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Abstract

Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period.

The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking

activity caused by rapid ionic currents. Minimal models of bursting neurons must include both

effects. We considered one of these models and its relation with a generalized Kuramoto model,

thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We

considered neuronal networks with different connection topologies and investigated the transition

from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied.

The numerically determined critical coupling strength value for this transition to occur is compared

with theoretical results valid for the generalized Kuramoto model.
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I. INTRODUCTION

Neurons are known to exhibit a plethora of dynamical behaviors, represented by the

generation of action potential patterns. One of such patterns is bursting, defined by the

repeated firing of action potentials followed by quiescent periods. Hence the dynamics of

bursting neurons has two timescales: a fast scale related to spiking and a slow scale of

bursting itself. These timescales are related to different biophysical mechanisms occuring at

the level of neuron membrane: there are fast ionic currents (chiefly Na+ andK+) responsible

for spiking activity and slower Ca++ currents that modulate this activity.

Most neurons exhibit bursting behavior if conveniently stimulated. For example, in the

neocortical layer 5 pyramidal neurons, when stimulated with DC current pulses, fire an initial

burst of spikes followed by shorter bursts [1, 2]. In layers 2, 3, and 4 chattering neurons

fire high-frequency bursts of 3 − 5 spikes with a short interburst period [3, 4]. Cortical

interneurons have been found to exhibit bursting as a response to DC pulses [5]. Pyramidal

neurons in the CA1 region of hippocampus produce high-frequency bursts after current

injection [6]. Thalamocortical neurons and reticular thalamic nucleus inhibitory neurons

exhibit bursting as well [7]. Purkinje cells in cerebellum can burst when their synaptic input

is blocked [8]. Bursting is also an important feature of sensory systems, because bursts can

increase the reliability of synaptic transmission [9]. In some systems, bursts improve the

signal-to-noise ratio of sensory responses and might be involved in the detection of specific

stimulus features [10].

Due to both synaptic coupling and common inputs among neurons there are many types

of synchronization, which can be generally regarded as the presence of a consistent temporal

relationship between their activity patterns [11–13]. A strong form of the latter relationship

is complete synchronization, where neurons spikes at the same time, i.e. a precise temporal

coincidence of events. A weaker relationship is bursting synchronization, in which only the

beginning of bursting is required to occur at the same time, even though the repeated spiking

may not occur synchronously.

There has been observed bursting synchronization in cell cultures of cortical neurons,

where uncorrelated firing appeared withing the first three days and transformed progressively

into synchronized bursting within a week [15]. Large-scale bursting synchonization in the

7− 14Hz range has been found in the thalamus during slow-wave sleep, partially originated
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in the thalamus and gated by modulatory input from the brainstem [16]. Various areas of

the basal ganglia have been found to exhibit bursting synchronization related to Parkinson’s

disease and resting tremor [17].

There exists sound neurophysiological evidence that hypokinetic motor symptoms of

Parkinsons disease such as slowness and rigidity of voluntary movements are closely related

to synchronized bursting in the 10− 30Hz range [18–21]. The connection between bursting

synchronization and pathological conditions like Parkinson’s disease, essential tremor and

epilepsy has led to the proposal of many control strategies aiming to suppress or mitigate

bursting synchronization [22].

One of such strategies is deep-brain stimulation (DBS), which consists of the application

of an external high-frequency (> 100Hz) electrical signal by depth electrodes implanted in

target areas of the brain like the thalamic ventralis intermedius nucleus or the subthalamic

nucleus [23]. The effect of DBS would be similar to that produced by tissue lesioning and

has proved to be effective in suppression of the activity of the pacemaker-like cluster of

synchronously firing neurons, and achieving a suppression of the peripheral tremor [24].

There is strong clinical evidence that DBS is a highly effective technique for treatment of

patients with Parkinson’s disease [25, 26].

In spite of these results, DBS is yet far from being completely understood. Many re-

sults in this field have been obtained from empirical observations made during stereotaxic

neurosurgery, but further progress can be obtained with proper mathematical modelling of

DBS [27–29]. The effects of DBS in networks of bursting neurons have been investigated

when DBS is implemented through an harmonic external current [30] and a delayed feedback

signal [31].

On modelling the response of a neuronal network to an external perturbation like DBS it is

of paramount importance to keep the model simple enough such that large-scale simulations

(using a large number of neurons) can be performed in a reasonable computer time. In such

reductionist point of view a minimal model could be one in which we can assign a geometrical

phase to the bursting activity. The bursting neuron is thus regarded as a phase oscillator

undergoing spontaneous oscillations with a given frequency. Thus bursting synchronization

becomes a special case of phase synchronization, a phenomenon well understood for coupled

oscillators with and without external excitation [32].

A simple model for the dynamics of nonlinearly coupled phase oscillators is the Kuramoto

3



model, which in its original version considers a global (all-to-all) coupling [33]. It can be

generalized by considering an arbitrary coupling architecture (generalized Kuramoto model)

[34]. The particular interest in such models is that many analytical and numerical results are

known for them, specially the global case for which a mean-field theory exists for the tran-

sition between a non-synchronized to a (phase-)synchronized behavior [35]. For generalized

Kuramoto models it is possible to derive analytical expressions for the critical value of the

coupling strength for which the abovementioned transition occurs [36]. Hence such a body

of knowledge can be applied to networks of bursting neurons, helping to design strategies of

synchronization control and/or suppression like DBS.

The main goal of this paper is to show, using analytical and numerical arguments, that

a system of coupled bursting neurons described by Rulkov’s model can be reduced to a

generalized Kuramoto model. This reduction is valid as long as phase synchronization is

concerned, since for frequency synchronization the behaviors can be quite different, though.

We consider, in particular, some widely used connection topologies, like random (Erdös-

Renyi), small-world, and scale-free networks. We show that the analytical results for the

critical coupling strength to synchronized behavior, originally derived for the generalized

Kuramoto model, can be used to describe the synchronization transition also for networks

of bursting neurons.

As a matter of fact, since bursting activity presents two timescales it can be also ap-

proached from the point of view of a relaxation oscillator [37]. In our work, however, we

describe bursting using a single phase. This simplification is justified since phase synchro-

nization of bursting is chiefly related to the slow timescale. In other words, the fast spikes

can be nonsynchronized even though the slow dynamics is synchronized.

This paper is organized as follows: in Section II we describe the model we used to describe

bursting neurons. Section III considers networks of coupled bursting neurons using different

connection topologies. Section IV reviews some results on the generalized Kuramoto model,

and Section V includes the comparisons we made between Kuramoto model and the network

of bursting neurons. Our Conclusions are left to the final Section.
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II. MODELS OF BURSTING NEURONS

The choose of a suitable model describing the dynamics of biological neurons is dictated

by some requirements. First the model must take into account the kind of dynamics one

wishes to describe [38]. For example, if all one needs is to describe a spiking neuron,

for the sake of neural coding simulations for example, a simple leaky integrate-and-fire

(LIF) model would be enough [39]. However if one needs to describe the interplay between

different ionic currents flowing through the neuron membrane, the Hodgkin-Huxley (HH)

model would be a natural choice [40]. On the other hand, the HH model would require far

more computational power than the LIF since the former involves four complicated first-

order differential equations whereas the latter just one simple equation.

With bursting neurons this criterion also holds. Given that bursting results from the

interplay between fast and slow ionic currents, Hodking-Huxley-type models would need at

least one more equation to describe slow Ca modulation [41, 42]. A model of thermally

sensitive neurons exhibiting bursting has been proposed by Huber and Braun [43–45], which

describes spike train patterns experimentally observed in facial cold receptors and hypotha-

lamic neurons of the rat [46], electro-receptors organs of freshwater catfish [47], and caudal

photo-receptor of the crayfish [48]. However, the Huber-Braun model has 5 differential equa-

tions for each neuron, and computational limitations impose restrictions to its use for large

networks [81].

If numerical simulations do not need to take into account the effect of system parameters

and only the phenomenological aspects of bursting are relevant, then a good choice is the

two-dimensional mapping equations proposed by Rulkov [49]

x(n + 1) =
α

1 + [x(n)]2
+ y(n), (1)

y(n+ 1) = y(n)− σx(n)− β, (2)

where x is the fast and y is the slow dynamical variable, whose values are taken at discrete

time t = nτ , with τ = 1 and n = 0, 1, 2, . . ..

The parameter α affects directly the spiking timescale, its values being chosen in the

interval [4.1, 4.3] so as to produce chaotic behavior for the evolution of the fast variable xn,

characterized by an irregular sequence of spikes. The parameters σ and β, on their hand,

describe the slow timescale represented by the bursts, and take on small values (namely
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FIG. 1. Time evolution of the (a) fast and (b) slow variables in the Rulkov map (1)-(2) for α = 4.1,

σ = β = 0.001.

0.001) so as to model the action of an external dc bias current and the synaptic inputs on

a given isolated neuron [53].

The Rulkov model was derived using dynamical rather than biophysical hypotheses. We

choose the parameter α so as to yield chaotic behavior for the characteristic spiking of the

fast variable x(n) [Fig. 1(a)]. The bursting timescale, on the other hand, comes about the

influence of the slow variable y(n), which provide a modulation of the spiking activity due

to a saddle-node bifurcation [Fig. 1(b)]. On comparing the dynamics of the Rulkov map

with similar results of the Huber-Braun model one is led to an approximate correspondence

between variables of the Rulkov map and variables with biophysical significance: the discrete

time n in the map corresponds to 0.5ms of the continuous time; and x stands for the

membrane potential, in such a way that each unit of x in Fig. 1(a) corresponds to circa

20mV . The Rulkov model has been used in several numerical investigation of coupled neuron

models [49, 54–56]

Due to the chaoticity of the x-dynamics of the Rulkov map, the duration of each burst

suffers a slight variability. The beginning of each burst can be chosen rather arbitrarily, but
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it turns out that a useful choice is to consider the local maxima of the variable y: let nℓ

be the time at which the ℓth burst begins [see Fig. 1(b)]. Hence the duration of this burst

is nℓ+1 − nℓ. We can define a geometric bursting phase by considering a variable ϕ that

increases of 2π after a bursting event. A linear interpolation gives [57]

ϕ(n) = 2πℓ+ 2π
n− nℓ
nℓ+1 − nℓ

, (nℓ ≤ n ≤ nℓ+1). (3)

We can also define a bursting (angular) frequency, which gives the time rate of the phase

evolution:

ω = lim
n→∞

ϕ(n)− ϕ(0)

n
. (4)

III. NETWORKS OF COUPLED RULKOV NEURONS

In the Rulkov model (1)-(2) the variable x(n) plays the role of the membrane potential at

discrete time t = nτ , where τ = 1. Hence the difference x(n+ 1)− x(n) can be interpreted

as the time derivative of the potential. If the membrane capacitance is scaled to the unity, it

amounts to the transmembrane current. Hence the effect of coupling is to inject a synaptic

current in the equation for the x-variable (1).

Let us denote by xi the membrane potential of the ith neuron (i = 1, 2, . . .N). The

equations for a network of coupled neurons are

xi(n+ 1) =
αi

1 + [xi(n)]
2 + yi(n) + ε

N
∑

j=1

Aijxj(n), (5)

yi(n+ 1) = yi(n)− σxi(n)− β, (6)

in which Aij is the adjacency matrix, which defines the type of synapse which connects the

ith and jth neurons (respectively post-synaptic and pre-synaptic).

If the spatial distance between them is taken into account, we can model an electrical

synapse by a band-diagonal adjacency matrix which includes only near-neighbors of a given

neuron. Chemical synapses are thus represented here by off-band-diagonal elements, since

they include the effect of distant neurons. This is a simplified model, though, since it

does not take into account the number of open channels in the post-synaptic neuron. For

studies of synaptic-dependent phenomena, like plasticity, memory storage, learning, pattern

recognition, etc. this simplified form of the coupling term may not be sufficient for numerical

simulations. Moreover, we consider all interactions as bidirectional, in such a way that the
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adjacency matrix is symmetric (Aji = Aij), what is more likely to be the case in electrical

than chemical synapses. However these simplifications are acceptable in a model as long as

we are interested only in the effect of the network topology on the neuron dynamics. An

example is the investigation of the DBS effects related to tremor associated with bursting

synchronization in the thalamus [50].

The only parameter in our model that is to characterize the intensity of the synaptic

connections is the coupling strength ε. It takes on positive values for excitatory synapses

and negative values for inhibitory ones. Since ε is the same for all neurons in our model we

cannot consider here the case in which part of the synapses are excitatory (∼ 75%) and part

inhibitory. A modification such as this, although simple to implement in principle, would

make the model more difficult to compare with minimal models of phase dynamics. The

only restriction on the values of ε is that the coupling term itself cannot be too large so

as to drive the neuron dynamics off a bursting state. This parameter must be adjusted by

trial-and-error.

Since in neuronal assemblies the neurons are likely to exhibit some diversity, we choose

randomly the values of α within the interval [4.1, 4.3] according to a specified probability

distribution function (PDF) g̃(α) [51]. In spite of this we keep the other parameters with the

same values (namely σ = β = 0.001) since this do not change our results in an appreciable

way. We can compute the bursting phase ϕ
(i)
n and the corresponding angular frequencies

ω(i) using (3) and (4), respectively, for the coupled neurons in the same way as we did for

isolated ones.

When the α parameter is chosen in the interval [4.1, 4.3] there is a linear relation between

α and the mean burst frequency. For this reason when we choose the α parameter for each

neuron according with a given PDF g̃(α) we generate a PDF for the bursting frequency of

uncoupled neurons denoted by g(Ω) with the same shape as g̃(α). In this work we consider

two types of distributions: (i) a waterbag (or uniform) distribution:

g̃W (α) =







1
a−b

for a ≤ α ≤ b

0 otherwise
, (7)

where a = 4.1 and b = 4.3; and (ii) a truncated Cauchy distribution:

g̃T (α) =
1

γ

[

tan−1

(

b− α0

γ

)

− tan−1

(

a− α0

γ

)]

−1
[

1 +

(

α− α0

γ

)2
]

−1

, (8)
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FIG. 2. Time evolution of (a) mean field and (c,e) fast variables of two selected neurons in a

network of uncoupled Rulkov neurons. (b,d,f) stand for coupled neurons.

where a = 4.1, b = 4.3, α0 = 4.2 is the position of the distribution peak, and γ = 0.1 is the

half-width at half-maximum of the PDF [52].

We shall defer the discussion of the nature and properties of the adjacency matrix to the

following section. For the moment let us assume that a convenient form of Aij has been

given to the system of coupled Rulkov neurons (5)-(6). One distinctive effect of synaptic

coupling is bursting synchronization: two or more neurons begin their bursting activity at

the same times (up to a given tolerance), regardless of whether or not the ensuing sequence

of spikes coincides. A example is provided by Fig. 2, where we consider two randomly

selected neurons in a network: in the uncoupled case the neurons burst at different and

uncorrelated times [Fig. 2(c) and (e)], what makes the mean field

X(n) =
1

N

N
∑

i=1

xi(n), (9)

to have small-amplitude fluctuations [Fig. 2(a)]. For large enough values of ε the coupled

system of neurons present bursting synchronization as illustrated by the two selected neurons
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[Fig. 2(d) and (f)]. The mean field in this case undergoes large-amplitude oscillations with

the same frequency as of the bursting neurons [Fig. 2(b)].

Another quantitative characterization is provided by the order parameter magnitude and

its time average given, respectively, by [33]

R(n) =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

eiϕi(n)

∣

∣

∣

∣

∣

, R =
1

n′

n′

∑

n=1

R(n), (10)

where n′ is chosen so as to yield stationary values of R. If the neurons burst exactly at the

same time their phases coincide and hence the normalized sum in (10) gives R = 1. On

the other hand, if the neuron bursting is so uncorrelated that the times at which they burst

are practically random the summation gives nearly zero and R ≈ 0 for such an extreme

case. In finite networks there is likely to be chance correlations, hence we consider R = 0.1

as a threshold for the transition from a non-synchronized to a partially synchronized state.

Intermediate cases (0.1 < R < 1) thus represent partially synchronized states.

IV. CONNECTION ARCHITECTURES OF THE NEURONAL NETWORK

Neurons are connected by axons and dendrites, so that we can regard those neurons as

embedded in a three-dimensional lattice. However, due to the high connectivity of the neu-

rons it is necessary to use complex networks to describe the properties of neuronal assemblies.

These complex networks can be viewed in two basic levels: a microscopic, neuroanatomic

level, and a macroscopic, functional level. Studies in the former level are limited to those

few examples in which there is available data on the neuronal connectivity, as the worm C.

Elegans [59].

In the second (macroscopic) level of description of neural networks, the use of non-invasive

techniques as electroencephalography, magnetoencephalography and functional magnetic

resonance imaging provides anatomical and functional connectivity patterns between dif-

ferent brain areas [60, 61]. This information provides a way to study the brain cortex,

considering the latter as being divided into anatomic and functional areas, linked by axonal

fibers. Scannell and coworkers have investigated the anatomical connectivity matrix of the

visual cortex for the macaque monkey and the cat [62, 63].

The basic elements of a complex network are nodes and links. A link connects two or

more nodes, and these connections can be unidirectional or bidirectional. In the language
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of neuronal networks a node can be either a single neuron or a cortical area, depending on

the level of characterization. If we consider a microscopic description the links are synapses

(electrical or chemical), whereas they are axonal fibers in networks of cortical areas or simply

they stand for the functional relationship between the corresponding regions in the cortex.

A complex network can be characterized by various topological and metrical properties

[64]. For our purposes we will need only two of them: the average path length L and the

average clustering coefficient C. The path length between two nodes a and b is the minimum

number of links that must be traversed through the network to travel from a to b. The

average path length L is the path length averaged over all pairs of nodes in the network. The

average clustering coefficient C of a network is defined as the average fractions of pairs of

neighbors of a given node which happen also to be neighbors of each other [65]. For example,

if a node a is connected to nodes b and c, and if b and c are themselves connected, then

a, b and c form a triangular cluster. The value of C turns to be the fraction of triangular

clusters that exist in the network with respect to the total possible number of such clusters.

From the graph-theoretical perspective a complex network can be described by an ad-

jacency matrix Aij , whose elements are equal to the unity if the nodes are connected and

zero otherwise. In studies of cortical area networks, both in the anatomic and functional

levels, each link is sometimes given a specific weight, which can be even time-varying in

investigations of plasticity. Since we discard self-interactions, the diagonal elements of the

adjacency matrix are zero.

A. Global and random networks

In a globally coupled network all nodes are connected with all other nodes. Since in this

case the contribution of the coupling would increase with the number of nodes, the coupling

term is usually divided by the number of nodes. In such a network each node can be regarded

as being coupled to the mean field of other nodes. The adjacency matrix of global networks

is constant: Aij = 1 for all i, j = 1, 2, . . .N . There have been numerical investigations of

such networks with respect to strategies of DBS [57, 58]. The coupling term in (5) will be

divided by the number of neurons, hence we shall redefine it as

ε =
ξ

N
(11)
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FIG. 3. (color online) Variation of the order parameter magnitude with the coupling strength for

a globally coupled (a), and a randomly coupled (b) network of N = 1000 Rulkov neurons and

probability p = 0.01. Black and red lines stand, respectively, for a waterbag and a truncated

Cauchy distribution of values of the α parameter in the [4.1 : 4.3]. The green curves represent a

polynomial fit given by Eq. (16). The insets zoom the behavior near the transition to bursting

synchronization.

The variation of the order parameter magnitude of the coupled network with the coupling

strength above is depicted in Fig. 3(a), where we plot R as a function of ξ when the

values taken on by the parameter α(i) are drawn from a waterbag PDF (black line) and a

truncated Cauchy distribution (red line). Since we used randomly chosen initial conditions

for the neurons (x
(i)
0 , y

(i)
0 ) we considered averages over 100 different realizations of the initial

pattern.

In both cases the behavior is qualitatively similar: for small coupling values there is no

bursting synchronization and, after a critical coupling value ξc ≈ 0.020 we begin to observe

partial synchronization and, further on, complete phase synchronization. The approach to

the latter differs with respect to the PDF g̃(α), being slightly faster for a truncated Cauchy

distribution than for a waterbag PDF [see the inset of Fig. 3(a)].

The “physical” distance between two neurons does not play any role in globally coupled

networks, since the contribution is counted in the same way for all nodes. This deficiency has

been circumvented by considering a network in which the coupling strength decreases with
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the lattice distance as a power-law, with exponent ς [70]. If ς → 0 the lattice distance does

not matter and we recover the globally coupled case. As the exponent ς tends to infinity

we approach a locally coupled network, where only the nearest-neighbor nodes have to be

taken into account.

Unlike global networks, random network present a typically small density of links. Ran-

dom (Erdös-Renyi) networks are obtained by from N initially uncoupled nodes and build-

ing NK links between randomly chosen pairs with a uniform probability p (avoiding self-

interactions) [66]. Since the total possible number of links is N(N − 1) one has

p =
NK

N(N − 1)
. (12)

The average path length of ER networks is typically very small since it scales as the logarithm

of the network size (Lrandom ∼ lnN). Moreover the clustering coefficient of ER networks is

likewise small since Crandom = 1/N .

Since the contribution of the coupling term is typically small we do not need here to rescale

it as we did before. We show, in Fig. 3(b), the variation of the order parameter magnitude

with the coupling strength ε, showing a qualitatively similar picture but with a considerably

lower critical coupling strength εc ≈ 0.002 for the transition from a non-synchronized to

a partially synchronized bursting. If the probability p is too small there may not occur

bursting synchronization at all, and we require a minimum number of links to observe such

phenomenon, as shown in Fig. 3(b), where p = 0.01 and we have pN(N − 1) = 9990 links.

B. Small world networks

Random networks of the Erdös-Renyi type represent one limit case of a spectrum of

networks of which the other end comprises regular networks, which are lattices of N nodes

for which each node has links to its z nearest and next-to-the-nearest neighbors, hence there

are local connections only. The average path length of one-dimensional regular lattices is

Lregular ∼ N and the clustering coefficient is given by Cregular = [3(z − 2)]/[4(z − 1)] [67].

In between those limiting cases we have small-world networks, for which we typically

have L & Lrandom and C ≫ Crandom. It is possible to obtain them from regular lattices

essentially by two procedures: (i) Watts-Strogatz (WS) and (ii) Newman-Watts (NW) ones.

WS networks are obtained from regular lattices by going through each of its links and, with
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some specified probability p, randomly rewiring that link, moving one of its ends to a new

node randomly chosen from the rest of the lattice [68].

The coordination number of the network is still z on average, but the number of links per

node may be greater or smaller than z due to the possible existence of nonlocal shortcuts,

in addition to the local links. One possible disadvantage of this construction is that, if N

is small enough, the rewiring process may create clusters disconnected to the rest of the

network, for which nodes the path length would be obviously infinite. The latter problem

can be circumvented in NW networks, that are constructed similarly to the WS ones, but

the nonlocal shortcuts are added to the lattice with probability p, instead of being rewired

[69].

A small-world network of either WS or NW types is essentially described by the proba-

bility of nonlocal shortcuts p. By computing both L and C we can get a range of p for which

the small-world property is fulfilled by the network. The small-world property requires the

network to exhibit a relatively small path length while retaining an appreciable degree of

clustering, i.e. the following conditions L & Lrandom and C ≫ Crandom may hold for many

different types of networks of the WS or NW types [68]. The adjacency matrix for such net-

works is symmetric and band diagonal (with zero diagonal elements) and the non-diagonal

parts are sparse, most of their elements being equal to zero.

If the probability of shortcuts is zero we have the average path length and cluster co-

efficient of a regular networks, denoted as L(0) and C(0), respectively, for a network of

N = 1000 neurons with z = 20 local connections. In Fig. 4(a) we plot the ratios C(p)/C(0)

and L(p)/L(0) as a function of the probability of randomly chosen shortcuts p in the NW

procedure. The small-world property holds as long as the ratio C(p)/C(0) is large and

L(p)/L(0) is small, what yields an interval [0.01, 0.1]. A further confirmation of this interval

is provided by the merit figure σ, defined by

σ =
κ

λ
, (13)

where

λ =
L(p)

Lrand

, κ =
C(p)

Crand

, (14)

in such a way that the larger is σ the better the small-world property holds for the network.

We plot the merit figure as a function of p in Fig. 4(b), which indeed assumes larger values

in the interval [0.01, 0.1]. The variation of the order parameter magnitude for a small-world
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FIG. 4. (color online) (a) Dependence of the ratios C(p)/C(0) (black line) and L(p)/L(0) (red

line) with the probability of shortcuts in a small-world network of the Newman-Watts type with

N = 1000 and z = 20; (b) Dependence of the merit figure σ with p; (c) Variation of the order

parameter magnitude with the coupling strength for a small-world network of Rulkov neurons with

probability p = 0.1. Black and red lines stand, respectively, for a waterbag and a truncated Cauchy

distribution of values of the α parameter in the [4.1, 4.3]. The green curve represents a polynomial

fit given by Eq. (16). The insets zoom the behavior near the transition to bursting synchronization.

network with p = 0.1 is depicted in Fig. 4(c) as a function of ε, showing a transition to

partial bursting synchronization for εc ≈ 0.001.
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C. Scale-free networks

In scale-free networks the connectivity ki (the number of links per node i) satisfies a

power-law PDF

P (k) ∼ k−γ, (γ > 1), (15)

in such a way that highly connected neurons are connected, on the average, with highly

connected ones, a property also found in many social and computer networks [64, 74]. Func-

tional magnetic resonance imaging experiments have suggested that some brain activities

can be assigned to scale-free networks, with a scaling exponent γ between 2.0 and 2.2, with

a mean connectivity < k >≈ 4 [71]. In fact, this scale-free property is consistent with the

fact that the brain network increases its size by the addition of new neurons, and the latter

attach preferentially to already well-connected neurons.

In this paper we use the Barabási-Albert (BA) coupling prescription through a sequence

of steps, starting from an initial random (Erdös-Rényi) network of size N0 = 23 nodes and

23 random connections [74]. Every step we add a new node to the network which makes

two connections: the first is determined by a uniform probability of connection among the

vertices in the network and the second link is chosen such that the probability of connection

decays according with the degree of connectivity of each node. Hence this second link is more

likely to be attached to the most connected node in the network than to the less connected

one. When the network reaches the desired size N we stop adding new nodes.

We applied the BA procedure until the final network has N = 1000 nodes. We then

obtained a numerical approximation for the PDF of connections per node P (k), depicted

in Fig. 5(a). The solid red line is a least squares fit giving a power-law dependence of

the form (15) with an exponent γ = 2.9, confirming that the network is scale-free indeed.

The variation of the order parameter magnitude with ε is plotted in Fig. 5(b), illustrating

the transition to bursting synchronization with εc = 0.004. The behavior of the average

order parameter magnitude with ε after the transition to bursting synchronization at εc

can be fitted, when the frequency distribution is a truncated Cauchy PDF, by the following

expression

R ≈
[

1−
(εc
ε

)r]s

, (16)

where the exponents are different according to the type of network [Table I].
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FIG. 5. (color online) (a) Probability distribution function for the number of connections per

site in a network obtained from BA procedure and N = 1000 nodes; (b) Variation of the order

parameter magnitude with the coupling strength for a small-world network of Rulkov neurons with

probability p = 0.1. Black and red lines stand, respectively, for a waterbag and a truncated Cauchy

distribution of values of the α parameter in the [4.1 : 4.3]. The green curve represents a polynomial

fit given by Eq. (16). The insets zoom the behavior near the transition to bursting synchronization.

type εc r s Obs.

global 0.016/N 4.5 1.0

Erdös-Rényi 0.0017 2.0 1.0 K = 10000 links

small-world 0.00075 4.0 2.0 NW: p = 0.1, z = 20

scale-free 0.004 2.0 0.7 BA: N0 = 23, γ = 2.9

TABLE I. Critical coupling strength and fitting parameters for some types of networks with N =

1000 nodes and a truncated Cauchy distribution.

V. GENERALIZED KURAMOTO MODEL

We can summarize the results of the previous Section by stating that, if the coupling

strength is large enough in a network of coupled Rulkov neurons, there will be a transition

to bursting synchronization when ε = εc. The critical values of the coupling strength are

different, however, depending on the type of network (keeping the network size constant, see

Table I). This leads to the question of how the type of network might determine the value
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of εc.

The answer to this question is elusive even for minimal models like the network of Rulkov

maps considered in this work. However it can be formulated in a simpler model which has

the virtue of being amenable to analytical methods like mean field theory, and which is the

generalized Kuramoto model. Let us define a phase θi ∈ [0, 2π) for the ith member of an

assembly of N oscillators connected by a network of which we know the adjacency matrix

Aij

dθi
dt

= ωi + σ
N
∑

j=1

Aij sin(θj − θi), (i = 1, . . . , N) (17)

where σ is the coupling strength and ωi are natural frequencies which we randomly choose

from a PDF g(ω) which we require to be unimodal and symmetric: g(−ω) = g(ω). The

generalized Kuramoto model (GKM) has been used to study oscillations in cortical circuits

[75], as well as properties as axonal delay and synaptic plasticity [76].

A number of recent works has considered analytically the onset of synchronization in the

GKM on complex networks [36, 77]. Two basic approximations have been made: (i) the

adjacency matrix is symmetric (Aji = Aij); (ii) the number of connections per node is large

enough (ki ≫ 1). In this case the critical coupling is given by

σc1 =
Kc

λmax
, (18)

where λmax is the largest eigenvalue of the adjacency matrix and

Kc =
2

πg(0)
(19)

is the critical coupling strength of the classical Kuramoto model, which corresponds to the

case of a globally coupled network [33–35]. Indeed, since Aij = 1 for them it turns out that

λmax = N − 1 and, at criticality, we have

dθi
dt

= ωi +
Kc

N − 1

N
∑

j=1

Aij sin(θj − θi). (20)

A mean field analysis based on the same assumptions as above furnishes the following

estimate for the critical coupling strength in the GKM [77]

σc2 = Kc

< k >

< k2 >
, (21)
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where < k > and < k2 > are the mean connectivity and variance, respectively, or the two

first moments of the PDF P (k). The limitations of this formula are clear, though, since

it was derived by assuming that ki ≫ 1, which is hardly the case for small networks. An

example of the possible inadequacy of this formula is the case of a scale-free network, for

which the variance

< k2 >=

∫

∞

1

dk P (k) k2 ∼

∫

∞

1

dk k2−γ, (22)

which diverges if γ ≤ 3, yielding an infinite value for the critical coupling strength.

VI. DISCUSSION

In this Section we will compare results obtained from a network of coupled Rulkov net-

works and the GKM. Similarities between them have been previously observed but no direct

connection between those models has been made so far [78–80]. The starting point of our

discussion is that the Kuramoto phase θi(t) can be identified with the bursting phase of a

Rulkov neuron ϕi(n). If the time discretization step τ is small enough it is immaterial if the

model uses continuous time (like the GKM) or discrete time (like the Rulkov map). The

similarity between these models can be proved on general grounds, when one is close to a

globally phase synchronized state, the proof being sketched in an Appendix.

The bursting frequencies, which are time rates of the corresponding phases, should be

similar to both Rulkov and Kuramoto networks. Hence we adjust the PDF’s of the frequen-

cies of the Rulkov model to comply with the symmetry requirements of the GKM. Let us

first consider the waterbag distribution with b = −a:

gW (ω) =







1
2a

for −a ≤ ω ≤ a

0 otherwise
, (23)

for which gW (0) = 1/2a. The parameter a for the GKM will be chosen so as to yield the

same critical coupling strength which we numerically determined for the Rulkov network.

For example, using the theoretical estimate (18) we have at the critical point

σ
(W )
c1 =

2

πgW (0)λmax
=

4a

πλmax
, (24)

or, using (21)

σ
(W )
c2 =

2

πgW (0)

< k >

< k2 >
=

4a

π

< k >

< k2 >
. (25)
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network < k > < k2 > λmax

global 999 9992 999

Erdös-Rényi 10 109.30 11.019

small-world 24.29 594.83 24.514

scale-free 3.954 25.058 6.33

TABLE II. Properties of the network models used in this paper.

It is possible to repeat the arguments for the case of a truncated Cauchy distribution

with b = −a, α0 = 0, and where we have set ω0 = 0 and γ = a in such a way that we have

gT (ω) =
2

πa

[

1 +
(x

a

)2
]

−1

, (26)

with gT (0) = 2/(πa). This yields theoretical estimates for the critical point

σ
(T )
c1 =

2

πgT (0)λmax
=

a

λmax
, (27)

σ
(T )
c2 =

2

πgT (0)

< k >

< k2 >
= a

< k >

< k2 >
. (28)

Let us consider a network of N = 1000 Rulkov neurons with the following connection

topologies: global, random (ER), small-world (NW), and scale-free (BA), whose parameters

are listed in Table II. Using the numerically computed value of the critical coupling strength

εc in the place of the σc in Eqs. (24)-(25) and (27)-(28) we can estimate the value of the

parameter a of the PDF of natural frequencies using both the waterbag and the Truncated

Cauchy models, respectively [cf. Tab. III]. In the case of a random (ER) network, for

example, in which εc = 0.020 and 0.016 for the waterbag and Cauchy PDFs, respectively,

we found a = 0.016 and 0.017. Similar results hold for other network topologies. The values

of σc1 and σc2 present only slight differences.

After having chosen adequate values of the parameters appearing in the PDF of both

Rulkov and Kuramoto models, we can compare the results for them with respect to the

transition to bursting synchronization. In Figs. 6(a) to (d) we compute the order parameter

magnitude for the Rulkov (black line: waterbag, red line: Cauchy) and Kuramoto (green

line: waterbag, blue line: Cauchy) as a function of the coupling strength for the network

topologies considered in this paper. The evolution of R is nearly the same for both models,

with small differences. For example the value of R in the GKM reaches its maximum slightly
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network waterbag truncated Cauchy

global 0.016 0.017

Erdös-Rényi 0.017 0.019

small-world 0.017 0.018

scale-free 0.025 0.025

TABLE III. Estimates for the value of parameter a for two different PDFs and some types of

networks.

before (i.e. with smaller coupling strengths) the Rulkov network does. This precedence of

GKM in comparison with Rulkov is observed for all connection topologies we have considered

in this work.

VII. CONCLUSIONS

In this work we propose minimal models for the description of bursting neurons using

some of the most used connection topologies for neuronal networks which can be used in nu-

merical experiments. One of the simplest models that describe bursting is a two-dimensional

discrete-time mapping proposed by Rulkov, and we considered networks of coupled Rulkov

neurons using global, random (Erdös-Renyi), small-world (Newman-Watts), and scale-free

(Barabasi-Albert) topologies. We can define a geometrical phase for coupled Rulkov neu-

rons, such that bursting synchronization is equivalent to some form of phase synchronization.

Using the time rate of the bursting phase we can define a bursting frequency and thus in-

vestigate frequency synchronization in such networks.

Using a complex order parameter we quantify the state of phase synchronization of the

system. As the coupling strength is increased, there is a transition from a non-synchronized

to a partially phase-synchronized state, which evolves to a completely phase-synchronized

one for larger values of the coupling strength. We computed the corresponding critical values

of the coupling strength for the connection topologies considered in this work.

The existence of a phase reduction for the coupled Rulkov neuron system suggests the

usefulness of a Generalized Kuramoto model which, in the present context, can be considered

a minimal model for bursting neurons. We presented in this paper some quantitative results

that justify this claim. In order to compare both models, however, it is necessary to adjust
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FIG. 6. (color online) Order parameter magnitude vs. coupling strength for a network of Rulkov

neurons (black: waterbag, red: Cauchy) and Kuramoto oscillators (green: waterbag, blue: Cauchy)

with N = 1000 nodes, for (a) global coupling, (b) Erdös-Rényi; (c) small-world, and (d) scale-free.

the corresponding probability distribution functions for the natural frequencies. We did so

by using theoretical estimates for the critical coupling strength for the Generalized Kuramoto

model in different connection topologies. After choosing the PDF parameters in a suitable

way the behavior of the order parameter is very similar for both the Rulkov and Kuramoto

models.
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Appendix A: Phase reduction near global phase synchronization

In this appendix we show that, in the scenario near a phase synchronized regime, one

can perform a phase reduction from a network of coupled oscillators to a generalized Ku-

ramoto model, what explains why the properties of a coupled Rulkov neuronal network are

similar to the Kuramoto model. We stress that this similarity does not necessarily apply to

the situation near a frequency synchronized regime, since the dynamical requirements are

different. Our presentation follows closely that in Ref. [79] and the general treatment given

in Ref. [33].

Let a general D-dimensional flow be given by

dx

dt
= F(x), (A1)

where x is a D-dimensional vector in the system phase space and F a vector field. We

assume that there is a stable period-T orbit

x0(t) = x0(t+ T ). (A2)

The “slow” dynamics along this periodic orbit can be described by a phase ϕ(x) which time

evolution is given by
d

dt
ϕ(x) = ∇xϕF(x) = 1. (A3)

Now let us consider a network of coupled oscillators with a slight mismatch in their

parameters described by

d

dt
xi = F(xi) + fi(xi) + ǫ

∑

j

aijV(xi,xj), (i = 1, 2, . . .N), (A4)

where fi is different for each oscillator and stands for the vector field part containing slightly

mismatched parameters, ǫ is the coupling strength, aij the adjacency matrix, and V(xi,xj)

is a coupling function.

From (A3), the slow phase ϕi of the coupled oscillators is implicitely defined by the

function

Z(ϕi) = ∇xϕ(x0(ϕi)), (A5)

where x0 is a period-T stable orbit. The time evolution of the phase is then governed by

d

dt
x = 1 + ǫ

∑

j

aijZ(ϕi)V(xi,xj) + Z(ϕi)fi(xi), (A6)
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for i = 1, 2, . . .N .

On introducing an auxiliary phase ψi = ϕi− 1 and using a time average over a period T ,

by keeping ψi fixed we can write, in a first-order approximation, an equation governing the

time evolution of ψi:
d

dt
ψi = w̃i + ǫ

∑

j

aijΓ(ψi, ψj), (A7)

where

w̃i =
1

T

∫ T

0

Z(t + ψi)fi(xi)dt, (A8)

Γ(ψi, ψj) =
1

T

∫ T

0

Z(t + ψi)V(x0(t+ ψi),x0(t+ ψj))dt, (A9)

play the roles of frequencies and coupling functions, respectively, for the auxiliary phases ψi.

If we are close to a global phase synchronized state, for which ϕi ≈ ϕj for any pairs of

oscillators (i, j), we have an approximate form for the coupling function Γ. Introducing the

time-dependent variable ζ = t+ ψj and supposing that ψj ≪ T there results

Γ(ψi, ψj) =
1

T

∫ T+ψj

0

Z(ζ + ψi − ψj)V(x0(ζ + ψi − ψj),x0(ζ + ψj))dt. (A10)

By expanding the coupling function V in a power series and assuming that Z is nearly

constant over the periodic orbit x0, we get

Γ(ψi, ψj) ≈ a+ b(ψi − ψj), (A11)

where

a =
1

T

∫ T

0

ZV(x0(ζ),x0(ζ))dζ, (A12)

b =
1

T

∫ T

0

Z(∇xV(x,y))
x=y=x0(ζ)

∂x0

∂ζ
dζ, (A13)

Notice that this approximation holds whenever

∇xV(x,y) 6= 0 (A14)

for any x and y belonging to the periodic orbit x0.

Substituting (A11) into (A7) yields

d

dt
ψi ≈ w̃i + sia + ǫb

∑

j

aij(ψi − ψj), (A15)
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where si =
∑

j aij is the intensity of the ith node of the network. As long as we deal with

networks for which the intensities si present only a small variation over the network, we can

take si as practically constant, i.e., independent of i.

Moreover, since we are by hypothesis near a global phase synchronized state, the phase

difference ψi − ψj is small enough to justify the replacement ψi − ψj ≈ sin(ψi − ψj), in

such a way that the equation governing the time evolution of the auxiliary phases (near a

phase-synchronized situation) is a generalized Kuramoto model

ψ̇i ≈ wi + ε
∑

j

aij sin(ψi − ψj), (A16)

where wi = w̃i + asi and ε = ǫb.
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