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Abstract

In this paper, we discuss the outer-synchronization of Hyenanetrically connected recurrent time-varying neuravoeks. By
both centralized and decentralized discretization datg$ag principles, we derive several sufficient conditidwsed on diverse
vector norms that guarantee that any two trajectories frf@arent initial values of the identical neural network 8 converge
together. The lower bounds of the common time intervals betwdata samples in centralized and decentralized préscigre
proved to be positive, which guarantees exclusion of Zemawer. A numerical example is provided to illustrate thiécéfncy of
the theoretical results.
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1. Introduction cellular neural networks with probabilistic time-varyidglays
with sampled-data.

Recurrently connected neural networks, also known as the The purpose of this paper is to give a comprehensive analy-
Hopfield neural networks, have been extensively studie@st p gjs gn out-synchronization of the discrete-time recutyesym-
decades and found many applications in different areash Sugnetrically connected time-varying neural networks. We-pro
applications heavily depend on the dynamical behaviore®f t ose two schemes of discretizations, named centralizedend
system. Therefore, analysis of the dynamics is a necessy s centralized discretization respectively, and presericserit con-
for practical design of neural networks. ditions for the global out-synchronization. The commorpste

The dynamical behaviors of continuous-time recurrentyias gjze for every neuron in centralized discretization buteceh-
metrically connected neural networks (CTRACNN) have beenyajized discretization process, the distributed step fiz each

studied at the very early stage of neural network researeh. Fneyron is used to guarantee that any two trajectories frém di
example, multistable and oscillatory behaviors were stitdy  ferent initial values converge together.

Amarl (1971, 1972) and Wilson & Cowah (1972). Chaotic be-
haviors were studied by Sompolinsky, & Crisahti (19 i o :
(1984/1986) studied stability of symmetrically conneate¢  2- Préliminaries and problem formulation

works and showed their practical applicability to optimiaa In this section, we provide the models of asymmetric recur-

prolblems. It should be n(;ted that Cohe_n and Grosslt)erg, ts?gnt neural networks with data-sampling, and some notstion
d-(l% ) gave more rigorous results on h?he continuous-time version of the recurrent connectedateu

global stability of ngtyvorks. . networks is described by the following differential eqoas
The global stability of symmetrically connected networks

described by differential equations has now been well estab du (t) n

lished. See Chén (1999): Chen, & Amari (2001); Chen. & Lu  —g,— = — Yi(D)ui(t) + > ai(t)g; (ui (1) + (), (1)
(2002); Fang, & Kincaid (1996); Forti, & Marini (1994); Hizk =1

(1989)! Kaszkurewicz, & Bhaya (1994); Kelly (1990); Li, Mi , . .

(1988): Kal (1992); lbr_(1994) and the ref- ~i(t), a;;(t) and I;(t) are piece-wise continuous and

. . boundedsy; (¢ 0, andg;(-) satisfies
erences therein. More related to the present paper, thé prev wi(t) > 9:(")

ous paperl(Liu, Lu, & Chen, 2011) addressed the global self- () — gi(y)

synchronization of general continuous-time asymmefsicain- 0< T —y S Gi ()

nected recurrent networks and discussed the independsmt id _

tically distributed switching process on the selectingtiimee- ~ for all z # y, whereG; > O is a constantanél=1,--- ., n.

varying parameters in detail. In the centralized data-sampling strategy, the continuous
However, in applications, discrete iteration is populaoéo  time system[(ll) is rewritten as

employed to realize neural network process, rather thatireaus- dus (1) n

time equations. Generally, synchronization analysis ftied D — i (Bualty) + Zaij(t)gj (u;(tr)) + Li(t) (3)

ential equations cannot be applicable to the discrete-sitoe de =

ation. There are several pape i iKi pta49

Jin, & Guptal 199¢; Warg, 1997) that discussed differengsyp for i = 1,---,n. The increasing time sequengs,}>, or-

of discrete-time neural networks, where the step sizesemre dered a$ =ty < t; < --- < 1 < --- is uniform for all the

stants. However, in Liu, Chen, & Yuan (2012): Manuel, & Tati@aeuron; € {1,--- ,n} . Each neuron broadcasts its state to its
(2011); Seyboth, Dimarogonas, & Johansson (2013); Wangeddutineighbours and receives its in-neighbours’ statesriné-
_M), these papers pointed out that the constant tinpesite  tion at timet;,.
was costly. This motivates us to design adaptive step sares f ~ Comparatively, in the decentralized data-sampling sisate
synchronization of asymmetric recurrent time-varyingnaéu Eq. () is rewritten as the following push-based decezealli
network. system

Moreover, the discretization is related to the concept ofidad- .
data control. There are a number of papers discussing dynam-du;(t) — —v(Du(tl) + Zaij(t)gj (uj(tﬁc)) Y L) (4)

ics of neural networks, using sampled-data control. Thegap dt —

(Lam. & Leung 2006; Wu, Shi & S0, 1972; Zhu, & Wnag, 2011) ”

applied the sampled-data control technique towards &tabil fori = 1,-.. ,n. The increasing time sequeng& } /¢ order
tion of three-layer fully connected feedforward neuralvmks.  aso =) < ¢{ < --- < ti < --- is distributed for the neuron
In|Chandrasekar, Rakkiyappan, Rihan, & Lakshmahan (2014); ¢ {1,... .} . Every neuron pushes its state information

%&aﬂ&_&_ﬁé (2014); Lee, Park, Kwon, & | ee (2013); Li hbours at timg, when it updates its state. It
){Rakkiyappan, Chandrasekar, Park, & Kiwon (2014), th receives its in-neighbours’ state information at tiffavhen its
authors used sampled-data control strategy for exponiegtia  nejghbour neurori renews it state.

chronization for the neural networks with Markovian jumgin To hegin the discussion, we give the following three norms
parameters and time varying delay ' HAEK, &6 RWQThd recall the definition of out-synchronization proposed

ppan AKX AEK, 84 IN
(2013) discussed state estimation for Markovian jumpirzgju in\Wu, Zheng, & Zho(2009).
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Definition 1. Let¢; > 0 (i = 1,---,n) be a positive constant
and we can define three generalized norms as follow

() 1y norm: ||zl ¢ = Zl&lirﬂ

" 1/2
@ 12 nom: el = (£ el
=1
(3) loo,e NOrM: ||z 0o = max €;1|l’i|

wherex = [z1,--- ,x,]" € R"is a vector.

Definition 2. Consider any two trajectories(t) andwv(t) start-
ing from different initial values:(0) andv(0) of the following
system

= f(x(t)vt)' (5)

The systengd) is said to achieve out-synchronization if there
exists a controllerc(t) for the two trajectoriesu(t) and v(t)
such that

dx(t)
dt

—v(t)|| =0.

lim ||u
t— o0

Other major notations which will be used throughout this

paper are summarized in the following definition.

Definition 3. Let&; > 0 (i = 1,--- ,n) be a positive constant

and then we define
156 =15(0) = Gyl ) ~ Gy Y &y (0)
itj 7
pr2,j (€, 1) =vi(t) — Gi(ay; ()™
1 ¢
-5 Gjlai;(t)| + GiZ-[azi(t))|
2 ; [ &i ]
Hoo, J(f t) {%(t) Gz(a” (t))Jr G; %|aij (t)|
g "
and
v(t) = j_IIﬁaX,n{'YJ (t) — Gjlay;(t)) }
where(a)™ = max{a,0} and(a)~ = min{0, a}.

Because of the boundedness of the functions, it can be saen t
v(t) andu 2,00 (€, t) are bounded for all € [0, +00). That s,
there exist positive constantgl and\,,, such that

l/(ﬁ) < M7 sSup ,um,](é-at) < Nm
tel0,400)

sup
te[0,400)

withm = 1,2, cc.

3. Structure-dependent data-sampling principle

In this section, we provide several the structure-baseat dat
sampling rules for the next triggering time point at whicle th
neurons renew their states and the control signals.

3.1. Structure-dependent centralized data-sampling

For any neurori (i € {1,---,n}), consider two trajecto-
riesu(t) andv(t) of the system[{3) starting from different ini-

tial values. Denotev(t) = [wy(t), - ,w,(t)] T with w;(t) =
u;(t) — v;(t). And it holds
D — il + Y Ohy() @

whereh;(t) = g;(ui(t)) — gi(vi(t)) forall ¢t € [tg, try1), 1 =
1,---,nandk =0,1,2,---.

The following theorem gives conditions that guarantee the
system([(B) reaches out-synchronizationiianorm.

Theorem 1. Let0 < €. < 1 andey > 0 be constants with
Me. < g andNe. < €(2 — €.). Suppose that there exist

& > 0,1 =1,--- ,nsuch thatu; ;(§,t) > ¢ forall j =
1,---,nand¢ > 0. Set an increasing time-point sequence
{tr} as
t
ti+1 = sup {T: ~min / w16, 8)ds <e., Vte (tk,T]}
T}tk JZl"“’” tk

(7)

k =1,2,---. Then the systei@) reaches out-synchronization.

Proof. From the conditiomMe, < ¢y, one can see that

t
[ nstecshds = eoft — 1), v

tr

which implies that.; exists for allk andt;1 — tx < e./€o.
Thus, one can further see

/ ")t < Mt — 1) < Meojeo < 1 (8)

tr
and
t
/ 1 (60 < NL(E— 1) < Mieofeo <2 — e (9)
23

forallj =1, --- ,nandt € [t,tx+1]. Furthermore, we have
€cf€0 > thp1 — tr > €c/N.

Considerw;(t) (i = 1,--- ,n) for eacht € [tx,tr11], and

fyve have

Zfi‘wi(t)
=1
=> &
=1
t
Jewi() - /t

- Z/ [au

J#i

wilty) + /t:wxs)ds

2506) = (s s (1)

7’)’1,J tk)fjwj (tk)):| ds



with
hj (k)

mj(ty) = { i) wj (L) # 0
0 U)j(tk) =0
which implies0 < m;(ty) < G, forall j = 1,---,n and
k=1,2,---, according to[(R). Note
(aii(s))” Gi < agi(s)mi(t) < (aii(s))* G

From [8), one can see

fh@—%@mﬂﬂmg/

ty ty

t

[v(s) — (aii(s ))JFG ;Jds

¢
< / p(s)ds < M(tpp1 —tr) <1

ty

which leads

0<1- / () — ass(syma(ty))ds

ty

<1- [ B6) = (@) Glds (10)
Then, it follows
Z§z|wz(t) <Z{’1/ ['yj( ) — Gja”( )}ds
i=1 j=1 tk
+Z / ’a” ‘ds x G, ds}@’w] tr ‘
zsﬁj
1*/ pi1,5 (€, 8)ds|&5lw; (te)| (11)

The last equallty holds due to (10). Thus, according to tihe ru
(@) and [9), which implies

tre41
17Qz17/ po (6, s)ds > —1 4 co, V

ty

since the equality if{7) occurs @t ¢, thus we have

Z§i|wi(tk+1)| <@- Gc)z&‘wi(tk”
i=1 =1

which implies

lim
tr—+o0

lwttr)ll, ¢ =0

In addition, for eacht € (t,tx+1), from the rule [¥) and the
conditionu(£,t) > € > 0, inequality [I1) implies that for
eacht € (tx, tyt1), lw(t)|1,e < |lw(ts)|1,¢. Hence, it holds

lim Hw
t— o0

H1,g =

The out-synchronization of systefd (3) is proved. ]

Proposition 1. Let0 < ¢, < 1 andey > 0 be constants with
Me. < eg andNae, < e9(2—¢.). Suppose that there exigt>
0,7=1,---,nsuchthatu ;({,t) > e foral j =1,---,n

and¢ > 0. Set an increasing time-point sequer¢g} as

t
T . min /
j=1,--,n th

k=0,1,2,---. Thenthe syste(@) reaches out-synchronization.

tp+1 = sup
T}tk

MJ@JMSSQHVte@hﬂ}
(12)

Proposition 2. Let0 < ¢, < 1 andey > 0 be constants with
Me. < g and Ne. < €(2 — €.). Suppose that there exist
& > 0,1 =1,---,nsuch thatus ;(§,t) > ¢ forall j =
1,---,nandt > 0. Set an increasing time-point sequence

{tr} as
t
T: min /
t Jj=1,---.n th

tpe1 = max Poo,i (&, t)ds < €, Vi € (tg,T]
-. Then the syste(@) reaches out-synchronization.

(13)

T2tk

k=0,1,2,--

Remark 1. From the proof, one can ség.1 — tx > €./ N,
which excludes the Zeno behaviours for the rulés {Z,.12,13).

To explain the independence of the results via three norras, w
give out the following example. Denote

Y1 (t) — Grafy (t) — Gl ‘(121 )‘
o &1
L=
Y2 (t) — Gaagy(t) — ng—l |aa(t)]
L 2
r N 1., ¢ 1
7(t) — Grayy (t) — 501—/|a21(t)| - §G2|012(t)|
L2 = 1 1
'72(t) — G2a22( ) 2G2 1 ’alg )’ — §G1’a21(t)’
Let [G1, G2] = [1.0017,0.9984] with
2.1048 1.0235 0.2538
) = [0.9234} Alt) = [ 0.5014 —0.1526}
whent € [tg, tp4+1) and
2.1048 —0.3253 0.4384
(t) = {0.9234] Alt) = {—2.0341 —0.1526]

whent € [tgi1, tet2)-
In the first time intervalty, tx+1), we have found that when

§1| _ |0.8902 &l [0.3479
§2|  0.3562 & T |0.7727

The proofs of the following results are analog to Theoremit holds

but vialy andl,, norm. Their proofs are similar to that of

TheoreniB, which can be found|in Zheng, Chen, & Lu (2015)

and so neglected in the present paper.

0.8786 0.3951
b= [0.2901} >0 L= [0.6210} -0



where0 = [0,0] . In the second time intervél, 1, t512), we

can find that when
&) [o0.7182
&) 10.3570

1.0920
b= [0.0429} -0

it follows

However, to maintairC, > 0, we have to solve the following
inequalities

1

1
lt) ~ Grafy (1) — 26 521@1 (0)] ~ 5Cslara(t)] >0
N 1 51 1
’)/Q(t) — G2a22(t) - 502—/|a12(t)| — —G1|(121(t)| > 0
& 2
that is
!
1.8860 — 1.01892—? >0
1

—0.0954 — 0.2188 ? >0
2

One can see that there is no such solutiog|and¢s.

Hence, the condition§}7Y_(IL2) are uncorrelated. By using

the similar method, we can obtain that the three conditioas a
pairwise independent. Therefore, we can assert that théses
via three norms are independent.

3.2. Structure-dependent push-based decentralizedsiataling
For each neuron € {1,---,n}, consider two trajecto-
riesu(t) andv(t) of system[(#) starting from different initial

values. Denotev(t) = [wi(t), - ,w,(t)]" with w;(t) =
u; (t) — vi(t). It follows
T ) + Y gy ()

j=1

whereh;(t) = g;(u;(t))
i=1,-

— g;(v;(t)) for all t € [t],
,nandk =0,1,2,---

Her)

The following theorem and propositions give conditiong tha

guarantee the convergence of systenh (14) via three geretali
norms (1, l> andl..).

Theorem 2. Let0 < ¢4 < 1 andey > 0 be constants with
Meg < € andj\/led < e9(2 — €4). Suppose that there exist

& > 0(i =1,---,n)such thatuld(g t) > ¢ forall j =
1,---,nandt > 0. Set{t 1425 as the triggering time points
as
. t
thy1 = SUp TZ/N [Vj(s)—Gja }ds—G Z
T2t t, 17'5]
X / |aij(s)‘ ds > ¢4, Vt € (ti,T]} (15)
t
forj = 1,---,nandk = 0,1,2,---. Then the syster{d)

reaches out-synchronization.

Proof. For eacht > 0, letk;(t) = max{k : ¢, <t}. Similar
to the arguments up t6_(1L1) in the proof of Theofdm 1, one can
derive the following inequality immediately:

me 17/], (€, )ds & 1 )|
kj (t)
(16)
From the arguments df}(9), one can conclude
t
1>1- p1(€,s)ds > =1+ e, YV J. a7)

b o)
in an analog way.

Let t,+1 be an increasing sequence such that 0 and
th+l — 8 = 2¢;/e9, which implies that for each neurgp
equality in the rule[(T5) occurs at least once. Thus, we have

Considerw;(t) for any neuron: at triggering t|met,€4r1

wherei = 1,--- ,n, and we have
n
> &lwilthg)]
=1

— Z sign(wi(t};Jrl))fi |:wz(t7ic) + /t k1

N K3
1=1
n

Zggn w;(th 1)) &wi(t),) + ZSIQH w;(th1)) &

wi(s) ds]

1=1
thgr
x/_ [ % wz tl +Zaw w] tj))]ds
&,
= sign(w;(ti41)) &wi(t})
i=1
n . . X t}:c+1
- ZSIgn(wi(t;chl))giwi(t;c)/v 7i(s)ds
i=1 ty,
noo ) ) thoi
+ ) sign(wi (1)) & (wi(t,)) / Caf(s)ds
i=1 th
t;‘c+1
+ Z Slgn w; tk+1 fz Z h wJ / a;;(s)ds
i#]

By the inequality[(R), it holds
n n {+1
Zfz‘wz tk+1 ‘ éZ{ / [ j(s)—Gja;rj(s)}ds
=1 7j=1
. I;+1 .
+G Y é / |aij(s)| ds p&5|w;(t,)]
7 Y4
<(L—ea) Y &lw;(t])]
j=1
Based on the triggering rule{[15), we can obtain
Y Gilwilth)] < (1 —ea) Y &ifwilt)]
=1 1=1



which means

L), =0

For any timef € (¢}, t} ], the statav;(t) becomes

z":{ /[ s) — Ga()}ds
ra 8 [Manolas el

] %
zn:{ /[ t) — Gyati(t }dt+(; Z—
1753

=1
[/ ‘aU ’dS‘i‘/ ‘az] ’d8:|}§.7‘w-7 tj ’
<(1 —ed)z&lwi(t;c)‘
1=1

wheret]  , > 7 >t >t;. Thus,

<.

[wtien)lly, < @], < (= ea) el

foranyt € (t},t;,,] andi = 1,--- ,n, which implies

i oo, < it =0

Remark 2. In centralized data-sampling rule), (I12) and
(@3), the design of time sequen{:ec};j) can guarantee that
the Zeno behavior is excluded, because there exists a common
positive lower bound%— (m = 1,2 or oo) for the inter-event
time t+1 — t; for all the neuronsi = 1,--- ,nandk =
0,1,2,---

Besides, in push-based decentralized updating r(i&
(I8) and (19), the controlling time sequendg: }; > for i =
1,---,n can also ensure the exclusion of Zeno behavior, be-
cause each inter-event timi¢_ , — ¢, can be lower bounded
(m = 1,2 or oo) for all the neurong = 1,--- ,n and
k=0.1,2,--.

4. State-dependent data-sampling principle

In this section, we establish a group of state-dependeat dat
sampling rules by predicting the next triggering time paht
which neurons should broadcast their state informationgmd
date their control signals.

4.1. State-dependent centralized data-sampling

Consider the systenh](6) and define the state measurement
error vectore(t) = [ey(t),--- ,en(t)]" as

ei(t) = wi(ty) — wi(t)

wheret € [tg,tg+1), ¢ = 1,--- ,nandk = 0,1,2,---. The
centralized updating rule relied on neurons’ states isrga®
follow.

Theorem 3. Let®(¢) be a positive decreasing continuous func-

The proof for the out-synchronization of system (4) is cOM-tion on [0, +00) with ®(0) > 0. Sett;1 as the triggering time

pleted.

Proposition 3. Let0 < ¢4 < 1 be aconstantang; > 0 (i =

1,---,n). Set{ti }}>5 as the time points such that
‘ 1
thyr = maxq 7 : / {%‘(S) — Giag(s) — B ZGj‘aij(S)’]ds
‘I'>t1 t}‘c i

point such that

tpr1 = max {T: He(t)”l < P(t), Vte [tk,T)}. (20)

T2tk

forall k =0,1,2,---. If u1(t) > . for somes. > 0 and

lim ®(t) =0,

t——+o0

1 & [T i
- 3G > 5—3 /t |aji(t)|dt > eq, Vit € (%T]} then the systerfB) reaches out-synchronization.
— . Qi i

(18)

fori = 1,---,nandk = 0,1,2,---. Then the syster)

reaches out-synchronization.

Proposition 4, LetO < eq < 1 be aconstantang; > 0 (i =

1,---,n). Set{t; };°5 as the time points such that
t €
thi1 =maxqT: / ['yl(s) - Gia;-';(s)}ds -G Z >
T>t" t}‘c i 7
X / ‘aij(s)’ds >eq, VEE( };,T]} (19)
t
fori = 1,--- ,nandk = 0,1,2,---. Then the syster{d)

reaches out-synchronization.



Proof. Considerw;(t) for any neuron (i = 1,---,
&>00=1,---,n)

Z aij(t
t) + Z aij(t)h; (w; (t))}

)|
) a0 o)~y )]

i (w; tk))}

wz tk

+ ) &isign(wi(t)) [ — () (wi (tk)
=1
+ Z &isign(w; ()
i=1
By the inequality[(R) and the triggering ru[e{20), it holds

dfle®ll,
dt

- Z&%(ﬁ)’wi(i)\ + Z«Ei%‘(t)\ei(ﬁ)
+ Z&a:g(t)Gi|wi(t)| + Z &al (H)Gylei(t)|
+ 30D &ilai (]G w ) + DD &ifai; (0)]Gle; (¢)]

J=1i#j J=1i#j
gZ{%’(t) JZ&MM ]fy‘wy |
j=1 i#j &
+Z{% )+ Ga, +G]Z o ]5]‘6] )|

Z;ﬁJ
which implies

dfjw - Y
[l — H1 < *Hl(wzfﬂw]’(t” +Mlz§j‘ej(t)
j=1 =t
)Hl + M1 ®(t)

< = (t)||w(t

By the classical Gronwell inequality, we have

t
o], < llwtto)],e + My [ eoIa(s)ds

to
t

ea(t,to)["w(to)H1+Ml/ eU(S,tU)Q)(S>dS:|
to

with

o(t,s) = /St pi(7)dr

n) and

for s € [tx,t], t € [tr,tr+1). By using the L'Hospital rule, it
follows

N

: M ! o(s,0)
S Swo /0 e ®(s) ds

lim Hw H
t——+o00 1

wheret, = 0, which implies that|w(t)||; converges t@ by
the sampling time sequenc{ek};jg. Therefore, the system
([3) reaches out-synchronization and this completes thef pfo
Theoreni B. [ |

Proposition 5. Let ®(¢) be a positive decreasing continuous
function on|0, +00) with ®(0) > 0. Sett,; as the triggering
time point such that

O(1), Vi e [tk,f)}

s = max {7 [e(t)], <

forall k =0,1,2,---. If ua(t) > e. for somez. > 0 and

then the systerfB) reaches out-synchronization.

Proposition 6. Let ®(¢) be a positive decreasing continuous
function on|0, +o00) with ®(0) > 0. Sett,; as the triggering
time point such that

tpr1 = max {7‘ : He(t)”oo <O(t), Vte [tk,T)}

T2tk

forall k =0,1,2,---. If poo(t) = &, for somez. > 0 and

then the systerfB) reaches out-synchronization.

4.2. State-dependent push-based decentralized datalisgmp
For the systeni(14), we define the state measurement error

vectore(t) = [ey(t), - ,en(t)]" as
eilt) = w;(t),) — wi(t)
wheret € [t;,t;cﬂ) , =1,---,nandk = 0,1,2,---. The

push-based decentralized updating rule is given as follow.

Theorem 4. Let U(t) = [Wy(t),---,¥,(t)]" be a vector of
positive decreasing continuous functions witf0) > 0, thatis,
U,(t) is a positive decreasing continuous function[0r+oo)
and0;(0) > 0fori = 1,---,n. Sett; , as the triggering
time point such that

Ui(t), Ve ;;,T)} 1)

ther = mjf}{ Hea®)] <



fori =1,---,nandallk = 0,1,2,---. If u1(t) > eq4 for  with
some:s; > 0 and

t
lim W;(t) =0 o(t,s) :/ pa(7)dr
t—+o0 s
fori =1,---,n,thenthe systed reaches out-synchronizationsq, < [t andt € [ti,ti ). By using the L'Hospital rule,
. it follows
Proof. Consider thé;-norm of the statev;(¢) (i = 1,--- ,n
andé; >0(i=1,---,n) . M (5,8}
im0, <t Zs [ s as
allwto)] @) Jy O
i N L0 R
n = lim | —
. dw; (t 00 o (1,85
=3 sion(v, (1) 2 S et
, My
. < dim e,
n t—+o0 Ed
= Zgisign(wz(t)) { Hw;(t},) + Z ai;(t)hy (w;( (t] ))} =0,
i=1
n _ wheret{ = 0 foralli = 1,---,n, which means tha|tw(t)|\1
= Z&Slgn(wi(t)) { Yi(t)wi(t) + Z a;(t)h )} converges t® by the controlllng time sequende; }, 5 (i =
i=1 j=1 1,--+,n). Hence, the systeril(4) achieves out-synchronization
and Theorerﬁ|4 is proved. [ ]

+ 3 gsion(un() | - (0 (weh) — 1)
= Proposition 7. Let W(t) = [Wy(t),---,¥,(t)]" be a vector

i sign(w;(t ai;( w.s tJ B (ws ( } of positive continuous decreasing functions [6n+occ) and
Zf on( Z ! [ (1) = hi (13 (1) U (0) > 0. Sett; ,, as the triggering time points such that

By the inequalit and the triggering rule{21), it holds i
y quality(2) ggering rule21) tk+1—max{ eit)] < i), vt e [th,7)}

dfe®ll, e
d N fori = 1,---,nandallk = 0,1,2,---. If ua(t) > &4 for
somes,; > 0 and
- Z&%‘ (O)]wi )]+ &mi)]ei(®)] ¢
il =t lim W,(t) =0
S Gt ()G (1) + 3 € (G es (1) o
+ 1G5y i|Wq iQy; i|€i L
P =1 fori =1,-- -, n,thenthe systeid) reaches out-synchronization.

+ 3> Glai(®)[Gslwi (0] + D0 D" &lay(1)|Gjles(t)] - Proposition8. Let ¥ (i) = [U(t),---, ()] be a vector
it =1 it =1 of positive continuous decreasing functions [6n+oc) and
W(0) > 0. Sett;, , as the triggering time points such that

n

<—Z[vj<> GZ ay(t ]@\wﬂ )

j=1 Z;ﬁJ thar = max{ 7 e(t)] < Wit), Vit €| 2,7’)}
n T> tl
&i
; Je;(t
;{% )+ Gy 1) +G];€g’aj ’]5]‘6]()‘ fori =1,---,nandallk = 0,1,2,---. If uso(t) > &4 for

somes; > 0 and
which implies

e o], . . i, ¥i(0) =0
i < =) Y &wi )] + M1 Y &le;(t)]
j=1 j=1 fori =1,--- , n, thenthe systeifd]) reaches out-synchronization.
llw®)]], + M1 &T;(t) Remark 3. The preliminary condition for systen®) and (@)
j=1 to achieve out-synchronization is that the existing duwratbf
By the classical Gronwell inequality, we have the solution in the Cauchy problem of syste@and (14)
; should bg0, +o0) (equivalentiimy, o tx = +oo andlimy_, o t}, =
Hw(t)H1 < Hw(té)ule—a(t,tg) —|—M1/_ e—o(t,s)”ql(s)Hlds +oo_f0r aI.I 1= 1,.~ -+, n). The verification of this condition will
ti be given in Sectidnl 5.

v t )
oot Mw(té)||1 + My / o7 (e ‘1’(8)||1d5}
to



Remark 4. To loosen the assumption that,(t) > eq (m = wheremy = sup,cjo o) {#1(t)} andmy < M;. Via compar-
1,2 or co) for somez, > 0 andlim;—, o, V;(t) = the func-  ison principle, we have
tion ¥, (¢) can be designed as follow

5o (1) e—Bilt—t) < o(t)
K0 [,
where . . . . . .
where¢(t) is the solution of the following differential equation
. a||w(t 3 d 2
Sty = _inf {— ol e o,y dolt) = Mi[o(t) +1]
1=1,--,n Z efﬁi(tft;;) dt
i=1 o(to) = o
and . .
Hence the inter-eventtimeg_; —¢; has a common lower bound
1. which follows
: allw@®), i
Or(t) = ._%nf ct—1t;, € 0,7 - b0
o \/ Xn: & e 2Bt T At o)
=1
For the lower bound. is uniform for all the neurons, the next
and triggering time point;,_., satisfiest; 1 > t; + 7. forall i =
& llw t)H 1,---,nandk =0,1,2,---. Therefore we can assert that there
0k(t) = inf ‘ _Bv(tf;_) ct—th € [0,T) p. is no Zeno behavior for all the neurons.
=1 i:qlé}Xn{e =t} (2) For the push-based decentralized rule, let us consider
] o _ the following derivative of the state measurement errolafoy
which depend on the global state information(t)||1, ||w(t)]|2 neuronv; (i =1, -+ ,n).

and ||w(t)||«- In these design, the out-synchronization of sys-
tem (@) can be proved and the Zeno behavior can also be ex:

cluded without other restricted conditions. H Hl = Hw H ds

ds

5. Exclusion of Zeno behavior / Z +Zaﬂ hl wy( tk))

In this section, we are to prove the absence of Zeno behav- " "
ior. To_thls aim, we will find a coz_mmoniposmve lower bound < / Z { Z i’ajl(t)’Gl}gl‘wl(téc)‘ ds
for the inter-eventtimey., ; —t ort;_ , —t;, for all the neurons i £
i=1,---,nandk =0,1,2,---

n
l
Theorem 5. Under either the centralized data-sampling rule S Zfl‘wl(tk” / M ds
in Theoren B or the push-based decentralized data-sampling =
rule in Theoreni}4, the inter-event interval of every neumn i < Mle H — ),

strictly positive and has a common positive lower bound.évior

over the Zeno behavior is excluded wherel||w(0)||; is a given positive constant. Based on the trig-

gering rule [[21), the event will not trigger until; (¢)| = ¥, (¢)
Proof. (1) For the centralized rule, consider the following &t time pointt = ;. ,. Hence, it holds

derivative. . . ,
U;(thy1) = Mal|w(0) ||, (thyr — th)-
d [le®ll, _ &Ele®ll, el &llw®l, _ T
dt [|w(t)|| |w(®)]] [w®], [w®)]| Given any positive time poirll’ > 0, suppose that there
n ' ' n ' ! is at least one neurohexhibiting the Zeno behavior on the
> &sign(e; () wi(t) Y &sign(w;(t))w;(t) . finite time period0, T'] C [0, +oc), that is, there exist infinite
=-= - = He( Hl number of triggering of0, T']. Then it satisfies
le®]l; [w®]], [w®]], R
t t im = ,T1.
< [ﬂl(ﬁ) +l/1( ) He( )Hl 1 + He( )"1] k—+
Hw(t)Hl Hw(t>||1 SinceY,(t) is a continuous function ofty, +00), we have
le®]], e,
< |m+M I+ U, (t*) = lim W(ti.,)
M @ L Tl Jm W)
s [14 L@ T = Jm Maw O G — )
R R 0T ~0,




which means there exists a time poirit € [0,77] such that
U,;(t*) = 0. This contradicts tha¥,(¢) (i = 1,---,n)is a
positive function on0, +oc). Therefore, for the arbitrariness

of T' > 0, we can assert that there is no Zeno behavior for all

the neurons on0, +c0). That is to say, the next inter-event

interval has a common positive lower bound for each neuron

1=1,---,n,which satisfies

Nd =

=1

in {5 Wit 1) = M ()7}

This completes the proof. ]
Remark 5. The proof for Theoreml5 is given undigrnorm.
By similar approach, one can also prove the theorem y@nd
loo NOrm.

After proving the exclusion of Zeno behavior, we are at the

stage to conclude théiing_, 1 o tx = +oo andlimy_ 4 o t}'C =
+ooforalli =1,--- ,n. Thisimplies the following result.

Theorem 6. Under the data-sampling rule described in The-
orem[3 and Theorefd 4, existing duration of the solution in the

Cauchy problem of syster(®) and (I4) are all [0, +c0), equiv-
alently

lim t;, = 4+

k—o00
and

dim th = oo
foralli=1,--- n.
Proof. In fact, from Theorenl5, one can see that for all ini-

tial values, the trajectory of systenis (6) ahdl(14) possisss d
continuous triggerring events with two positive lower bdsn
n. andny of inter-event time respectively. This implies that
limy 00ty = +00 OF limy—, o ti = +oc for all the neuron

i = 1,--- ,n. Therefore, the solutions in the Cauchy problem

of systems[(6) and (14) all exist for the duration+oc). ™

6. Numerical simulation

In this section, we provide a numerical example to illugtrat
the theoretical results. The comparisons between theatentr
ized and push-based decentralized rules based on bottust&ruc
and state are also given. Let us consider the switching ¢epol
giesS = {(I'1, A1, ), -, (Ts, 46, Is) }, where

r = diag{0.8850, 0.9148, 0.8530, 0.7977, 0.8764}

'y = diag{0.7484, 0.9326, 0.6340, 0.9843, 0.5494 }

I's = diag{0.7735, 0.7015, 0.8535, 0.8621, 0.9068 }

I'y = diag{0.8915, 0.7833, 0.9057, 0.7884, 0.9720}

I's = diag{0.9357, 0.7538, 0.8944, 0.7365, 0.9144}

I's = diag{0.6612, 0.9881, 0.6391, 0.5364, 0.8756}

and
[—1.7919 —0.3948  0.2564 —0.3204 —0.0156]
0.4671  0.2490 —0.7117 —0.1370 —0.0501
1= [—0.7011 0.0369 —1.8727 —0.7410 —0.0184
—0.1982  0.1655  0.8427  0.3652 —0.7693
| 0.6181 0.5135 —0.5559  0.0658 —1.9569 ]
[ 0.2630 —0.3615 0.8626  0.3302  0.2694]
0.4676 —1.8345 —0.5973 —0.4837 —0.3797
Ay = | —0.8931 0.0360 —1.7021 —0.1515 —0.8251
—0.0750 —0.3230 0.5239 —1.9542 —0.2013
_—0.1842 —0.0325 0.2393 0.3162 0.2926 |
[ 0.3798 —0.5099 —0.4776  1.4789  0.8120]
—0.4506 —1.7393 0.2600 0.4094  0.1505
Az = 0.3564 0.5781 —1.6185 0.2230  0.2439
0.1150  0.4990 —0.1876 —1.6549 —0.6292
| 0.2979  0.4720 —0.2338 —0.6050  0.8528 |
[—1.7522 —0.0166 0.3873 0.0970 —1.1968]
—0.3338 —1.8286 0.3803 —0.5127  0.7253
Ay = |-0.1573  0.4312  0.4020 —0.5886 —0.6525
0.0200 —0.7156 —0.6737 —1.0330 —0.5318
| —0.1808 0.4284 0.2678 —0.0480 —1.3318
[—1.8018 —0.5470 —0.1406  0.2769 —0.8000]
—0.4222  0.2530  0.4295 0.5383  0.1825
As = |—-0.7572 —0.4001 —1.9090 0.6196 0.6523
—0.7861 0.5978 0.2121 —-1.5166  0.2531
| 0.1823 0.5187 —0.2007  0.3803 0.1668 |
[—1.6122 —0.4175 —0.4285 0.5557  0.4177]
0.1750 0.6452 0.2641 —0.1387 —0.4541
Ag = 0.6864 —0.1068 —1.0629 —0.1994 0.1796
0.4106  0.2553 —0.7769  0.7958  0.5536
| 0.2599 —0.1512  0.1097 —0.3196 —1.5582]
and

[ 0.6353] [ 0.0657] [ 0.2450]

0.5897 —0.2985 0.1741

I = 0.2886| Iy = 0.8780| I3 = |—0.5845

—0.2428 0.7519 —0.3975

| 0.6232] | 0.1003] | —0.0582]

[—0.5390] [—0.5447] [—0.6304]

0.6886 —0.1286 0.8098

I, = |—0.6105( Is = |—0.3778| Iz = 0.9595

—0.5482 0.8468 —0.1223

| —0.6586 | | —0.1396 | | —0.7778]

The activation function satisfieg (u;) = 1/(1 + e %) and
the switching time sequence 0#;,T';, I;) follows a Poisson
process with\ = 1. In the structure-dependent rules, we set
a=028=1>G(=1,---,n), T =500, =e. = 0.01 and

eq = €4 = 0.02. In state-dependent rules, the functid(r) in
centralized data-sampling is given as

B 8000

o) = —— s
" (0.0065¢ + 6.5)”



and the functional;(t) ( = 1,---,n) in push-based decen-
tralized data-sampling are given as follow

27000 90000
\Ijl(ﬁ :—6’ \IJQt :—6’
(0.007 ¢+ 0.68) (0.01¢+1.27)
t 1 —0.01¢t—-1
() = 80000 R _ (t+100)e |
(0.012¢ +1.02) 700I(2)
2100
Vs (t) =

(0.005¢ +0.5)""

whereI'(n) is a gamma function.
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(d) The trajectory of neuron Nb.starting from two different initial values in
state-dependent push-based decentralized system.

Figure 1: The figures show the two trajectories of neuronl Nar. two different
initial values, which indicates the out-synchronizatidrihe systems.
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(c) The logarithm of the error dynamidsg ||u(t) — v(t)||s in four data-
sampling rules unddr.- norm.
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(d) The statistical results in the number of the triggerintetpoints during each

time period by four different rules. The magenta lines shiegrrhaximum and

minimum number of the triggering time points in five neurons.

Figure 2: The figures show the logarithm of the error dynaraias the statisti-
cal results in the number of the triggering time points.
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