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Abstract: Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, 8 

pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix 9 

in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the 10 

original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. 11 

Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph 12 

Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularization term into CNMF. 13 

The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows 14 

the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are 15 

conducted to demonstrate the effectiveness of the proposed method.  16 

Index Terms—Nonnegative matrix factorization, manifold regularization, convex nonnegative matrix factorization, clustering.  17 

 18 

1 INTRODUCTION  19 

Nonnegative Matrix Factorization (NMF) is a popular matrix factorization technique which decomposes a data matrix 20 

into the product of two matrices with nonnegative entries [1], [2]. It is a NP-hard problem [5] and was first proposed by 21 

Paatero and Tapper [1]. NMF possesses powerful representation of the data and finds many applications, including face 22 

and object recognition [14], [15], biomedical applications [16], text mining [17], [18], [19], brain electromagnetic 23 

tomography applications [20] and speech signal processing [21].  24 

As the entries are constrained to be nonnegative, NMF is usually interpreted as a parts-based representation of the 25 

data that only allows additive combinations while prohibiting subtractive combinations. This is a feature that makes 26 

NMF distinct from other matrix factorization methods like Singular Value Decomposition (SVD), Principal Component 27 

Analysis (PCA) and Independent Component Analysis (ICA) [3], [4].  28 

Multiplicative iterative rules have been developed to solve the NMF problem by considering it as a non-convex 29 

programming problem and applying heuristic procedures [2], [6]. Unless convergence to a stationary point can be 30 
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achieved, the multiplicative iterative rules indeed do not guarantee optimality. Recently, some methods have been 31 

presented to solve the NMF problem exactly based on the assumption of separability [7], [8], [9], [10], where regularized 32 

terms and/or constraints are introduced to the cost function to develop different variations of NMF. For example, Feng et 33 

al. [11] proposed the Local Nonnegative Matrix Factorization (LNMF) by applying subspace method and feature 34 

localization to obtain a part-based representation and manifest localized features. Cai et al. proposed the Graph 35 

Regularized Nonnegative Matrix Factorization (GNMF) [12] that takes into account the geometrically-based regularizer 36 

to determine the low-dimension manifold structure of the data. Smoothing of the encoding vectors is applied to increase 37 

the sparseness of the basis vectors. However, these NMF algorithms are only applicable to nonnegative data matrices and 38 

the interpretability of the based-parts presentation are weak. To deal with mixed-sign data, semi-NMF, convex-NMF, and 39 

cluster-NMF algorithms have been proposed [13]. In particular, convex-NMF algorithms (CNMF) further require that 40 

the basis vectors in NMF are convex or linear combinations of the data points. As a result, the basis vectors can better 41 

capture the cluster centroids and ensure the sparseness of the encoding vectors. Nevertheless, these methods ignore the 42 

importance to preserve the low-dimension manifold in part-based representation, i.e. smoothing of encoding vectors.  43 

Motivated by manifold learning and CNMF [13], we introduce a graph regularized term into CNMF and propose a 44 

novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF). 45 

The proposed approach combines the manifold structure with CNMF so that the encoding vectors obtained by matrix 46 

factorization can preserve the low-dimension manifold structure. Like many manifold learning algorithms, the idea of 47 

local structure invariant is also employed to reveal the intrinsic manifold structure. Besides, GCNMF can also handle 48 

mixed-sign matrix, which extends the application of NMF. As a result, the structure of the data can be interpreted more 49 

properly by using GCNMF during the process of matrix factorization and the performance can be guaranteed for 50 

nonnegative and mixed-sign data sets.  51 

The rest of the paper is organized as follows. Section 2 provides a brief description of the work related to the proposed 52 

GCNMF algorithm. Section 3 introduces the GCNMF algorithm and discusses the solving scheme. Section 4 presents 53 

the clustering experiments performed on nonnegative and mixed-sign data sets, which are used to evaluate the 54 

performance of the proposed algorithm. Finally, a conclusion is given in Section 5.  55 

 56 

2 RELATED WORK  57 

The proposed GCNMF algorithm is closely related to NMF [1], [2], GNMF [12] and CNMF [13]. These matrix 58 

factorization techniques are briefly described in this section.  59 

2.1 NMF  60 
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NMF is a common matrix factorization technique in numerical linear algebra. It decomposes a data matrix into a product 61 

of two matrices whose elements are nonnegative. Let ][ 1 N,, xxX   be a matrix with column vectors 
D

i x . 62 

Then, the NMF algorithm can be expressed as  63 

T
UVX  ,                                          (1) 64 

where 
KD

iku  ][U  and 
KN

jkv  ][V  are two matrices with nonnegative entries. The column vectors of 65 

U  are called the basis vectors and the column vectors of V  are called the encoding vectors. To measure the quality of 66 

NMF in Eq. (1), Paatero et al. proposed two mechanisms based on the measurement of the Euclidean distance and the 67 

divergence distance respectively [1]. In this paper, we focus on the former and the corresponding objective function can 68 

be formulated as 69 

2

1 ),( TO UVXVU  ,                                  (2) 70 

where   denotes the Frobenius norm of a matrix. To minimize the objective function in Eq. (2), Lee and Seung [22] 71 

proposed a multiplicative update algorithm, which is given by  72 
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2.2 GNMF  76 

The GNMF algorithm is developed by combining a geometrically based regularized term with NMF [12]. Here, the 77 

approximation in the NMF algorithm in Eq. (1) is considered with the column-wise representation below,  78 





K

k

jkkj v
1

ux ,                                        (5) 79 

where ku  is the kth column vector of U . Clearly, the linear combination of the basis vectors and the entries of V  80 

can be used to approximate each data 
jx . This implies that 

jKjk vv ,,  are the coordinates with respect to the basis 81 

U . In other words, we can define a vector 
T

jKjj vv ],,[ 1z to represent the original data 
jx  under the basis U . A 82 

regularized term is introduced into the learning process of NMF to inherit and preserve the underlying manifold structure 83 

of the data space in which X  is sampled. The objective function of GNMF [12] can then be expressed as  84 
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where 
ijW  is the ijth entry of the weight matrix W  and constitutes of the adjacency graph [12], [23], and 0λ   is a 86 

control parameter. The weight matrix W can take many different forms and two common definitions are given. Let 87 

)( iN x  denote a set of p  nearest neighbors of ix . One of the definitions of W  is the 0-1 weights, which is given 88 

by  89 



 


otherwise,0

)(or  )( if,1 jiij

ij

NN xxxx
W .                               90 

The other is the heat kernel weights, which is expressed as  91 













otherwise,0

)(or  )( if),
2

exp(
2 jiij

ji

ij
NN xxxx

xx

W  ,                  92 

where   is the heat kernel parameter, a constant value. In Eq. (6), the first term on the right-hand side is to increase the 93 

accuracy of the approximation of X  by 
T

UV . The second term, involving the coordinates with respect to U , is to 94 

preserve the manifold structure of the data space. That is, if ix  and 
jx  are close, then iz  and 

jz will also be close 95 

to each other. The GNMF algorithm exhibits good performance in the clustering of image, face and document data sets. 96 

Further details of GNMF can be found in [12].  97 

2.3 Convex NMF  98 

NMF and GNMF can only be applied to the factorization of nonnegative data matrix. For better interpretability, Ding et 99 

al. proposed the CNMF [13] that the basis vectors are convex or linear combinations of the data points, i.e.  100 

TT
XUVVUX 

~
,                                       (7) 101 

where both 
KNU  and 

KNV  are nonnegative, the column vectors of XUU 
~

 are the basis vectors, and 102 

the column vectors of V  are the encoding vectors. The restriction of nonnegative data matrix is thus removed in 103 

CNMF, making it applicable for both nonnegative and mixed-sign data matrix. Since the basis vectors are restricted to be 104 

within the column space of the data matrix, they can better capture the centroids of the cluster. As a result, CNMF has 105 

good interpretability of the data.  106 

2.4 Sparseness in NMF  107 

The study of the sparseness is a hot topic in NMF. Whether the basis vectors or the encoding vectors, or both, should be 108 
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sparse, is dependent on the application of interest. The sparseness in NMF has been widely investigated. Sparse NMF 109 

(SNMF) can be performed using explicit methods or implicit methods. The explicit SNMF methods intuitively impose 110 

sparseness constraint on the basis and/or encoding vectors. Many SNMF methods are developed based on different 111 

sparseness measures. For example, Kim et al. [36] proposed SNMF/L (SNMF/R) by imposing the L1-norm constraint on 112 

the basis and the encoding vectors. Liu et al. [37] minimized the sum of all elements in the encoding vectors to achieve 113 

sparseness in NMF. Hoyer [27] developed the Nonnegative Matrix Factorization with Sparseness Constraints (NMFSC) 114 

by proposing a new sparseness measure based on the relationship between the L1-norm and the L2-norm of the basis 115 

vector or the encoding vector (i.e. Eq. (24) in this paper). Besides, Tandon et al. [38] defined a mixed-norm, i.e. 116 

Lp,q-norm, of the basis vectors which was added to the NMF model. Since p and q can take many different values, SNMF 117 

models with different sparseness constraints are developed.  118 

For the implicit SNMF methods, the sparseness of the basis vectors and/or the encoding vectors is inherent in the 119 

NMF model. For example, in GNMF, the low-dimensional representation points with respect to the basis vectors, i.e. the 120 

rows of V , inherit and preserve the underlying manifold structure of the data by introducing the regularized term. The 121 

manifold is smooth and thus ensures the sparseness of the basis vectors. Besides, in CNMF, the basis is restricted in the 122 

column space of the data matrix, i.e. XUU 
~

, which enables each basis vector to capture the centroid of the 123 

corresponding cluster. Theoretically, the basis vectors should only be linearly combined with the data from the same 124 

cluster. That is, the sparseness of the factor U  will be strengthened. Similarly, as the rows of V  are the 125 

low-dimensional representation under the cluster centroids, their sparseness will also be strengthened. Note that 126 

excessively strengthening the sparseness of the basis and/or encoding vectors may lead to poor performance in the some 127 

applications.  128 

3 CONVEX NONNEGATIVE MATRIX FACTORIZATION WITH MANIFOLD REGULARIZATION  129 

In this section, the proposed GCNMF method is presented. The method is motivated by CNMF and GNMF, where a 130 

graph regularized term is integrated into CNMF to make it applicable for both nonnegative and mixed-sign data matrix, 131 

and to reveal the inherited manifold structure.  132 

3.1 GCNMF  133 

Similar to GNMF, the approximation in the CNMF algorithm in Eq. (7) can be represented in column-wise manner as 134 

follows,  135 





K

k

jkkj v
1

~ux ,                                        (8) 136 
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where ku~  is the kth column vector of U
~

. Let 
T

jKjj vv ],,[ 1z  ( Nj 1 ) such that the vector 
jz  is the 137 

low-dimensional representation of the original data 
jx  with respect to the basis U

~
. Given an adjacency graph with the 138 

weight matrix W , the smoothness of the low-dimensional representation can be measured by using the term R(V) 139 

below,  140 
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where )Tr(  denotes the trace of a matrix, WDL   is the Laplacian matrix [23], [24], [25], [26], and D  is a 142 

diagonal matrix whose entries along the diagonal are the column sum of W , i.e. 
j

ijii WD .  143 

  We can then obtain the objective function of the proposed GCNMF as follows,  144 

)(λ),(
2

3 VXUVXVU RO T  ,                            (10) 145 

where the parameter 0λ   is used to control the smoothness of the low-dimensional representation. Before 146 

introducing an iterative algorithm to minimize the objective function in Eq. (10), the features of NMF, GNMF, CNMF 147 

and GCNMF is summarized with Table 1 and the differences are discussed. 148 

Table 1 The features of NMF, GNMF, CNMF and GCNMF  149 

Factorization method Factorization form Objective function for solution 

NMF 
T

  VUX  
2

min T

  VUX  

GNMF 
T

  VUX  




   )(λTrmin

2

LVVVUX
TT

 

CNMF 
T

  VUXX  
2

min T

  VUXX  

GCNMF 
T

  VUXX  




   )(λTrmin

2

LVVVUXX
TT

 

The subscripts in Table 1 indicate whether entries of a matrix are of mixed sign () or nonnegative (+). The data 150 

matrix in NMF and GCNMF is restricted to be nonnegative, while CNMF and GCNMF can be applied to mixed-sign 151 

data. In GNMF and GCNMF, the low-dimensional representation, i.e. the row vectors of V , detects the underlying 152 

manifold structure of the original data by preserving the adjacency relationship. From the view of probability distribution, 153 
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the underlying manifold in the sampling data matrix comprises of multiple sub-manifolds corresponding to different 154 

clusters. For the sampling data, it is indeed difficult to specify the underlying manifold and the sub-manifolds. In GNMF, 155 

the approach to preserve the adjacency relation may be sufficient for detecting the underlying manifold but inadequate 156 

for releasing the information between the sub-manifolds. On the other hand, the basis vectors (the column vectors of 157 

UX ) in CNMF are restricted to be convex combinations of the column vectors of X  so that they can capture the 158 

cluster centroids. As different centroids correspond to different sub-manifolds, CNMF can release the structure 159 

information between the sub-manifolds to some extent. In the proposed GCNMF, the underlying manifold and the 160 

sub-manifolds are considered simultaneously, which is expected to improve the performance of matrix factorization.  161 

As NMF approximates the data matrix with the product of two matrices, i.e. basis matrix multiplied by encoding 162 

matrix, strengthening the sparseness of one of these two matrices can lead to the smoothing of the other. On the other 163 

hand, strengthening the sparseness or the smoothing of two matrices can cause poor approximation, or deteriorate the 164 

goodness-of-fit of the model for the data. For GNMF and CNMF, it is obvious that overfitting of the model for the data 165 

matrix can occur since either sparseness or smoothness is only considered. In the proposed GCNMF, each basis vector is 166 

a linear combination of the column vectors of X , i.e. it is represented by part of the data matrix X . Meanwhile, 167 

each column vector of X  is represented as the weighted sum of the basis vectors (see Eq. (8)). This approach provides 168 

a clearer interpretation of the based-parts presentation.  169 

 170 

3.2 Solution to GCNMF  171 

By substituting the Eqs. (9) to (10), we have  172 

 

)(λTr  

)Tr()2Tr()Tr(

)(λ))((Tr),(3

LVV

XVUXUVXXUVXX

VXUVXXUVXVU

T

TTTTTT

TTT RO







.                (11) 173 

Since all the entries of U  and V  are nonnegative, we define the Lagrangian multipliers of U  and V  with 174 

][ ikΘ  and ][ jkΦ  respectively. Then, the Lagrangian function is expressed as  175 

)Tr()Tr( )(λTr

)Tr()2Tr()Tr(),(

TTT

TTTTTTL

ΦVΘULVV

XVUXUVXXUVXXVU




.               (12) 176 

Setting the partial derivatives of ),( VUL  with respect to the primal variables U  and V  to zero gives the following 177 

equations,  178 
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0ΘVXUVXXVX
U
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



 TTTL
22

),(
,                          (13) 179 

0ΦLVXUXVUXUX
V

VU





λ222

),( TTTL
.                  (14) 180 

With the Karush–Kuhn–Tucker (KKT) conditions, i.e. 0ikiku  and 0jkjkv , the equations below can be derived 181 

from Eqs. (13) and (14), 182 

0)()(  ikik

TT

ikik

T uu VXUVXXVX ,                                (15) 183 

0)(λ)()(  jkjkjkjk

TT

jkjk

T vvv LVXUXVUXUX .                   (16) 184 

Define two nonnegative matrices, 
2

||
)(

XXXX
XX

TT
T 


 and 

2

||
)(

XXXX
XX

TT
T 


, then XX

T
 can be 185 

expressed with its positive and negative parts, i.e. 
  )()( XXXXXX

TTT
. Substituting this expression to Eqs. 186 

(15) and (16) gives the following equation,  187 

0)))()((()))()(((  

ikik

TTT

ikik

TT uu VUVXXXXVXXXX ,              (15-1) 188 

0))((λ)))()((()))()(((  

jkjkjkjk

TTT

jkjk

TT vvv VWDUXXXXVUUXXXX .    (16-1) 189 

i.e.  190 
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TT
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T

ikik

TT

ikik

T uuuu ))(())(())(())(( VUVXXVXXVUVXXVXX
  ,        (15-2) 191 
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TTT
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TTT vv )λ)()(()λ)()(( WVUXXVUUXXDVUXXVUUXX  
.      (16-2) 192 

Then, the two iterative update rules below can be obtained, 193 

ik

TTT

ik

TTT

ikik uu
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VUVXXVXX

VUVXXVXX

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
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jk

TTT

jk

TTT

jkjk vv
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)λ)()((
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








.                       (18) 195 

In fact, the objective function ),(3 VUO  in Eq. (10) is non-increasing based on the updating rules in Eqs. (17) and 196 

(18), as shown in the proof of GNMF (see appendix A in [12] for more details). Clearly, the iterative rules can be 197 

implemented by using the multiplicative algorithms for nonnegative matrix factorization discussed in [22], [6]. Note that 198 

the solution to the minimization of the objective function in Eq. (10) is not unique. For a given solution U  and V , it 199 

is easy to verify that UH  and 
1

VH  are also the solution of the objective function for any positive diagonal matrix 200 

H . To obtain a unique solution, a feasible technique is to normalize the Euclidean length of the column vectors of U  201 
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to unity while 
T

UV  remains unchanged [27]. In this paper, we use the L1-norm to normalize the column vectors of U , 202 

i.e.  203 





N

i

ik

ik
ik

u
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1

,                                        (19) 204 





N

i

ikjkjk uvv
1

,                                      (20) 205 

4 EXPERIMENT RESULTS  206 

The clustering experiments carried out to investigate the effectiveness of the proposed GCNMF algorithm are presented 207 

in this section. The sparseness of the basis vectors and the encoding vectors in the GCNMF algorithm is also studied. A 208 

total of six algorithms are involved in the clustering experiments, including K-means clustering in original space (KM) 209 

[12], Normalized Cut (NCut) [28], NMF-based clustering [1], [2], GNMF-based clustering [12], CNMF-based clustering 210 

[13] and the proposed GCNMF-based clustering. Among these six algorithms, NMF and GNMF require that all entries 211 

of the data matrix should be nonnegative, while the other algorithms can be applied to both nonnegative and mixed-sign 212 

data matrix. The K-means clustering method is employed to evaluate and compare the performance of the six algorithms. 213 

4.1 Data Preparation  214 

The group of NMF techniques, i.e. NMF, GNMF, CNMF and GCNMF, is a powerful tool for image clustering. Three 215 

image data sets are thus prepared for the clustering experiments. In addition, the multiple feature data set in [29] is also 216 

employed in the experiments. In these four image data sets, two of them involve data matrix of nonnegative entries, 217 

which are to be used for the NMF and GNMF algorithms. The other two contain mixed-sign entries in the data matrix. 218 

The details are discussed as follows.  219 

The first data set is obtained from the PIE face database of the Carnegie Mellon University (CMU) (downloadable 220 

from http://www.cad.zju.edu.cn/home/dengcai). The face images are created under different poses, illuminations and 221 

expressions. The database contains 41,368 images of 68 subjects. The image size is 3232 pixels, with 256 grey levels. 222 

1428 images under different illumination conditions are selected for the clustering experiment. The second data set is 223 

obtained from the COIL20 image library of the Columbia University (downloadable from 224 

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php). It contains 1440 images generated from 20 objects. Each 225 

image is represented by a 1024-dimensional vector, and the size is 3232 pixels with 256 grey levels per pixel. All the 226 

data of PIE and COIL20 are nonnegative. Hence, they both can be used to evaluate the six algorithms.  227 

The third data set is obtained from the USPS handwritten digits dataset (USPS) (downloadable from 228 
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http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets). It contains 7291 training images and 2007 testing images of 229 

handwritten digits. In the experiments, the training images are adopted, where the number of samples for the digits ‘0’ to 230 

‘9’ is 1194, 1005, 731, 658, 652, 556, 664, 645, 542 and 644 respectively. The size of each image is 16×16 pixels, with 231 

256 grey levels per pixel. Further details about this dataset can be found in [30]. The fourth data set is the multiple 232 

feature data set (MFD) [29], consisting of features of handwritten digits (‘0’ to ‘9’) extracted from a collection of Dutch 233 

utility maps. 200 patterns per class (for a total of 2,000 patterns) are digitized into binary images. Each digit is 234 

represented by a 649-dimensional vector in terms of six feature sets: Fourier coefficients of the character shapes, profile 235 

correlations, Karhunen-Love coefficients, pixel averages in 2×3 windows, Zernike moments and morphological features. 236 

Since the data of USPS and MFD are of mixed-sign, they can only be used to evaluate the KM [12], NCut [28], CNMF 237 

[13] and GCNMF algorithms.  238 

4.2 Evaluation Metrics  239 

The clustering performance of the six algorithms is evaluated by comparing the label mapped to each data point with the 240 

label provided. The procedure is as follows. First, the algorithms under comparison (except KM) are executed 241 

respectively to obtain a new representation of each data point. The K-means clustering method is then applied to these 242 

new representations to get the clustering labels. Finally, the clustering labels are mapped to the equivalent labels 243 

provided by the data sets using the Kuhn-Munkres algorithm [31].  244 

  Two metrics, the clustering accuracy (AC) and the normalized mutual information (NMI), are used to evaluate the 245 

clustering performance of the six algorithms under comparison. Details about these two metrics and definitions can be 246 

found in [18], [32]. Besides, for the group of NMF algorithms, the sparseness on the basis vectors and/or the encoding 247 

vectors is usually used to evaluate the power of the parts-based representation. Here, we measure the sparseness of the 248 

basis vectors and the encoding vectors based on the relationship between the 1L  and 2L  norm of a given vector using 249 

the sparseness metric in [20], [27] as follows,  250 

1
)(

2







Q

yyQ
Sparseness

ii
y ,                              (24) 251 

where Q  is the dimensionality of the vector y . This sparseness metric quantifies the energy of a vector that is packed 252 

into a few components only. The metric is unity 1 if and only if y  contains only a single nonzero component, and takes 253 

a value of 0 if and only if all the components are equal, interpolating smoothly between the two extremes. In our 254 

experiments, we consistently use the column vectors of U  and V  to compute their sparseness.  255 

4.3 Nonnegative Data Sets: PIE and COIL20  256 



11 

 

In this section, the clustering experiments conducted using the six algorithms on the two nonnegative data sets PIE and 257 

COIL20 are discussed.  258 

4.3.1 Numerical Results  259 

In the clustering experiments, the number of the nearest neighbors p  for constructing the adjacency graph and the 260 

parameter λ  in both GNMF and GCNMF are empirically fixed at 5 and 100 respectively. For each data set, the 261 

experiments are conducted repeatedly with different number of clusters K . For the PIE data set, K  takes the values in 262 

the grid }68 ,60 , ,20 ,10{  . For the COIL20 data set, K  takes the values in the grid }20 , ,4 ,2{  . For a given 263 

value of K , the experimental process is described as follows:  264 

1) Select K  classes randomly from the data set;  265 

2) Run the corresponding algorithm (except KM);  266 

3) Execute K-means clustering algorithm for 20 times with different initialization settings and record the best results;  267 

4) Repeat steps 1) to 3) for 20 times (except when K  reaches the maximum value, i.e. the entire data set are chosen);  268 

5) Compute the mean and standard error for the given value of K ;  269 

6) Repeat steps 1) to 5) with another value of K , until all the values of K  have been selected.  270 

The clustering results are reported respectively in Tables 2 and 3. The findings are highlighted as follows:  271 

1) GCNMF significantly outperforms CNMF, which demonstrates the importance of geometrical structure in the 272 

discovery of hidden information.  273 

2) Among the six algorithms, GCNMF, GNMF and NCut use the geometrical structure to reveal the hidden information. 274 

The experimental results show that these three algorithms are able to achieve better results than the rest, i.e. KM, 275 

NMF and CNMF. This finding again indicates that the geometrical structure plays an important role in the clustering 276 

process.  277 

3) Compared with GNMF, the proposed GCNMF exhibits better performance for a majority of the K  values and so 278 

does the total average performance (Av.), which validates that it is beneficial for the clustering process to restrict the 279 

basis vectors in the space of the data set.  280 

Table 2 Clustering Results on PIE  281 

K 
Accuracy (%) 

KM NCut NMF GNMF CNMF GCNMF 

5 38.81±6.64 97.64±6.10 55.45±6.00 84.67±13.89 48.90±3.15 89.83±10.91 

10 29.64±3.43 90.31±9.07 49.69±5.76 85.69±8.01 42.21±2.70 85.75±9.58 

20 28.12±2.82 79.46±4.84 44.43±4.21 82.58±4.37 36.48±2.05 80.80±6.02 

30 26.63±1.31 75.17±2.68 42.45±2.87 79.06±4.55 37.51±1.96 79.19±3.20 

40 25.77±1.37 72.93±3.87 41.31±2.49 77.90±3.79 34.08±1.78 78.04±4.13 
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50 25.18±1.33 69.83±2.57 39.76±2.13 76.61±3.32 32.02±2.04 77.57±3.54 

60 24.14±0.94 68.10±2.63 39.32±1.57 75.45±1.64 30.57±1.72 74.98±2.52 

68 23.14 68.21 39.08 74.19 28.12 77.59 

Av. 27.68±2.23 77.71±3.97 43.94±3.13 79.52±4.95 36.24±1.93 80.47±4.99 

K 
Normalized Mutual Information (%) 

KM NCut NMF GNMF CNMF GCNMF 

5 27.92±9.10 96.99±4.02 48.63±6.45 85.63±10.55 37.42±7.08 88.29±10.31 

10 35.06±5.77 92.58±5.39 58.30±5.02 88.96±4.75 47.15±3.89 88.96±5.50 

20 45.16±2.78 87.77±1.97 64.33±3.19 90.39±1.93 51.49±2.19 89.63±2.82 

30 48.61±2.18 86.40±1.65 66.36±2.24 89.51±1.98 54.70±1.87 89.23±1.31 

40 50.56±1.62 85.07±1.54 67.44±2.09 89.00±1.25 53.69±1.55 89.12±1.62 

50 52.00±1.42 83.50±1.68 67.99±1.45 88.86±1.19 53.38±1.41 89.07±1.18 

60 52.90±0.99 82.79±1.57 69.00±1.19 88.51±0.56 52.99±1.15 88.26±0.92 

68 52.69 82.25 68.20 87.68 52.01 88.58 

Av. 45.61±2.98 87.17±2.23 63.78±2.70 88.57±2.78 50.35±2.39 88.89±2.96 

Table 3 Clustering Results on COIL20  282 

K 
Accuracy (%) 

KM NCut NMF GNMF CNMF GCNMF 

2 90.76±12.19 95.31±12.07 90.66±12.15 94.13±12.27 90.59±11.70 94.93±14.24 

4 87.69±9.52 85.38±16.62 79.93±15.00 89.46±13.29 83.78±12.44 91.55±11.96 

6 79.27±10.17 84.73±11.50 77.95±9.42 93.72±8.71 74.33±10.07 93.74±8.99 

8 70.34±5.32 74.33±8.51 68.45±7.69 83.08±7.53 61.25±6.49 82.80±7.68 

10 69.94±6.63 74.67±7.19 70.13±9.27 86.89±8.21 57.17±7.25 85.60±7.78 

12 63.75±6.16 71.79±5.54 64.69±4.12 77.63±6.22 50.63±4.61 79.47±7.16 

14 68.96±5.33 74.59±6.67 68.23±5.40 83.42±5.62 52.92±5.22 83.53±5.12 

16 64.49±5.90 71.96±5.94 64.13±4.92 78.78±4.20 47.66±4.41 78.82±4.99 

18 62.55±3.35 70.19±4.94 63.13±2.54 78.77±4.48 44.28±3.01 80.09±4.77 

20 62.71 69.24 63.61 81.60 45.97 77.78 

Av. 72.05±6.46 77.22±7.90 71.09±7.05 84.75±7.05 60.86±6.52 84.83±7.27 

K 
Normalized Mutual Information (%) 

KM NCut NMF GNMF CNMF GCNMF 

2 72.05±29.25 88.47±28.19 71.72±29.26 84.22±29.22 70.15±29.40 88.61±30.09 

4 79.76±14.01 88.01±12.01 70.44±17.43 88.54±11.01 73.70±15.42 88.22±14.35 

6 77.56±8.36 90.49±6.67 75.38±8.16 92.55±8.64 69.87±9.30 93.64±6.93 

8 69.81±5.03 82.84±5.83 68.72±5.86 85.78±5.21 60.68±6.07 85.49±5.20 

10 73.58±5.48 85.32±4.10 72.35±7.40 90.66±4.99 62.46±6.63 89.93±5.16 

12 69.95±4.90 83.92±3.21 69.45±3.77 86.43±4.33 58.00±4.86 86.47±4.75 

14 75.69±4.36 86.44±3.66 74.16±4.04 89.45±3.30 61.01±4.46 90.08±2.61 

16 73.37±4.17 84.41±3.23 72.41±4.00 87.90±2.50 57.21±3.75 88.01±2.46 

18 73.86±2.19 84.19±2.67 72.75±2.11 88.47±2.22 55.79±2.59 89.07±2.34 

20 74.55 83.23 71.77 89.71 59.18 89.66 

Av. 74.02±7.78 85.73±6.96 71.92±8.20 88.37±7.14 62.81±8.25 88.92±7.39 



13 

 

4.3.2 Parameter Selection  283 

For the proposed GCNMF algorithm, it is necessary to set the control parameter λ  and the number of nearest neighbors 284 

p  for constructing the adjacency graph. They are empirically set to 100 and 5 respectively as in the previous 285 

experiments. The effect of these two parameters on the clustering performance is investigated in this section.  286 

In the experiments, the GCNMF algorithms are executed on the entire data set of PIE and COIL20 respectively. The 287 

0-1 weights are adopted. The value of p  is set to 5 when the effect of λ  on the clustering performance is investigated, 288 

while λ  is set to 100 when effect of p  is studied. Fig. 1 shows the variation in performance of GCNMF with λ  and 289 

p . In Fig 1(a) and (b), λ  takes the values in the grid {1e-2, 1e-1, 1e+0, 1e+1, 5e+1, 1e+2, 5e+2, 1e+3, 3e+3, 5e+3, 290 

1e+4, 3e+4, 5e+4, 1e+5}, where a base 10 logarithmic scale is used for the x-axis. In Fig. 1(c) and (d), p  takes the 291 

values in the grid {2, 3, …, 20}. It can been seen that for both the PIE and COIL20 data sets, GCNMF is able to achieve 292 

good performance over a wide range of λ  (from 1e-1 to 1e+5), which demonstrates that GCNMF is insensitive to this 293 

control parameter. Especially, the performance is the best when λ  is set 50 or 100. However, the number of nearest 294 

neighbors p has to be selected from the range between 3 and 7 in order to maintain high accuracy.  295 
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(c)  (d)  

Fig. 1 Performance of GCNMF on PIE and COIL20 under different parameter setting: (a) AC versus λ , (b) NMI versus 

λ , (c) AC versus p , (d) NMI versus p .  

4.3.3 Sparseness  296 

In this section, the sparseness of the basis vectors (the column vectors of U ) and the encoding vectors (the column 297 

vectors of V ) is studied to evaluate the power of the parts-based representation for the group of NMF algorithms. 298 

  In the experiments, all classes of the corresponding data set are used, which means that the column number of U  299 

and V  is equal to the class number of the data set. For example, with the PIE data set containing 41,368 images of 68 300 

subjects, there are 68 column vectors in U  and V . For each column vector, Eq. (24) is used to evaluate the sparseness. 301 

As a result, there are 68 sparseness values of the basis vectors and the encoding vectors respectively. An average value, 302 

namely, “average sparseness”, is then used to evaluate their sparseness. It is defined as the average of the sparseness 303 

values obtained over all the basis vectors and encoding vectors. Table 4 shows the experimental results. The findings of 304 

the experiments are discussed as follows.  305 

1) In all the data sets, both NMF and CNMF exhibit better sparseness for the encoding vectors, but their clustering 306 

performance is relatively inferior (see the fourth and sixth columns in Tables 2 and 3). This demonstrates the 307 

importance of the smoothness of the encoding vectors, and highlights the manifold regularization ability in GNMF 308 

and GCNMF.  309 

2) While the encoding vectors obtained by CNMF and GCNMF are smooth, they are also able to achieve better 310 

clustering performance (see the fifth and seventh columns in Tables 2 and 3). The results show that it is important for 311 

the clustering process to preserve the geometrical structure of the sample data in low-dimension representation, i.e. 312 

the row vectors of V .  313 

3) For NMF, sparseness of both the basis vectors and the encoding vectors can be achieved with the two data sets. For 314 

CNMF, this can only be achieved for the COIL20 data set. However, their clustering performance is relatively poor 315 

(see the fourth and sixth columns in Tables 2 and 3), indicating that strengthening the sparseness of both the basis 316 

and encoding vectors deteriorates the goodness-of-fit of the model for the data.  317 

Table 4 Sparseness of basis and encoding vectors on PIE and COIL20 318 

Data set Method Average sparseness of basis vectors Average sparseness of encoding vectors 

PIE 

NMF 0.4642 0.3930 

GNMF 0.2498 0.0018 

CNMF 0.0160 0.5080 

GCNMF 0.1412 0.0021 

COIL20 NMF 0.5280 0.4126 
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GNMF 0.3891 0.0018 

CNMF 0.4330 0.6165 

GCNMF 0.2025 0.0080 

4.4 Mixed-sign Data Sets: USPS and MFD  319 

In this section, clustering experiments are performed using KM, NCut, CNMF and GCNMF respectively with the two 320 

mixed-sign data sets, USPS and MFD. The two algorithms NMF and GNMF are excluded because they can only work 321 

for nonnegative data matrix.  322 

4.4.1 Numerical Results  323 

Similar to the setting described in section 4.3, the parameters p  and λ  are also set to 5 and 100 respectively in this 324 

experiment. For each data set, the experiment is conducted repeatedly with different number of clusters K . The value 325 

K  for both the USPS and MFD data sets take the values in the grid }10 , ,3 ,2{  . The experimental process is the 326 

same as that described in section 4.3.1. Tables 5 and 6 give the experimental results respectively for the USPS and MFD 327 

data sets, from which the following observations can be made:  328 

1) The proposed GCNMF outperforms CNMF considerably for both the USPS and MFD data sets, demonstrating the 329 

importance of geometrical structure in revealing the hidden information.  330 

2) Regardless of the data sets, GCNMF and NCut achieve the best clustering performance. This result once again 331 

shows that geometrical structure plays an important role in revealing the hidden information. Besides, NCut 332 

generally performs better than the proposed GCNMF. This is due to the fact that the parameters p  and λ  are not 333 

optimized. The issue will be discussed further in next section.  334 

Table 5 Clustering Results on USPS  335 

K 
Accuracy (%) Normalized Mutual Information (%) 

KM NCut CNMF GCNMF KM NCut CNMF GCNMF 

2 94.02±7.89 99.45±0.53 56.52±4.53 97.61±7.82 75.89±20.11 95.46±3.71 1.88±1.95 91.25±17.08 

3 90.97±4.82 91.61±15.53 44.36±4.05 91.69±13.62 72.09±8.91 87.35±11.33 5.73±3.65 85.32±13.75 

4 78.36±14.32 90.49±13.44 39.66±4.20 95.14±7.81 67.13±10.54 87.67±8.01 11.03±5.23 89.35±5.68 

5 75.14±10.41 80.43±11.93 35.59±4.16 86.27±13.98 66.97±7.03 84.13±4.19 13.96±6.17 84.18±7.44 

6 70.42±8.30 78.55±11.73 33.31±3.72 81.27±13.28 65.06±5.38 84.26±5.12 16.98±4.80 84.16±6.80 

7 71.79±6.98 78.34±12.32 31.11±2.32 80.73±9.45 64.72±4.81 83.96±4.35 16.51±3.06 83.04±3.58 

8 70.46±4.85 71.57±9.46 29.11±2.89 79.60±7.69 64.32±3.29 81.53±3.72 16.81±3.05 84.17±2.69 

9 68.67±1.79 69.92±6.28 27.82±2.11 76.28±7.33 63.44±2.51 81.69±1.60 17.55±2.71 82.70±2.79 

10 68.37 68.74 26.31 68.56 62.92 81.16 16.23 79.57 

Av. 76.47±6.60 81.01±9.02 35.98±3.11 84.13±9.00 66.95±6.95 85.25±4.67 12.96±3.40 84.86±6.65 

Table 6 Clustering Results on MFD  336 

K Accuracy (%) Normalized Mutual Information (%) 
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KM NCut CNMF GCNMF KM NCut CNMF GCNMF 

2 98.61±0.96 99.10±0.94 69.26±15.99 98.76±1.36 90.26±5.88 93.47±5.60 23.29±36.85 91.85±7.41 

3 97.47±1.98 98.93±0.64 67.23±9.06 92.61±11.43 89.76±5.99 94.88±2.50 37.54±16.84 85.40±12.74 

4 94.71±2.17 97.48±1.21 60.38±9.42 95.91±2.94 84.32±4.78 91.62±3.40 39.04±10.57 89.05±5.06 

5 94.44±1.96 97.91±1.11 59.68±6.07 95.54±3.64 85.79±3.87 93.69±2.79 40.66±7.86 89.64±5.66 

6 93.47±1.69 97.07±0.92 51.04±5.06 94.89±4.49 84.42±3.00 92.08±2.18 36.78±5.86 88.99±4.87 

7 91.26±4.28 96.44±0.92 49.18±2.87 93.91±3.02 83.17±2.75 91.42±1.90 36.13±3.05 88.55±3.12 

8 90.75±3.77 95.20±4.32 45.78±3.58 92.95±5.39 83.31±2.19 91.51±2.31 37.20±2.39 89.48±2.90 

9 87.15±6.46 96.05±0.57 42.85±2.76 91.16±6.10 81.46±3.04 91.49±1.02 36.26±1.82 88.65±3.21 

10 77.60 95.75 42.40 96.25 77.63 91.29 36.61 92.26 

Av. 91.72±2.59 97.10±1.18 54.20±6.09 94.66±4.26 84.46±3.50 92.38±2.41 35.95±9.47 89.32±5.00 

4.4.2 Parameter Selection  337 

Next, with the USPS and MFD data sets, we investigate the effect of λ  and p  in GCNMF on the clustering 338 

performance. Fig. 3 shows the experimental results, where λ  and p  take the values in the grids {1e-2, 1e-1, 1e+0, 339 

1e+1, 5e+1, 1e+2, 5e+2, 1e+3, 3e+3, 5e+3, 1e+4, 3e+4, 5e+4, 1e+5} and {2, 3, …, 20} respectively. The results show 340 

that GCNMF is very stable when 10λ   while being sensitive to  when 1λ  . In fact, increasing λ  will improve 341 

the smoothness of the basis and encoding vectors for the low-dimensional representation (see Eqs. (9) and (10)), which 342 

implies that manifold regularization can stabilize the process of matrix factorization in NMF. However, the performance 343 

is found to decrease with p  due to the fact that as p  increases, the local invariant is not likely to be preserved when 344 

the local geometrical structure of the data manifold is captured. From the perspective of accuracy, it can be seen from Fig. 345 

2(a) and (c) that the best values of the parameters are 2p , 1λ   for USPS, and 3p , 1-1eλ   for MFD. 346 

However, from the perspective of normalized mutual information, Fig. 2(b) and (d) show that the best values of the 347 

parameters are 3p , 2-1eλ   for USPS, and 3p , 1-1eλ   for MFD. For simplicity, p  and λ  are 348 

experimentally set to 5 and 100, which may be the reason why NCut generally performs better in the numerical 349 

experiments.  350 
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(d)  

Fig. 2 Performance of GCNMF on USPS and MFD under different parameter setting: (a) AC versus λ , (b) NMI versus 

λ , (c) AC versus p , (d) NMI versus p .  

4.4.3 Sparseness  351 

The USPS and MFD data sets of mixed-sign are used to investigate the sparseness of CNMF and GCNMF in this section. 352 

The experimental process is that same as that mentioned in section 4.3.3 and the results are shown in Table 7. The 353 

following observations are made from the experiments.  354 

1) The basis vectors obtained by GCNMF are sparser than that by CNMF, while the encoding vectors obtained by 355 

CNMF are sparser than that by GCNMF. This verifies that strengthening the sparseness of one vector, basis vector or 356 

encoding vector, will affect the smoothness of the other vector.  357 

2) In general, both the basis vectors and the encoding vectors obtained in CNMF have good sparseness. However, it 358 

leads to inferior clustering results (see the second line from the bottom in Tables 5 and 6). This not only shows that 359 

the geometrical structure plays an important role in the clustering process, but also demonstrates that strengthening 360 

the sparseness of the two vectors will deteriorate the goodness-of-fit of the model of the data.  361 
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Table 7 Sparseness of basis and encoding vectors on USPS and MFD  362 

Data set Method Average sparseness of basis vectors Average sparseness of encoding vectors 

USPS 
CNMF 0.3637 0.4703 

GCNMF 0.7123 0.0002 

MFD 
CNMF 0.6923 0.6054 

GCNMF 0.9294 0.0021 

 363 

5 CONCLUSION AND FUTURE WORK  364 

The novel nonnegative matrix factorization technique GCNMF is proposed in this paper. The method extends the 365 

application of NMF by enabling it to deal with mixed-sign data. Besides, the basis and encoding vectors obtained by 366 

GCNMF have better representation power because the proposed method takes into account the geometric structure of the 367 

data manifold. In comparison with other clustering methods, including KM, NCut, NMF, GNMF and CNMF, the results 368 

of the experiments performed on four real-world data sets validate that the performance of GCNMF is significantly 369 

better.  370 

  Like many manifold learning algorithms, GCNMF requires the construction of an adjacency graph to reveal the 371 

intrinsic structural information. The construction of the graph in turn requires the selection of the number of nearest 372 

neighbors p in order to match the local structure, and also the value of the λ  to control the tradeoff between the 373 

approximation error of matrix factorization and the geometric structure information. However, the selection of suitable 374 

values for these two parameters in a theoretical way remains an issue. Although the experimental results show that the 375 

GCNMF method is not sensitive to the value of λ , further research effort is still required to confirm this finding. Finally, 376 

the proposed method is achieved by introducing a manifold regularized term into the CNMF method, which is based on 377 

the column-wise representation of the approximation in the CNMF algorithm (see Eq. (7)), with the basis and encoding 378 

vectors given by the linear combination of the data points. In fact, the NMF problem can be approached by representing 379 

the basis vectors and the encoding vectors in other ways. For example, the column vectors of the basis vectors can be 380 

used to indicate the cluster centroids while the encoding vectors can serve as cluster membership indicators. This implies 381 

that the regularized technique in this paper can be further optimized from other perspectives. Some methods have been 382 

proposed recently to improve NMF based on the assumption of separability in [10], [34] [35], e.g. Linear Programming 383 

(LP) model, which may be used to solve the model of our method in a more effective way. Ongoing work is being 384 

conducted along this line of investigation.  385 
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