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Abstract

Hierarchical probabilistic models, such as Gaussian mixture models, are
widely used for unsupervised learning tasks. These models consist of observ-
able and latent variables, which represent the observable data and the un-
derlying data-generation process, respectively. Unsupervised learning tasks,
such as cluster analysis, are regarded as estimations of latent variables based
on the observable ones. The estimation of latent variables in semi-supervised
learning, where some labels are observed, will be more precise than that in un-
supervised, and one of the concerns is to clarify the effect of the labeled data.
However, there has not been sufficient theoretical analysis of the accuracy of
the estimation of latent variables. In a previous study, a distribution-based
error function was formulated, and its asymptotic form was calculated for un-
supervised learning with generative models. It has been shown that, for the
estimation of latent variables, the Bayes method is more accurate than the
maximum-likelihood method. The present paper reveals the asymptotic forms
of the error function in Bayesian semi-supervised learning for both discrim-
inative and generative models. The results show that the generative model,
which uses all of the given data, performs better when the model is well spec-
ified.
keywords: Latent-variable estimation, Generative and discriminative models,
Bayes statistics
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1 Introduction

Hierarchical statistical models, such as the Gaussian mixture model, are widely em-
ployed in unsupervised learning. They consist of observable and latent variables,
which express the given data and the underlying data-generation process, respec-
tively. A typical task of unsupervised learning is clustering, in which observable
data is used to estimate labels that indicate which cluster the data are from. The
Gaussian mixture model is often used for cluster analysis, and in this model, a Gaus-
sian component represents a cluster. If the parameter is known, the probabilities
of the labels for each data point are easily computed. However, in many practical
situations, the parameter is unknown, and both it and the latent variable must be
estimated. Some learning algorithms, such as the expectation–maximization (EM)
algorithm (Dempster et al., 1977) and the variational Bayes method (Attias, 1999;
Ghahramani and Beal, 2000; Beal, 2003), have two explicit estimation steps (the E
step and the M step). The present paper focuses on the Bayesian approach, which
uses the posterior distribution to marginalize out the parameter and calculates the
probabilities of the latent variables.

There are two ways to use hierarchical models: to predict unseen observable data
or to estimate the latent variables. The accuracy of prediction has been analyzed
theoretically. The generalization error measures the accuracy, and, in many cases,
its asymptotic behavior is well known. When the error function is defined by the
Kullback-Leibler divergence, the asymptotic form of the error is well known in the
maximum-likelihood method, and it has been used as a criterion for selecting model
complexity (Akaike, 1974; Takeuchi, 1976; White, 1982). In the Bayes method,
the posterior distribution of the parameter plays an important role to determine the
accuracy; the normalizing factor of the distribution is the marginal likelihood and its
negative logarithm has a direct relation with the error function (Levin et al., 1990).
Since the asymptotic form of the marginal likelihood has been calculated (Schwarz,
1978; Clarke and Barron, 1990), this relation allows us to derive the asymptotic
generalization error.

On the other hand, latent-variable (LV) estimation has not been analyzed suf-
ficiently. Recently, a distribution-based error function was formulated to deter-
mine the accuracy of the LV estimation, and its asymptotic form was calculated
(Yamazaki, 2014, 2015b). The results showed the different properties from those of
the estimation of observable variables (OVs). For example, the Bayes LV estimation
is more accurate than the maximum-likelihood estimation under the regularity con-
ditions while these estimation methods have the same accuracy in the OV prediction.
Moreover, when there are unnecessary labels in the model, the Bayes method au-
tomatically eliminates the redundant labels. Because of these advantages, we focus
on the Bayes approach in the present paper.

There are discriminative and generative approaches to defining the model; the
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discriminative approach results in a model that expresses the causal effect of the
observable data on the latent variables, while the generative approach results in
a model that explains the data-generation process. Our previous study mainly
analyzed the generative model (Yamazaki, 2014). The present paper compares these
approaches in terms of the estimation of LVs.

In the estimation of LVs, partially observed labels will improve accuracy because
they have information about the targets of the estimation. Learning from a mixture
of labeled and unlabeled data is referred to as semi-supervised learning (Zhu, 2007;
Yamazaki, 2015a). Its main concerns include clarifying how the supplemental infor-
mation affects the accuracy of the estimation and developing a learning algorithm
that achieves better results based on this advantage.

The present paper analyzes the statistical properties of the Bayes method for
semi-supervised learning, and the main contributions are as follows:

1. The asymptotic forms of the error function are derived for both the discrimi-
native and generative models.

2. The generative model asymptotically performs better in the well-specified case.

Asymptotic analysis generally assumes that the amount of unlabeled data is suf-
ficiently large. If the number of labels that are given is not large, there may be
no effect on the estimation, or it may be very weak. To magnify the effect of the
observed labels, we assume that the number of labeled data points is αn, where
n is the number of the training data points and α is the ratio of the labels where
0 < α < 1 (see Fig. 1).

The rest of this paper is organized as follows. The next section formalizes the
data structure and the model expression. In Section 3, we introduce the Bayesian
LV estimation and an error function to measure its accuracy. The discriminative and
the generative approaches are explained. Section 4 shows the asymptotic analysis of
the error function and compares the approaches. Section 5 discusses the magnitude
relation of the error function among the approaches and clarifies the effect of the
observable labels on the accuracy.

2 Data Structure and Model Expression

2.1 Formal Expressions of Data and Model

This subsection formulates the settings of the data and the model.
Fig. 1 shows the structure of the data; the observable and latent variable are

x ∈ RM and y ∈ {1, . . . , K}, respectively. The data points {(x1, y1), . . . , (xn, yn)} are
independent and identically distributed, and αn data points {(x1, y1), . . . , (xαn, yαn)}
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: observable part of data

: hidden part of data

Figure 1: Data structure: pairs (xi, yi) are generated. The solid circles represent
observable data, which is used for training, and the dashed circles represent hidden
data, which are the target of the estimation.

are labeled, where 0 < α < 1 and αn is an integer. We define the following data
sets:

X1 = {x1, . . . , xαn},

X2 = {xαn+1, . . . , xn},

Y1 = {y1, . . . , yαn},

Y2 = {yαn+1, . . . , yn},

Xn = {X1, X2},

Y n = {Y1, Y2},

D = {X1, Y1, X2} = {Xn, Y1},

where X1 is the set of αn observable data points, Y1 is the set of the corresponding
labels, and the target of the LV estimation is Y2. The set D contains the available
data for the estimation. The number of the labels grows linearly with the total
number of data points n.

The generative model represents the underlying process of data generation. In
the present paper, we assume that the observable variables are caused by the latent
variables. The mathematical expression for this is p(x, y|w) = p(x|y, w)p(y|w),
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where w is the parameter. On the other hand, the discriminative model expresses
the probability of the latent variable based on the observable variable; the classifier
of the learning model is defined by p(y|x, w). If the discriminative model is defined
on the basis of the generative one, the model expression is given by p(y|x, w) =
p(x, y|w)/p(x|w), where p(x|w) =

∑

y p(x, y|w). According to Fig. 1, the target of
the LV estimation is p(Y2|D). There are various ways to define p(Y2|D), as will be
shown in the next section. Let q(y|x) and q(x) be the true classifier and the true
density of x, respectively; the data (Xn, Y n) are generated from q(x, y) = q(y|x)q(x).

2.2 An Example of the Model

For illustrative purposes, we present the following data source and model:

Example 1 (Data distribution) Define x and y so that x ∈ R and y ∈ {1, 2}.
The sample data follow the following distribution:

q(x, y) = a∗yN (x|b∗y, σ), (1)

where a∗y is the mixing ratio and N (x|µ, σ) is the one-dimensional Gaussian distri-
bution with mean µ ∈ R and variance σ ∈ R>0. The mixing ratio is expressed as
a∗1 = a∗ ∈ (0, 1) and a∗2 = 1− a∗.

Note that the density of x is also based on q(x, y):

q(x) =
2

∑

y=1

q(x, y).

Example 2 (Learning model) The two-component Gaussian mixture learning
model is defined by

p(x|w) =
2

∑

k=1

akN (x|bk, σ),

where 0 ≤ a1 ≤ 1, a2 = 1 − a1, and bk ∈ R. The parameter consists of w =
(a1, b1, b2)

⊤. The discriminative model is based on the following mixture:

p(y = k|x, w) =
p(x, y = k, w)

∑2
j=1 p(x, y = j, w)

=
akN (x|bk, σ)

∑2
j=1 ajN (x|bj , σ)

. (2)
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Figure 2: Model shapes with the generative and the discriminative expressions.

There exists a true parameter w∗ such that q(y|x) = p(y|x, w∗). Fig. 2 shows
the model shapes with the generative and the discriminative expressions in the
two-component Gaussian mixture. The true parameter is w∗ = (a∗1, b

∗
1, b

∗
2)

⊤ =
(0.5, 0, 1.5)⊤. A sample set of data from q(x, y) is shown in the same figure; the
data with y = 1 and y = 2 are on the upper and the lower horizontal lines, respec-
tively.

2.3 Redundant Parameters in the Discriminative Model

The classifier p(y|x, w) based on p(x, y|w) does not provide a one-to-one relation
between the model expression and the parameter. Let us consider the case in Ex-
amples 1 and 2. Suppose that a∗k 6= 0, which means that the model has the same
number of clusters as the data distribution. Even though there is no redundancy in
the number of clusters, there is redundancy in the parameter:

p(y = 1|x, w) =
a1 exp{−(x− b1)

2/(2σ2)}

Zm

=
1

1 + f1(x, w)
,

where the normalizing factor is expressed as

Zm =
2

∑

y=1

ay exp{−(x− by)
2/(2σ2)},
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and the functions f1 and f2 are written as

ln f1(x, w) =
1

σ2
(b2 − b1)x−

1

2
(b22 − b21) + ln

a2
a1

.

The coefficients of x and the constant terms contain more elements of the parameter
than are needed to express the function. Let us reparameterize f1(x, w) as

ln f1(x, w̄) =c1x+ c2,

where w̄ = (c1, c2)
⊤. Considering the case y = 2, we can easily confirm that the

parameter w̄ is sufficient to express p(y = 2|x, w). This means that the essential
dimension of the parameter is dim w̄ = 2 instead of dimw = 3. To eliminate the
redundancy, we regard ak as a positive constant and let the reduced parameter be
w̄, which consists of the elements of w except for ak. For the general dimension
of data M and the general number of the components K, we can calculate that
dim w̄ = dimw −M in the Gaussian mixture.

3 The Bayes LV Estimation and Error Function

This section introduces the Bayes LV estimation and an error function to measure its
accuracy. Let L(w,Xn, Y n) be a likelihood function on {Xn, Y n}, and let L(w,D) =
∑

Y2
L(w,Xn, Y n) be one on D. In the Bayesian model, the LV estimation, which

corresponds to constructing p(Y2|D), is written as

p(Y2|D) =

∫

L(w,Xn, Y n)ϕ(w|η)dw
∫

L(w,D)ϕ(w|η)dw
, (3)

where ϕ(w|η) is a prior distribution and η is the hyperparameter. We will consider
here the following three likelihood functions:

(Model 1)

L1(w̄, X
n, Y n) =

n
∏

i=1

p(yi|xi, w̄),

L1(w̄, D) =
αn
∏

i=1

p(yi|xi, w̄);

(Model 2)

L2(w,X
n, Y n) =

αn
∏

i=1

p(yi|xi, w)
n
∏

i=αn+1

p(xi, yi|w),

L2(w,D) =

αn
∏

i=1

p(yi|xi, w)

n
∏

i=αn+1

p(xi|w);
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(b) Model 2
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Figure 3: The relations between the data sets and the model expressions

(Model 3)

L3(w,X
n, Y n) =

n
∏

i=1

p(xi, yi|w),

L3(w,D) =

αn
∏

i=1

p(xi, yi|w)
n
∏

i=αn+1

p(xi|w).

The first and third models correspond to the discriminative and generative models,
respectively. The second one is a hybrid model; the labeled data are used in the dis-
criminative expression, and the unlabeled data are used in the generative expression.
Note that Model 2 cannot use the reduced parameterization w̄ in the discriminative
expression, since it must use w in the generative part.

The formulation defined by Eq. 3 has the following equivalent expressions:

p(Y2|D) =

∫ n
∏

i=αn+1

p(yi|xi, w)p(w|D)dw, (4)

p(w|D) =
L(w,D)ϕ(w|η)

∫

L(w,D)ϕ(w|η)dw
, (5)

where p(w|D) is the posterior distribution. The first definition of p(Y2|D), Eq. 3,
is used for theoretical calculations in the asymptotic analysis, and the second one,
Eq. 4, is useful for numerical computations and for comparison of the models. Note
that for the both definitions the parameter w is replaced with w̄ in Model 1. Fig.3
shows relations between the data sets and the model expressions in the posterior
distribution. For example, in Model 2, the main factor of the posterior distribution
L(w,D) contains the discriminative expression with the labeled data {X1, Y1} and
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the generative expression with the unlabeled data X2. Note that L(w̄, D) in Model
1 contains the discriminative expression only, where the unlabeled data X2 are not
used for the estimation.

Since the data are i.i.d., the true joint probability of Y2 is given by

q(Y2|D) = q(Y2|X2) =

n
∏

i=αn+1

q(yi|xi). (6)

The error function is defined as the difference between the true and the estimated
probabilities of Y2. Following previous work (Yamazaki, 2014), the error is based on
the Kullback–Leibler divergence:

D(n) =
1

(1− α)n
ED

[

∑

Y2

q(Y2|D) ln
q(Y2|D)

p(Y2|D)

]

,

where the expectation means

ED[f(X1, Y1, X2)] =

∫

∑

Y1

f(X1, Y1, X2)q(Y1|X1)q(X1)q(X2)dX1dX2.

Since the number of elements in Y2 is (1 − α)n, the error function is the average
divergence for one latent variable.

4 Asymptotic Analysis of the Error Function

This section shows one of the main results of this paper: the asymptotic forms of
the error functions of the three models and a comparison between them.

We assume the following condition:

(A1) In the discriminative expression, there exists a true parameter w̄∗ such that
q(y|x) = p(y|x, w∗) in the support of ϕ(w̄|η), and the following Fisher infor-
mation matrix in the neighborhood of w̄∗ exists and is positive definite:

{Iy|x(w̄)}ij =

∫

∑

y

∂ ln p(y|x, w̄)

∂w̄i

∂ ln p(y|x, w̄)

∂w̄j
p(y|x, w̄)q(x)dx.

(A2) In the generative expression, there exists a true parameter w∗ such that
q(x, y) = p(x, y|w∗) in the support of ϕ(w|η), and the following Fisher in-
formation matrices in the neighborhood of w∗ exist and are positive definite:

{Ixy(w)}ij =

∫

∑

y

∂ ln p(x, y|w)

∂wi

∂ ln p(x, y|w)

∂wj
p(x, y|w)dx,

{Ix(w)}ij =

∫

∂ ln p(x|w)

∂wi

∂ ln p(x|w)

∂wj
p(x|w)dx.

9



These conditions indicate the ideal situation for the estimation, where the estimated
probability p(Y2|D) in all models converges to the true one and the model is identi-
fiable.

When the discriminative model p(y|x, w) is based on the generative expression,
such as in Example 2, let another Fisher information matrix be defined by

{I(w)}ij =

∫

∑

y

∂ ln p(y|x, w)

∂wi

∂ ln p(y|x, w)

∂wj

p(y|x, w)q(x)dx,

where I(w∗) = Ixy(w
∗) − Ix(w

∗). Note that here we use the common parameter
setting and not the reduced one w̄; this means that, due to the redundancy of the
parameters, the rank of I(w∗) is not more than dimw−M in the Gaussian mixture.
The parameter redundancy in the discriminative model must be eliminated for the
condition (A1). Thus, we use the notation w̄ to indicate the parameter setting
satisfying (A1).

The following theorem shows the asymptotic behavior of the error function.

Theorem 3 Let D1(n), D2(n), and D3(n) be the error functions of Models 1, 2,
and 3, respectively. Under the conditions (A1) and (A2), it holds that

D1(n) =
dim w̄

2

ln 1/α

1 − α

1

n
+ o

(

1

n

)

,

D2(n) =
1

2

ln detK2(w
∗)

1− α

1

n
+ o

(

1

n

)

,

D3(n) =
1

2

ln detK3(w
∗)

1− α

1

n
+ o

(

1

n

)

,

where

K2(w) =
(

Ixy(w)− αIx(w)
)(

αIxy(w) + (1− 2α)Ix(w)
)−1

,

K3(w) =Ixy(w)
(

αIxy(w) + (1− α)Ix(w)
)−1

.

The proof is in the appendix.
The theorem shows that, in all models, the dominant order is 1/n, which is the

speed at which the error converges to zero. The accuracy of Model 1 depends on
the dimension of w̄ instead of the position of w̄∗; note that, in the other models, the
coefficients of the dominant order are functions of w∗.

Let us compare these error values. We assume that Model 1 is based on the
generative expression and uses the reduced parameter w̄. According to Theorem 3,
the asymptotic forms of the error functions are expressed as

Di(n) =
ci
n
+ o

(

1

n

)

,
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where ci is a positive constant. When ci < cj , we define the magnitude relation
between the error functions as

Di(n) < Dj(n).

The following theorem shows the relation among the three error functions;

Theorem 4 If the nonzero eigenvalues of I(w∗)Ix(w
∗)−1 are all non negative, the

following inequality holds asymptotically:

D3(n) < D2(n) < D1(n).

The proof is in the appendix.

5 Discussions

5.1 On the Magnitude Relation in Theorem 4

First, let us consider the magnitude relation in Theorem 4. A larger amount of
training data obviously increases the accuracy of the estimation, and a high dimen-
sional parameter allows the model to be expressive and complex. It is known that
the asymptotic form of the error function depends on the number of data and the
dimension of the parameter in many cases, and there is a trade-off between them.
For example, the generalization error G(n) for the OV estimation is defined by

G(n) = En

[
∫

q(x) ln
q(x)

p(x|Xn)
dx

]

,

where Xn = {x1, . . . , xn}, En[·] is the expectation over all training data Xn, and
p(x|Xn) is the predictive distribution. In the Bayes method, the predictive distri-
bution is given by

p(x|Xn) =

∫

p(x|w)po(w|X
n)dw,

po(w|X
n) =

∏n
i=1 p(xi|w)ϕ(w|η)

∫
∏n

i=1 p(xi|w)ϕ(w|η)dw
.

Under the condition (A2), the asymptotic form of the generalization error is ex-
pressed as

G(n) =
dimw

2n
+ o

(

1

n

)

,
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where n is the number of data and dimw is the number of the parameter (Schwarz,
1978; Rissanen, 1986; Clarke and Barron, 1990; Levin et al., 1990). Obviously, the
prediction is accurate when n is large or dimw is small.

In the unsupervised LV estimation with the generative expression, the task is to
estimate all labels Y n = {Y1, Y2} = {y1, . . . , yn} based on Xn = {X1, X2}. In the
Bayes method, the estimated distribution of Y n is described by

p(Y n|Xn) =

∫ n
∏

i=1

p(xi, yi|w)

p(xi|w)
po(w|X

n)dw,

and the error function is defined by

DU(n) =
1

n
En

[

∑

Y n

q(Y n|Xn) ln
q(Y n|Xn)

p(Y n|Xn)

]

,

where the true distribution of Y n is given by

q(Y n|Xn) =
n
∏

i=1

q(xi, yi)

q(xi)
.

Under the condition (A2), the error function has the following asymptotic form
(Yamazaki, 2014),

DU(n) =
1

2n
ln det Ixy(w

∗)Ix(w
∗)−1 + o

(

1

n

)

.

Since the rank of Ixy(w
∗)Ix(w

∗)−1 is determined by the dimension of w, the LV
estimation is also accurate when n is large or dimw is small.

Let us compare the three models from the perspective of the parameter dimension
and the amount of data. Since dim w̄ < dimw, Model 1 has an advantage in the
parameter dimension. On the other hand, the actual amount of data used for the
estimation is larger in Models 2 and 3; according to the second definition of p(Y2|D),
Eq. 4 and Fig. 3-(a), the posterior distribution of Model 1 is constructed by only
{X1, Y1}, while those of Models 2 and 3 require D = {X1, Y1, X2}. Theorem 4 shows
that, in order to improve accuracy, increasing the amount of data is more effective
than reducing the dimension of the parameter. Model 1 is thus at a disadvantage.

5.2 The Effect of the Posterior Convergence on the Accu-

racy

Next, we discuss convergence of the posterior distribution in Eq. 5 and its effect on
the accuracy. The asymptotic form of the error function in Theorem 3 indicates the

12
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Figure 4: Sampled points from the posterior distribution in the space of w̄

effect of the posterior. According to its proof in Appendix, the posterior converges
to the Gaussian distribution N (w̃, Σ̃/n) in law, where w̃ is the maximum-likelihood
estimator of L(w,D) in Eq. 5, and Σ̃ is given by

Σ̃−1 =











αIy|x(w̄
∗) Model 1

αIxy(w
∗) + (1− 2α)Ix(w

∗) Model 2

αIxy(w
∗) + (1− α)Ix(w

∗) Model 3

.

The right-hand side corresponds to the inverse matrix in the coefficient. For example,
K2(w

∗) for Model 2 has the inverse matrix {αIxy(w∗)+(1−2α)Ix(w
∗)}−1. Therefore,

the variance of the posterior, which shows the convergence speed, is one of the
essential factor to determine the accuracy. In Model 1, the original form of the
coefficient is ln det Iy|x(w̄

∗){αIy|x(w̄∗)}−1, and then dim w̄ ln 1/α appears instead of

Σ̃−1.
As shown in Eq. 4, the posterior determines the difference of the models. Then,

the magnitude relation in Theorem 4 reflects the difference of the convergence speeds
of the posterior distributions. In order to visualize this difference, let us experimen-
tally compare the posterior distributions in the settings of Examples 1 and 2. The
Markov chain Monte Carlo (MCMC) method was employed for obtaining parameter
samples from the posterior. The total number of data was n = 400, and the ratio
of labeled data was α = 0.5. Fig. 4 shows 100 sampled points from the posterior
in each model. To compare Model 1 with Models 2 and 3, we mapped samples of
the parameter w to the space of the reduced parameter w̄ = (c1, c2)

⊤. According to
the calculation in Section 2.3, the dimension of w̄ is dim w̄ = 2, and the mapping is
defined by

c1 =b2 − b1,

c2 =−
1

2
(b2 − b1)(b2 + b1) + ln

1− a1
a1

,

where we assumed σ = 1 for simplicity. We conducted this MCMC sampling in 50
different data sets, where each data set Xn contains 200 labeled and 200 unlabeled

13



models E[µ̄] E[(µ̄− w∗)2]
Model 1 (1.55231,−1.16090)⊤ 0.12081
Model 2 (1.47616,−1.09729)⊤ 0.06214
Model 3 (1.48225,−1.09883)⊤ 0.05043

Table 1: The convergence of the posterior distribution

data. Let µ̄ be the empirical mean of the sampled points, and E[µ̄] be its expectation
over 50 sets. The true parameter was w̄∗ = (1.5,−1.125)⊤, which was the conver-
gence point of the posterior at n → ∞. Table 1 shows E[µ̄] and E[(µ̄− w̄∗)2]. The
smaller E[(µ̄− w̄∗)2] is, the faster the posterior converges. Model 1 had the slowest
convergence because its posterior was constructed without the unlabeled data and
the amount of the data was much smaller than that of the other models. As Theo-
rem 4 predicted, the convergence of Model 3 was faster than that of Model 2. The
posterior distributions of Models 2 and 3 were originally defined in the space of w.
Since the parameter w was reducible to the lower dimensional w̄, the discriminative
expression for the labeled data

∏αn
i=1 p(yi|xi, w) had less information on the original

parameter w than the generative expression
∏αn

i=1 p(xi, yi|w). This was the reason
why Model 3 had better results than Model 2.

5.3 Comparison with the Estimation without Labels

In order to clarify the effect of the observable labels, we compare the accuracy
between Model 3 and the estimation of Y2 without the labels Y1. The estimation is
expressed as

pNL(Y2|X1, X2) =

∫
∏αn

i=1 p(xi|w)
∏n

i=αn+1 p(xi, yi|w)ϕ(w|η)dw
∫
∏n

i=1 p(xi|w)ϕ(w|η)dw
,

which is a generative expression. The error function is then given by

DNL(n) =
1

(1− α)n
ED

[

q(Y2|D) ln
q(Y2|D)

pNL(Y2|X1, X2)

]

.

This corresponds to the Type II estimation in Yamazaki (2014), and the asymptotic
form of the error has been derived as

DNL(n) =
1

2

ln detK4(w
∗)

1− α

1

n
+ o

(

1

n

)

under the condition (A2), where

K4(w) =((1− α)Ixy(w) + αIx(w))Ix(w)
−1.

The following lemma shows the quantitative difference between the estimations
with and without the observable labels Y1,

14



Lemma 5 Let assume that Ixy(w
∗)Ix(w

∗)−1 has the eigen values λ1, . . . , λd. Under
the same conditions of Theorem 4, all eigen values are not less than one. Then, the
asymptotic error is described by

DNL(n) =
1

2(1− α)n

d
∑

i=1

ln(α + (1− α)λi) + o

(

1

n

)

, (7)

and the magnitude relation to the error of Model 3 is given by

DNL(n) > D3(n).

More precisely, the asymptotic difference of these error functions is described as

DNL(n)−D3(n) =
1

2(1− α)n

d
∑

i=1

ln

{

α(1− α)

(

λi +
1

λi

)

+ α2 + (1− α)2
}

+ o

(

1

n

)

, (8)

where the coefficient of the dominant term is positive since the factor λi + 1/λi is
the convex function with respect to λi and has the minimum value at λi = 1.

The proof is in the appendix. Let us focus on the case, where the labels are infor-
mative and the difference between the information matrices with and without labels
is large. The eigen value λi increases from one since λi = 1 for Ixy(w

∗) = Ix(w
∗).

The asymptotic form in Eq. 7 shows how the accuracy is adversely affected by this
increase. Therefore, λi indicates the difficulty of the task in the unsupervised learn-
ing. According to Eq. 8, the difference of the error functions is also determined by
the eigen values, Because the factor λi + 1/λi is the increasing function for λi ≥ 1,
the accuracy of the semi-supervised learning is significantly improved when the task
is difficult and λi grows.

6 Conclusion

In semi-supervised learning, the given labels are used for the estimation of unob-
servable labels. Depending on the expression of the labeled data in the likelihood
function, we have three approaches: generative, discriminative, and their hybrid
models. In the present paper, we focus on the Bayes method to estimate the la-
bels in a distribution-based manner, and derive the asymptotic form of the error
function measuring the accuracy with the Kullback-Leibler divergence. Comparing
the asymptotic forms in the three models, we prove that the generative model per-
forms better when the model is well specified. The asymptotic error depends on the
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amount of data and the dimension of the parameter, and there is a trade-off between
them. The discriminative model does not require high dimensional parameter due to
its simple expression while the generative model uses more data for the estimation.
The magnitude relation theoretically indicates that increasing the amount of data
is more effective than reducing the dimension of the parameter in order to improve
accuracy.

Appendix

This section shows the proofs of the theorems.

Proof of Theorem 3

First, we derive the asymptotic form of D1(n). Define the free-energy function by

Fy|x(n) =En

[

ln
n
∏

i=1

q(yi|xi)− ln

∫ n
∏

i=1

p(yi|xi, w̄)ϕ(w̄|η)dw̄

]

,

where the expectation is

En[f(X
n, Y n)] =

∫

∑

Y n

f(Xn, Y n)q(Y n|Xn)q(Xn)dXn.

The error function D1(n) can be rewritten as

(1− α)nD1(n) =ED

[

∑

Y2

q(Y2|D)

{

ln

∏n
i=1 q(yi|xi)

∫
∏n

i=1 p(yi|xi, w̄)ϕ(w̄|η)dw̄

− ln

∏αn
i=1 q(yi|xi)

∫
∏αn

i=1 p(yi|xi, w̄)ϕ(w̄|η)dw̄
}

}]

=Fy|x(n)− Fy|x(αn). (9)

It is sufficient to calculate the asymptotic form of Fy|x(n).
The maximum-likelihood estimator is defined by

ŵn =argmax
w̄

n
∏

i=1

p(yi|xi, w̄).

Due to (A1), the estimator converges to w̄∗, which means that the essential param-
eter area for the integration is the neighborhood of w̄∗ and ŵn. According to the
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Taylor expansion at w = ŵn,

En

[

ln

∫ n
∏

i=1

p(yi|xi, w̄)ϕ(w̄|η)dw̄

]

=En

[

ln

∫

exp

{

n
1

n

n
∑

i=1

ln p(yi|xi, w̄)

}

ϕ(w̄|η)dw̄

]

=En

[

ln

∫

exp

{

n
1

n

n
∑

i=1

ln p(yi|xi, ŵn)

+ n
1

n
(w̄ − ŵn)

⊤ ∂

∂w̄

n
∑

i=1

ln p(yi|xi, ŵn)

+ n
1

2
(w̄ − ŵn)

⊤ 1

n

∂2

∂w̄2

n
∑

i=1

ln p(yi|xi, ŵn)(w − ŵn) + r1(w̄)

}

ϕ(w̄|η)dw̄

]

,

where r1(w̄) is the remainder term. Based on the saddle-point approximation,

En

[

ln

∫ n
∏

i=1

p(yi|xi, w̄)ϕ(w̄|η)dw̄

]

=En

[ n
∑

i=1

ln p(yi|xi, ŵn)

]

+ En

[

ln

∫

exp(nr1(w̄))ϕ(w̄|η)N (ŵn, (nIy|x(w̄
∗))−1)dw̄

]

−

{

dim w̄

2
lnn−

dim w̄

2
ln 2π +

1

2
ln det Iy|x(w̄

∗)

}

+ o(1)

=En

[ n
∑

i=1

ln p(yi|xi, ŵn)

]

−
dim w̄

2
lnn

+
dim w̄

2
ln 2π −

1

2
ln det Iy|x(w̄

∗) + lnϕ(w̄∗) + o(1),

where N (µ,Σ) is a dim w̄-dimensional Gaussian distribution with mean µ ∈ Rdim w̄

and variance-covariance matrix Σ. Thus, we obtain

Fy|x(n) =En

[ n
∑

i=1

ln
q(yi|xi)

p(yi|xi, ŵn)

]

+
dim w̄

2
lnn−

dim w̄

2
ln 2π +

1

2
ln det Iy|x(w̄

∗)− lnϕ(w̄∗|η) + o(1).

17



According to the Taylor expansion at ŵn,

En

[ n
∑

i=1

ln p(yi|xi, w̄
∗)

]

=En

[ n
∑

i=1

ln p(yi|xi, ŵn)

+ (w̄∗ − ŵn)
⊤ ∂

∂w̄

n
∑

i=1

ln p(yi|xi, ŵn)

+
1

2
(w̄∗ − ŵn)

⊤ ∂2

∂w̄2

n
∑

i=1

ln p(yi|xi, ŵn)(w̄
∗ − ŵn) + r2(w̄)

]

=En

[ n
∑

i=1

ln p(yi|xi, ŵn)

]

−
n

2
En

[

(w̄∗ − ŵn)
⊤Iy|x(w̄

∗)(w̄∗ − ŵn)

]

+ o(1),

where r2(w̄) is the remainder term. The estimator ŵn has asymptotic normality,
and it converges to the Gaussian distribution with mean w0 and variance–covariance
matrix (nIy|x(w̄

∗)−1)−1. It holds that

En

[ n
∑

i=1

ln p(yi|xi, w̄
∗)

]

= En

[ n
∑

i=1

ln p(yi|xi, ŵn)

]

−
dim w̄

2
+ o(1).

The free-energy function has the asymptotic form

Fy|x(n) =
dim w̄

2
lnn−

dim w̄

2
ln 2πe+

1

2
ln det Iy|x(w̄

∗)− lnϕ(w̄∗|η) + o(1),

which is consistent with the form derived in (Clarke and Barron, 1990). Based on
the relation in Eq. 9, we obtain

(1− α)nD1(n) =−
dim w̄

2
lnα+ o(1),

which is the asymptotic form of D1(n).
In the similar way, we derive the asymptotic forms of D2(n) and D3(n). Define

the free-energy functions as

Fxy(n) =En

[

ln

n
∏

i=1

q(xi, yi)− ln

∫ n
∏

i=1

p(xi, yi|w)ϕ(w|η)dw

]

,

Fxy,x(n) =En

[

ln
αn
∏

i=1

q(xi, yi)
n
∏

i=αn+1

q(xi)

− ln

∫ αn
∏

i=1

p(xi, yi|w)
n
∏

i=αn+1

p(xi|w)ϕ(w|η)dw

]

.
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The error function D3(n) is rewritten as

(1− α)nD3(n) =ED

[

∑

Y2

q(Y2|D)

{

ln

∏n
i=1 q(xi, yi)

∫
∏n

i=1 p(xi, yi|w)ϕ(w|η)dw

− ln

∏αn
i=1 q(xi, yi)

∏n
i=αn+1 q(xi)

∫
∏αn

i=1 p(xi, yi|w)
∏n

i=αn+1 p(xi|w)ϕ(w|η)dw

}]

=Fxy(n)− Fxy,x(n). (10)

The maximum-likelihood estimator is defined by

ŵxy =argmax
w

n
∏

i=1

p(xi, yi|w).

Due to (A2), the estimators ŵxy and ŵ3 converge to w∗, which means that the
essential parameter area for the integration is the neighborhood of w∗, ŵxy, and ŵ3.
According to the Taylor expansion at w = ŵxy,

En

[

ln

∫ n
∏

i=1

p(xi, yi|w)ϕ(w|η)dw

]

=En

[

ln

∫

exp

{

n
1

n

n
∑

i=1

ln p(xi, yi|w)

}

ϕ(w|η)dw

]

=En

[

ln

∫

exp

{

n
1

n

n
∑

i=1

ln p(xi, yi|ŵxy)

+ n
1

n
(w − ŵxy)

⊤ ∂

∂w

n
∑

i=1

ln p(xi, yi|ŵxy)

+ n
1

2
(w − ŵxy)

⊤ 1

n

∂2

∂w2

n
∑

i=1

ln p(xi, yi|ŵxy)(w − ŵxy) + r1(w)

}

ϕ(w|η)dw

]

,
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where r1(w) is the remainder term. Based on the saddle-point approximation,

En

[

ln

∫ n
∏

i=1

p(xi, yi|w)ϕ(w|η)dw

]

=En

[ n
∑

i=1

ln p(xi, yi|ŵxy)

]

+ En

[

ln

∫

exp(nr1(w))ϕ(w|η)N (ŵxy, (nIxy(w
∗))−1)dw

]

−

{

dimw

2
lnn−

dimw

2
ln 2π +

1

2
ln det Ixy(w

∗)

}

+ o(1)

=En

[ n
∑

i=1

ln p(xi, yi|ŵxy)

]

−
dimw

2
lnn

+
dimw

2
ln 2π −

1

2
ln det Ixy(w

∗) + lnϕ(w∗) + o(1),

where N (µ,Σ) is a dimw-dimensional Gaussian distribution with mean µ ∈ Rdimw

and variance-covariance matrix Σ. Then, we obtain

Fxy(n) =En

[ n
∑

i=1

ln
p(xi, yi|w∗)

p(xi, yi|ŵxy)

]

+
dimw

2
lnn−

dimw

2
ln 2π +

1

2
ln det Ixy(w

∗)− lnϕ(w∗|η) + o(1).

According to the Taylor expansion at ŵxy,

En

[ n
∑

i=1

ln p(xi, yi|w
∗)

]

=En

[ n
∑

i=1

ln p(xi, yi|ŵxy)

+ (w∗ − ŵxy)
⊤ ∂

∂w

n
∑

i=1

ln p(xi, .yi|ŵxy)

+
1

2
(w∗ − ŵxy)

⊤ ∂2

∂w2

n
∑

i=1

ln p(xi, yi|ŵxy)(w
∗ − ŵxy) + r2(w)

]

=En

[ n
∑

i=1

ln p(xi, yi|ŵxy)

]

−
n

2
En

[

(w∗ − ŵxy)
⊤Ixy(w

∗)(w∗ − ŵxy)

]

+ o(1),

where r2(w) is the remainder term. The estimator ŵxy has asymptotic normality,
and it converges to the Gaussian distribution with mean w∗ and variance–covariance
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matrix (nIxy(w
∗))−1. It holds that

En

[ n
∑

i=1

ln p(xi, yi|w
∗)

]

=En

[ n
∑

i=1

ln p(xi, yi|ŵxy)

]

−
dimw

2
+ o(1).

The free-energy function has the asymptotic form

Fxy(n) =−
dimw

2
+

dimw

2
lnn−

dimw

2
ln 2π

+
1

2
ln det Ixy(w

∗)− lnϕ(w∗|η) + o(1).

In the same way, we obtain that

Fxy,x(n) =−
dimw

2
+

dimw

2
lnn−

dimw

2
ln 2π

+
1

2
ln det{αIxy(w

∗) + (1− α)Ix(w
∗)} − lnϕ(w∗|η) + o(1).

Based on the relation in Eq. 10, we obtain that

(1− α)nD3(n) =
1

2
ln det

{

Ixy(w
∗)
(

αIxy(w
∗) + (1− α)Ix(w

∗)
)−1

}

+ o(1),

which is the asymptotic form of D3(n).
Define the free-energy functions by

Fy|x,xy(n) =En

[

ln

αn
∏

i=1

q(yi|xi)

n
∏

i=αn+1

q(xi, yi)

− ln

∫ αn
∏

i=1

p(yi|xi, w)
n
∏

i=αn+1

p(xi, yi|w)ϕ(w|η)dw

]

,

Fy|x,x(n) =En

[

ln

αn
∏

i=1

q(yi|xi)

n
∏

i=αn+1

q(xi)

− ln

∫ αn
∏

i=1

p(yi|xi, w)
n
∏

i=αn+1

p(xi|w)ϕ(w|η)dw

]

.

The error function can be rewritten as

(1− α)nD2(n) =Fy|x,xy(n)− Fy|x,x(n). (11)

The maximum-likelihood estimator is defined by

ŵy|x,xy =argmax
w

αn
∏

i=1

p(yi|xi, w)

n
∏

i=αn+1

p(xi, yi|w).
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Due to (A2), the estimators ŵy|x,xy and ŵ2 converge to w∗, which means that the
essential parameter area for the integration is the neighborhood of w∗, ŵy|x,xy, and
ŵ2. According to the Taylor expansion and the saddle-point approximation, the
free-energy functions have the following asymptotic forms:

Fy|x,xy(n) =−
dimw

2
+

dimw

2
lnn−

dimw

2
ln 2π

+
1

2
ln det{Ixy(w

∗)− αIx(w
∗)} − lnϕ(w∗|η) + o(1),

Fy|x,xy(n) =−
dimw

2
+

dimw

2
lnn−

dimw

2
ln 2π

+
1

2
ln det{αIxy(w

∗) + (1− 2α)Ix(w
∗)} − lnϕ(w∗|η) + o(1).

Based on the relation in Eq. 11, we obtain that

(1− α)nD2(n) =
1

2
ln det

{

K21(w
∗)K22(w

∗)−1

}

+ o(1),

K21(w) =Ixy(w)− αIx(w),

K22(w) =αIxy(w) + (1− 2α)Ix(w),

which is the asymptotic form of D3(n). (End of Proof)

Proof of Theorem 4

According to the condition, let the eigenvalues of I(w∗)Ix(w
∗)−1 be

σ1 ≥ σ2 ≥ · · · ≥ σd̄ > 0,

σd̄+1 = · · · = σd = 0,

where d̄ = dim w̄. First, we compare D1(n) and D3(n). Focusing on the factor
ln detK3(w

∗) of the dominant term in D3(n), we obtain

ln detK3(w
∗) = ln det Ixy(w

∗)− ln det
{

αIxy(w
∗) + (1− α)Ix(w

∗)
}

= ln det
{

I(w∗) + Ix(w
∗)
}

− ln det
{

αI(w∗) + Ix(w
∗)
}

= ln det
{

I(w∗)Ix(w
∗)−1 + E

}

− ln det
{

αI(w∗)Ix(w
∗)−1 + E

}

=
d

∑

i=1

ln(σi + 1)−
d

∑

i=1

ln(ασi + 1)

=
d̄

∑

i=1

ln
σi + 1

ασi + 1

=d̄ ln
1

α
+

d̄
∑

i=1

ln

(

1 +
1− 1/α

σi + 1/α

)

,

22



where E is the d×d unit matrix and the relation I(w) = Ixy(w)−Ix(w) was applied.

Because 1−1/α
σi+1/α

< 0, the second term in the last expression is less than zero. Thus,

ln detK3(w
∗) < d̄ ln 1/α,

which shows that

D3(n)−D1(n) =
1

2

{

ln detK3(w
∗)− d̄ ln 1/α

} 1

(1− α)n
+ o

(

1

n

)

< 0.

Next, we compare D1(n) and D2(n).

ln detK2(w) = ln det
{

Ixy(w
∗)− αIx(w

∗)
}

− ln det
{

αIxy(w
∗) + (1− 2α)Ix(w

∗)
}

= ln det
{

I(w∗) + (1− α)Ix(w
∗)
}

− ln det
{

αI(w∗) + (1− α)Ix(w
∗)
}

= ln det
{

I(w∗)Ix(w
∗)−1 + (1− α)E

}

− ln det
{

αI(w∗)Ix(w
∗)−1 + (1− α)E

}

=
d

∑

i=1

ln(σi + (1− α))−
d

∑

i=1

ln(ασi + (1− α))

=d̄ ln
1

α
+

d̄
∑

i=1

ln
σi + 1− α

σi + (1− α)/α

=d̄ ln
1

α
+

d̄
∑

i=1

ln

(

1 +
(1− α)(1− 1/α)

σi + (1− α)/α

)

=d̄ ln
1

α
+

d̄
∑

i=1

ln

(

1 +
1− 1/α

σi/(1− α) + 1/α

)

.

Because 1−1/α
σi/(1−α)+1/α

< 0, the second term in the last expression is less than zero.
Thus,

ln detK2(w
∗) < d̄ ln 1/α,

which shows that

D2(n)−D1(n) =
1

2

{

ln detK2(w)− d̄ ln 1/α
} 1

(1− α)n
+ o

(

1

n

)

< 0.

Comparing K3(w
∗) and K2(w

∗), we find that

d̄
∑

i=1

ln

(

1 +
1− 1/α

σi + 1/α

)

<
d̄

∑

i=1

ln

(

1 +
1− 1/α

σi/(1− α) + 1/α

)

.

Therefore, ln detK3(w
∗) < ln detK2(w

∗), which shows that D3(n) < D2(n). (End
of Proof)
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Proof of Lemma 5

Focusing on the factor ln detK4(w
∗) of the dominant term in DNL(n), we obtain

ln detK4(w
∗) = ln det

(

αE + (1− α)Ixy(w
∗)Ix(w

∗)−1
)

=

d
∑

i=1

ln(α+ (1− α)λi),

which proves Eq.7. Using the eigen values λi, we rewrite the factor of the dominant
term ln detK3(w

∗) as

ln detK3(w
∗) =Ixy(w

∗)(αIxy(w
∗) + (1− α)Ix(w

∗))−1

=− ln det(αE + (1− α)Ix(w
∗)Ixy(w

∗)−1)

=−
d

∑

i=1

ln

(

α + (1− α)
1

λi

)

.

The difference of the coefficients in DNL(n)−D3(n) is expressed as

ln detK4(w
∗)− ln detK3(w

∗) =

d
∑

i=1

{

ln(α + (1− α)λi) + ln

(

α + (1− α)
1

λi

)}

=

d
∑

i=1

ln

(

α + (1− α)λi

)(

α + (1− α)
1

λi

)

=
d

∑

i=1

ln

{

α(1− α)

(

λi +
1

λi

)

+ α2 + (1− α)2
}

,

which shows the difference in Eq. 8 and DNL(n) > D3(n). (End of Proof)
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