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Abstract

This work addresses the use of deep neural networks (DNNs) in automatic language identification (LID) focused on
short test utterances. Motivated by their recent success in acoustic modelling for speech recognition, we adapt DNNs
to the problem of identifying the language in a given utterance from the short-term acoustic features. We show how
DNNs are particularly suitable to perform LID in real-time applications, due to their capacity to emit a language
identification posterior at each new frame of the test utterance. We then analyse different aspects of the system, such
as the amount of required training data, the number of hidden layers, the relevance of contextual information and
the effect of the test utterance duration. Finally, we propose several methods to combine frame-by-frame posteriors.
Experiments are conducted on two different datasets: the public NIST Language Recognition Evaluation 2009 (3
seconds task) and a much larger corpus (of 5 million utterances) known as Google 5M LID, obtained from different
Google Services. Reported results show relative improvements of DNNs versus the i-vector system of 40% in LRE09
3 second task and 76% in Google 5M LID.

Keywords: DNNs, real-time LID, i-vectors.

1. Introduction

Automatic language identification (LID) refers to
the process of automatically determining the language
in a given speech sample [1]. The need for reliable
LID is continuously growing due to several factors.
Among them, the technological trend toward increased
human interaction using hands-free, voice-operated de-
vices and the need to facilitate the coexistence of a mul-
tiplicity of different languages in an increasingly glob-
alized world.

In general, language discriminant information is
spread across different structures or levels of the speech
signal, ranging from low-level, short-term acoustic and
spectral features to high-level, long-term features (i.e
phonotactic, prosodic). However, even though sev-
eral high-level approaches are used as meaningful com-
plementary sources of information [2] [3] [4], most
LID systems still include or rely on acoustic modelling
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[5][6], mainly due to their better scalability and compu-
tational efficiency.

Indeed, computational cost plays an important role,
as LID systems commonly act as a pre-processing stage
for either machine systems (i.e. multilingual speech
processing systems) or human listeners (i.e. call rout-
ing to a proper human operator)[7]. Therefore, accurate
and efficient behaviour in real-time applications is often
essential, for example, when used for emergency call
routing, where the response time of a fluent native op-
erator is critical [1] [8]. In such situations, the use of
high-level speech information may be prohibitive, as it
often requires running one speech/phonetic recognizer
per target language [9]. Lightweight LID systems are
especially necessary in cases where the application re-
quires an implementation embedded in a portable de-
vice.

Driven by recent developments in speaker verifica-
tion, the current state-of-the-art in acoustic LID sys-
tems involves using i-vector front-end features followed
by diverse classification mechanisms that compensate
speaker and session variabilities [7] [10] [11]. The
i-vector is a compact representation (typically from 400
to 600 dimensions) of a whole utterance, derived as a
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point estimate of the latent variables in a factor anal-
ysis model [12] [13]. However, while proven to be
successful in a variety of scenarios, i-vector based ap-
proaches suffer from two major drawbacks when cop-
ing with real-time applications. First, i-vectors are point
estimates and their robustness quickly degrades as the
amount of data used to derive the i-vector decreases.
Note that the smaller the amount of data, the larger the
variance of the posterior probability distribution of the
latent variables; and thus, the larger the i-vector uncer-
tainty. Second, in real-time applications, most of the
costs associated with i-vector computation occur after
completion of the utterance, which introduces an unde-
sirable latency.

Motivated by the prominence of Deep Neural Net-
works (DNNs), which surpass the performance of the
previous dominant paradigm, Gaussian Mixture Models
(GMMs), in diverse and challenging machine learning
applications - including acoustic modelling [14] [15],
visual object recognition [16], and many others [17]
- we previously introduced a successful LID system
based on DNNs in [18]. Unlike previous works on us-
ing shallow or convolutional neural networks for small
LID tasks [19] [20] [21], this was, to the best of our
knowledge, the first time that a DNN scheme was ap-
plied at large scale for LID, and benchmarked against
alternative state-of-the-art approaches. Evaluated using
two different datasets - the NIST LRE 2009 (3s task)
and Google 5M LID - this scheme demonstrated sig-
nificantly improved performance compared to several i-
vector-based state-of-the-art systems [18].

In the current study, we explore different aspects that
affect DNN performance, with a special focus on very
short utterances and real-time applications. We believe
the DNN-based system is a suitable candidate for this
kind of application, as it could potentially generate de-
cisions at each processed frame of the test speech seg-
ment, typically every 10ms. Through this study, we as-
sess the influence of several factors on the performance,
namely: a) the amount of required training data, b) the
topology of the network, c) the importance of including
the temporal context, and d) the test utterance duration.
We also propose several blind techniques to combine
frame by frame posteriors obtained from the DNN to
get hard identification decisions.

We conduct the experiments using the following LID
datasets: A dataset built from Google data, hereafter,
Google 5M LID corpus and the NIST Language Recog-
nition Evaluation 2009 (LRE’09). First, through the
Google 5M LID corpus, we evaluate the performance
in a real application scenario. Second, we check if the
same behaviour is observed in a familiar and standard

evaluation framework for the LID community. In both
cases, we focus on short test utterances (up to 3s).

The rest of this paper is organized into the following
sections. Section 2 defines a reference system based on
i-vectors. The proposed DNN system is presented in
Section 3. The experimental protocol and datasets are
described in Section 4. Next, we examine the behaviour
of our scheme over a range of configuration parame-
ters in both the task and the neural network topology.
Finally, Sections 6 and 7 are devoted to presenting con-
clusions of the study and evaluating recommendations
for future work.

2. Baseline system: i-vector

Currently, most acoustic approaches to perform LID
rely on i-vector technology [22]. All such approaches,
while sharing i-vectors as a feature representation, dif-
fer in the type of classifier used to perform the final
language identification [23]. In the rest of this Sec-
tion, we describe: a) the i-vector extraction procedure,
b) the classifier used in this study, and c) the configu-
ration details of our baseline i-vector system. Below,
we describe a state-of-the-art acoustic system based on
i-vectors, which will serve as our baseline i-vector sys-
tem.

2.1. I-vector extraction

Based on the MAP adaptation approach in a GMM
framework [24], utterances in language or speaker
recognition are typically represented by the accumu-
lated zero- and centered first-order Baum-Welch statis-
tics, N and F, respectively, computed from a Univer-
sal Background Model (UBM) λ. For UBM mixture
m ∈ 1, . . . ,C, with mean, µm, the corresponding zero-
and centered first-order statistics are aggregated over all
frames of the utterance as

Nm =
∑

t

p(m|ot, λ) (1)

Fm =
∑

t

p(m|ot, λ)(ot − µm), (2)

where p(m|ot, λ) is the Gaussian occupation probability
for the mixture m given the spectral feature observation
ot ∈ <

D at time t.
The Total Variability model, hereafter TV, can be

seen as a classical FA generative model [25], with ob-
served variables given by the supervector (CD x 1)
of stacked statistics F = {F1, F2, . . . , FC}. In the TV
model, the vector of hidden variables w ∈ <L is known
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as the utterance i-vector. Observed and hidden vari-
ables are related by the rectangular low rank matrix
T ∈ <CD×L

N−1F = Tw, (3)

where the zero-order statistics N are represented by
a block diagonal matrix ∈ <CD×CD, with C diagonal
D × D blocks. The m-th component block is the matrix
NmI(D×D). Given the imposed Gaussian distributions of
p(w) and p(F|w), it can be seen that the mean of the
posterior p(w|F) is given by

w = (I + T tΣ−1NT )−1T tΣ−1F, (4)

where Σ ∈ <CD×CD is the diagonal covariance matrix of
F. The TV model is thus a data driven model with pa-
rameters {λ,T,Σ}. Kenny [13] provides a more detailed
explanation of the derivation of these parameters, using
the EM algorithm.

2.2. Classification

Since T constrains all the variability (i.e language,
speaker, session), and it is shared for all the language
models/excerpts, the i-vectors, w, can be seen as a new
input feature to classify. Further, several classifiers -
either discriminative (i.e Logistic Regression) or gener-
ative (i.e Gaussian classifier, Linear Discriminant Anal-
ysis) - can be used to perform classification [23]. In
this study, we utilized LDA, followed by cosine distance
(LDA CS), as the classifier.

Even though using a more sophisticated classifier
[18] would have resulted in slightly increased perfor-
mance, we chose the LDA CS considering the trade-
off between performance and computational time ef-
ficiency. In this framework, the similarity measure
(score) of the two given i-vectors, w1 and w2, is obtained
as

S w1,w2 =
(Atw1)(Atw2)

√
(Atw1)(Atw1)

√
(Atw2)(Atw2)

(5)

where A is the LDA matrix.

2.3. Feature extraction and configuration parameters

As input features for this study we used perceptual
linear predictive (PLP) coefficients [26]. In particular,
13 PLP coefficients augmented with delta and delta-
delta features (39 dimensions total) were extracted with
a 10ms frame rate over 25ms long windows. From
those features, we built a Universal Background Model
of 1024 components. The Total Variability matrix was
trained by using PCA and a posterior refinement of 10

Figure 1: DNN network topology

EM iterations [22], keeping just the top 400 eigenvec-
tors. We then derived the i-vectors using the standard
methodology presented in Section 2.1. In addition, we
filtered out silence frames by using an energy-based
voice activity detector.

3. DNN as a language identification system

Recent findings in the field of speech recognition
have shown that significant accuracy improvements
over classical GMM schemes can be achieved through
the use of deep neural networks, either to generate
GMM features or to directly estimate acoustic model
scores. Among the most important advantages of DNNs
is their multilevel distributed representation of the in-
put [15]. This fact makes the DNN an exponentially
more compact model than GMMs. In addition DNNs
do not require detailed assumptions about the input data
distribution [27] and have proven successful in exploit-
ing large amounts of data, reaching more robust mod-
els without lapsing into overtraining. All of these fac-
tors motivate the use of DNN in language identification.
The rest of this Section describes the architecture and
the practical implementation of the DNN system.

3.1. Architecture

The DNN used in this work is a fully-connected feed-
forward neural network with hidden units implemented
as rectified linear units (ReLU). Thus, an input at level
j, x j, is mapped to its corresponding activation y j (input
of the layer above) as

3



y j = ReLU(x j) = max(0, x j) (6)

x j = b j +
∑

i

wi jyi (7)

where i is an index over the units of the layer below and
b j is the bias of the unit j.

The output layer is then configured as a softmax,
where hidden units map input x j to a class probability
p j in the form

p j =
exp(x j)∑
l exp(xl)

(8)

where l is an index over all the classes.
As a cost function for backpropagating gradients in

the training stage, we use the cross-entropy function de-
fined as

C = −
∑

j

t j log p j (9)

where t j represents the target probability of the class j
for the current evaluated example, taking a value of ei-
ther 1 (true class) or 0 (false class).

3.2. Implementing DNN for language identification

From the conceptual architecture explained above,
we built a language identification system to work at the
frame level as follows.

As the input of the net we used the same features as
the i-vector baseline system (39 PLP). Specifically, the
input layer was fed with 21 frames formed by stacking
the current processed frame and its ±10 left/right neigh-
bours. Thus, the input layer comprised a total number
of 819 (21 × 39) visible units, v.

On top of the input layer, we stacked a total num-
ber of Nhl (8) hidden layers, each containing h (2560)
units. Then, we added the softmax layer, whose dimen-
sion (s) corresponds to the number of target languages
(NL) plus one extra output for the out-of-set (OOS) lan-
guages. This OOS class, devoted to non-known test lan-
guages not seen in training time, could in future allow
us to use the system in open-set identification scenarios.
Overall, the net was defined by a total of w free param-
eters (weights + bias), w = (v + 1)h + (Nhl −1)(h + 1)h +

(h+1)s (∼ 48M). The complete topology of the network
is depicted in Figure 1.

Regarding the training procedure, we used asyn-
chronous stochastic gradient descent within the Dist-
Belief framework [28], a software framework that uses
computing clusters with thousands of machines to train

large models. The learning rate and minibatch size were
fixed to 0.001 and 200 samples1.

Note that the presented architecture works at the
frame level, meaning that each single frame (plus its
corresponding context) is fed-forward through the net-
work, obtaining a class posterior probability for all of
the target languages. This fact makes the DNNs par-
ticularly suitable for real-time applications since, un-
like other approaches (i.e. i-vectors), we can poten-
tially make a decision about the language at each new
frame. Indeed, at each frame, we can combine the ev-
idence from past frames to get a single similarity score
between the test utterance and the target languages. A
simple way of doing this combination is to assume that
frames are independent and multiply the posterior esti-
mates of the last layer. The score sl for the language
l of a given test utterance is computed by multiplying
the output probabilities pl obtained for all its frames; or
equivalently, accumulating the logs as

sl =
1
N

N∑
t=1

logp(Ll|xt, θ) (10)

where p(Ll|xt, θ) represents the class probability output
for the language l corresponding to the input example at
time t, xt by using the DNN defined by parameters θ.

4. Datasets and evaluation metrics

We conducted experiments on two different databases
following the standard protocol provided by NIST in
LRE 2009 [29]. Particularly, we used the LRE’09 cor-
pus and a corpus generated from Google Voice services.
This followed a two-fold goal: first, to evaluate the pro-
posed methods with a large collection of real applica-
tion data and second, to provide a benchmark compa-
rable with other related works in the area by using the
well-known LRE’09 framework.

4.1. Databases

4.1.1. Google 5M LID Corpus
We generated the Google 5M LID corpus dataset

by randomly picking anonymized queries from sev-
eral Google speech recognition services such as Voice
Search or the Speech Android API. Following the user’s
phone Voice Search language settings, we labelled a
total of ∼5 million utterances, 150k utterances by 34

1We define sample as the input of the DNN: the feature representa-
tion of a single frame besides those from its adjacent frames forming
the context.
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Google 5M

Locale/Abbrev. Language
ar-EG Arabic (Egypt)
ar-GULF Arabic (Persian Gulf)
ar-LEVANT Arabic (Levant)
bg-BG Bulgarian
cs-CZ Czech
de-DE German
en-GB English (United Kingdom)
en-IN English (India)
en-US English (USA)
en-ZA English (South Africa)
es-419 Spanish (Latin America/Caribbean)
es-AR Spanish (Argentina)
es-ES Spanish (Spain)
fi-FI Finish
fr-FR French
he-IL Hebrew (Israel)
hu-HU Hungarian
id-ID Indonesian
it-IT Italian
ja-JP Japanese
ko-KR Korean (South Korea)
ms-MY Malay
nl-NL Dutch
pt-BR Portuguese (Brazilian)
pt-PT Portuguese (Portugal)
ro-RO Romanian
ru-RU Russian
sk-SK Slovak
sr-RS Serbian
sv-SE Sweden
tr-TR Turkish
zh-cmn-Hans-CN Chinese (Mandarin)
zh-cmn-Hant-TW Chinese (Taiwan)
zh-yue-hant-HK Chinese (Cantonese)

LRE’09

usen English(USA)
span Spanish (Latin America/Caribbean)
fars Farsi
dari Dari
fren French
pash Pashto
russ Russian
mand Chinese (Mandarin)

Table 1: List of the Google 5M LID (above) and LRE’09 (below)
languages considered.

Database #NL Train Test Test length
(hours) (#files) (avg. on s.)

Google 5M 34 2975 51000 4.2
LRE09 VOA 3s 8 1600 2916 3
LRE09 VOA realtime 8 1600 11276 (0.1s to 3s)

Table 2: Data description of the Google 5M LID and LRE09 subcorpus.
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Figure 2: Histograms of durations of the Google 5M LID test utterances.
Original speech signals (above) and after voice activity detection (below)
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Equal Error Rate (EER in %)

en es fa fr ps ru ur zh avg.
Iv 200h 17.22 10.92 20.03 15.3 19.98 14.87 18.74 10.09 15.89
DNN 8layers 200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Table 3: Systems performance (ERR %) comparison per language on LRE09 VOA 3s test . I-vector baseline system vs DNN 8layers 200h system.

different locales (25 languages + 9 dialects) yielding
∼87,5h of speech per language and a total of ∼2975h.
A held-out test set of 1k utterances per language was
created while the remainder was used for training and
development. Involved languages and data description
is presented in Tables 1 and 2 respectively.

An automatic speech recognition system was used
to discard non-speech queries. Selected queries ranged
from 1s up to 10s in duration with average speech con-
tent of 2.1s. Figure 2 shows the duration distribution
before and after doing this activity detection process.

Privacy issues do not allow Google to link the
user identity with the spoken utterance and therefore,
determining the exact number of speakers involved in
this corpus is not possible. However, it is reasonable to
consider that the total number of speakers is very large.

4.1.2. Language Recognition Evaluation 2009 Dataset
The LRE evaluation in 2009 included, for the first

time, data coming from two different audio sources. Be-
sides Conversational Telephone Speech (CTS), used in
the previous evaluations, telephone speech from broad-
cast news was used for both training and test purposes.
Broadcast data were obtained via an automatic acqui-
sition system from “Voice of America” news (VOA)
where telephone and non-telephone speech is mixed.

Due to the large disparity on training material for
every language (from ∼10 to ∼950 hours), out of the
40 initial target languages [30] we selected 8 represen-
tative languages for which up to 200 hours of audio
were available: US English (en), Spanish (es), Dari (fa),
French (fr), Pashto (ps), Russian (ru), Urdu (ur), Chi-
nese Mandarin (zh) (Table 1). Further, to avoid mis-
leading result interpretation due to the unbalanced mix
of CTS and VOA, all the data considered in this dataset
was part of VOA.

As test material in LRE’09, we used a subset of the
NIST LRE 2009 3s condition evaluation set (as for
training, we also discarded CTS test segments), yield-
ing a total of 2916 test segments of the 8 selected lan-
guages. That makes a total of 23328 trials. We refer this
test dataset as LRE09 VOA 3s test. For evaluating per-
formance in real-time conditions, we used the VOA test

segments for all the LRE’09 conditions (3s, 10s, 30s)
with at least 3s of speech (according to our voice activ-
ity detector); that made a total of 11276 files. Then we
cut these recordings to build different duration subsets
ranging from 0.1s to 3s of speech. Specifically, we came
up with 8 datasets of 11276 files with durations: 0.1s,
0.2s, 0.5s, 1s, 1.5s, 2.0s, 2.5s, 3.0s. We refer those test
datasets as the LRE09 VOA realtime test benchmark.

4.2. Evaluation metrics

In order to assess the performance we used Accuracy
and Equal Error Rate (EER) 2 metrics. Language identi-
fication rates are measured in terms of Accuracy, under-
standing this as the % of correctly identified trials when
making hard decisions (by selecting the top scored lan-
guage) Language detection rates are measured in terms
of per-language EER and for the sake of clarity we do
not deal with the problem of setting optimal thresholds
(calibration) as we previously did in [18].

5. Experimental results

5.1. Global performance

We start our study by comparing the performance of
the proposed DNN scheme with the baseline i-vector
system on the LRE09 VOA 3s test corpus. Table 3
summarizes this comparison in terms of EER. Results
show how the DNN approach largely outperforms the
i-vector system, obtaining up to a ∼40% relative im-
provement. An even larger improvement is obtained on
the Google 5M corpus, where we found an average rel-
ative gain of ∼76% (see Figure 3). Those results are
especially remarkable since they are found on short test
utterances and demonstrate the ability of the DNN to
exploit discriminative information in large datasets.

It is also worth analyzing the errors made by the DNN
system as a function of the similarity of the different
languages. We present in Figure A.7 (Appendix A) the
confusion matrix obtained using the DNN system on the

2EER is the point on ROC or DET curve where false acceptance
and true reject rates are equal.
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Figure 3: Systems performance (ERR %) comparison per language on Google 5M LID corpus. I-vector baseline system vs DNN 8layers 200h
system.

Equal Error Rate (EER in %)

en es fa fr ps ru ur zh avg.
DNN 2layers 200h 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
DNN 4layers 200h 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79
DNN 8layers 200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Table 4: Effect of using different number of hidden layers. Systems performance (ERR %) per language on LRE09 VOA test 3s

Google 5M LID corpus. Confusion submatrices around
dialects (i.e ar-EG/ar-GULF/ar-LEVANT) illustrate the
difficulty of dialect identification from spectral features
in short utterances [31]. These results suggest that ex-
ploiting just acoustic information might be not enough
to reach accurate identification when dealing with di-
alects [32][33][34].

5.2. Number of hidden layers and training material

In this section, we evaluate two related aspects when
training a DNN: the number of hidden layers and the
amount of training material used. On one hand, we want
to exploit the ability showed by DNNs to improve the
recognition performance while increasing the training,
avoiding overfitting. On the other hand, we aim to get
the lightest architecture possible without losing accu-
racy.

We started by fixing the available training mate-
rial to its maximum in LRE’09 (200h per language)
and then reducing the number of hidden layers from
8 (DNN 8layers 200h) to 4 (DNN 4layers 200h) and 2
(DNN 2layers 200h). Table 4 summarizes those results.
The net with 4-hidden layers seems to be more discrim-
inative than the 2-hidden layers, and more interestingly,

than the one with 8-hidden layers. In particular, on av-
erage, the DNN 4layers 200h outperforms by ∼8% in
terms of EER the DNN 8layers 200h system, using half
as many parameters.

As a further step, we swept the number of hours used
per language from 1h to 200h for the three nets. Figure
4 shows the % Accuracy as a function of the training
hours per language. As expected, the bigger the amount
of training data, the better the performance. However,
the slope of this gain degrades when reaching 100h per
language. Indeed, from the 2 layer system, increas-
ing the training material incurs in a minor degradation
mostly due to underfitting. Again, it is clear from the
results the need for a convenient tradeoff between the
training data and number of parameters to optimize. In
particular, our best configuration contains ∼ 21M pa-
rameters for ∼ 648M training samples.

5.3. Real-time identification
Taking now as reference the net with best perfor-

mance so far (DNN 4 200h) we explored the perfor-
mance degradation when limiting the test duration. The
goal is to gain some insight about how long a test utter-
ance must be to consider the identification accurate, a
main concern in real-time applications.
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Figure 4: DNN system performance (%Accuracy) in function of the
training time per language and the number of hidden layers. Results
on LRE09 VOA 3s test

Figure 5 shows the average accuracy as a func-
tion of the test durations, for both test corpus
LRE09 VOA realtime test and Google 5M LID. We
highlight here two main points. Notice first that up to
0.5s of speech (according to our voice activity detec-
tion) the identification accuracy is very poor (rates un-
der 50% accuracy). Very quick decisions can lead sys-
tems to a bad user experience in real-time applications.
Second, as expected, the larger the test duration, the bet-
ter the performance. However, this practically saturates
after 2s. This suggests that a decision can be taken at
this point without significant loss of accuracy even when
we increase the number of target languages from 9 to 34.

A more detailed analysis per language can be seen
in Table A.7 (Appendix A) for all the 34 languages
involved in the Google 5M LID corpus, where we
show that the previous conclusion holds true also
for each individual language. Confusion matrices on
LRE09 VOA realtime test are also collected in Ap-
pendix A.

5.4. Temporal context

So far we have been using a fixed right/left context of
±10 frames respectively. That is, the input of our net-
work, as mentioned in Section 3, is formed by stacking
the features of every frame with its corresponding 10 to
the left and 10 to the right neighbours. We explore in
this section the effect of including a shorter/wider con-
text for language identification.

The motivation behind using temporal information
from a large number of frames lies in the idea of in-
corporating additional high-level information (i.e pho-
netic, phonotactic and prosodic information). This idea
has been largely and successfully exploited in language
identification by using long-term phonotactic/prosodic
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Figure 5: DNN 4layers 200h system performance (% Accu-
racy) in function of the test utterance duration. Results on
LRE09 VOA realtime 3s.

tokenizations [35][3] or, in acoustic approaches, by us-
ing shifted-delta-cepstral features [36].

We modify the input of the network by stacking each
frame with a symmetric context that ranges from 0 to
50 left and right neighbour frames; that is, we sweep
from a context-free scheme to a maximum context that
spans 0.5s to the left and 0.5s to the right (a total of 1s
context).

Table 5 summarizes the obtained results on the
LRE09 VOA realtime test (3s subcorpus) using the
DNN 4 200h network. The importance of the context is
apparent from first two rows. We observe a relative im-
provement of ∼49% from the ±10 context scheme with
respect to the context-free one. We find the lowest EER
when using a ±20 frames of context. After this value
the EER increases. This behaviour can be explained by
understanding that as we demand our net to learn more
’high-level’ rich features, we are also increasing the size
of the input; therefore forcing the net to learn more com-
plex features from the same amount of data. Figure 6
collects the top 10 filters for a given minibatch (those
which produce highest activations in the minibatch) ex-
tracted from the first hidden layer for the DNN 4 200h
network. The distribution of those weights evidences
how the DNN is using the context information.

Although the number of parameters of the input layer
is affected by the size of the contextual window, the
input layer represent less than the 25% of the model
size. Thus, it seems that DNNs can lead to better mod-
elling of the contextual information than competing ap-
proaches, such as GMM-based systems, which are tra-
ditionally more affected by the curse of dimensional-
ity. Note that the relative gains reported in this analy-
sis (∼ 50%) surpass previous attempts reported in the
literature in including contextual information using the
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Equal Error Rate (EER in %)

en es fa fr ps ru ur zh avg.
No Context 19.07 9.65 24.82 13.17 21.64 14.28 19.39 12.38 16.8
±10 8.42 3.62 15.89 5.46 14.54 6.31 10.05 3.47 8.47
±20 7.71 3.88 15.49 6.11 12.9 6.09 10.5 4.00 8.33
±30 9.44 4.53 16.24 7.95 14.4 7.96 12.07 5.23 9.72
±40 12.05 5.08 17.41 9.71 15.47 9.14 13.1 6.27 11.03
±50 9.85 5.71 19.26 8.8 14.54 7.76 13.37 6.51 10.72

Table 5: Effect of using different left/right input contexts for the DNN 4layers 200h system. System performance (ERR %) on
LRE09 VOA realtime test (3s).

Figure 6: Visualization of top 10 filters (those which produce highest activations in the given minibatch) of the first hidden layer using a ±10
context. Each filter is composed by 21 rows (number of frames stacked as input) and 39 columns (feature dimension).

GMM paradigm [36]. We refer also to [37] for a exten-
sive comparison of different features in language iden-
tification over an i-vector based framework.

5.5. Frame-by-frame posteriors combination

One of the features that make DNNs particularly suit-
able for real-time applications is their ability to generate
frame-by-frame posteriors. Indeed we can derive deci-
sions about the language identification at each frame.
Here we aim to study how can we combine frame pos-
teriors into a single utterance-level score.

Probably the most standard way to perform this com-
bination is assuming frame independence and using the
product rule (see Section 3). That is, simply compute
the product of the posteriors frame-by-frame as the new
single score vector. Another common and simple ap-
proach used in the literature is plurality voting, where,
at each frame, the language associated with the high-
est posterior receives a single vote while the rest receive
none. The voting scheme aims to control the negative
effect of outlier scores. The score for a given language
l, sl, is then computed by counting the received votes
over all the frames as

sl =

N∑
t=1

δ(p(Ll|xt, θ)), (11)

with δ function defined as

δ(p(Ll|xt, θ))

1, if l == arg max
l

(p(Ll|xt, θ))

0, otherwise.
(12)

A more interesting approach, among blind techniques
(no need for training), is to weight the posteriors of ev-
ery frame as a function of the entropy of its posterior
distribution. The idea here is to penalize those frames
whose distribution of posteriors across the set of lan-
guages tends to be uniform (high entropy). This ap-
proach was successfully applied in [38], resulting in
a performance improvement when working with mis-
matched training and test datasets. The resulting score
for language l, sl, is computed as

sl =

N∑
t=1

log(
1
ht

p(Ll|xt, θ)) (13)

where the weight for frame t is the inverse of its entropy

ht = −

N∑
l=1

p(Ll|xt, θ) log2 p(Ll|xt, θ) (14)

Table 6 compares these three different combina-
tion schemes; product, voting and entropy on the
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Equal Error Rate (EER in %)

en es fa fr ps ru ur zh avg.
Product 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79
Voting 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
Entropy 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Table 6: Comparison of different frame combination schemes for the DNN 4layers 200h. Systems performance (ERR %) per language. Results
on LRE09 VOA 3s test

LRE09 VOA 3s test corpus. Results show a better per-
formance of the simple product rule compared to the
other approaches, with voting the worst choice. This
result suggests that making binary decisions at a frame
level leads to a performance degradation. Although the
entropy scheme does not help in this scenario, it should
be considered when working with more noisy environ-
ments.

6. Conclusion

In this work, we present a detailed analysis of the use
of deep neural networks (DNNs) for automatic language
identification (LID) of short utterances. Guided by
the success of DNNs for acoustic modelling in speech
recognition, we explore the capacity of DNNs to learn
language information embedded in speech signals.

Through this study, we also explore the limits of the
proposed scheme for real-time applications, evaluating
the accuracy of the system when using very short test
utterances (<= 3s). We find, for our proposed DNN
scheme, that while more than 0.5s is needed to obtain
over 50% accuracy rates, 2s are enough to reach accu-
racy rates of over 90%. Further, we experiment with the
amount of training material, the number of hidden lay-
ers and the combination of frame posteriors. We also
analyze the relevance of including the temporal context,
which is critical to achieving high performance in LID.

Results using NIST LRE 2009 (8 languages selected)
and Google 5M LID datasets (25 languages + 9 dialects)
demonstrate that DNNs outperform current state-of-art
i-vector-based approaches when dealing with short test
durations. Finally, we demonstrated that using a frame-
by-frame approach, DNNs can be successful applied for
real-time applications.

7. Future Work

We identified several areas where further investiga-
tion is needed. Among them, establishing a more ap-
propriate combination of frame posteriors obtained in

DNNs; exploring different fusions among DNNs and i-
vector systems [39]; and dealing with unbalanced train-
ing data. Note that even though we proposed different
ways of combining posteriors, all of them were blind
(no need for training), as we focused on real-time appli-
cations and simple approaches. However, other, data-
driven methods could be useful at the time of combining
those posteriors.

Further neural network architectures should also be
explored. For instance, recurrent neural networks might
be an elegant solution to incorporating contextual infor-
mation. Also, convolutional neural networks might help
reduce the number of parameters of our model.

Another promising approach is that of using activa-
tions of the last hidden layer as bottleneck features.
Then, i-vector-based systems or another classification
architecture could be trained over those bottleneck fea-
tures, rather than over classical features, such as PLP or
MFCC.
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Description and Analysis of the Brno276 System for LRE2011,
in: Proceedings of Odyssey 2012: The Speaker and Language
Recognition Workshop, International Speech Communication
Association, 2012, pp. 216–223.

[11] D. Sturim, W. Campbell, N. Dehak, Z. Karam, A. Mc-
Cree, D. Reynolds, F. Richardson, P. Torres-Carrasquillo,
S. Shum, The MIT LL 2010 Speaker Recognition Evalua-
tion System: Scalable Language-Independent Speaker Recog-
nition, in: Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, 2011, pp. 5272–5275.
doi:10.1109/ICASSP.2011.5947547.

[12] N. Dehak, P. A. Torres-Carrasquillo, D. A. Reynolds, R. Dehak,
Language Recognition via i-vectors and Dimensionality Reduc-
tion., in: INTERSPEECH, ISCA, 2011, pp. 857–860.

[13] P. Kenny, P. Oullet, V. Dehak, N. Gupta, P. Dumouchel, A
Study of Interspeaker Variability in Speaker Verification, IEEE
Trans. on Audio, Speech and Language Processing 16 (5) (2008)
980–988.

[14] A. Mohamed, G. Dahl, G. Hinton, Acoustic Modeling us-
ing Deep Belief Networks, Audio, Speech, and Language
Processing, IEEE Transactions on 20 (1) (2012) 14–22.
doi:10.1109/TASL.2011.2109382.

[15] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, B. Kings-
bury, Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups,
Signal Processing Magazine, IEEE 29 (6) (2012) 82–97.
doi:10.1109/MSP.2012.2205597.

[16] D. Ciresan, U. Meier, L. Gambardella, J. Schmidhuber, Deep
Big Simple Neural Nets Excel on Handwritten Digit Recogni-
tion, CoRR abs/1003.0358.

[17] D. Yu, L. Deng, Deep Learning and its Applications to
Signal and Information Processing [Exploratory DSP], Sig-
nal Processing Magazine, IEEE 28 (1) (2011) 145–154.
doi:10.1109/MSP.2010.939038.

[18] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Mar-
tinez, J. Gonzalez-Rodriguez, P. Moreno, Automatic Language
Identification using Deep Neural Networks, Acoustics, Speech,
and Signal Processing, IEEE International Conference on, to ap-
pear.

[19] R. Cole, J. Inouye, Y. Muthusamy, M. Gopalakrishnan, Lan-
guage Identification with Neural Networks: A Feasibility Study,
in: Communications, Computers and Signal Processing, 1989.
Conference Proceeding., IEEE Pacific Rim Conference on,
1989, pp. 525–529. doi:10.1109/PACRIM.1989.48417.

[20] M. Leena, K. Srinivasa Rao, B. Yegnanarayana, Neural Net-
work Classifiers for Language Identification using Phonotactic
and Prosodic Features, in: Intelligent Sensing and Information
Processing, 2005. Proceedings of 2005 International Conference
on, 2005, pp. 404–408. doi:10.1109/ICISIP.2005.1529486.

[21] G. Montavon, Deep Learning for Spoken Language Identifica-
tion, in: NIPS workshop on Deep Learning for Speech Recog-

nition and Related Applications, 2009.
[22] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-

End Factor Analysis for Speaker Verification, Audio, Speech,
and Language Processing, IEEE Transactions on 19 (4) (2011)
788 – 798.

[23] D. Martinez, O. Plchot, L. Burget, O. Glembek, P. Matejka,
Language Recognition in iVectors Space., in: INTERSPEECH,
ISCA, 2011, pp. 861–864.

[24] D. Reynolds, Speaker Identification and Verification Using
Gaussian Mixture Speaker Models, Speech Communication
17 (1-2) (1995) 91–108.

[25] C. Bishop, Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics), 1st Edition, Springer, 2007.

[26] H. Hermansky, Perceptual Linear Predictive (PLP) Analysis of
Speech, The Journal of the Acoustical Society of America 87 (4)
(1990) 1738–1752.

[27] A. rahman Mohamed, G. E. Hinton, G. Penn, Understanding
how Deep Belief Networks perform Acoustic Modelling., in:
ICASSP, IEEE, 2012, pp. 4273–4276.

[28] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, A. Ng,
Large Scale Distributed Deep Networks, in: P. Bartlett,
F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.), Ad-
vances in Neural Information Processing Systems 25, 2012, pp.
1232–1240.

[29] NIST, The 2009 NIST SLR Evalua-
tion Plan, www.itl.nist.gov/iad/mig/tests/lre/

2009/LRE09 EvalPlan v6.pdf (2009).
[30] G. Liu, C. Zhang, J. H. L. Hansen, A Linguistic Data Acquisi-

tion Front-End for Language Recognition Evaluation, in: Proc.
Odyssey, Singapore, 2012.

[31] P. A. Torres-Carrasquillo, D. E. Sturim, D. A. Reynolds,
A. McCree, Eigen-channel Compensation and Discriminatively
Trained Gaussian Mixture Models for Dialect and Accent
Recognition., in: INTERSPEECH, 2008, pp. 723–726.

[32] F. Biadsy, Automatic Dialect and Accent Recognition and its
Application to Speech Recognition, Ph.D. thesis, Columbia
University (2011).

[33] W. Baker, D. Eddington, L. Nay, Dialect Identification: The Ef-
fects of Region of Origin and Amount of Experience, American
Speech 84 (1) (2009) 48–71.

[34] G. Liu, Y. Lei, J. H. Hansen, Dialect Identification: Impact
of Difference between Read versus Spontaneous Speech, in:
EUSIPCO-2010, 2003-2006.

[35] D. Reynolds, W. Andrews, J. Campbell, J. Navratil, B. Peskin,
A. Adami, Q. Jin, D. Klusacek, J. Abramson, R. Mihaescu,
J. Godfrey, D. Jones, B. Xiang, The SuperSID Project: Exploit-
ing High-Level Information for High-Accuracy Speaker Recog-
nition, in: IEEE International Conference on Acoustics, Speech,
and Signal Processing, Vol. 4, 2003, pp. 784–787.

[36] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, J. R. Deller,
Approaches to Language Identification Using Gaussian Mixture
Models and Shifted Delta Cepstral Features, in: ICSLP, Vol. 1,
2002, pp. 89–92.

[37] M. Li, S. Narayanan, Simplified Supervised i-vector Model-
ing with Application to Robust and Efficient Language Identi-
fication and Speaker Verification, Computer, Speech, and Lan-
guage.

[38] H. Misra, H. Bourlard, V. Tyagi, New Entropy based Combi-
nation rules in HMM/ANN Multi-Stream ASR, in: Acoustics,
Speech, and Signal Processing, 2003. Proceedings. (ICASSP
’03). 2003 IEEE International Conference on, Vol. 2, 2003, pp.
II–741–4 vol.2. doi:10.1109/ICASSP.2003.1202473.

[39] G. Saon, H. Soltau, D. Nahamoo, M. Picheny, Speaker
Adaptation of Neural Network Acoustic Models using i-

11



vectors, in: Automatic Speech Recognition and Understand-
ing (ASRU), 2013 IEEE Workshop on, 2013, pp. 55–59.
doi:10.1109/ASRU.2013.6707705.

Appendix A. Extended Results

12



ar
-E

G

 a
r-G

UL
F

 a
r-L

EV
AN

T

 b
g-

BG

 c
s-

CZ

 d
e-

DE

 e
n-

GB

 e
n-

IN

 e
n-

US

 e
n-

ZA

 e
s-

41
9

 e
s-

AR

 e
s-

ES

 fi
-F

I

 fr
-F

R

 h
e-

IL

 h
u-

HU

 id
-ID

 it
-IT

 ja
-jp

 k
o-

KR

 m
s-

M
Y

 n
l-N

L

 p
t-B

R

 p
t-P

T

 ro
-R

O

 ru
-R

U

 s
k-

SK

 s
r-R

S

 s
v-

SE

 tr
-T

R

 z
h-

CN

 z
h-

TW

 z
h-

HK

Ac
cu

ra
cy

ar-EG

 ar-GULF

 ar-LEVANT

 bg-BG

 cs-CZ

 de-DE

 en-GB

 en-IN

 en-US

 en-ZA

 es-419

 es-AR

 es-ES

 fi-FI

 fr-FR

 he-IL

 hu-HU

 id-ID

 it-IT

 ja-jp

 ko-KR

 ms-MY

 nl-NL

 pt-BR

 pt-PT

 ro-RO

 ru-RU

 sk-SK

 sr-RS

 sv-SE

 tr-TR

 zh-CN

 zh-TW

 zh-HK

545211 27 3 2 8 9 29 5 5 2 3 1 5 6 6 6 5 4 10 17 10 6 5 1 4 4 3 1 8 18 2 2 3 55

132666 75 2 1 3 0 15 3 3 0 0 0 2 4 6 1 7 5 4 15 13 2 3 2 1 0 1 2 3 6 1 3 3 67

143 162578 0 0 3 3 7 5 1 2 1 0 4 4 12 5 2 4 3 6 2 1 3 0 0 3 2 0 15 9 3 2 1 58

9 1 2 624 7 9 4 15 2 5 6 4 8 6 10 11 4 9 19 5 8 4 5 18 15 18 72 15 21 5 26 3 0 3 64

8 4 5 6 795 4 6 6 9 1 0 0 0 11 2 2 2 4 9 4 18 2 2 6 6 2 9 36 4 7 9 4 1 4 80

1 1 3 2 1 885 4 6 9 7 0 0 0 2 4 7 2 2 2 4 0 4 6 3 2 1 2 3 1 19 6 1 0 5 88

10 3 2 1 2 10 569 93 114 73 0 2 0 8 5 0 7 5 2 7 10 15 3 2 3 2 0 3 1 17 1 4 0 16 57

15 6 9 2 1 2 17 792 16 17 2 0 1 7 0 5 5 9 1 8 13 33 1 1 1 1 0 2 0 8 4 1 2 5 80

0 1 4 0 0 2 40 11 909 3 0 0 0 1 0 0 0 0 0 2 6 3 1 1 2 0 1 0 1 7 0 1 0 4 90

3 3 10 3 0 23 113 39 96 565 2 4 2 5 7 5 8 6 4 8 8 7 10 5 3 2 5 2 2 17 4 1 3 5 57

11 2 10 6 2 2 0 19 9 1 539108 177 3 2 5 2 10 11 12 20 9 0 10 0 4 2 0 0 10 2 3 0 4 54

11 2 6 3 1 2 1 6 2 2 100614136 4 5 4 2 9 18 12 7 4 1 4 3 3 3 0 2 5 4 2 0 5 62

6 2 5 1 1 2 0 5 2 1 91 47 742 2 4 6 1 7 22 5 10 6 1 3 2 3 2 1 1 7 4 4 1 1 74

10 0 6 1 1 7 13 3 17 10 2 1 4 817 3 1 11 4 5 6 12 0 6 0 1 0 3 1 1 16 3 3 1 1 84

3 1 5 0 2 5 1 2 3 2 1 1 3 1 919 3 0 1 3 6 2 1 1 7 2 0 2 3 2 7 2 2 0 1 92

29 11 33 3 0 8 2 6 16 9 0 4 3 2 10 749 7 5 12 3 19 3 4 4 5 2 5 4 2 14 5 3 1 3 75

9 3 4 3 4 7 1 12 6 12 2 1 1 19 3 2 782 4 6 9 10 1 1 5 6 1 2 4 3 16 6 1 3 6 81

1 0 0 0 0 3 3 28 6 2 1 1 5 14 1 0 2 771 1 11 20 88 3 0 2 2 2 0 0 2 1 3 2 5 78

6 1 9 5 3 6 1 7 3 4 5 6 5 5 4 8 7 5 835 7 10 4 2 3 5 7 4 8 4 9 4 2 0 1 83

2 0 6 0 0 0 1 3 4 1 1 1 2 1 3 0 0 1 4 907 24 4 0 0 0 0 1 0 0 3 3 7 4 3 91

5 1 1 0 2 5 4 2 2 1 1 2 0 1 0 4 1 4 0 30 898 4 0 2 0 0 1 1 0 1 3 3 4 5 90

13 6 10 0 2 2 2 27 7 7 5 2 1 5 2 1 0 83 4 25 36 678 1 3 1 2 2 1 0 8 0 5 5 8 71

8 2 21 1 3 12 7 3 8 6 0 1 1 7 11 5 3 3 1 4 7 2 822 2 10 2 1 2 2 25 2 0 3 3 83

8 3 4 5 2 4 4 14 8 0 2 1 2 5 5 4 4 5 9 4 10 5 7 806 38 5 6 1 0 10 7 4 2 4 80

23 6 5 6 2 5 11 11 17 10 4 5 6 5 10 11 16 2 9 5 11 10 7 234476 5 10 14 4 7 11 6 1 1 49

12 4 12 19 6 3 11 12 10 7 7 8 9 7 9 4 8 4 25 12 21 7 1 18 9 655 21 6 8 15 14 4 1 2 67

4 7 4 10 2 3 0 5 3 1 0 1 3 11 7 3 2 0 5 11 14 7 5 19 3 5 808 7 3 7 15 4 1 1 82

11 4 1 15 88 9 13 7 8 10 2 1 2 22 5 6 12 8 26 5 8 4 9 5 8 4 25 617 6 10 6 3 1 5 63

14 2 1 26 8 10 7 7 16 10 2 0 6 16 3 9 13 4 24 14 12 4 5 19 8 13 29 20 645 5 17 8 1 2 65

7 2 13 3 3 14 43 5 26 23 0 3 1 29 9 2 9 1 6 5 20 3 7 1 3 3 1 1 4 702 12 5 1 2 72

5 6 5 4 1 12 1 8 4 3 0 1 1 5 5 6 3 3 4 8 22 4 0 4 1 2 4 2 4 4 856 2 0 0 86

0 1 1 0 0 0 1 4 0 0 0 0 0 1 1 0 2 2 1 4 15 3 0 0 0 0 0 0 0 1 1 815131 7 82

2 1 4 0 0 0 3 2 2 0 0 0 0 3 0 0 0 1 2 7 22 4 0 0 1 0 0 0 0 0 0 70 831 20 85

1 1 2 0 0 0 9 3 10 1 0 0 0 0 0 0 0 0 1 5 15 3 0 0 0 0 0 0 0 1 0 12 13 912 92
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure A.7: Confusion matrix obtained by evaluating the DNN 8 200h system on the Google 5M LID corpus.
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% Accuracy Test utterance duration

Locale Language 0.1s 0.2s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s
ar-EG Arabic (Egypt) 12 14 38 41 52 56 58 57
ar-GULF Arabic (Persian 19 22 46 53 61 64 69 68
ar-LEVANT Arabic (Levant) 43 51 54 48 65 64 61 62
bg-BG Bulgarian 7 11 38 51 65 64 68 72
cs-CZ Czech 2 6 45 69 71 75 79 81
de-DE German 18 27 62 72 84 88 87 89
en-GB English (United 4 12 31 39 49 54 54 54
en-IN English (India) 27 30 56 63 73 74 76 78
en-US English (USA) 22 29 62 70 85 87 89 91
en-ZA English (South 4 7 34 45 46 51 56 57
es-419 Spanish (Latin 6 8 25 41 47 50 52 55
es-AR Spanish (Argentina) 6 8 35 50 53 56 58 61
es-ES Spanish (Spain) 5 9 48 54 67 70 72 73
fi-FI Finish 14 23 55 75 76 80 82 82
fr-FR French 14 25 69 83 90 93 94 95
he-IL Hebrew (Israel) 4 10 46 60 60 67 68 70
hu-HU Hungarian 8 16 48 71 72 80 82 82
id-ID Indonesian 13 21 45 62 69 72 75 76
it-IT Italian 8 13 42 58 75 78 80 81
ja-JP Japanese 18 25 68 87 89 91 94 95
ko-KR Korean (South 16 25 68 91 89 91 92 92
ms-MY Malay 17 25 44 59 63 70 72 72
nl-NL Dutch 6 12 56 68 76 80 80 81
pt-BR Portuguese (Brazilian) 11 18 47 74 74 78 80 81
pt-PT Portuguese (Portugal) 6 8 28 53 42 43 48 49
ro-RO Romanian 7 12 34 43 56 61 64 66
ru-RU Russian 5 11 52 70 83 85 85 85
sk-SK Slovak 10 13 30 40 48 51 55 58
sr-RS Serbian 6 9 35 54 55 59 60 62
sv-SE Sweden 10 16 42 62 65 70 73 71
tr-TR Turkish 5 10 55 78 79 82 83 85
zh-cmn-Hans-CN Chinese (Mandarin) 12 16 54 76 75 76 80 82
zh-cmn-Hant-TW Chinese (Taiwan) 12 22 63 78 80 83 83 85
zh-yue-hant-HK Chinese (Cantonese) 15 25 68 81 88 91 90 91

Table A.7: Systems performance (Accuracy %) by language and test utterance duration on Google 5M Database.
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Figure A.8: DNN 4layers 200h confusion matrix on LRE’09 (0.5s test)
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Figure A.9: DNN 4layers 200h confusion matrix on LRE’09 (1s test)
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Figure A.10: DNN 4layers 200h confusion matrix on LRE’09 (2s test)
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Figure A.11: DNN 4layers 200h confusion matrix on LRE’09 (3s test)
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