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Abstract

In data science and machine learning, hierarchical parametric mod-

els, such as mixture models, are often used. They contain two kinds of

variables: observable variables, which represent the parts of the data

that can be directly measured, and latent variables, which represent

the underlying processes that generate the data. Although there has

been an increase in research on the estimation accuracy for observ-

able variables, the theoretical analysis of estimating latent variables

has not been thoroughly investigated. In a previous study, we de-

termined the accuracy of a Bayes estimation for the joint probability

of the latent variables in a dataset, and we proved that the Bayes

method is asymptotically more accurate than the maximum-likelihood

method. However, the accuracy of the Bayes estimation for a single

latent variable remains unknown. In the present paper, we derive the

asymptotic expansions of the error functions, which are defined by the

Kullback-Leibler divergence, for two types of single-variable estima-

tions when the statistical regularity is satisfied. Our results indicate

that the accuracies of the Bayes and maximum-likelihood methods are

asymptotically equivalent and clarify that the Bayes method is only

advantageous for multivariable estimations.

Keywords: unsupervised learning, hierarchical parametric models,

latent variable, Bayes estimation
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1 Introduction

In machine learning and data science, hierarchical parametric models, such as
mixture models, are often used. These models contain two kinds of variables:
observable and latent. The observable variables represent the observable,
measurable data, while the latent variables express the underlying processes
that generate the data. For example, a common hierarchical model is a
mixture of Gaussian distributions defined by

p(x|w) =
K
∑

k=1

akN (x|µk,Σ),

where x ∈ RM is the observable position, w is the parameter containing ak
and µk, ak ≥ 0 is the mixing ratio, and N (x|µ,Σ) is a Gaussian distribu-
tion with mean µ and variance-covariance matrix Σ. Let us consider cluster
analysis, which is a typical task of unsupervised learning. The observable
variable is the data position x, and the latent variable is the ungiven cluster
label k ∈ {1, . . . , K}, which indicates to which component/cluster the data
belong.

Since the parameter is unknown, in practice, it is often necessary to
deal with both the parameter and the observable or the latent variable.
The parameter is usually estimated in one of two ways: the maximum-
likelihood method or the Bayes method. The maximum-likelihood method
estimates the parameter that maximizes the likelihood function, while the
Bayes method determines the optimal (posterior) distribution for the pa-
rameter.

It has been noted that the hierarchical models include singularities in the
parameter space (Amari and Ozeki, 2001; Watanabe, 2001b). At a singular
point, the relation between the parameter w and the probability p(x|w) is
not one to one, and the Fisher information matrix is not positive definite.
Let theK∗ component Gaussian mixture be the data-generating distribution,
and let the K component mixture be a learning model. The case K > K∗

corresponds to a singular case: there are redundant components and their
parameters contain singularities. On the other hand, the well-specified case
K = K∗ does not have singularities, and in the present paper, we call it a
regular case.

The estimation of an unseen observable variable is referred to as a pre-
diction. Let a set of the given data be Xn = {x1, . . . , xn}. The task is to
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Figure 1: Predictions of observable variables and estimations of latent vari-
ables. The observable data are {x1, . . . , xn}. Rectangles and circles represent
the observable and unobservable variables, respectively. Gray nodes are the
estimation targets.

predict the next data position based on the given data; this is formulated
as the estimation of the probability p(xn+1|Xn). In order to measure the
accuracy of the task, we define the error function to be the Kullback-Leibler
divergence,

EXn

[
∫

q(xn+1) ln
q(xn+1)

p(xn+1|Xn)
dxn+1

]

,

where q(x) is the data-generating distribution and EXn [·] is the expectation
over all of the given data. In the example of the Gaussian mixture, the
prediction task is to estimate the next unseen data positions.

The estimation of the latent variables is not the same as the prediction
task. The target variable of the estimation is unobservable, and in many
practical situations, its true value is not given; this makes it difficult to
evaluate the result. In a previous study (Yamazaki, 2014), we formulated
the accuracy of the latent-variable estimation in a distribution-based manner.
The estimation of latent variables is divided into three classes. Let a set of
latent variables be Y n = {y1, . . . , yn}, where yi is the corresponding variable
to xi. Figure 1 shows the prediction of observable variables and the three
types of estimations of latent variables. Rectangles and circles indicate the
observable and latent variables, respectively. The gray nodes are the targets
of the estimations. The top left panel shows the prediction, which is expressed
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as the estimation of p(xn+1|Xn). The top right panel shows the estimation
of the joint probability p(Y n|Xn), in which all of the latent variables are
targets; we will refer to this as Type I. The bottom left panel shows the
estimation of the probability of a specific latent variable p(yj|Xn); we will
refer to this as Type II. The bottom right panel shows the estimation of
the probability of a latent variable in the unseen data p(yn+1|Xn); we will
refer to this as Type III. In the example of a Gaussian mixture, these three
types of latent-variable estimation correspond to the cluster analysis process
of assigning labels to data.

When the number of data points n is sufficiently large, the form of the
error function is referred to as the asymptotic expansion, and the calculation
of this form has been exhaustively studied for the prediction process. In
the maximum-likelihood method, the asymptotic error is well known, and it
has been used as a criterion for selecting models (Akaike, 1974; Takeuchi,
1976; White, 1982). In the Bayes method, the estimation depends on the
posterior distribution, and the theoretical properties of its convergence have
been studied (Le Cam, 1973; Ghosal et al., 2000; Nguyen, 2013). The nor-
malizing factor of the posterior distribution is the marginal likelihood, and
this has a direct relation with the error function (Levin et al., 1990). Since
the asymptotic expansion of the marginal likelihood has been derived for
the regular case (Schwarz, 1978; Clarke and Barron, 1990), this relation al-
lows us to calculate the asymptotic error. In the singular case, algebraic
geometry plays an effective role; in particular, the resolution of singularities
(Hironaka, 1964) can be used to clarify the asymptotic marginal likelihood
and the asymptotic error (Watanabe, 2001a; Aoyagi and Watanabe, 2004;
Yamazaki and Watanabe, 2003; Rusakov and Geiger, 2005; Watanabe, 2009;
Zwiernik, 2011; Naito and Yamazaki, 2014).

These studies on the predictive error have focused on the estimation of
a single observable variable. Based on their definitions, in the maximum-
likelihood method, the error function for the joint probability of multiple
variables is equivalent to that for the probability of a single variable. The
form of the error of the Bayes method depends on the number of variables.
For the regular case, an information criterion that uses the asymptotic error
of the joint probability was devised for use with the selection of a Bayesian
model (Ando, 2007).

Although there are a number of studies that consider the estimation of
observable variables and the convergence of the parameters, the theory of
estimating latent variables has not been thoroughly analyzed. The error
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functions of Types I, II, and III are defined as the Kullback-Leibler diver-
gence from the data-generating distribution to the estimated one, and its
theoretical behavior has been analyzed. The error function of Type III with
the maximum-likelihood method has been derived, and a model-selection
criterion has been proposed for the regular case (Shimodaira, 1993). The
asymptotic expansions of Type I in the Bayes method and of the rest of
the types in the maximum-likelihood method have been calculated for the
regular case, and we found that with the maximum-likelihood method, their
asymptotic errors are equivalent and that for Type I, the Bayes method is
more accurate than the maximum-likelihood method. The singular case has
been considered, and its error has been derived only for Type I (Yamazaki,
2015).

The asymptotic errors of Types II and III with the Bayes method are as
yet unknown in both the regular and the singular cases. Since the asymptotic
analysis for these estimations of a single variable requires the calculation
of higher-order terms of the marginal likelihood, deriving the asymptotic
expansions is not straightforward. In the present paper, we reveal one of the
higher-order terms and show the asymptotic errors of Types II and III for
the regular case. Comparing the results of this to those of the maximum-
likelihood method, we determined that the Bayes method is advantageous
only for multivariable estimations, such as those for Type I.

The remainder of this paper is organized as follows: The three types
of estimations and their error functions are formally defined in Section 2.
The results from our previous study are introduced in Section 3. Section 4
presents the main results on the accuracy of estimations of Types II and III.
The advantage of the Bayes estimation is discussed in Section 5.

2 Three Types of Estimations of Latent Vari-

ables

In this section, we formulate the three types of estimations of latent variables.
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2.1 Formulation of a Hierarchical Probabilistic Model

Let x ∈ RM and y ∈ {1, . . . , K} be observable and latent variables, respec-
tively. The model is represented by

p(x, y|w) =p(y|w)p(x|y, w),
where the parameter is expressed as w ∈ W ⊂ Rd. The probabilistic density
function of x is then expressed as

p(x|w) =
K
∑

y=1

p(x, y|w) =
K
∑

y=1

p(y|w)p(x|y, w).

In the data-generating process of the rightmost expression, we assume that y
is selected based on p(y|w), and then x is determined by p(x|y, w). In machine
learning, this mixture-type form is used to express many hierarchical models,
such as Bayesian networks.

Let {Xn, Y n} = {(x1, y1), . . . , (xn, yn)} be the i.i.d. data set generated
by the true distribution q(x, y). We assume that the true distribution is
expressed as

q(x, y) =p(x, y|w∗),

where w∗ is referred to as the true parameter.

2.2 The Three Estimations and their Error Functions

First, we introduce the maximum-likelihood estimator and the posterior dis-
tribution, which play important roles in the maximum-likelihood and Bayes
methods, respectively. The likelihood function is defined by

L(w) =
n
∏

i=1

p(xi|w).

The maximum-likelihood estimator is given by

ŵ =argmax
w

L(w).

In the maximum-likelihood method, this estimator is regarded as the optimal
parameter. For example, the prediction of unseen data x is given by

p(x|Xn) = p(x|ŵ).

6



On the other hand, the Bayes method is defined based on the posterior
distribution p(w|Xn). Using a prior distribution ϕ(w), we define the posterior
distribution as

p(w|Xn) =
1

Z(Xn)
L(w)ϕ(w),

where Z(Xn) is a normalizing factor given by

Z(Xn) =

∫

L(w)ϕ(w)dw =

∫ n
∏

i=1

p(xi|w)ϕ(w)dw.

The prediction p(x|Xn) is given by

p(x|Xn) =

∫

p(x|w)p(w|Xn)dw.

We assume that the true parameter w∗ is included in the support of the prior
distribution.

Next, for both the maximum-likelihood and Bayes methods, we define
the estimated probabilities of the latent variable for each of the three types.
For Type I, the given data are Xn = {x1, . . . , xn}, and the estimation target
is Y n = {y1, . . . , yn}. The estimated probability of the maximum-likelihood
estimation is defined by

p(Y n|Xn) =
n
∏

i=1

p(yi|xi, ŵ) =
n
∏

i=1

p(xi, yi|ŵ)
p(xi|ŵ)

.

In the Bayes estimation, it is defined by

p(Y n|Xn) =

∫ n
∏

i=1

p(yi|xi, w)p(w|Xn)dw

=

∫ n
∏

i=1

p(xi, yi|w)
p(xi|w)

p(w|Xn)dw

=

∫
∏n

i=1 p(xi, yi|w)ϕ(w)dw
∫
∏n

i=1 p(xi|w)ϕ(w)dw
.

For Type II, the given data are Xn, and the estimation target is one of the
elements in Y n. Let the target be yj ∈ Y n. The estimated probability of the
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maximum-likelihood estimation is defined by

p(yj|Xn) =p(yj|xj, ŵ) =
p(xj , yj|ŵ)
p(xj|ŵ)

.

In the Bayes estimation, it is defined by

p(yj|Xn) =

∫

p(yj|xj, w)p(w|Xn)dw

=

∫

p(xj , yj|w)
p(xj |w)

p(w|Xn)dw

=

∫

p(xj , yj|w)
∏

i 6=j p(xi|w)ϕ(w)dw
∫
∏n

i=1 p(xi|w)ϕ(w)dw
.

For Type III, the given data are Xn+1 = {Xn, xn+1}, and the estimation tar-
get is yn+1. The estimated probability of the maximum-likelihood estimation
is defined by

p(yn+1|Xn+1) =p(yn+1|xn+1, ŵ) =
p(xn+1, yn+1|ŵ)

p(xn+1|ŵ)
.

In the Bayes estimation, it is defined by

p(yn+1|Xn+1) =

∫

p(yn+1|xn+1, w)p(w|Xn)dw

=

∫

p(yn+1|xn+1, w)
∏n

i=1 p(xi|w)ϕ(w)dw
∫
∏n

i=1 p(xi|w)ϕ(w)dw
.

Finally, we define the error functions that measure the accuracy of these
estimations, and these are based on the average Kullback-Leibler divergence.
In Type I, the true probability of Y n is expressed by

q(Y n|Xn) =

n
∏

i=1

q(yi|xi) =

n
∏

i=1

q(xi, yi)

q(xi)
.

The error function is given by

DI(n) =
1

n
En

[

ln
q(Y n|Xn)

p(Y n|Xn)

]

,
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where the expectation is described as

En[f(X
n, Y n)] =

∫ K
∑

y1=1

· · ·
K
∑

yn=1

q(Xn, Y n)f(Xn, Y n)dx1 . . . dxn.

In Types II and III, the error functions are given by

DII(n) =
1

n

n
∑

j=1

En

[

ln
q(yj|xj)

p(yj|Xn)

]

,

DIII(n) =En+1

[

ln
q(yn+1|xn+1)

p(yn+1|Xn+1)

]

,

respectively.

3 Previous Results on Asymptotic Error

Functions

This section presents results that we published previously (Yamazaki, 2014).
We obtained the asymptotic expansions of DI(n) for both estimation meth-
ods, and the asymptotic expansions of DII(n) and DIII(n) for the maximum-
likelihood estimation. The Fisher information matrices of p(x, y|w) and
p(x|w) are defined as

{IXY (w)}ij =
∫ K

∑

y=1

∂ ln p(x, y|w)
∂wi

∂ ln p(x, y|w)
∂wj

p(x, y|w)dx,

{IX(w)}ij =
∫

∂ ln p(x|w)
∂wi

∂ ln p(x|w)
∂wj

p(x|w)dx,

respectively. Let IY |X(w) be their difference:

IY |X(w) =IXY (w)− IX(w).

In the present paper, we assume that these Fisher information matrices exist
and that the maximum-likelihood estimator converges almost surely to w∗

(Wald, 1949). In other words, the models p(x, y|w) and p(x|w) are regular
around w∗, and the estimator is consistent (van der Vaart, 1998).
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Because the latent variable is not observable, there is a set of symmetric
points W ∗

X such that q(x) = p(x|w∗
X) for w∗

X ∈ W ∗
X . Note that the true

parameter w∗ is one of the elements of W ∗
X . For example, let us consider the

two-component Gaussian mixture given by

p(x|w) = aN (x|µ1,Σ) + (1− a)N (x|µ2,Σ),

and let us assume that the true distribution is defined by

q(x, y = 1) =a∗N (x|µ∗
1,Σ),

q(x, y = 2) =(1− a∗)N (x|µ∗
2,Σ),

where a∗, µ∗
1, and µ∗

2 are constants. This means that the true parameter w∗

is described by

w∗ =(a∗, µ∗
1, µ

∗
2)

⊤.

The parameter w∗
s given by

w∗
s =(1− a∗, µ∗

2, µ
∗
1)

⊤

also satisfies q(x) = p(x|w∗
s), where the labels y = 1, 2 are switched. Then,

W ∗
X = {w∗, w∗

s}, and we refer to these points as symmetric, since they provide
symmetric label assignments. This symmetry appears when K ≥ 2.

Thus, the maximum-likelihood estimator does not always converge to w∗,
and in cluster analysis, this is known as the label-switching problem. To avoid
this problem and to theoretically analyze the error function, we consider the
case ŵ → w∗.

Under the above assumptions, the following theorem has been proven.

Theorem 1 The error functions have the following asymptotic expansion:

D(n) =
c

n
+ o

(

1

n

)

,

where D(n) is a general notation for DI(n), DII(n), and DIII(n), and the coef-
ficient c for each case is shown in Table 1. The rows indicate the maximum-
likelihood (ML) and Bayes methods, respectively. The matrices IXY (w

∗),
IX(w

∗), and IY |X(w
∗) are abbreviated in a form that does not include the

true parameter, i.e., IXY , IX , or IY |X , respectively.

10



Table 1: Coefficients of the dominant order 1/n in the error functions
Type I Type II Type III

ML Tr[IY |XI
−1
X ]/2 Tr[IY |XI

−1
X ]/2 Tr[IY |XI

−1
X ]/2

Bayes ln det[IXY I
−1
X ]/2 unknown unknown

The following corollary compares the two estimation methods with Type I,
and shows the advantages of the Bayes estimation.

Corollary 2 Let the error functions for the maximum-likelihood and Bayes
methods be denoted by DML

I (n) and DBayes
I (n), respectively. For any true

parameter w∗, there exists a positive constant cd such that

DML
I (n)−DBayes

I (n) ≥ cd
n

+ o

(

1

n

)

.

Corollary 2 indicates that, based on the leading term in the error function,
DML

I (n) > DBayes
I (n) in the asymptotic case of large n.

4 Main Results

This section presents the asymptotic expansions of the error functions for
Types II and III.

4.1 Asymptotic Errors of Types II & III in the Bayes

Method

Due to the assumptions about the Fisher information matrices and the con-
vergence of the maximum-likelihood estimator, we can determine that

|ŵ − w∗| = Op

(

1√
n

)

. (1)

Let ŵn−1(j) be the maximum-likelihood estimator based on the dataset Xn \
xj :

ŵn−1(j) = argmax
w

n
∏

i 6=j

p(xi|w).

11



In order to simplify the notation, we will use ŵn−1 for ŵn−1(j). This estimator
also converges to the true parameter, and

|ŵn−1 − w∗| =Op

(

1√
n

)

. (2)

Now, we consider the asymptotic expansions of the error functions. In
the Bayes method, the error functions DII(n) and DIII(n) are written as

DII(n) =
1

n

n
∑

j=1

{

En

[

ln q(xj , yj)− ln q(xj)
]

+ F1(n)− F2(n)
}

, (3)

DIII(n) =En+1

[

ln q(yn+1|xn+1)
]

+ F3(n)− F2(n), (4)

respectively, where

F1(n) =En

[

− ln

∫

p(xj, yj|w)
n
∏

i 6=j

p(xi|w)ϕ(w)dw
]

,

F2(n) =En

[

− ln

∫ n
∏

i=1

p(xi|w)ϕ(w)dw
]

,

F3(n) =En+1

[

− ln

∫

p(yn+1|xn+1, w)

n
∏

i=1

p(xi|w)ϕ(w)dw
]

.

Then, the asymptotic expansions of F1(n), F2(n), and F3(n) are necessary.
Let us define the following negative log marginal likelihood:

Fξ(n) =EzEn

[

− ln

∫

ξ(z|w)
n
∏

i=1

p(xi|w)ϕ(w)dw
]

.

This is a unified expression for F1(n), F2(n), and F3(n), in which the function
ξ(z|w) will be replaced with the parametric models p(xj , yj|w), p(xi|w), and
p(yn+1|xn+1, w), respectively. Thus, we assume that z is independent of xi.
The expectation Ez[·] is based on ξ(z|w∗). In the case of ξ(z|w) = p(x, y|w),
the expectation is defined as

Ez[f(z)] =

∫ K
∑

y=1

f(x, y)p(x, y|w∗)dx,

12



and the function F1(n) is given by

F1(n) =Fξ(n− 1).

The following lemma plays an essential role in the asymptotic analysis of
the error functions.

Lemma 3 The function Fξ(n) is expressed as

Fξ(n) =− En

[ n
∑

i=1

ln p(xi|ŵ)
]

+
d

2
lnn

− EzEn

[

ln ξ(z|ŵ)ϕ(ŵ)
]

− 1

2
ln 2π +

1

2
ln det IX(w

∗)

− 1

2n
TrEn

[

1

ϕ(ŵ)

∂2ϕ(ŵ)

∂w2

]

IX(w
∗)−1 + o

(

1

n

)

. (5)

This form contains terms of the order 1/n, and this order is higher than the
constant terms derived in Clarke and Barron (1990). Note that ξ(z|w) does
not affect the 1/n-order terms. Since the error functions are the differences
between the Fξ(n), as shown in Eqs. 3 and 4, it is easy to see that the error
functions depend on only the first and the third terms of Eq. 5, which include
the maximum-likelihood estimator ŵ. This implies a connection between the
Bayes method and the maximum-likelihood method.

Based on this lemma, we can prove the following two theorems.

Theorem 4 Let the error functions for the maximum-likelihood and Bayes
methods be denoted by DML

II (n) and DBayes
II (n), respectively. Asymptotically,

they have the following relation:

DBayes
II (n) =DML

II (n) + o

(

1

n

)

=
TrIY |X(w

∗)IX(w
∗)−1

2n
+ o

(

1

n

)

.

Theorem 5 Let the error functions for the maximum-likelihood and Bayes
methods be denoted by DML

III (n) and DBayes
III (n), respectively. Asymptotically,

13



they have the following relation:

DBayes
III (n) =DML

III (n) + o

(

1

n

)

=
TrIY |X(w

∗)IX(w
∗)−1

2n
+ o

(

1

n

)

.

In Types II and III, the asymptotic errors of the Bayes estimation are equiv-
alent to those of the maximum-likelihood estimation. Since Table 1 shows
DML

II (n) = DML
III (n), the errors of Types II and III are also asymptotically the

same as those for the Bayes method.
The following corollary summarizes the relative magnitudes of the error

functions.

Corollary 6 Based on the leading terms of the error functions, the relative
magnitudes are as follows:

DBayes
I (n) < DML

I (n) = DBayes
II (n) = DML

II (n) = DBayes
III (n) = DML

III (n).

Considering these results, in Section 5, we will discuss why the Bayes estima-
tion is more accurate than the maximum-likelihood estimation for the Type
I estimation.

4.2 Proof of Lemma 3

Based on a saddle-point approximation, we have

Fξ(n) =EzEn

[

−
n

∑

i=1

ln p(xi|ŵ)−
1

2
ln 2π det{nIX(w∗)}−1

− ln

∫

g(w)N (w|ŵn, {nIX(w∗)}−1)dw

]

, (6)

14



where g(w) = ξ(z|w)ϕ(w)er(w) and r(w) = Op((w − ŵ)3). According to Eq.
1 and the asymptotic distribution of ŵ,

− ln

∫

g(w)N (w|ŵ, {nIX(w∗)}−1)dw

= − ln g(ŵ)− ln

∫
{

1 +
1

2g(ŵ)
(w − ŵ)⊤

∂2g(ŵ)

∂w2
(w − ŵ) + . . .

}

×N (w|ŵ, {nIX(w∗)}−1)dw

= − ln g(ŵ)− ln

{

1 +
1

2g(ŵ)

1

n
Tr

∂2g(ŵ)

∂w2
IX(w

∗)−1 + op

(

1

n

)}

= − ln g(ŵ)− 1

2g(ŵ)

1

n
Tr

∂2g(ŵ)

∂w2
IX(w

∗)−1 + op

(

1

n

)

. (7)

Using the Taylor expansion at w∗, we obtain

1

ξ(z|ŵ) =
1

ξ(z|w∗)
+ op

(

1

n

)

.

Considering this equation and the order of r(ŵ) with Eq. 1, we average Eq.
7:

− EzEn

[

ln

∫

g(w)N (w|ŵ, {nIX(w∗)}−1)dw

]

= −EzEn

[

ln ξ(z|ŵ)ϕ(ŵ)
]

− 1

2n
En

[

1

ϕ(ŵ)er(ŵ)
Tr

∂2

∂w2

{

Ez

[

ξ(z|ŵ)
ξ(z|w∗)

]

ϕ(ŵ)er(ŵ)

}

IX(w
∗)−1

]

+ o

(

1

n

)

= −EzEn

[

ln ξ(z|ŵ)ϕ(ŵ)
]

− 1

2n
En

[

1

ϕ(ŵ)
Tr

∂2ϕ(ŵ)

∂w2
IX(w

∗)−1

]

+ o

(

1

n

)

,

where the last expression is based on Ez[
ξ(z|w)
ξ(z|w∗)

] = 1 for any w. Replacing
this expression with the last term of Eq. 6, we obtain Eq. 5.

4.3 Proof of Theorem 4

In the case of ξ(z|w) = p(xj, yj|w),

F1(n) =EzEn−1

[

− ln

∫

ξ(z|w)
n
∏

i 6=j

p(xi|w)ϕ(w)dw
]

=Fξ(n− 1).
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In the case of ξ(z|w) = p(xj|w),

F2(n) =EzEn−1

[

− ln

∫

ξ(z|w)
n
∏

i 6=j

p(xi|w)ϕ(w)dw
]

=Fξ(n− 1).

Based on Lemma 3, F1(n) and F2(n) can be written as

F1(n) =−En

[ n
∑

i 6=j

ln p(xi|ŵn−1)

]

+
1

2
ln

1

2π
det{(n− 1)IX(w

∗)}

−En[ln p(xj , yj|ŵn−1)ϕ(ŵn−1)]

− 1

2(n− 1)
TrEn

[

1

ϕ(ŵn−1)

∂2ϕ(ŵn−1)

∂w2

]

IX(w
∗)−1 + o

(

1

n

)

,

F2(n) =−En

[ n
∑

i 6=j

ln p(xi|ŵn−1)

]

+
1

2
ln

1

2π
det{(n− 1)IX(w

∗)}

−En[ln p(xj |ŵn−1)ϕ(ŵn−1)]

− 1

2(n− 1)
TrEn

[

1

ϕ(ŵn−1)

∂2ϕ(ŵn−1)

∂w2

]

IX(w
∗)−1 + o

(

1

n

)

,

where we used the asymptotic behavior of ŵn−1 and the order shown in Eq.
2.

Using these forms and the relation of Eq. 3, we obtain

DBayes
II (n) =

1

n

n
∑

j=1

En

[

ln
q(yj|xj)

p(yj|xj, ŵn−1)

]

+ o

(

1

n

)

.

According to the definition of the error for Type III,

En

[

ln
q(yj|xj)

p(yj|xj , ŵn−1)

]

= DML
III (n− 1) + o

(

1

n

)

,

which is independent of j. Thus,

DBayes
II (n) =DML

III (n− 1) + o

(

1

n

)

.

Using Theorem 1, we can derive the following form:

DBayes
II (n) =

TrIY |X(w
∗)IX(w

∗)−1

2(n− 1)
+ o

(

1

n

)

,

which proves Theorem 4.
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4.4 Proof of Theorem 5

In the case of ξ(z|w) = p(yn+1|xn+1, w),

F3(n) =EzEn

[

− ln

∫

ξ(z|w)
n
∏

i=1

p(xi|w)ϕ(w)dw
]

=Fξ(n).

Based on Lemma 3, F3(n) can be rewritten as

F3(n) =En+1

[

−
n

∑

i=1

ln p(xi|ŵ)−
1

2
ln 2π det{nIX(w∗)}−1

− ln p(yn+1|xn+1, ŵ)ϕ(ŵ)−
1

2n
Tr

1

ϕ(ŵ)

∂2ϕ(ŵ)

∂w2
IX(w

∗)−1

]

+ o

(

1

n

)

.

Let us assume that the function ξ is a constant ξ(z|w) = 1. Then, F2(n)
has another expression;

F2(n) =EzEn

[

− ln

∫

1 ·
n
∏

i=1

p(xi|w)ϕ(w)dw
]

=Fξ(n).

It is easily confirmed that Lemma 3 holds in this case, and F2(n) has the
following form;

F2(n) =En

[

−
n

∑

i=1

ln p(xi|ŵ)−
1

2
ln 2π det{nIX(w∗)}−1

− lnϕ(ŵ)− 1

2n
Tr

1

ϕ(ŵ)

∂2ϕ(ŵ)

∂w2
IX(w

∗)−1

]

+ o

(

1

n

)

.

Using these forms and the relation of Eq. 4, we obtain

DBayes
III (n) =En+1

[

ln
q(yn+1|xn+1)

p(yn+1|xn+1, ŵ)

]

+ o

(

1

n

)

=DML
III (n) + o

(

1

n

)

.

According to Theorem 1,

DBayes
III (n) =

TrIY |X(w
∗)IX(w

∗)−1

2n
+ o

(

1

n

)

,

which proves Theorem 5.
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5 Discussion

In the previous section, we found that the accuracy of the Bayes estimation
was asymptotically equivalent to that of the maximum-likelihood estimation
for Types II and III. In this section, we investigate the mathematical reason
why the Bayes estimation is advantageous for Type I.

In Section 5.1, Types II and III are extended to multivariable estimations,
and their asymptotic errors are introduced. The results indicate that the
Bayes method is again more accurate. In Section 5.2, we compare single-
variable and multivariable predictions, and we find that the Bayes estimation
is advantageous not only when estimating latent variables but also when
estimating observable variables. In Section 5.3, we formally decompose the
error functions of the multivariable estimations and elucidate the difference
between the Bayes and maximum-likelihood methods.

5.1 Other Estimations of Multiple Latent Variables

Let us consider the variants of Types II and III, in which there are multiple
estimation targets. We consider a positive constant α, where αn is an integer.
We will use the following notation for the data:

X1 ={x1, . . . , xαn},
Y1 ={y1, . . . , yαn},
X2 ={xn+1, . . . , xn+αn},
Y2 ={yn+1, . . . , yn+αn}.

Definition 7 (Type II′) Assume that 0 < α < 1. Let Xn be the observable
data, and let Y1 be the estimation targets. The maximum-likelihood estima-
tion is given by

p(Y1|Xn) =
αn
∏

i=1

p(yi|xi, ŵ) =
αn
∏

i=1

p(xi, yi|ŵ)
p(xi|ŵ)

,

and the Bayes estimation is given by

p(Y1|Xn) =

∫
∏αn

j=1 p(xj , yj|w)
∏n

i=αn+1 p(xi|w)ϕ(w; η)dw
∫
∏n

i=1 p(xi|w)ϕ(w; η)dw
.
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Figure 2: Variants of Types II and III.

In Type II′, the estimation is on the joint probability of Y1, where Y n \ Y1

is marginalized out. Note that Xn \ X1 = {xαn+1, . . . , xn} is used for both
estimations, since ŵ is based on Xn in the maximum-likelihood method and
the numerator and the denominator include the factor

∏n

i=αn+1 p(xi|w) in
the Bayes method. Type II′ lies between Types I and II; it is equivalent to
Type I for α = 1 and formally converges to Type II as α → 1/n.

Definition 8 (Type III′) Let Xn and X2 be the observable data, and let
Y2 be the estimation targets. The maximum-likelihood estimation is given by

p(Y2|Xn, X2) =

n+αn
∏

i=n+1

p(yi|xi, ŵ) =

n+αn
∏

i=n+1

p(xi, yi|ŵ)
p(xi|ŵ)

,

and the Bayes estimation is given by

p(Y2|Xn, X2) =

∫ n+αn
∏

i=n+1

p(xi, yi|w)
p(xi|w)

p(w|Xn)dw.

In Type III′, the estimation is on the joint probability of Y2. Type III′

formally converges to Type III as α → 1/n.
Figure 2 shows these types; the left panel shows Type II′, which is the

multitarget estimation of Type II, and the right panel shows Type III′, which
is the multitarget estimation of Type III.

The error functions of Type II′ and III′ are defined by

DII′(n) =
1

αn
EXn

[

∑

Y1

q(Y1|Xn) ln
q(Y1|Xn)

p(Y1|Xn)

]

,

DIII′(n) =
1

αn
EXn,X2

[

∑

Y2

q(Y2|X2) ln
q(Y2|X2)

p(Y2|X2, Xn)

]

,
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respectively. In the maximum-likelihood estimation, according to the defini-
tions, DII′(n) = DII(n) and DIII′(n) = DIII(n). By comparing DII′(n) and
DIII′(n) with DII(n) and DIII(n), respectively, we can clarify whether the
Bayes method is advantageous for multivariable estimations.

Let us define a mixture of the Fisher information matrices:

KXY (w) = αIXY (w) + (1− α)IX(w).

In a previous study (Yamazaki, 2014), we proved the following lemmas.

Lemma 9 In the Bayes estimation for Type II′, the error function has the
following asymptotic expansion:

DBayes
II′ (n) =

1

2αn
ln det[KXY (w

∗)IX(w
∗)−1] + o

(

1

n

)

.

Lemma 10 In the Bayes estimation for Type III′, the error function has the
following asymptotic expansion:

DBayes
III′ (n) =

1

2αn
ln det[KXY (w

∗)IX(w
∗)−1] + o

(

1

n

)

.

These lemmas show the following relations, based on the leading terms:

DBayes
II′ (n) < DML

II′ (n) = DML
II (n),

DBayes
III′ (n) < DML

III′ (n) = DML
III (n).

By comparing these relations with Corollary 6, we see that the Bayes method
is advantageous when there are multiple estimation targets:

DBayes
II′ (n) <DBayes

II (n),

DBayes
III′ (n) <DBayes

III (n).

5.2 Estimation of Multiple Observable Variables

In the previous subsection, it was proved that the Bayes method was advan-
tageous for all multivariable estimations of latent variables. Let us consider
the following two cases for estimating observable variables.
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Figure 3: Predictions of a single observable variable (the left panel) and of
multiple variables (the right panel).

Definition 11 (Single-target prediction) Let Xn be the observable data,
and let xn+1 be the estimation target. The maximum-likelihood estimation is
given by

p(xn+1|Xn) =p(xn+1|ŵ),
and the Bayes estimation is given by

p(xn+1|Xn) =

∫

p(xn+1|w)p(w|Xn)dw.

Definition 12 (Multiple-target prediction) Let Xn be the observable
data, and let X2 be the estimation target. The maximum-likelihood estimation
is given by

p(X2|Xn) =

n+αn
∏

i=n+1

p(xi|ŵ),

and the Bayes estimation is given by

p(X2|Xn) =

∫ n+αn
∏

i=n+1

p(xi|w)p(w|Xn)dw.

Figure 3 shows these predictions; the left and right panels show the predic-
tions for a single target and for multiple targets, respectively.

The error functions for the single-target prediction (STP) and multiple-
target prediction (MTP) are defined by

DSTP(n) =En+1

[

ln
q(xn+1)

p(xn+1|Xn)

]

,

DMTP(n) =
1

αn
En+αn

[

ln
q(X2)

p(X2|Xn)

]

,
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respectively.
The following lemma shows that we obtain a smaller error with the Bayes

method not only when estimating the latent variables but also when estimat-
ing the observable variables.

Lemma 13 The error functions in the predictions have the following asymp-
totic expansions:

DML
STP(n) =

d

2n
+ o

(

1

n

)

,

DML
MTP(n) =DML

STP(n),

DBayes
STP (n) =DML

STP(n) + o

(

1

n

)

,

DBayes
MTP (n) =

ln(1 + α)

α

d

2n
+ o

(

1

n

)

,

where d is the dimension of the parameter.

The proofs are given in the Appendix. We can now obtain the following
relations, based on the leading terms:

DBayes
MTP (n) < DML

MTP(n) = DML
STP(n) = DBayes

STP (n).

Again, we see that the Bayes estimation is more accurate in the multiple-
target case, and its accuracy is equivalent to that of the maximum-likelihood
estimation in the single-target case.

5.3 Analysis of the Advantage in Multivariable Esti-

mations

In the Bayesian multivariable estimations, the estimated distributions are
defined by the integrals of the parameter, where all target variables are also
used for their estimation. For example, the Bayes estimation of the multiple-
target prediction is given by

p(X2|Xn) =

∫ n+αn
∏

i=n+1

p(xi|w)p(w|Xn)dw

=

∫
∏n+αn

i=1 p(xi|w)ϕ(w; η)dw
∫
∏n

i=1 p(xi|w)ϕ(w; η)dw
,
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where the numerator includes the likelihood of Xn ∪X2 = {x1, . . . , xn+αn}.
On the other hand, the maximum-likelihood estimation is based on the like-
lihood of Xn. This implies that the dependent way of the Bayes estimation
will be more accurate than repetition of the single-variable estimation.

We can mathematically explain this advantage as follows. In the predic-
tion problem, the MTP error is formally expressed as

DMTP(n) =
1

αn
En+αn

[

ln q(X2)− ln p(X2|Xn)

]

=
1

αn
En+αn

[

ln q(X2)− ln p(xn+1|X2 \ xn+1, X
n)

− ln p(X2 \ xn+1|Xn)

]

=
1

αn
En+αn

[

ln q(X2)− ln p(xn+1|X2 \ xn+1, X
n)

− ln p(xn+2|X2 \ {xn+1, xn+2}, Xn)

− ln p(X2 \ {xn+1, xn+2}|Xn)

]

=
1

αn
En+αn

[ αn
∑

i=1

ln q(xn+i)− ln p(xn+1|X2 \ xn+1, X
n)

− ln p(xn+2|X2 \ {xn+1, xn+2}, Xn)

· · · − ln p(xn+αn−1|xn+αn, X
n)

− ln p(xn+αn|Xn)

]

.

Then,

DMTP(n) =
1

αn

αn
∑

i=1

DMTP,i(n),

DMTP,i(n) =En+αn

[

ln
q(xn+i)

p(xn+i|X2 \ {xn+1, . . . , xn+i}, Xn)

]

.

Because the maximum-likelihood estimation determines ŵ from Xn,

DML
MTP,i(n) =En+αn

[

ln
q(xn+i)

p(xn+i|ŵ)

]

= DML
STP(n),
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which means that

DML
MTP(n) =

1

αn

αn
∑

i=1

DML
STP(n) = DML

STP(n).

Comparing this with the maximum-likelihood estimation p(xn+i|Xn) =
p(xn+i|ŵ), we find that the Bayes estimation p(xn+i|X2 \
{xn+1, . . . , xn+i}, Xn) uses the additional data set X2 \ {xn+1, . . . , xn+i},
which results in a more accurate prediction.

Now, we consider the estimation of latent variables. Let us define the
following notation:

Y n
i =Y n \ {yi, . . . , yn} = {y1, . . . , yi−1},

Y1,i =Y1 \ {yi, . . . , yαn} = {y1, . . . , yi−1},
Y2,i =Y2 \ {yn+i, . . . , yn+αn} = {yn+1, . . . , yn+i−1}.

For example, the estimated probability of Type I can be written as

p(Y n|Xn) =p(yn|Y n
n , X

n)p(Y n
n |Xn)

=p(yn|Y n
n , X

n)p(yn−1|Y n
n−1, X

n)p(Y n
n−1|Xn)

=
n
∏

i=1

p(yi|Y n
i , X

n).

In the same way,

p(Y1|Xn) =
αn
∏

i=1

p(yi|Y1,i, X
n),

p(Y2|Xn, X2) =

αn
∏

i=1

p(yn+i|Y2,i, X2, X
n),

for Type II′ and III′, respectively. Then, the error functions can be rewritten
as

DI(n) =
1

n

n
∑

i=1

DI,i(n),

DII′(n) =
1

αn

αn
∑

i=1

DII′,i(n),

DIII′(n) =
1

αn

αn
∑

i=1

DIII′,i(n),
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where

DI,i(n) =En

[

ln
q(yi|xi)

p(yi|Y n
i , X

n)

]

,

DII′,i(n) =En

[

ln
q(yi|xi)

p(yi|Y1,i, Xn)

]

,

DIII′,i(n) =En+αn

[

ln
q(yn+i|xn+i)

p(yn+i|Y2,i, X2, Xn)

]

,

respectively. Note that, in these formal product forms, a target yi is esti-
mated based on the results of other targets; for example, Type I has the prob-
ability p(yi|Y n

i , X
n), where yi depends on the results of Y n

i = {y1, . . . , yi−1}.
However, in the maximum-likelihood method, the estimated probabilities are
expressed as

p(yi|Y n
i , X

n) =p(yi|ŵ) = p(yi|Xn),

p(yi|Y1,i, X
n) =p(yi|ŵ) = p(yi|Xn),

p(yn+i|Y2,i, X2, X
n) =p(yn+i|xn+i, ŵ) = p(yn+i|xn+i, X

n),

respectively, where additional data, such as Y n
i , Y1,i, and Y2,i, is ignored. It

can easily be found that for i ≥ 2,

DML
I,i (n) =En

[

ln
q(yi|xi)

p(yi|Xn)

]

> En

[

ln
q(yi|xi)

p(yi|Y n
i , X

n)

]

= DBayes
I,i (n),

DML
II′,i(n) =En

[

ln
q(yi|xi)

p(yi|Xn)

]

> En

[

ln
q(yi|xi)

p(yi|Y1,i, Xn)

]

= DBayes
II′,i (n),

DML
III′,i(n) =En+αn

[

ln
q(yn+i|xn+i)

p(yn+i|X2, Xn)

]

> En+αn

[

ln
q(yn+i|xn+i)

p(yn+i|Y2,i, X2, Xn)

]

= DBayes
III′,i (n),

which shows that the error of the maximum-likelihood method is larger than
that of the Bayes method.
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Let us consider the single-variable estimations from the perspective of
this additional data. In the multivariable estimation, the Bayes method has
an advantage, because the error functions defined by the Kullback-Leibler di-
vergence are decomposed into terms such as DI,i(n), DII′,i(n), and DIII′,i(n),
which express the error on each yi. Thus, the use of additional data, such as
Y n
i , Y1,i, and Y2,i, improves the accuracy. Note that these data points are also

the estimation targets in other terms. On the other hand, the single-variable
estimations do not have any other targets, and thus the error function does
not decompose and the Bayes method does not have an advantage. Using
Theorems 4 and 5, we quantitatively confirmed that the asymptotic accura-
cies of the Bayes and maximum-likelihood methods were equal.

6 Conclusion

The present paper derived the asymptotic accuracy of the Bayes latent-
variable estimation for Types II and III, which are both single-variable es-
timations. The results indicate that the accuracy of the Bayes method is
equivalent to that of the maximum-likelihood method. This clarifies that
the Bayes method is only advantageous for multivariable estimations, such
as Types I, II′, and III′.
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Appendix

Proof of Lemma 13

Since the first equation is a well-known result and is shown in the literature
(Akaike, 1974; Watanabe, 2009), we omit the proof.
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The second equation is derived from the definitions of the error functions:

DML
MTP(n) =

1

αn
En+αn

[ n+αn
∑

i=n+1

ln
q(xi)

p(xi|ŵ)

]

=
1

αn

n+αn
∑

i=n+1

En+αn

[

ln
q(xi)

p(xi|ŵ)

]

=
1

αn

n+αn
∑

i=n+1

DML
STP(n)

=DML
STP(n).

Using the form of F2(n) shown in Section 4.4, we obtain

DBayes
STP (n) =En+1

[

ln q(xn+1) + F2(n+ 1)− F2(n)
]

=En+1

[ n+1
∑

i=1

ln q(xi) + F2(n + 1)

]

− En

[ n
∑

i=1

ln q(xi) + F2(n)

]

=
d

2
ln(n+ 1)− d

2
lnn+ o

(

1

n

)

=
d

2n
+ o

(

1

n

)

,

which proves the third equation.
Based on the same form of F2(n), the last equation is derived as follows:

DBayes
MTP (n) =

1

αn

{

En+αn

[ n+αn
∑

i=1

ln q(xi) + F2(n+ αn)

]

− En

[ n
∑

i=1

ln q(xi) + F2(n)

]}

=
1

αn

{

d

2
ln(n + αn)− d

2
lnn

}

+ o

(

1

n

)

=
ln(1 + α)

α

d

2n
+ o

(

1

n

)

.
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