0.01, ranging from d = 0 to d = 1.
We take as the state of the network the last equilibrium state,
then go to point (3).

Through Markovian dilution, we can follow the evolution of the
pure Hopfield attractors while tuning d. In general, the results ob-
tained via numerical simulations are in perfect agreement with
the theory: This point is not surprising, as, due to the load stor-
age regime, limN→∞ P/N = 0, hence replica symmetry is never
broken and our solution is the real solution of the model (no ap-
proximations have been made, see Fig. 8).

6. Discussion

In this work we explored the retrieval capabilities of the
multitasking associative network introduced in Agliari, Barra,
Galluzzi et al. (2012). Such a system is characterized by (quenched)
patterns which display a fraction d of null entries: interestingly,
by paying the price of reducing the amount of information stored
within each pattern (by a fraction d), we get a system able to
retrieve several patterns at the same time.

At zero noise level (T = 0), and for a relatively low degrees of
dilution, the system converges to an equilibrium state character-
ized by overlapm = ((1−d), (1−d)d, . . . , (1−d)dk, (1−d)dP−1),
where P is the number of stored patterns. Although this state dis-
plays non-null overlap with several patterns, it does not represent
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a spurious state, as can be seen by noticing, for instance, that this
state allows the complete retrieval of at least one pattern. How-
ever, through a careful inspection, we proved in this paper that
there are regions in the (T , d) plane where genuine spurious states
occur, hence a clear picture of the phase diagram becomes a fun-
damental issue in order to make the model ready for practical im-
plementations.

A remarkable difference with respect to standard (serial
processing) neural networks lies in the stability of mixture states:
both even and odd mixtures are stable, which – within the world
of spurious states – was a somewhat desired, and expected, result
as there is neither a biological reason, nor a prescription from
robotics, to weight differently odd and even mixtures (whose
difference lies in the gauge invariance of the standard Hopfield
model, which is broken within our framework due to the partial
blankness of the pattern entries). Another expected feature, which
we confirmed in this paper, is the emergence of parallel spurious
states beyond standard ones from classical neural network theory:
This is the natural generalization of the latter when moving from
serial to parallel processing.

Beyond these somewhat expected results, the phase diagram
of the model is still very rich and composed by several
not-overlapping regions where the retrieval states are deeply
differently structured: Beyond the paramagnetic state and the pure
state, the system is able to achieve both a hierarchical organization
of pattern retrievals (for intermediate values of dilution) and a
completely symmetric parallel state (for high values of dilution),
which act as the basis for the outlined mixtures when raising the
noise level above thresholds whose value depends on the load of
the network P .

These findings have been obtained developing a new strategy
for computing the free energy of the model by which, imposing
thermodynamic principles (hence extremizing the latter over
the order parameters of the model), self-consistency has been
obtained. The whole procedure has been strongly based on
techniques stemming from partial differential equation theory.
In particular, the key idea is showing that the noise-derivatives
of the statistical pressure obey Burgers’ equations, which can be
solved through the Cole–Hopf transformation. The latter maps the
evolution of the free energy over the noise into a diffusion problem
which can be addressed through standard Green integration in
momenta space and then pushed back in the original framework.

In the future, effortmust still bemade in order to achieve a clear
scenario in the hyper-diluted regime, namely where the dilution
scales as a function of the volume (the amount of neurons), which
cannot be accomplished through the techniqueswepresentedhere
as saddle point integration is no longer useful.We plan to report on
this research soon.
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