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Fabrice Rossid, Marco Saerensa,b
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Abstract

This work develops a generic framework, called the bag-of-paths (BoP), for link
and network data analysis. The central idea is to assign a probability distribu-
tion on the set of all paths in a network. More precisely, a Gibbs-Boltzmann dis-
tribution is defined over a bag of paths in a network, that is, on a representation
that considers all paths independently. We show that, under this distribution,
the probability of drawing a path connecting two nodes can easily be computed
in closed form by simple matrix inversion. This probability captures a notion
of relatedness between nodes of the graph: two nodes are considered as highly
related when they are connected by many, preferably low-cost, paths. As an
application, two families of distances between nodes are derived from the BoP
probabilities. Interestingly, the second distance family interpolates between the
shortest path distance and the resistance distance. In addition, it extends the
Bellman-Ford formula for computing the shortest path distance in order to in-
tegrate sub-optimal paths by simply replacing the minimum operator by the
soft minimum operator. Experimental results on semi-supervised classification
show that both of the new distance families are competitive with other state-of-
the-art approaches. In addition to the distance measures studied in this paper,
the bag-of-paths framework enables straightforward computation of many other
relevant network measures.

Keywords: Network science, link analysis, distance and similarity on a graph,
shortest path distance, resistance distance, semi-supervised classification.

1. Introduction

1.1. General introduction

Network and link analysis is a highly studied field, subject of much recent
work in various areas of science: applied mathematics, computer science, social
science, physics, chemistry, pattern recognition, applied statistics, data mining
& machine learning, to name a few [4, 20, 30, 56, 61, 73, 96, 101]. Within this
context, one key issue is the proper quantification of the structural relatedness
between nodes of a network by taking both direct and indirect connections
into account. This problem is faced in all disciplines involving networks in
various types of problems such as link prediction, community detection, node
classification, and network visualization to name a few popular ones.
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The main contribution of this paper is in presenting in detail the bag-of-
paths (BoP) framework and defining relatedness as well as distance measures
between nodes from this framework. The BoP builds on and extends previous
work dedicated to the exploratory analysis of network data [54, 53, 67, 104].
The introduced distances are constructed to capture the global structure of the
graph by using paths on the graph as a building block. In addition to relat-
edness/distance measures, various other quantities of interest can be derived
within the probabilistic BoP framework in a principled way, such as between-
ness measures quantifying to which extent a node is in between two sets of nodes
[60], extensions of the modularity criterion for, e.g., community detection [26],
measures capturing the criticality of the nodes or robustness of the network,
graph cuts based on BoP probabilities, and so on.

1.2. The bag-of-paths framework

More precisely, we assume given a weighted directed, strongly connected,
graph or network G where a cost is associated to each edge. Within this context,
we consider a bag containing all the possible (either absorbing or non-absorbing)
paths1 between pairs of nodes in G. In a first step, following [2, 67, 82, 104], a
probability distribution on this countable set of paths can be defined by mini-
mizing the total expected cost between all pairs of nodes while fixing the total
relative entropy spread in the graph. This results in a Gibbs-Boltzmann distri-
bution, depending on a temperature parameter T , on the set of paths such that
long (high-cost) paths have a low probability of being sampled from the bag,
while short (low-cost) paths have a high probability of being sampled.

In this probabilistic framework, the BoP probabilities, P(s = i, e = j),
that a sampled path has node i as its starting node and node j as its ending
node can easily be computed in closed form by a simple n×n matrix inversion,
where n is the number of nodes in the graph. These BoP probabilities play
a crucial role in our framework for that they capture the relatedness between
two nodes i and j – the BoP probability will be high when the two nodes are
connected by many, short, paths. In summary, the BoP framework has several
interesting properties:

• It has a clear, intuitive, interpretation.

• The temperature parameter T allows to monitor randomness by control-
ling the balance between exploitation and exploration.

• The introduction of independent costs results in a large degree of cus-
tomization of the model, according to the problem requirements: some
paths could be penalized because they visit undesirable nodes having ad-
verse features.

• The framework is rich. Many useful quantities of interest can be de-
fined according to the BoP probabilistic framework: distance measures,
betweenness measures, etc. This is discussed in the conclusion.

• The quantities of interest are easy to compute.

1Also called walks in the litterature.
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It, however, also suffers from a drawback: the different quantities are com-
puted by solving a system of linear equations, or by matrix inversion. More
precisely, the distance between a particular node and all the other nodes can be
computed by solving a system of n linear equations, while all pairwise distances
can be computed at once by inverting an n × n square matrix. This results in
O(n3) computational complexity. Even more importantly, the matrix of dis-
tances necessitates O(n2) storage, altough this can be alleviated by using, e.g.,
incomplete matrix factorization techniques.

This means that the different quantities can only be computed reasonably on
small to medium size graphs (containing a few tens of thousand nodes). How-
ever, in specific applications like classification or extraction of top eigenvectors,
we can avoid computing explicitly the matrix inversion (see PageRank and the
power method [59], or large scale semi-supervised classification on graphs [66]).
In addition, it is also possible to restrict the set of paths to “efficient paths”, that
is, paths that do not backtrack (always getting further from the starting node),
and compute efficiently the distances from the starting node by a recurrence
formula, as proposed in transportation theory [27].

1.3. Deriving node distances from the BoP framework

The paper first introduces the BoP framework in detail. After that, the
two families of distances between nodes are defined, and are coined the sur-
prisal distance and the potential distance. Both distance measures satisfy
the triangle inequality, and thus satisfy the axioms of a metric. Moreover, the
potential distance has the interesting property of generalizing the shortest path
and the commute cost distances by computing an intermediate distance, de-
pending on the temperature parameter T . When T is close to zero, the distance
reduces to the standard shortest path distance (emphasizing exploitation) while
for T →∞, it reduces to the commute cost distance (focusing on exploration).
The commute cost distance is closely related to the resistance distance [32, 55],
as the two functions are proportional to each other (as well as to the commute
time distance) [12, 54].

This is of primary interest as it has been shown that both the shortest path
distance and the resistance distance suffer from some significant flaws. While
relevant in many applications, the shortest path distance cannot always be con-
sidered as a good candidate distance in network data. Indeed, this measure only
depends on the shortest paths and thus does not integrate the “degree of con-
nectivity” between the two nodes. In many applications, for a constant shortest
path distance, nodes connected by many indirect paths should be considered as
“closer” than nodes connected by only a few paths. This is especially relevant
when considering relatedness of nodes based on communication, movement, etc,
in a network which do not always happen optimally, nor completely randomly.

While the shortest path distance fails to take the whole structure of the graph
into account, it has also been shown that the resistance distance converges to a
useless value, only depending on the degrees of the two nodes, when the size of
the graph increases (the random walker is getting “lost in space” because the
Markov chain mixes too fast, see [99]). Moreover, the resistance distance, which
is proportional to the commute cost distance, assumes a completely random
movement or communication in the network, which is also unrealistic.

In short, shortest paths do not integrate the amount of connectivity between
the two nodes whereas random walks quickly loose the notion of proximity to
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the initial node when the graph becomes larger [99].
There is therefore a need for introducing distances interpolating between the

shortest path distance and the resistance distance, thus hopefully avoiding the
drawbacks appearing at the ends of the spectrum. These quantities capture the
notion of relative accessibility between nodes, a combination of both proximity
in the network and amount of connectivity.

Furthermore, and interestingly, a simple local recurrence expression, extend-
ing the Bellman-Ford formula for computing the potential distances from one
node of interest to all the other nodes is also derived. It relies on the use of the
so-called soft minimum operator [22] instead of the usual minimum. Finally,
our experiments show that these distance families provide competitive results
in semi-supervised learning.

1.4. Contributions and organization of the paper

Thus, in summary, this work has several contributions:

• It introduces a well-founded bag-of-paths framework capturing the global
structure of the graph by using network paths as a building block.

• It is shown that the bag-of-hitting-paths probabilities can easily be com-
puted in closed form. This fundamental quantity defines an intuitive re-
latedness measure between nodes.

• It defines two families of distances capturing the structural dissimilarity
between the nodes in terms of relative accessibility. The distances between
all pairs of nodes can be computed conveniently by inverting a n×nmatrix.

• It is shown that one of these distance measures has some interesting prop-
erties; for instance it is graph-geodetic and it interpolates between the
shortest path distance and the resistance distance (up to a scaling factor).

• The framework is extended to the case where non-uniform priors are de-
fined on the nodes.

• We prove that this distance generalizes the Bellman-Ford formula com-
puting shortest path distances, by simply replacing the min operator by
the softmin operator.

• The distances obtain promising empirical results in semi-supervised clas-
sification tasks when compared to other, kernel-based, methods.

Section 2 develops related work and introduces the necessary background
and notation. Section 3 introduces the BoP framework, defines BoP proba-
bilities and shows how it can be computed in closed form. Section 4 extends
the framework to hitting, or absorbing, paths. In Section 5, the two families
of distances as well as their properties are derived. Section 6 generalizes the
framework to non-uniform priors on the nodes. An experimental study of the
BoP framework with application to semi-supervised classification is presented
in Section 7. Concluding remarks and extensions are discussed in Section 8.
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2. Related work, background, and notation

2.1. Related work

This work is related to similarity measures on graphs for which some back-
ground is presented in this section. The presented BoP framework also has
applications in semi-supervised classification, on which our experimental sec-
tion will focus on in Section 7. A short survey related to this problem can be
found in subsection 7.1.

Similarity measures on a graph determine to what extent two nodes in a
graph resemble each other, either based on the information contained in the
node attributes or based on the graph structure. In this work, only measures
based on the graph structure will be investigated. Structural similarity mea-
sures can be categorized into two groups: local and global [63]. On the one
hand, local similarity measures between nodes consider the direct links from a
node to the other nodes as features and use these features in various way to pro-
vide similarities. Examples include the cosine coefficient [29] and the standard
correlation [101]. On the other hand, global similarity measures consider the
whole graph structure to compute similarities. Our short review of similarity
measures is largely inspired by the surveys appearing in [31, 67, 103, 104].

Certainly the most popular and useful distance between nodes of a graph is
the shortest path distance. However, as discussed in the introduction, it is not
always relevant for quantifying the similarity of nodes in a network.

Alternatively, similarity measures can be based on random walk models on
the graph, seen as a Markov chain. As an example, the commute time (CT)
kernel has been introduced in [32, 83] as the Moore-Penrose pseudoinverse, L+,
of the Laplacian matrix. The CT kernel was inspired by the work of Klein
& Randic [55] and Chandra et al. [12]. More precisely, Klein & Randic [55]
suggested to use the effective resistance between two nodes as a meaningful
distance measure, called the resistance distance. Chandra et al. [12] then showed
that the resistance distance equals the commute time distance, up to a constant
factor. The CT distance is defined as the average number of steps that a random
walker, starting in a given node, will take before entering another node for the
first time (this is called the average first-passage time [74]) and going back to
the initial node.

It was then shown [83] that the elements of L+ are inner products of the node
vectors in the Euclidean space where these node vectors are exactly separated
by the square root of the CT distance. The square root of the CT distance
is therein called the Euclidean CT distance. The relationships between the
Laplacian matrix and the commute cost distance (the expected cost (and not
steps as for the CT) of reaching a destination node from a starting node and
going back to the starting node) were studied in [32]. Finally, an electrical
interpretation of the elements of L+ can be found in [103]. However, we saw
in the introduction that these random-walk based distances suffer from some
drawbacks (e.g., the so-called “lost in space” problem, [99])

Sarkar et al. [84] suggested a fast method for computing truncated commute
time neighbors. At the same time, several authors defined an embedding that
preserves the commute time distance with applications in various fields such
as clustering [106], collaborative filtering [32, 10], dimensionality reduction of
manifolds [38] and image segmentation [79].
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Instead of taking the pseudoinverse of the Laplacian matrix, a simple regular-
ization leads to a kernel called the regularized commute time kernel [44, 17, 18].
Ito et al. [44], further propose the modified regularized Laplacian kernel by
introducing another parameter controlling the importance of nodes. This modi-
fied regularized Laplacian kernel is also closely related to a graph regularization
framework introduced by Zhou & Scholkopf in [111], extended to directed graphs
in [110].

The exponential diffusion kernel, introduced by Kondor & Lafferty [58] and
the Neumann diffusion kernel, introduced in [85] are similar and based on power
series of the adjacency matrix. A meaningful alternative to the exponential
diffusion kernel, called the Laplacian exponential diffusion kernel (see [58, 88])
is a diffusion model that substitutes the adjacency matrix with the Laplacian
matrix.

Random walk with restart kernels, inspired by the PageRank algorithm and
adapted to provide relative similarities between nodes, appeared relatively re-
cently in [78, 75, 98]. Nadler et al. [70, 71] and Pons et al. [76, 77] suggested a
distance measure between nodes of a graph based on a diffusion process, called
the diffusion distance. The Markov diffusion kernel has been derived from this
distance measure in [31] and [105]. The natural embedding induced by the dif-
fusion distance was called diffusion map by Nadler et al. [70, 71] and is related
to correspondence analysis [105].

More recently, Mantrach et al. [67], inspired by [2, 6] and subsequently by
[82], introduced a link-based covariance measure between nodes of a weighted
directed graph, called the sum-over-paths (SoP) covariance. They consider, in
a similar manner as in this paper, a Gibbs-Boltzmann distribution on the set
of paths such that high-cost paths occur with low probability whereas low-cost
paths occur with a high probability. Two nodes are then considered as highly
similar if they often co-occur together on the same – preferably short – path. A
related co-betweenness measure between nodes has been defined in [57].

Moreover, as both the shortest path distance and the resistance distance
show some issues, there were several attempts to define families of distances
interpolating between the shortest path and more “global” distances, such as
the resistance distance. In this context, inspired by [2, 6, 82], a parametrized
family of dissimilarity measures, called the randomized shortest path (RSP)
dissimilarity, reducing to the shortest path distance at one end of the parameter
range, and to the resistance distance (up to a constant scaling factor) at the
other end, was proposed in [104] and extended in [54]. Similar ideas appeared
at the same time in [15, 16], based on considering the co-occurences of nodes
in forests of a graph, and in [40, 3], based on a generalization of the effective
resistance in electric circuits. These two last families are metrics while the
RSP dissimilarity does not satisfy the triangle inequality. The potential and
the surprisal distances introduced in this work fall under the same catalogue of
distance families. See also [54, 37, 36] for other, closely related, formulations of
families of distances based on free energy and network flows.

2.2. Background and notation

We now introduce the necessary notation for the bag-of-paths (BoP) frame-
work, providing both a relatedness index and a distance measure between nodes
of a network. First, note that, in the sequel, column vectors are written in bold
lowercase while matrices are in bold uppercase.
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Consider a weighted directed graph or network, G = (V, E), assumed
strongly connected, with a set V of n nodes (or vertices) and a set E of edges (or
arcs, links). An edge between node i and node j is denoted by i → j or (i, j).
Furthermore, it is assumed that we are given an adjacency matrix A with ele-
ments aij ≥ 0 quantifying in some way the affinity between node i and node j.
When aij > 0, node i and node j are said to be adjacent, that is, connected by
an edge. Conversely, aij = 0 means that i and j are not connected. We further
assume that there are no self-loops, that is, the aii = 0. From this adjacency
matrix, a standard random walk on the graph is defined in the usual way. The
transition probabilities associated to each node are simply proportional to the
affinities and then normalized:

prefij =
aij∑n
j′=1aij′

(1)

Note that these transition probabilities will be used as reference probabilities
later; hence the superscript “ref”. The matrix Pref , containing elements prefij , is
stochastic and called the transition matrix of the natural or reference random
walk on the graph.

In addition, we assume that a transition cost, cij ≥ 0, is associated to each
link i → j of the graph G. If there is no edge between i and j, the cost is
assumed to take an infinite value, cij =∞. For consistency, cij =∞ if and only
if aij = 0. The cost matrix C is the matrix containing the immediate costs cij
as elements. We will assume that at least one element of C is strictly positive.
A path ℘ is a finite sequence of jumps to adjacent nodes on G (including loops),
initiated from a starting node s = i, and stopping in an ending node e = j.
The total cost of a path ℘ is simply the sum of the local costs cij along ℘, while
the length of a path is the number of steps, or jumps, needed for following that
path.

The costs are set independently of the adjacency matrix; they quantify the
cost of a transition, depending on the problem at hand. They can, e.g., be
defined according to some properties, or features, of the nodes or the edges in
order to bias the probability distribution of choosing a path. In the case of a
social network, we may, for instance, want to bias the paths in favor of domain
experts. In that case, the cost of jumping to a node could be set proportional
to the degree of expertise of the corresponding person. Therefore, walks visiting
a large proportion of persons with a low degree of expertise would be penalized
versus walks visiting persons with a high degree. Another example aims to favor
hub-avoiding paths penalizing paths visiting hubs. Then, the cost can be simply
set to the degree of the node. If there is no reason to bias the paths with respect
to some features, costs are simply set equal to 1 (paths are penalized by their
length) or equal to cij = 1/aij (the elements of the adjacency matrix can then
be considered as conductances and the costs as resistances).

3. The basic bag-of-paths framework

Roughly speaking, the BoP model will be based on the probability that a
path drawn from a “bag of paths” has nodes i and j as its starting and ending
nodes, respectively. According to this model, the probability of drawing a path
starting in node i and ending in node j from the bag-of-paths can easily be
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computed in closed form. This probability distribution then serves as a building
block for several extensions.

The bag-of-paths framework is introduced by first considering bounded paths
and then paths of arbitrary length. For simplicity, we discuss non-hitting (or
non-absorbing) paths first and then develop the more interesting bag-of-hitting-
paths framework in the next section.

3.1. Sampling bounded paths according to a Gibbs-Boltzmann distribution

The present section describes how the probability distribution on the set of
paths is assigned. In order to make the presentation rigorous, we will first have
to consider paths of bounded length t. Later, we will extend the results for paths
with arbitrary length. Let us first choose two nodes, a starting node i and an
ending node j and define the set of paths (including cycles) of length t from i
to j as Pij(t) = {℘ij(t)}. Thus, Pij(t) contains all the paths ℘ij(t) allowing to
reach node j from node i in exactly t steps.

Let us further denote as c̃(℘ij(t)) the total cost associated to path ℘ij(t).
Here, we assume that ℘ij(t) is a valid path from node i to node j, that is, it
consists of a sequence of nodes (k0 = i) → k1 → k2 → · · · → (kt = j) where
ckτ−1kτ < ∞ for all τ ∈ [1, t]. As already mentioned, we assume that the total

cost associated to a path is additive, i.e. c̃(℘ij(t)) =
∑t
τ=1ckτ−1kτ . Then, let us

define the set of all t-length paths through the graph between all pairs of nodes
as P(t) = ∪ni,j=1Pij(t).

Finally, the set of all bounded paths up to length t is denoted by P(≤ t) =
∪tτ=0P(τ). Note that, by convention, for i = j and t = 0, zero-length paths are
allowed with zero associated cost. Other types of paths will be introduced later;
a summary of the mathematical notation appears in Table 1.

Now, we consider a probability distribution on this finite set P(≤ t), rep-
resenting the probability of drawing a path ℘ ∈ P(≤ t) from a bag containing
all paths up to length t. We search for the distribution of paths P(℘) minimiz-
ing the expected total cost-to-go, E[c̃(℘)], among all the distributions having
a fixed relative entropy J0 with respect to a reference distribution, here the
natural random walk on the graph (see Equation (1)). This choice naturally
defines a probability distribution on the set of paths of maximal length t such
that high-cost paths occur with a low probability while short paths occur with
a high probability. In other words, we are seeking for path probabilities, P(℘),
℘ ∈ P(≤ t), minimizing the expected total cost subject to a constant relative
entropy constraint2:

{P(℘)}:℘∈P(≤t)
minimize

∑
℘∈P(≤t)

P(℘)c̃(℘)

subject to
∑
℘∈P(≤t) P(℘) log(P(℘)/P̃ref(℘)) = J0∑
℘∈P(≤t) P(℘) = 1

(2)

where J0 > 0 is provided a priori by the user, according to the desired degree of
randomness and P̃ref(℘) represents the probability of following the path ℘ when

2In theory, non-negativity constraints should be added, but this is not necessary as the
resulting probabilities are automatically non-negative.
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walking according to the reference transition probabilities prefij of the natural
random walk on G (see Equation (1)).

More precisely, we define π̃ref(℘) =
∏t
τ=1 p

ref
kτ−1kτ

, that is, the product of
the transition probabilities along path ℘ – the likelihood of the path when the
starting and ending nodes are known. Now, if we assume a uniform (non-
uniform priors are considered in Section 4), independent, a priori probabil-
ity, 1/n, for choosing both the starting and the ending node, then we set
P̃ref(℘) = π̃ref(℘)/

∑
℘′∈P(≤t) π̃

ref(℘′), which ensures that the reference prob-

ability is properly normalized3.
The problem (2) can be solved by introducing the following Lagrange func-

tion

L =
∑

℘∈P(≤t)

P(℘)c̃(℘)+λ

 ∑
℘∈P(≤t)

P(℘) log
P(℘)

P̃ref(℘)
− J0

+µ

 ∑
℘∈P(≤t)

P(℘)− 1


(3)

and optimizing over the set of path probabilities {P(℘)}℘∈P(≤t). As could be
expected, setting its partial derivative with respect to P(℘) to zero and solving
the equation yields a Gibbs-Boltzmann probability distribution on the set
of paths up to length t [67],

P(℘) =
P̃ref(℘) exp[−θc̃(℘)]∑

℘′∈P(≤t)

P̃ref(℘′) exp[−θc̃(℘′)]
(4)

where the Lagrange parameter λ plays the role of a temperature T and θ = 1/λ
is the inverse temperature.

Thus, as desired, short paths ℘ (having a low cost c̃(℘)) are favored in that
they have a large probability of being followed. From Equation (4), we clearly
observe that when θ → 0, the path probabilities reduce to the probabilities
generated by the natural random walk on the graph (characterized by the tran-
sition probabilities prefij as defined in Equation (1)). In this case, J0 → 0 as
well. But when θ is large, the probability distribution defined by Equation (4)
is biased towards low-cost paths (the most likely paths are the shortest ones).
Note that, in the sequel, it will be assumed that the user provides the value of
the parameter θ instead of J0, with θ > 0. Also notice that the model could be
derived thanks to a maximum entropy principle instead [46, 51].

3.2. The bag-of-paths probabilities

Our BoP framework will be based on the computation of another important
quantity derived from Equation (4): the probability of drawing a path starting
in some node s = i and ending in some other node e = j from the bag of paths.

3We will see later that the path likelihoods π̃ref(℘) are already properly normalized in the
case of hitting, or absorbing, paths:

∑
℘∈Ph π̃ref(℘) = 1. See Appendix A.
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℘ a particular path

P(℘) the probability of drawing path ℘

Pij(t) set of paths connecting i to j in exactly t steps

Pij(≤ t) set of paths connecting i to j in at most t steps

P(≤ t) = ∪n
i,j=1Pij(≤ t) set of all paths of at most t steps

Pij set of paths of arbitrary length connecting i to j

P = ∪n
i,j=1Pij set of all paths of arbitrary length

Pref transition probability matrix with elements prefij

C cost matrix with elements cij
P̃ref(℘) likelihood of following path ℘ according to prefij

c̃(℘) total cumulated cost when following path ℘

Table 1: Summary of notations for the enumeration of paths in graph G.

For paths up to length t this is provided by

P(≤t)(s = i, e = j) =

∑
℘∈Pij(≤t)

P̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈P(≤t)

P̃ref(℘′) exp[−θc̃(℘′)]

=

∑
℘∈Pij(≤t)

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈P(≤t)

π̃ref(℘′) exp[−θc̃(℘′)]
(5)

where Pij(≤ t) is the set of paths connecting node i and node j up to length
t. From (4), this quantity simply computes the probability mass of drawing a
path connecting i to j. The paths in Pij(≤ t) can contain loops and could visit
nodes i and j several times during the trajectory4.

3.2.1. Computation of the bag-of-paths probabilities for bounded paths

The analytical expression allowing to compute the quantity defined by Equa-
tion (5) will be derived in this subsection. Then, in the following subsection, its
definition will be extended to the set of paths of arbitrary length (unbounded
paths) by taking the limit t→∞.

We start from the cost matrix, C, from which we build a new matrix, W,
as

W = Pref ◦ exp[−θC] = exp
[
−θC + log Pref

]
(6)

where Pref is the transition probability matrix5 of the natural random walk on
the graph containing the elements prefij , and the logarithm/exponential functions
are taken elementwise. Moreover, ◦ is the elementwise (Hadamard) matrix
product. Note that the matrix W is not symmetric in general.

4Note that another interesting class of paths, the hitting, or absorbing, paths – allowing
only one single visit to the ending node j – will be considered in the next section 4.

5Do not confuse matrix Pref in bold with P̃ref(℘) representing the reference probability of
path ℘. A summary of the notation appears in Table 1.
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Then, let us first compute the numerator of Equation (5). Because all
the quantities in the exponential of Equation (5) are summed along a path,
log π̃ref(℘) =

∑t
τ=1 log prefkτ−1kτ

and c̃(℘) =
∑t
τ=1ckτ−1kτ where each link

kτ−1 → kτ lies on path ℘, we immediately observe that element i, j of the ma-
trix Wτ (W to the power τ) is [Wτ ]ij =

∑
℘∈Pij(τ) exp[−θc̃(℘) + log π̃ref(℘)]

where Pij(τ) is the set of paths connecting the starting node i to the ending
node j in exactly τ steps.

Consequently, the sum in the numerator of Equation (5) is

∑
℘∈Pij(≤t)

π̃ref(℘) exp[−θc̃(℘)] =

t∑
τ=0

∑
℘∈Pij(τ)

π̃ref(℘) exp[−θc̃(℘)]

=

t∑
τ=0

[Wτ ]ij =

[
t∑

τ=0

Wτ

]
ij

= eT
i

(
t∑

τ=0

Wτ

)
ej (7)

where ei is a column vector full of 0’s, except in position i where it contains
a 1. By convention, at time step 0, the random walker appears in node i with
probability one and a zero cost: W0 = I. This means that zero-length paths
(without any transition step) are allowed in Pij(≤ t). If, on the contrary, we
want to dismiss zero-length paths, we could redefine Pij(≤ t) as the set as
paths of length at least one (the summation starts at t = 1 instead of t = 0)
and proceed in the same manner.

This previous Equation (7) allows to derive the analytical form of the prob-
ability of drawing a bounded path (up to length t) starting in node i and end-
ing in j. Indeed, replacing Equation (7) in Equation (5), and recalling that
P(≤ t) = ∪ni,j=1Pij(≤ t), we obtain

P(≤t)(s = i, e = j) =

eT
i

(
t∑

τ=0

Wτ

)
ej

n∑
i,j=1

eT
i

(
t∑

τ=0

Wτ

)
ej

=

eT
i

(
t∑

τ=0

Wτ

)
ej

eT

(
t∑

τ=0

Wτ

)
e

(8)

where e = [1, 1, . . . , 1]T is a vector of 1’s. Of course, there is no a priori reason
to choose a particular path length; we will therefore consider paths of arbitrary
length in the next section.

3.2.2. Proceeding with paths of arbitrary length

Let us now consider the problem of computing the probability of drawing
a path starting in i and ending in j from a bag containing paths of arbitrary
length, and therefore usually containing an infinite number of paths. Following
the definition in the bounded case (Equation (5)), this quantity will be denoted
as and defined by

P(s = i, e = j) = lim
t→∞

P(≤t)(s = i, e = j) =

∑
℘∈Pij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
(9)
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where Pij is the set of paths (of all lengths) connecting i to j in the graph and
the denominator is called the partition function of the bag-of-paths system,

Z =
∑
℘∈P

π̃ref(℘) exp[−θc̃(℘)] (10)

The quantity P(s = i, e = j) in Equation (9) will be called the bag-of-paths
probability of drawing a path of arbitrary length starting from node i and
ending in node j. As already stated, this key quantity captures a notion of
relatedness, or similarity, between nodes of G. From Equation (9), we observe
that two nodes are considered as highly related (high probability of sampling
them) when they are connected by many, preferably low-cost, paths, that is,
when they are highly accessible. The quantity therefore integrates the concept
of (indirect) connectivity, in addition to proximity (low-cost paths).

Now, from Equation (8), we need to compute

P(s = i, e = j) = lim
t→∞

P(≤t)(s = i, e = j) = lim
t→∞

eT
i

(
t∑

τ=0

Wτ

)
ej

eT

(
t∑

τ=0

Wτ

)
e

(11)

We thus need to compute the well-known power series of W

lim
t→∞

t∑
τ=0

Wτ =

∞∑
t=0

Wt = (I−W)
−1

(12)

which converges if the spectral radius of W is less than 1, ρ(W) < 1. Because
the matrix W only contains non-negative elements and G is strongly connected,
a sufficient condition for ρ(W) < 1 is that it is substochastic [69], which is always
achieved for θ > 0 as cij ≥ 0 for all i, j and we assume that at least one element
of C is strictly positive. We therefore assume a θ > 0.

Now, if we pose
Z = (I−W)

−1
(13)

with W given by Equation (6), we can pursue the computation of the numerator
of Equation (11),

eT
i

( ∞∑
t=0

Wt

)
ej = eT

i (I−W)−1ej = eT
i Zej = [Z]ij = zij (14)

where zij is element i, j of Z. By analogy with Markov chain theory, Z is called
the fundamental matrix [52]. Elementwise, following Equations (7-14), we
have that

zij =
∑
℘∈Pij

π̃ref(℘) exp[−θc̃(℘)] =
[
(I−W)

−1
]
ij

(15)

which is actually related to the potential of a Markov chain [21, 74]. From the
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previous equation, zij can be interpreted as

zij =

∞∑
t=0

[Wt]ij = δij + prefij e
−θcij +

n∑
k1=1

prefik1p
ref
k1j e

−θ(cik1+ck1j)

+

n∑
k1=1

n∑
k2=1

prefik1p
ref
k1k2p

ref
k2j e

−θcik1 e−θck1k2 e−θck2j + · · · (16)

For the denominator of Equation (9) and (11), we immediately find

Z = eTZe = z•• (17)

where z•• =
∑n
i,j=1 zij is the value of the partition function Z. Therefore, from

Equation (11), the probability of drawing a path starting in i and ending in j
in our bag-of-paths model is simply

P(s = i, e = j) =
zij
Z
, with Z = (I−W)

−1
and Z = z•• (18)

or, in matrix form,

Π =
Z

z••
, with Z = (I−W)

−1
(19)

where Π, called the bag-of-paths probability matrix, contains the prob-
abilities for each starting-ending pair of nodes. Note that this matrix is not
symmetric in general; therefore, in the case of an undirected graph, we might
instead compute the probability of drawing a path i  j or j  i. The result
is a symmetric matrix,

Πsym = Π + ΠT (20)

and only the upper (or lower) triangular part of the matrix is relevant.

3.2.3. An intuitive interpretation of the zij
An intuitive interpretation of the elements zij of the Z matrix can be pro-

vided as follows [82, 67]. Consider a special random walk defined by the tran-
sition probability matrix W whose elements are [W]ij = prefij exp[−cij ]. As W
has some row sums less than one (the rows i of C containing at least one strictly
positive cost cij), the random walker has a nonzero probability of disappearing
in each of these nodes which is equal to (1−

∑n
j=1 wij) at each time step. Indeed,

from Equation (6), it can be observed that the probability of surviving during
a transition i → j is proportional to exp[−θcij ], which makes sense: there is a
smaller probability to survive edges with a high cost. In this case, the elements
of the Z matrix, zij = [Z]ij , can be interpreted as the expected number of times
that an “evaporating”, or “killed” random walk, starting from node i, visits
node j (see for instance [28, 52]) before being killed.

4. Working with hitting/absorbing paths: the bag of hitting paths

The bag-of-hitting-paths model described in this section is a restriction of
the previously introduced bag-of-paths model in which the ending node of each
path only appears once – at the end of the path. In other words, no intermediate
node on the path is allowed to be the ending node j, thus prohibiting looping on
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this node j. Technically this constraint will be enforced by making the ending
node absorbing6, as in the case of an absorbing Markov chain [28, 43, 52, 74].
We will see later in this section that this model has some nice properties.

4.1. Definition of the bag-of-hitting-paths probabilities

Let Ph
ij be the set of hitting paths starting from i and stopping once node

j has been reached for the first time (j is made absorbing). Let Ph = ∪ijPh
ij

be the complete set of such hitting paths. Following the same reasoning as in
the previous subsection, from Equation (9), when putting a Gibbs-Boltzmann
distribution on Ph, the probability of drawing a hitting path starting in i and
ending in j is

Ph(s = i, e = j) =

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈Ph

π̃ref(℘′) exp[−θc̃(℘′)]
=

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)]

Zh

(21)
and the denominator of this expression is also called the partition function,
Zh =

∑
℘∈Ph π̃ref(℘) exp[−θc̃(℘)], for the hitting paths system this time. The

quantity Ph(s = i, e = j) will be called the bag-of-hitting-paths probability
of drawing a hitting path starting in i and ending in j. Note that in the case of
unbounded hitting paths, the reference path probabilities can be simply defined
as P̃ref = 1

n2 π̃
ref if we assume a uniform reference probability for drawing the

starting and ending nodes. With this definition, it is shown in Appendix A that
the probability is properly normalized, i.e.,

∑
℘∈Ph P̃ref(℘) = 1.

Obviously, for hitting paths, if we adopt the convention that zero-length
paths are allowed, paths of length greater than 0 starting in node i and ending
in the same node i are prohibited – in that case, the zero-length path is the only
allowed path starting and ending in i and we set its π̃ref equal to 1.

Now, following the same reasoning as in previous section, the numerator of
Equation (21) is

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)] = eT
i

( ∞∑
t=0

(W(−j))t

)
ej = eT

i (I−W(−j))−1ej

= eT
i Z(−j)ej = z

(−j)
ij (22)

where W(−j) is now matrix W of Equation (6) where the jth row has been set
to 0T (node i is absorbing and killing meaning that the jth row of the transition
matrix, Pref , is equal to zero) and Z(−j) = (I −W(−j))−1. This means that
when the random walker reaches node j, he immediately stops his walk there.
This matrix is given by W(−j) = W− ej(w

r
j )

T with wr
j = colj(W

T) = WTej
being a column vector containing the jth row of W.

6And killing, see later.
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4.2. Computation of the bag-of-hitting-paths probabilities

In Appendix B, it is shown from a bag-of-paths framework point of view
that the elements of Z(−j) can be computed simply and efficiently by

z
(−j)
ij = [Z(−j)]ij =

zij
zjj

(23)

which is a noteworthy result by itself. Note that this result has been re-derived in
a more conventional, but also more tedious, way through the Sherman-Morrison
formula by [54] in the context of computing randomized shortest paths dissim-
ilarities in closed form.

Using this result, Equation (22) can be developed as∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)] = z
(−j)
ij =

zij
zjj
, zhij (24)

where we define the matrix containing the elements z
(−j)
ij = zij/zjj as Zh – the

fundamental matrix for hitting paths. The elements of the matrix Zh are
denoted by zhij . From Equation (24), this matrix can be computed as Zh =

ZD−1h with Dh = Diag(Z). Note that the diagonal elements of Zh are equal to
1, zhii = 1. Moreover, when θ → ∞, zjj → 1 and zhij → zij (at the limit, only
shortest paths, without loops, are considered).

We immediately deduce the bag-of-hitting-paths probability including zero-
length paths (Equation (21)),

Ph(s = i, e = j) =

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)]

n∑
i′,j′=1

∑
℘′∈Ph

i′j′

π̃ref(℘′) exp[−θc̃(℘′)]

=
zij/zjj

n∑
i′,j′=1

(zi′j′/zj′j′)

=
zhij
Zh

(25)

where the denominator of Equation (25) is the partition function of the hitting
paths model,

Zh =

n∑
i,j=1

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)] =

n∑
i,j=1

(zij/zjj) (26)

In matrix form, denoting by Πh the matrix of bag-of-hitting-paths
probabilities Ph(s = i, e = j),

Πh =
ZD−1h

eTZD−1h e
, with Z = (I−W)

−1
and Dh = Diag(Z) (27)

The algorithm for computing the matrix Πh is shown in Algorithm 1. The
symmetric version for hitting paths is obtained by applying Equation (20) after
the computation of Πh. An interesting application would be to investigate
graph cuts based on bag-of-hitting-paths probabilities instead of the standard
adjacency matrix.

15



Algorithm 1 Computing the bag-of-hitting-paths probability matrix of a graph.

Input:
– A weighted, possibly directed, strongly connected, graph G containing n nodes.
– The n× n adjacency matrix A associated to G, containing affinities.
– The n× n cost matrix C associated to G.
– The inverse temperature parameter θ.

Output:
– The n × n bag-of-hitting-paths probability matrix Πh with zero-length paths
included containing the probability of drawing a path starting in node i and ending
in node j, when sampling paths according to a Gibbs-Boltzmann distribution.

1. D ← Diag(Ae) . the row-normalization, or outdegree, matrix with e being a
column vector full of 1’s

2. Pref ← D−1A . the reference transition probabilities matrix
3. W← Pref ◦ exp[−θC] . elementwise exponential and multiplication ◦
4. Z← (I−W)−1 . the fundamental matrix
5. Dh ← Diag(Z) . the column-normalization matrix for hitting paths probabili-

ties
6. Zh ← ZD−1

h . column-normalize the fundamental matrix
7. Zh ← eTZhe . compute normalization factor – the partition function

8. Πh ←
Zh

Zh
. the bag-of-hitting-paths probability matrix with zero-paths in-

cluded
9. return Πh

4.3. An intuitive interpretation of the zhij
In this section, we provide an intuitive description of the elements of the hit-

ting paths fundamental matrix, Zh. Let us consider a particular killed random
walk with absorbing state α on the graph G whose transition probabilities are
given by the elements of W(−j), that is, wij = prefij exp[−θcij ] when i 6= α and
wαj = 0 otherwise. In other words, the node α is made absorbing and killing –
it corresponds to hitting paths with node α as hitting node. When the walker
reaches this node, he stops his walk and disappears. Moreover, as exp[−θcij ] ≤ 1
for all i, j, the matrix of transition probabilities wij is substochastic and the ran-
dom walker has also a nonzero probability (1 −

∑n
j=1 wij) of disappearing at

each step of its random walk and in each node i for which (1−
∑n
j=1 wij) > 0.

This stochastic process has been called an “evaporating random walk” in [82]
or an “exponentially killed random walk” in [89].

Now, let us consider column α (corresponding to the hitting, or absorbing,
node) of the fundamental matrix of non-hitting paths, colα(Z) = Zeα. Because
the fundamental matrix is Z = (I −W)−1 (Equation (13)), we easily obtain
(I−W)(Zeα) = Ieα = eα. Or, in elementwise form,{

ziα =
∑n
j=1 wijzjα for each i 6= α

zαα =
∑n
j=1 wαjzjα + 1 for absorbing node α

(28)

When considering hitting paths instead, zhαα = 1 (see Equation (24)) because
wαj = 0 for all j (node α is made absorbing and killing) so that the second line
of Equation (28) – the boundary condition – becomes simply zhαα = 1 for hitting
paths. Moreover, we know that zhiα = ziα/zαα for any i 6= α. Thus, dividing
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the first line of Equation (28) by zαα provides{
zhiα =

∑n
j=1 wij z

h
jα for each i 6= α

zhαα = 1 for absorbing node α
(29)

Interestingly, this is exactly the set of recurrence equations computing the
probability of hitting node α when starting from node i (see, e.g., [52, 81, 95]).
Therefore, the zhiα represent the probability of surviving during the killed random
walk from i to α with transition probabilities wij and node α made absorbing.
Said differently, it corresponds to the probability of reaching absorbing node j
without being killed during the walk.

5. Two novel families of distances based on hitting path probabilities

In this section, two families of distance measures are derived from the hitting
path probabilities including zero-length paths7. The second one benefits from
some nice properties that will be detailed.

5.1. A first distance measure

The first distance measure is directly derived from the bag-of-paths proba-
bilities introduced in the previous section.

5.1.1. Definition of the distance

This section shows that the associated surprisal measure,

− log Ph(s = i, e = j),

quantifying the “surprise” generated by the outcome (s = i) ∧ (e = j), when
symmetrized, is a distance measure. This distance ∆

sur
ij associated to the bag-

of-hitting-paths is defined as follows

∆
sur
ij ,

−
log Ph(s = i, e = j) + log Ph(s = j, e = i)

2
if i 6= j

0 if i = j
(30)

where Ph(s = i, e = j) and Ph(s = j, e = i) are computed according to Equation
(25) or (27) for the matix form. Obviously, ∆sur

ij ≥ 0 and ∆
sur
ij is symmetric.

Moreover, ∆sur
ij is equal to zero if and only if i = j.

It is shown in Appendix C that this quantity is a distance measure since it
satisfies the triangle inequality, in addition to the other mentioned properties.
This distance will be called the bag-of-hitting-paths surprisal distance.

5.1.2. Computation of the distance

It can be computed by adding the following matrix operations to Algorithm
1:

• ∆sur ← − 1
2

[
log(Πh) + log(ΠT

h )
]

. take elementwise logarithm for com-

puting the potentials

• ∆sur ←∆sur −Diag(∆sur) . put diagonal to zero

We now turn to the development of the second distance measure.

7The results do not hold for a bag of paths excluding zero-length paths.
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5.2. A second distance measure

This subsection introduces a second measure enjoying some nice properties,
based on the same ideas.

5.2.1. Definition of the distance

The second distance measure automatically follows from Inequality (C.5) in
Appendix C and is based on the quantity φ(i, j) = − 1

θ log zhij . For convenience,
let us recall this inequality,

Ph(s = i, e = k) ≥ ZhPh(s = i, e = j) Ph(s = j, e = k)

Then, from Ph(s = i, e = j) = zhij/Zh (Equation (25)), we directly obtain

zhik ≥ zhij z
h
jk. Taking − 1

θ log of both sides provides − 1
θ log zhik ≤ − 1

θ log zhij −
1
θ log zhjk, or,

φ(i, k) ≤ φ(i, j) + φ(j, k) (31)

where we defined

φ(i, j) , −1

θ
log zhij = −1

θ
log

(
zij
zjj

)
(32)

and, from (31), the φ(i, j) obviously verify the triangle inequality.
The quantity φ(i, j) will be called the potential [21] of node i with respect

to node j. Indeed, it has been shown [34] that when computing the continuous-
state continuous-time equivalent of the randomized shortest paths framework
[82], φ(x, y) plays the role of a potential inducing a drift (external force) ∇φ in
the corresponding diffusion equation. From the properties and the probabilistic
interpretation of the zhij , both φ(i, j) ≥ 0 (as 0 ≤ zhij ≤ 1) and φ(i, i) = 0 (as

zhij = 1) hold.
This directed distance measure has three intuitive interpretations.

• First, let us recall from Equation (24) that zhij is given by zhij =∑
℘∈Ph

ij
π̃ref(℘) exp[−θc̃(℘)] = zij/zjj where zij is element i, j of the fun-

damental matrix Z (see Equation (13)). From this last expression, φ(i, j)
can be interpreted (up to a scaling factor) as the logarithm of the expecta-
tion of the reward exp[−θc̃(℘)] with respect to the path likelihoods, when
considering absorbing random walks starting from node i and ending in
node j.

• In addition, from Equation (29), it also corresponds to minus the log-
likelihood of surviving during the killed, absorbing, random walk from i
to j.

• Finally, it was shown in [54], investigating further developments of the
randomized shortest paths (RSP) dissimilarity, that the potential distance
also corresponds to the minimal free energy of the system of hitting paths
from i to j. Indeed, the RSP dissimilarity, defined as the expected total
cost between i and j, is not a distance measure as it does not satisfy the
triangle inequality. However, subtracting the entropy from the expected
total cost (that is, computing the free energy) leads to a distance measure
that was shown to be equivalent to the potential distance. Therefore the
potential distance was called the free energy distance in [54], which
provides still another interpretation to the potential distance.
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Inequality (31) suggests to define the distance ∆
φ
ij = (φ(i, j) + φ(j, i))/2. It

has all the properties of a distance measure, including the triangle inequality,
which is verified thanks to Inequality (31). Note that this distance measure
can be expressed as a function of the surprisal distance (see Equation (30))

as ∆
φ
ij = (∆sur

ij − logZh)/θ for i 6= j. This shows that the newly introduced
distance is equivalent to the previous one, up to the addition of a constant and
a rescaling.

The definition of the bag-of-hitting-paths potential distance is therefore

∆
φ
ij ,


φ(i, j) + φ(j, i)

2
if i 6= j

0 if i = j
, where φ(i, j) = −1

θ
log

(
zij
zjj

)
(33)

and zij is element i, j of the fundamental matrix Z (see Equation (13)).

5.2.2. Computation of the distance

From Equation (27), it can be easily seen that the matrix Zh containing the
zhij can be computed thanks to Algorithm 1 without the normalization steps
7 and 8. The distance matrix with elements ∆

sur
ij is denoted as ∆sur and can

easily be obtained by adding the following matrix operations to Algorithm 1:

• Φ ← − log(Zh)/θ . take elementwise logarithm for computing the po-
tentials

• ∆φ ← (Φ + ΦT)/2 . symmetrize the matrix

• ∆φ ←∆φ −Diag(∆φ) . put diagonal to zero

Note that both the surprisal and the potential distances are well-defined as we
assumed that G is strongly connected.

5.3. Some properties of the potential and surprisal distances

The potential distance ∆
φ benefits from some interesting properties proved

in the appendix:

• The potential distance is graph-geodetic, meaning that ∆
φ
ik =

∆
φ
ij + ∆

φ
jk if and only if every path from i to k passes through j [15]

(see Appendix D for the proof).

• For an undirected graph G, the distance ∆
φ
ij approaches the

shortest path distance when θ becomes large, θ →∞. In that case, the
Equation (33) reduces to the Bellman-Ford formula (see, e.g., [7, 19, 23])
for computing the shortest path distance, ∆SP

ik = minj∈Succ(i){cij + ∆
SP
jk }

and ∆
SP
kk = 0 (see Appendix E for the proof). The convergence is, however,

slow8 and numerical underflows could appear before complete convergence
to the shortest path distances (convergence is linear in θ – see the appendix
for details). Therefore, if solutions close to the shortest paths distance are
needed (with very large θ), computational tricks such as those used in hid-
den Markov models should be implemented. See for instance the appendix
in [42].

8It was observed, e.g., that the convergence of the RSP dissimilarity is much faster when
θ increases.
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• For an undirected graph G, the distance ∆
φ
ij approaches half the

commute cost distance when θ becomes small, θ → 0+ (see Appendix F
for the proof). Note that, for a given graph G, the commute cost between
two nodes is proportional to the commute time between these two nodes,
and therefore also proportional to the resistance distance (see [12, 54]).

• The distance ∆
φ
ij extends the Bellman-Ford formula computing

the shortest path distance to integrate sub-optimal paths (explo-
ration) by simply replacing the min operator by the softmin operator in
the recurrence formula. This property is discussed in the next subsection.

All of these properties make the potential distance quite attractive as it
defines a family of distances interpolating between the shortest path and the
resistance distance. Our conjecture is that interpolating between these two dis-
tances hopefully alleviates the “lost in space” effect [99] as the distance gradually
focuses on shorter paths, while still exploring sub-optimal paths, when param-
eter θ increases. A recent paper [39] addresses this question by showing the
consistency and the robustness of the Laplacian transformed hitting time (the
Laplace transform of hitting times), a measure related to the potential distance.
One of our future work will be to evaluate if their analysis can be transposed to
our measures. But, of course, ultimately, the “best” distance is application- and
data-dependent and it is difficult to know in advance which one will perform
best.

Note that, even if the potential distance converges to the commute cost when
θ → 0+, we have to stress that θ should not become equal to zero because the
matrix W becomes rank-deficient when θ = 0. This means that the Equation
(13) cannot be used for computing the commute cost when θ is exactly equal
to zero. Despite this annoying fact, we found that the approximation is quite
accurate for small values of θ.

Concerning the surprisal distance, because it was shown in the previous
section that ∆

sur
ij = θ∆φij + logZh for all i 6= j, we deduce that the ranking of

the node distances for a given θ is the same for the two distances.

5.4. Relationships with the Bellman-Ford formula

As shown in Appendix E, Equation (E.7), the potential φ(i, k) for a fixed
ending node k can be computed thanks to the following recurrence formula

φ(i, k) =


−1

θ
log

 ∑
j∈Succ(i)

prefij exp[−θ(cij + φ(j, k))]

 if i 6= k

0 if i = k

(34)

which is an extension of Bellman-Ford’s formula for computing the shortest
path distance in a graph [7, 19, 23, 48, 80, 87]. The Equation (34) has to be
iterated until convergence. Note that this result is related to the concept of
“path integral control” developed in control theory; see, e.g., the survey [50].

Interestingly and intriguingly, this expression is obtained by simply replacing
the min operator by a weighted version of the softmin operator [22] in the
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Bellman-Ford recurrence formula,

softminq,θ(x) = −1

θ
log

( n∑
j=1

qj exp[−θxj ]
)

with all qj ≥ 0 and
∑n
j=1 qj = 1

(35)
which interpolates between weighted average and minimum operators (see Ap-
pendix E or [22, 91]). Indeed, the potential φ(i, j) tends to the average first-
passage cost when θ → 0+ and to the shortest path cost when θ → ∞. This
formula is a generalization of the distributed consensus algorithm developed in
[91], and considering binary costs only.

6. Extending the bag of paths by considering non-uniform priors on
nodes

This section extends the bag of hitting paths model by considering non-
uniform a priori probabilities of selecting the starting and ending nodes9. For
instance, if the nodes represent cities, it could be natural to weigh each city by its
population. These prior probabilities, weighting each node of G, will be denoted
as qsi and qej with

∑n
i=1 q

s
i = 1,

∑n
j=1 q

e
j = 1 and all weights non-negative.

In this situation, because the reference probability P̃ref(℘ij) becomes

P̃ref(℘ij) = qsiq
e
j π̃

ref(℘ij), (36)

instead of 1
n2 π̃

ref(℘ij), the probability of sampling a hitting path i, j in Equation
(21) is redefined as

Ph(s = i, e = j) =

∑
℘∈Ph

ij

P̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈Ph

P̃ref(℘′) exp[−θc̃(℘′)]

=

qsi

 ∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)]

qej
n∑

i′,j′=1

qsi′

 ∑
℘′∈Ph

i′j′

π̃ref(℘′) exp[−θc̃(℘′)]

qej′
(37)

where π̃ref(℘ij) is, as before, the likelihood of the path ℘ij given that the starting
and ending nodes are i, j. Therefore this expression can be computed thanks
to Equation (24) as the weighted quantity

Ph(s = i, e = j) =

qsi

(
zij
zjj

)
qej

n∑
i′,j′=1

qsi′

(
zi′j′

zj′j′

)
qej′

=

qsi

(
zij
zjj

)
qej

Zhw
(38)

9The development for non-hitting paths is similar and will therefore be omitted.
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and the denominator

Zhw =

n∑
i,j=1

qsi

(
zij
zjj

)
qej (39)

is the new, weighted by priors, partition function. The numerator of (38) is the
fundamental matrix of the hitting paths system for weighted nodes, containing
elements

qsi

(
zij
zjj

)
qej = qsi z

h
ij q

e
j where, as before, zhij =

zij
zjj

(40)

In matrix form, the counterpart of Equation (27) – but now including priors
on the nodes – is

Πh =
Diag(qs)ZD−1h Diag(qe)

qT
s ZD−1h qe

, with Dh = Diag(Z) (41)

where the vectors qs and qe contain the a priori probabilities qsi and qei . Of
course, we recover Equation (27) when qs = qe = e/n.

Interestingly, the surprisal and potential distances defined on the weighted
nodes still verify the triangle inequality and are therefore distance measures;
this is shown in Appendix G. Therefore, both the surprisal and the potential
distances are defined in the same way as in previous section (see Equations (30)
and (33)), but based this time on the weighted quantities defined in Equations
(38) and (40). More precisely, the directed surprisal distance is computed by
taking − log of the probabilities (38) or (41) (matrix form) while the directed
potential distance is redefined as φ(i, j) = − 1

θ log(qsiz
h
ijq

e
j) (see Appendix G for

details).

7. Experiments on semi-supervised classification tasks

This experimental section aims at investigating the potential of the bag-
of-hitting-paths distances and kernels derived from them in a semi-supervised
classification task, on which they are compared with other competitive tech-
niques.

Notice, however, that the goal of this experiment is not to design a state-
of-the-art classifier. Rather, the main objective is to study the performances
of the proposed measures in comparison with other measures and therefore
investigate their usefulness in solving pattern recognition tasks. More precisely,
this experiment investigates to which extent the distance measures are able to
accurately capture the global structure of the graph through a spectral method.

7.1. Graph based semi-supervised classification

Semi-supervised graph node classification has received an increasing interest
in recent years (see [1, 13, 41, 112, 113] for surveys). It considers the task of
using the graph structure and other available information for inferring the class
labels of unlabeled nodes of a network in which only a part of the class labels of
nodes are known a priori. Several categories of approaches have been suggested
for this problem. Among them, we may mention random walks [111, 90, 11],
graph mincuts [8], spectral methods [14, 88, 58, 49], regularization frameworks
[5, 100, 102, 109, 110], transductive and spectral SVMs [47], to name a few.
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Topic Size Topic Size Topic Size
news-2cl-1 news-2cl-2 news-2cl-3
Politics/general 200 Computer/graphics 200 Space/general 200
Sport/baseball 200 Motor/motorcycles 200 Politics/mideast 200

news-3cl-1 news-3cl-2 news-3cl-3
Sport/baseball 200 Computer/windows 200 Sport/hockey 200
Space/general 200 Motor/autos 200 Religion/atheism 200
Politics/mideast 200 Religion/general 200 Medicine/general 200

news-5cl-1 news-5cl-2 news-5cl-3
Computer/windowsx 200 Computer/graphics 200 Computer/machardware 200
Cryptography/general 200 Computer/pchardware 200 Sport/hockey 200
Politics/mideast 200 Motor/autos 200 Medicine/general 200
Politics/guns 200 Religion/atheism 200 Religion/general 200
Religion/christian 200 Politics/mideast 200 Forsale/general 200

Table 2: Document subsets for semi-supervised classification experiments. Nine
subsets have been extracted from the original 20 Newsgroups dataset, with 2, 3
and 5 topics as proposed in [103]. Each class is composed of 200 documents.

Still another family of approaches is based on kernel methods, which embed
the nodes of the input graph into a Euclidean feature space where a decision
boundary can be estimated using standard kernel (semi-)supervised methods,
such as SVMs. Fouss et al. [31] investigated the applicability of nine such graph
kernels in collaborative recommendation and semi-supervised classification by
adopting a simple sum-of-similarities10 rule (SoS). Zhang et al. [108, 107] as well
as Tang et al. [92, 93, 94] extract the dominant eigenvectors (a latent space)
of graph kernels or similarity matrices and then input them to a supervised
classification method, such as a logistic regression or a SVM, to categorize the
nodes. These techniques based on similarities and eigenvectors extraction allow
to scale to large graphs, depending on the kernel.

Another category of classification methods relies on random walks performed
on a weighted and possibly directed graph seen as a Markov chain. The random
walk with restart [75, 97, 98], directly inspired by the PageRank algorithm, is
one of them. The method of Callut et al. [11], based on discriminative random
walks, or D-walks, belongs to the same category. It defines, for each class, a
group betweenness measure based on passage times during special random walks
of bounded length. Those walks are constrained to start and end in nodes within
the same class, defining distinct random walks for each class. The number of
passages on nodes is computed for each type of such random walk, therefore
defining a distinct betweenness for each class. The main advantage of some
of these random walk based approaches is that class labels can be computed
efficiently (in linear time) while providing competitive results.

7.2. Datasets description

Comparison of the different methods will be performed on several well-known
real world graph datasets (14 in total). Note that, in some cases, only the largest
connected components of the following graphs have been selected:

10The equivalent of nearest neighbors classification when dealing with similarities (a kernel
matrix) instead of distances.
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• 20 Newsgroups (9 subsets): This dataset11 is composed of 20000 text
documents taken from 20 discussion groups of the Usenet diffusion list
(available on UCI [62]). Nine subsets related to different topics are ex-
tracted from the original dataset, as listed in Table 2 [103]. Each subset is
composed of 200 documents extracted randomly from the different news-
groups. The subsets with two classes (news-2cl-1,2,3) contain 400 docu-
ments, 200 in each class. Identically, subsets with three classes contain 600
documents and subsets with five classes contain 1000 documents. Each
subset is composed of different topics, each of which are either easy to sep-
arate (Computer/windowsx and Religion/christian) or harder to separate
(Computer/graphics and Computer/pchardware). Initially, this dataset
does not have a graph structure but is represented in a word vector space
of high dimensionality. To transform this dataset into a graph structure,
a fairly standard preprocessing has been performed, which is directly in-
spired by the paper of Yen et al. [103].

Basically, the first step is to reduce the high dimensionality of the fea-
ture space (terms), by removing stop words, applying a stemming algo-
rithm on each term, removing too common or uncommon terms and by
removing terms with low mutual information with documents. Second, a
term-document matrix W is constructed with the remaining terms and
documents. The elements wij are tf-idf values [65] of term i in document
j. Each row of the term-document matrix W is then normalized to 1. Fi-
nally, the adjacency matrix defining the links between documents is given
by A = WTW.

• IMDB: The collaborative Internet Movie Database (IMDb, [64]) has sev-
eral applications such as making movie recommendations, clustering or
movie category classification. It contains a graph of movies linked to-
gether whenever they share the same production company. The weight of
an edge in the resulting graph is the number of production companies two
movies have in common. The classification problem focuses on identifying
clusters of movies that share the same notoriety (whether the movie is a
box-office hit or not).

• WebKB (4 datasets): These networks consist of sets of web pages
gathered from four computer science departments (one for each univer-
sity, [64]), with each page manually labeled into 6 categories: course,
department, faculty, project, staff, and student. Two pages are linked by
co-citation (if x links to z and y links to z, then x and y are co-citing z).

The adjacency matrices provided by these datasets are all undirected and
some are weighted. In a standard way, the costs associated to the edges are set
to cij = 1/aij . That is, the elements of the adjacency matrix are considered
as conductances and the costs as resistances. For unweighted graphs, affinities
and costs are both equal to 1 for existing edges, meaning that the paths are
weighted by their total length (number of steps).

11Available, e.g., from http://people.csail.mit.edu/jrennie/20Newsgroups/.
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7.3. Compared distances, kernels, and algorithms

This paper derived distance measures from the bag-of-paths probabilities.
In order to use these distances in machine learning and pattern recognition
methods, it is convenient to transform them into similarity matrices, simply
called kernels for convenience.

7.3.1. Deriving a kernel from a distance

From classical multidimensional scaling (MDS, see, e.g., [9, 24]), a centered

kernel matrix K can be derived from a matrix of squared distances ∆(2) as
follows

Kmds = −1

2
H∆(2)H (42)

where H = (I − eeT /n) is the centering matrix and matrix ∆(2) contains the
elementwise squared distances. Then, computing the dominant eigenvectors of
this matrix (see the next section on Experimental settings) corresponds exactly
to classical multidimensional scaling.

Still another popular way to map the distance matrix to a kernel matrix
aims to use the Gaussian mapping or kernel (see, e.g., [85])

Kg = exp
[
−∆(2)/2σ2

]
(43)

where the exponential is taken elementwise. Both approaches will be investi-
gated. Computing the dominant eigenvectors of this matrix corresponds to a
kernel principal components analysis [85, 86]

However, the obtained kernels are not necessarily positive semi-definite until
the distance is Euclidean, which is required for kernel methods. This problem
can be fixed by removing the negative eigenvalues (see, e.g., [68]), which will be
applied in all our experiments12.

For classifying the nodes, the five dominant eigenvectors of the resulting ker-
nels will be extracted from these kernels and then injected into a SVM classifier
(see the next Subsection 7.4 for details).

7.3.2. Compared methods

The following list presents the methods based on kernels computed from the
distances introduced in this paper, as well as from two other recent families of
dissimilarities, for comparison. The derived kernels are computed by using both
(1) multidimensional scaling (mds, Equation (42)) and (2) a Gaussian kernel
(g, Equation (43)).

• The kernels associated to the bag-of-hitting-paths potential distance
(Kmds

BoPP, Kg
BoPP) (Equations (33) and (42)-(43)). The corresponding

methods are denoted as BoPP-mds and BoPP-g.

• The kernels associated to the bag-of-hitting-paths surprisal distance
(Kmds

BoPS, Kg
BoPS) (Equations (30)) and (42)-(43)). The corresponding

methods are denoted as BoPS-mds and BoPS-g.

12Note that, probably because only the dominant eigenvectors are extracted, we did not
observe any significant difference in the experimental results when removing and not removing
the negative eigenvalues of the kernels (results not reported).
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• The randomized shortest path (RSP) kernel (Kmds
RSP, Kg

RSP) computed
from the RSP dissimilarity (see [54, 104, 82] and Equations (42)-(43)).
The corresponding methods are denoted as RSP-mds and RSP-g.

• The logarithmic forest (LF) kernel (Kmds
LF , Kg

LF) computed from the log-
arithmic forest distance (see [15, 16] and Equations (42)-(43)). The cor-
responding methods are denoted as LF-mds and LF-g.

In addition, five state-of-the-art similarity matrices and kernels on a graph
are added to this list and compared to the previous ones. We selected the three
kernels providing consistently the best results in [31], which were based on a
sum-of-similarities instead of the spectral method investigated in this paper.

• The modularity matrix (Q) [72, 73], which was used as a kernel for semi-
supervised learning earlier by Zhang et al. [108, 107] as well as Tang et
al. [92, 93, 94]. The modularity matrix performed best in their exper-
iments, in comparison with other state-of-the-art methods. This is our
first baseline method, denoted as Q.

• The Markov diffusion kernel (KMD) [31] computed from the Markov diffu-
sion map distance [70, 71] and studied in [105, 31]. This kernel, as well as
the two following ones, provided good results in [31]. The corresponding
method is denoted as MD.

• The regularized Laplacian, or matrix forest, kernel (KRL) [44, 17, 18, 31].
The corresponding method is denoted as RL.

• The regularized commute time kernel (KRCT) [31, 66]. The corresponding
method is denoted as RCT.

• The bag-of-paths modularity matrix (KBoPM) studied in [26]. The corre-
sponding method is denoted as BoPM.

Finally, our introduced distances are also compared to an efficient, alterna-
tive, way of performing semi-supervised classification on a network:

• A sum-of-similarities (SoS) algorithm based on the regularized commute
time kernel, which provided good results on large datasets in [66]; see this
paper for details. This is our second baseline method, denoted as SoS.

These kernels and similarity matrices are real symmetric when working with
undirected graphs. All the above kernels and methods will be compared by fol-
lowing the experimental settings described hereafter. For illustration, a picture
of some of the kernels is shown in Figure 1.

7.4. Experimental settings

In this experiment, we address the task of classification of unlabeled nodes in
partially labelled graphs. The method we use is directly inspired from [92]. It
consists of two steps: (1) extracting the latent social dimensions, which may
be done using any matrix decomposition technique or by using a graphical
topic model. Here, we used, as in [92], a simple spectral decomposition of
the relevant matrices. More precisely, we extracted the top eigenvectors of
the compared kernel matrices just described (see Subection 7.3). This aims to

26



100 200 300 400 500 600

100

200

300

400

500

600
100 200 300 400 500 600

100

200

300

400

500

600
100 200 300 400 500 600

100

200

300

400

500

600

(a) (b) (c)

Figure 1: Images of the different similarity matrices, (a) Kmds
BoPP, (b) Kmds

BoPS, and
(c) Q, computed on the news-3cl-1 dataset. Nodes have been sorted according
to classes. We observe that classes are clearly visible in (a) and (b). For the
standard modularity (c), the class discrimination is less clear.

perform a classical multidimensional scaling from distances when using the MDS
transformation of Equation (42) and a kernel principal components analysis
when using the Gaussian mapping of Equation (43). (2) training a classifier on
the extracted latent space. In this space, each feature corresponds to one latent
variable (i.e. one of the top eigenvectors). The number of social dimensions
has been set to 5 for all the suggested measures and the classifier is a one-
vs-rest linear SVM. Note that we also investigated different numbers of social
dimensions [10, 50, 500] but the performances did not change significantly – these
results are therefore not reported here.

The classification accuracy is computed for a labeling rate of 20%, i.e. pro-
portion of nodes for which the label is known13. The labels of remaining nodes
(80%) are removed and used as test data. For this considered labeling rate, an
external stratified 5-fold cross-validation (each fold defining in turn the 20% la-
beled data) was performed, on which performances are averaged. For each fold
of the external cross-validation, a 5-fold internal cross-validation is performed on
the remaining labelled nodes in order to tune the hyper-parameters of the SVM
and each kernel/distance (θ = {0.01, 0.1, 1, 2, 5, 10} for the bag-of-paths based
approaches and c = {0.01, 0.1, 1, 10, 100} for the SVM). Then, performances on
each fold are assessed on the remaining, unlabeled, nodes (test data) with the
hyper-parameter tuned during the internal cross-validation.

For each unlabeled node, the various classifiers predict the most suitable
category according to the procedure described below. We compute, for each
method, the average classification accuracy obtained on the five folds of the
cross-validation. A nonparametric Friedman-Nemenyi statistical test [25] is then
performed across all datasets in order to compare the different methods.

13Other settings were also investigated, leading to similar conclusions; they are therefore
omitted here.

27



Method: BoPM BoPP-g BoPP-mds BoPS-g BoPS-mds LF-g LF-mds MD Q RCT RL RSP-g RSP-mds SoS
Dataset:

webKB-texas 74.85 77.40 74.92 76.57 76.95 74.92 72.75 58.01 72.75 70.89 48.73 74.92 75.75 74.63
webKB-washington 66.19 71.49 70.68 68.61 70.05 72.24 70.10 66.53 59.50 67.40 40.78 70.68 70.33 65.61
webKB-wisconsin 72.84 75.50 73.49 73.13 74.14 73.78 71.91 70.48 72.70 70.76 45.04 73.35 72.49 73.71
webKB-cornell 60.04 55.57 58.31 56.29 58.46 58.38 56.43 51.73 51.23 46.82 41.91 58.31 56.87 58.67
imdb 74.44 50.75 50.68 50.77 50.68 50.71 50.71 52.67 66.64 56.93 68.44 50.75 50.68 78.14
news-2cl-1 96.00 95.06 94.25 95.25 94.75 95.06 95.94 97.56 94.81 90.94 90.69 94.31 94.06 92.50
news-2cl-2 89.83 91.02 90.70 91.71 91.58 90.89 89.26 90.64 91.02 86.43 87.50 90.52 90.89 89.89
news-2cl-3 94.49 95.99 95.68 95.80 95.99 95.55 95.05 95.49 94.17 92.86 93.36 95.99 95.30 94.11
news-3cl-1 94.42 93.92 93.08 92.92 93.08 93.17 92.25 91.75 93.33 72.17 78.25 93.50 92.67 91.75
news-3cl-2 93.31 92.98 92.06 92.89 92.39 91.68 91.39 89.38 92.64 54.98 55.64 92.98 92.18 89.72
news-3cl-3 91.18 93.03 93.24 93.99 93.78 91.39 91.01 81.68 90.55 64.50 57.61 93.11 93.07 90.84
news-5cl-1 86.32 87.98 87.57 87.80 87.47 86.02 86.50 76.40 81.04 48.72 27.73 86.90 87.30 86.52
news-5cl-2 79.48 78.25 81.83 77.80 81.68 77.23 80.88 60.41 75.28 51.88 47.60 77.25 81.41 82.51
news-5cl-3 73.60 81.02 81.09 80.29 80.77 79.91 78.91 61.01 76.00 41.68 27.83 80.97 80.22 81.92

Table 3: Classification accuracy (correct classification rate) for the bag-of-paths based distances and the competing methods obtained on each
dataset, using 5 social dimensions. Only the results for graphs with 20% labeling rate are reported. The best performing method of each data
set is highlighted in boldface.
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7.5. Results and discussions

Table 3 reports average classification accuracies of the methods on all the
datasets, for a proportion of 20% of labeling rate. The method performing best
is presented in boldface for each data set. Then, a simple Borda ranking of
the methods is performed and shown in Table 4. Each method is given a score
equal to its rank (methods are sorted in ascending order of accuracy, worst first
and best last) for each dataset. The best method overall is the one showing the
highest Borda score.

From these tables, it can be observed that the bag-of-paths (BoP) and the
randomized-shortest-paths (RSP) based approaches obtain competitive results
in comparison with the other methods. Indeed, both the BoPP and the BoPS
consistently provide good results. The logarithmic forest distance also obtains
good overall results. However, we can further observe that the best method
is dataset-dependent; this shows that it is often useful to investigate different
methods when facing a network-based semi-supervised classification problem.
Moreover, the differences in performance among the best performing methods
is often small. This can be understood by the fact that we selected the most
promising candidate methods for the comparisons, but also by the fact that
several investigated distances are derived from a similar framework.

Moreover, in order to rate globally the performances of each method, we use a
nonparametric Friedman-Nemenyi statistical test [25] allowing to compare them
across all the datasets. The obtained ranking scores are presented in Figure 2
and are similar to those provided by the Borda ranking. The figure confirms
that the BoP and RSP distances provide good results, although not significantly
different from the logarithmic forest and the two baseline methods (the mod-
ularity matrix Q and the sum-of-similarities SoS). This is partly because the
Friedman-Nemenyi test is rather conservative, especially when comparing many
different techniques.

Therefore, in order to further investigate the results, we also computed pair-
wise comparisons through a nonparametric one-sided Wilcoxon signed-rank test
for matched data (α = 0.05). This paired test shows that all the introduced bag-
of-paths methods (BoPP-g, BoPP-mds, BoPS-g, BoPS-mds) are significantly
better than our first baseline (Q), but not necessarily better than the second
baseline (SoS). Indeed, only one method, BoPS-mds, provided significantly bet-
ter results than SoS (but close to the critical value, p-value = 0.033). This
confirms that the SoS can be considered as a good baseline which, in addition,
is simple, efficient, and scales to large, sparse, networks [66].

Although a little under the bag-of-paths based approaches, note that the
randomized shortest path (RSP) and the logarithmic forest (LF) methods asso-
ciated to the gaussian transformation are also competitive, consistently provid-
ing good results, and significantly better than our first baseline (Q). Note also
that this simple modularity matrix based method Q, although below the best
methods, especially in the 5-classes setting, provides reasonable results.

Curiously, the spectral method applied to the three kernels (the Markov
diffusion kernel (MD), the regularized commute time kernel (RCT) and the
regularized Laplacian kernel (RL)) provides bad performances (all three kernels
perform significantly worse than the two baselines). This is especially odd, as
these kernels obtained good results when used in a sum-of-similarities context
[31, 66] – see the results obtained by the sum-of-similarities based on the RCT
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Method Rank Score
BoPP-g 1 162
BoPS-mds 2 155
BoPP-mds 3 143
RSP-g 4 141
BoPS-g 5 140
LogF-g 6 127
BoPM 7 125
RSP-mds 8 118
SoS 9 109
LogF-mds 10 95
Q 11 89
MD 12 72
RCT 13 38
RL 14 29

Table 4: Ranking of the different classification methods according to Borda’s
method (the higher score, the better).

kernel (SoS) in Table 3 which is not statistically different from the best method.
This could be related to the recent comparison in [45] showing that taking
the logarithm of some well-known kernels improves the performances in node
clustering tasks.

Concerning the transformation from distances to inner products of Equations
(42) and (43), the Gaussian kernel often provides slightly better results than
multidimensional scaling, but not always so.

In summary, these experiments showed that the introduced BoP families of
distances (BoPP, BoPS), but also the already known randomized shortest path
(RSP) and the logarithmic forest (LF) distances, achieve good performances
in comparison with our two baseline methods (Q and SoS) on the investigated
datasets. However, we found that the introduced distances are not necessar-
ily significantly better (although globally ranked better) than the second base-
line, the sum-of-similarities method (SoP) based on the RCT kernel [31, 66].
Because this SoS technique is fast and scales to large graphs [66], it can be
concluded that the introduced distances do not bring much added value here
in our semi-supervised classification tasks. Still, this has to be confirmed in
larger experiments. Indeed, in further work, we plan to conduct a systematic,
comprehensive, comparison of families of distances and kernels on clustering,
classification and dimensionality reduction tasks.

8. Conclusion and further work

This work introduced the bag-of-paths framework considering a bag contain-
ing the set of paths in the network. By defining a Gibbs-Boltzmann distribution
on this set of paths penalizing long paths, we can easily compute various quan-
tities such as distance measures between nodes. It is also shown that one of the
two introduced distance measures has some nice properties, like interpolating
between the shortest path distance and the resistance distance (up to a con-
stant factor). Experiments have shown that the BoP framework can provide
competitive algorithms within a clear theoretical framework.
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Figure 2: Friedman-Nemenyi ranking over the 14 graphs (the larger, the bet-
ter). Two methods are considered as significantly different when their confidence
intervals do not overlap. The best method (BoPP-g) is highlighted.

Indeed, as demonstrated in semi-supervised classification experiments, the
kernels associated to the distance measures derived from the bag-of-paths prob-
abilities achieve good results. Consistency of performance across the different
datasets shows that the bag-of-paths framework seems to induce some promising
distance and similarity measures on graphs, based on its structure.

The framework is rich and other quantities of interest can be defined within
this framework, which are pursued in parallel. For instance, a betweenness
measure can be defined as P(int = j|s = i, e = k), the probability that a path
starting in i and ending in k visits j as an intermediate node [60]. Another idea
is to reformulate the modularity matrix in terms of paths instead of direct links
[26]. Still another application would be the computation of a robustness measure
capturing the criticality of the nodes (under development). The idea then would
be to compute the change in accessibility between nodes when deleting one node
within the BoP framework. Nodes having a wide impact on reachability are then
considered as highly critical.

Another idea would be to investigate graph cut from the bag-of-hitting-paths
probabilities in Equation (27) instead of the adjacency matrix. We also plan to
evaluate experimentally the potential distance (see Equation (34)) as a distance
between sequences of characters by adapting it to a directed acyclic graph, as
in [33].

Finally, we plan to make a systematic experimental comparison of families
of distances and kernels on clustering, semi-supervised classification and dimen-
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sionality reduction tasks, while trying to analyze the theoretical properties of the
proposed distances families by following [39]. In particular, we will investigate
the new kernels introduced recently in [45] where it is shown on node clustering
tasks that taking the logarithm of well-known kernels improves significantly the
performances.
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Appendix

Appendix A. Sum of reference probabilities over hitting paths

In this appendix, it is shown that the sum over all hitting paths of the
reference probabilities is equal to one. We thus have to show∑

℘∈Ph

P̃ref(℘) =

∞∑
t=0

∑
℘∈Ph(t)

P̃ref(℘) =

∞∑
t=0

n∑
i,j=1

∑
℘ij∈Ph

ij(t)

P̃ref(℘ij)

=
1

n2

∞∑
t=0

n∑
i,j=1

∑
℘ij∈Ph

ij(t)

π̃ref(℘ij)
?
= 1 (A.1)

where Ph(t) is the set of all hitting paths of length exactly equal to t and Ph
ij(t)

the set of such hitting paths connecting i to j. As stated before, because we
assume that the a priori probability of choosing the starting node and ending
node is uniform, P̃ref(℘ij) = 1

n2π
ref(℘ij) with πref(℘ij) being the likelihood of

the path ℘ij , i.e., the product of transition probabilities prefll′ along the path of

length t, πref(℘ij) =
∏t
τ=1 p

ref
kτ−1kτ

with k0 = i, kt = j and no intermediate node
being equal to node j.

As we are concerned with hitting paths stopping in node j, let us consider
the absorbing, killing, Markov chain on G with transition probabilities prefll′ for
l 6= j and prefjl′ = 0 for all l′. In other words, node j is made killing and absorbing.

We now introduce a new quantity, q
(ij)
k (t), on this absorbing Markov chain,

defined as the probability of finding the process in state k at time t when
considering walks from starting node i to absorbing node j. This probability
can easily be computed thanks to the following recurrence relation

q
(ij)
k (0) = δik for t = 0

q
(ij)
k (t) =

n∑
l=1
l 6=j

q
(ij)
l (t− 1) preflk for t ≥ 1 (A.2)

which says that the probability of being in node k at time t is the sum of the
probabilities of being in any node l (except node j which is absorbing) at time
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t − 1 times the probability of jumping from l to k. When k = j, the quantity
computes the probability of being absorbed in node j at time t, given that we
started from i at time 0.

Let us now compute the last quantity appearing in Equation (A.1), the sum
of hitting paths likelihoods from i to j, assuming i 6= j,

∑
℘ij∈Ph

ij(t)

π̃ref(℘ij) =

n∑
k1=1
k1 6=j

n∑
k2=1
k2 6=j

· · ·
n∑

kt−1=1
kt−1 6=j

prefik1p
ref
k1k2p

ref
k2k3 · · · p

ref
kt−1j for t > 0

(A.3)
and it is equal to 0 when t = 0 because there is no path of length zero connecting
two different nodes.

But the second-hand quantity in this last equation is nothing else than the
sequential application of recurrence (A.2) for t, t−1, . . . , 0, therefore computing

q
(ij)
j (t), that is, the probability of being absorbed in node j in exactly t steps.

Therefore,
∑
℘ij∈Ph

ij(t)
π̃ref(℘ij) = q

(ij)
j (t) when i 6= j.

Moreover, as we know that the process necessarily ends in absorbing node j

at some point (see, e.g., [35]),
∑∞
t=0 q

(ij)
j (t) = 1 holds when i 6= j.

If i = j, the probability of finding the process in node j is 1 at t = 0
(a zero-length path) and then collapses to 0 when t > 0, which also provides∑∞
t=0 q

(jj)
j (t) = 1.

Equation (A.1) then becomes

∑
℘∈Ph

P̃ref(℘) =
1

n2

n∑
i,j=1

∞∑
t=0

q
(ij)
j (t) =

1

n2

n∑
i,j=1

1 = 1 (A.4)

which is the desired result. In addition, this also shows that∑
℘∈Ph

ij

π̃ref(℘) = 1, (A.5)

that is, the sum over the path likelihoods is equal to 1 for hitting paths.

Appendix B. Computation of the entries of Z(−j) in terms of the fun-
damental matrix

All the entries of Z(−j) can be computed efficiently in terms of the funda-
mental matrix Z = (I−W)−1.

This result can be understood as follows. Each non-hitting path ℘ij ∈ Pij
can be split uniquely into two sub-paths, before hitting node j for the first
time, ℘h

ij ∈ Ph
ij , and after hitting node j, ℘jj ∈ Pjj . These two sub-paths

can be chosen independently because their concatenation is a valid path, with
℘h
ij ◦ ℘jj ∈ Pij being the concatenation of the two paths. Now, as c̃(℘ij) =

c̃(℘h
ij) + c̃(℘jj) and π̃ref(℘ij) = π̃ref(℘h

ij)π̃
ref(℘jj) for any ℘ij = ℘h

ij ◦ ℘jj , we
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obtain

zij =
∑

℘ij∈Pij

π̃ref(℘ij) exp[−θc̃(℘ij)]

=
∑

℘h
ij∈P

h
ij

℘jj∈Pjj

π̃ref(℘h
ij)π̃

ref(℘jj) exp[−θc̃(℘h
ij)] exp[−θc̃(℘jj)]

=

 ∑
℘h
ij∈Ph

ij

π̃ref(℘h
ij) exp[−θc̃(℘h

ij)]

 ∑
℘jj∈Pjj

π̃ref(℘jj) exp[−θc̃(℘jj)]


= z

(−j)
ij zjj (B.1)

and therefore z
(−j)
ij = zij/zjj . Using this result, Equation (22) can be developed

as ∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)] = z
(−j)
ij =

zij
zjj

(B.2)

Appendix C. Triangle inequality proof for the surprisal distance

In order for ∆sur
ij to be a distance measure, it has to be shown that it obeys

the triangle inequality, ∆sur
ik ≤ ∆

sur
ij + ∆

sur
jk for all i, j, k. Note that ∆

sur
ij = ∞

when node i and node j are not connected (they belong to different connected
components) – this is why we require G to be strongly connected. In addition,
note that the triangle inequality is trivially satisfied if either i = j, j = k or
i = k. Thus, we only need to prove the case i 6= j 6= k 6= i.

In order to prove the result, consider the set of paths Pik from node i to
node k. We now compute the probability that such paths pass through an
intermediate node int = j where i 6= j 6= k 6= i,

P(s = i, int = j, e = k) =

∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp[−θc̃(℘)]∑
℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
(C.1)

where δ(j ∈ ℘) is a Kronecker delta equal to 1 if the path ℘ contains (at least
once) node j, and 0 otherwise. It is clear from Equations (21) and (C.1) that

P(s = i, e = k) ≥ P(s = i, int = j, e = k) for i 6= j 6= k 6= i (C.2)

Let us transform Equation (C.1), using the fact that each path ℘ik between
i and k passing through j can be decomposed uniquely into a hitting sub-path
℘ij from i to j and a non-hitting sub-path ℘jk from j to k. The sub-path ℘ij
is found by following path ℘ik until reaching j for the first time. Therefore, for
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i 6= j 6= k 6= i,

P(s = i, int = j, e = k) =

∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp[−θc̃(℘)]

Z

=

∑
℘ij∈Ph

ij

∑
℘jk∈Pjk

π̃ref(℘ij)π̃
ref(℘jk) exp[−θ(c̃(℘ij) + c̃(℘jk))]

Z

=

 ∑
℘ij∈Ph

ij

π̃ref(℘ij) exp[−θc̃(℘ij)]

 ∑
℘jk∈Pjk

π̃ref(℘jk) exp[−θc̃(℘jk)]


Z

= Zh

 ∑
℘ij∈Ph

ij

π̃ref(℘ij) exp[−θc̃(℘ij)]


Zh

 ∑
℘jk∈Pjk

π̃ref(℘jk) exp[−θc̃(℘jk)]


Z

= Zh Ph(s = i, e = j) P(s = j, e = k), for i 6= j 6= k 6= i (C.3)

Combining Inequality (C.2) and Equation (C.3) yields

P(s = i, e = k) ≥ Zh Ph(s = i, e = j) P(s = j, e = k), for i 6= j 6= k 6= i (C.4)

Replacing the non-hitting bag-of-paths probabilities by their expressions (see
Equation (18)) in function of the elements of the fundamental matrix, P(s =
i, e = k) = zik/Z and P(s = j, e = k) = zjk/Z, in the previous Inequality (C.4)
provides zik/Z ≥ Zh Ph(s = i, e = j) zjk/Z. Further dividing each member
by (Zhzkk) gives zik/(Zhzkk) ≥ Zh Ph(s = i, e = j) zjk/(Zhzkk). Finally, using
Ph(s = i, e = k) = zik/(Zhzkk) (see Equation (25)), we obtain

Ph(s = i, e = k) ≥ Zh Ph(s = i, e = j) Ph(s = j, e = k) (C.5)

for i 6= j 6= k 6= i. Now, from Equation (26) and the fact that the zij are
nonnegative, it is clear that Zh ≥ 1; thus

Ph(s = i, e = k) ≥ Ph(s = i, e = j) Ph(s = j, e = k), for i 6= j 6= k 6= i (C.6)

Finally, by taking − log of Inequality (C.6), we obtain

− log Ph(s = i, e = k) ≤ − log Ph(s = i, e = j)− log Ph(s = j, e = k), (C.7)

for i 6= j 6= k 6= i. Thus, the surprisal measure, − log Ph(s = i, e = j), obeys
the triangle inequality. Therefore the distance ∆

h
ij = −(log Ph(s = i, e = j) +

log Ph(s = j, e = i))/2 also enjoys this property.
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Appendix D. Proof of the geodetic property of the potential distance

From the definition of the bag-of-paths probability (Equation (9)), as well
as Equation (C.1) defining P(s = i, int = j, e = k), we have for i 6= j 6= k 6= i

P(s = i, e = k) =

∑
℘∈Pik

π̃ref(℘) exp[−θc̃(℘)]

Z

=

∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp[−θc̃(℘)]

Z
+

∑
℘∈Pik

(1− δ(j ∈ ℘)) π̃ref(℘) exp[−θc̃(℘)]

Z

= P(s = i, int = j, e = k) +

∑
℘∈Pik

δ(j /∈ ℘) π̃ref(℘) exp[−θc̃(℘)]

Z
(D.1)

Now, substituting P(s = i, int = j, e = k) by Zh Ph(s = i, e = j)P(s = j, e =
k) (see Equation (C.3)) in the previous equation yields

P(s = i, e = k) =Zh Ph(s = i, e = j)P(s = j, e = k)

+

∑
℘∈Pik

δ(j /∈ ℘) π̃ref(℘) exp[−θc̃(℘)]

Z
(D.2)

Further recalling that P(s = i, e = k) = zik/Z (Equation (18)) and Ph(s =
i, e = j) = zhij/Zh (Equation (25)), we transform Equation (D.2) into

zik = zhijzjk +
∑
℘∈Pik

δ(j /∈ ℘) π̃ref(℘) exp[−θc̃(℘)] (D.3)

Dividing both sides of the previous equation by zkk and recalling that zhik =
zik/zkk (Equation (24)) provides

zhik = zhijz
h
jk +

1

zkk

∑
℘∈Pik

δ(j /∈ ℘) π̃ref(℘) exp[−θc̃(℘)] (D.4)

and we recover zhik ≥ zhijzhjk (Equation (31)). The equality zhik = zhijz
h
jk (i 6= j 6=

k 6= i) holds if and only if
∑
℘∈Pik δ(j /∈ ℘) π̃ref(℘) exp[−θc̃(℘)] = 0, which only

occurs when all paths connecting i and k visit node j. Thus, it is clear that
∆
φ
ik = ∆

φ
ij + ∆

φ
jk, i 6= j 6= k 6= i if and only if all paths ℘ ∈ Ph

ik connecting the
source node i and the destination node k pass through node j. This property
is called the graph-geodetic property in [15].

Appendix E. Asymptotic result: for an undirected graph, the ∆
φ

distance converges to the shortest path distance when
θ → ∞

There are two ways to prove this property, each of them having its own ben-
efits. The first proof is based on the bag-of-paths framework and is shorter. The
second proof is inspired by [91] and is longer, but establishes some interesting
links with the Bellman-Ford formula for computing the shortest path distance
in a network (see, e.g., [7, 19, 23, 80, 87]).
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Appendix E.1. First proof

Assuming i 6= j and θ > 0, let us recall (Equation (33)), that is, ∆
φ
ij =

(φ(i, j)+φ(j, i))/2 with φ(i, j) = − 1
θ log zhij , and where zhij is given by (Equation

(24), recalled here for convenience):

zhij =
∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)] (E.1)

which is always positive for a strongly connected graph.
We now have to compute the asymptotic form of zhij for θ → ∞ or, equiv-

alently, T → 0. Let the lowest-cost (shortest) paths from i to j be denoted as
{℘∗k} and let c∗ = c̃(℘∗k) be the cost of such a lowest-cost path. c∗ is therefore the
minimum cost among all possible paths from i to j. Say there are m ≥ 1 such
lowest-cost paths. Now, as

∑
℘∈Ph

ij
π̃ref(℘) = 1, it is clear that zhij is bounded

by

zhij ≤
∑
℘∈Ph

ij

π̃ref(℘) exp[−θc∗] = exp[−θc∗]
∑
℘∈Ph

ij

π̃ref(℘) = exp[−θc∗] (E.2)

and is therefore finite. We also observe that it converges exponentially to 0
when θ →∞. Moreover, this last inequality implies∑

℘∈Ph
ij

π̃ref(℘) exp[−θ(c̃(℘)− c∗)] ≤ 1 (E.3)

which shows that the quantity on the left-hand side is bounded.
We can now rewrite

zhij =
∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)] = exp[−θc∗]
∑
℘∈Ph

ij

π̃ref(℘) exp[−θ(c̃(℘)− c∗)]

= exp[−θc∗]


m∑
i=1

π̃ref(℘∗i ) +
∑
℘∈Ph

ij

c̃(℘)>c∗

π̃ref(℘) exp[−θ(c̃(℘)− c∗)]

 (E.4)

Let us now compute the potential φ(i, j) = − 1
θ log zhij when θ → ∞. Using

Equation (E.4), we get

φ(i, j) = −1

θ
log zhij

= −1

θ
log

exp[−θc∗]


m∑
i=1

π̃ref(℘∗i ) +
∑
℘∈Ph

ij

c̃(℘)>c∗

π̃ref(℘) exp[−θ(c̃(℘)− c∗)]




= c∗ − 1

θ
log


m∑
i=1

π̃ref(℘∗i ) +
∑
℘∈Ph

ij

c̃(℘)>c∗

π̃ref(℘) exp[−θ(c̃(℘)− c∗)]


θ→∞−−−→ c∗ (E.5)
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Here, the last limit applies because, following Equation (E.3), the expression
inside the logarithm is finite and strictly positive (the first term is a positive
constant and the second is positive and bounded (see Equation (E.3))).

Moreover, observing that, in the case of an undirected graph, the lowest cost
from j to i is equal to the lowest cost from i to j (i.e., c∗), the distance ∆

φ
ij =

φ(i,j)+φ(j,i)
2

θ→∞−−−→ c∗. Therefore, the bag-of-hitting-paths potential distance
provides the shortest path distance when θ →∞.

Appendix E.2. Second proof

The second proof starts from Equation (29), where we replace wij =
prefij exp[−θcij ] in this expression with node k absorbing,

zhik =


n∑
j=1

prefij exp[−θcij ] zhjk for i 6= k

1 for i = k (boundary condition)

(E.6)

Let us now compute the value of the potential φ(i, k) (Equation (33)) for
i 6= k (when i = k, φ(k, k) = − 1

θ log(zkk/zkk) = 0),

φ(i, k) = −1

θ
log zhik = −1

θ
log

 n∑
j=1

prefij exp[−θcij ] zhjk


= −1

θ
log

 n∑
j=1

prefij exp[−θcij ] exp[−θ(−1

θ
log zhjk)]


= −1

θ
log

 n∑
j=1

prefij exp[−θcij ] exp[−θφ(j, k)]


= −1

θ
log

 ∑
j∈Succ(i)

prefij exp[−θ(cij + φ(j, k))]

 (E.7)

which provides a recurrence formula for computing φ(i, k), together with the
boundary condition φ(k, k) = 0.

Let us now study the behavior of this equation for θ →∞. We first observe
that both the numerator and the denominator tend to +∞ when θ →∞.

Now, in order to simplify the notations, we will study the softmin function
[22, 91], softminq,θ(x) = − log(

∑n
j=1 qj exp[−θxj ])/θ with

∑n
j=1 qj = 1 and

all qj ≥ 0 instead, where we define xj = (cij + φ(j, k)) and qj = prefij (the
development is inspired by [91]). Let us further define x∗ = minj(xj) so that
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(xj − x∗) ≥ 0; we then have

lim
θ→∞

softminq,θ(x) = lim
θ→∞

−

log

 n∑
j=1

qj exp[−θxj ]


θ

= lim
θ→∞

−

log

exp[−θx∗]
n∑
j=1

qj exp[−θ(xj − x∗)]


θ

= lim
θ→∞

x
∗ −

log

 n∑
j=1

qj exp[−θ(xj − x∗)]


θ



= x∗ − lim
θ→∞

log

 n∑
j=1

qj exp[−θ(xj − x∗)]


θ

= x∗ (E.8)

and the last limit is 0 because no term in the exponential is positive and at
least one of the xj is exactly equal to x∗ (the minimum) so that the sum∑n
j=1 qj exp[−θ(xj − x∗)] is non-zero, and thus strictly positive.
Thus, when θ → ∞, Equation (E.7) becomes φ(i, k) = minj(cij + φ(j, k))

for i 6= k and φ(k, k) = 0 which is the well-known Bellman-Ford formula for
computing the shortest path distance in an undirected graph (see, e.g., [7, 19,
23, 48, 80, 87]). Moreover, for an undirected graph, the shortest path from i to
j is equal to the shortest path from j to i, which implies that ∆φ reduces to the
shortest path too when θ →∞.

Appendix F. Asymptotic result: for an undirected graph, the ∆
φ dis-

tance converges to half the commute cost distance when
θ → 0+

Let us show that the ∆
φ distance is half the commute cost distance when

θ → 0+. As before, there are two ways to prove this property. The first proof
is based on the bag-of-paths framework and is somewhat shorter. The second
proof, also inspired by [91], establishes some interesting links with the Bellman-
Ford recurrence formula computing the average first-passage cost in a network
[52, 74, 81, 95].
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Appendix F.1. First proof

From Equations (33) and (E.1),

∆
φ
ij = −

(log zhij + log zhji)

2θ

= −
log(

∑
℘∈Ph

ij
π̃ref(℘) exp[−θc̃(℘)]) + log(

∑
℘∈Ph

ji
π̃ref(℘) exp[−θc̃(℘)])

2θ
(F.1)

and, because
∑
℘∈Ph

ij
π̃ref(℘) = 1 (see Appendix A), both the numerator and

the denominator tend to zero when θ → 0+. For taking the limit θ → 0+

of the whole expression (F.1), we apply l’Hospital’s rule (taking the derivative
of the numerator and the denominator with respect to θ and then the limit
limθ→0+ of the resulting expression). Because the Gibbs-Boltzmann probability
distribution over the hitting paths tends to π̃ref when θ → 0+ (see Equation
(3)), this provides

lim
θ→0+

∆
φ
ij =

∑
℘∈Ph

ij
π̃ref(℘) c̃(℘) +

∑
℘∈Ph

ji
π̃ref(℘) c̃(℘)

2
(F.2)

The quantity
∑
℘∈Ph

ij
π̃ref(℘) c̃(℘) can be interpreted as the average first-

passage cost from i to j, i.e. the average cost undergone by a random walker
using transition probabilities prefij for reaching destination node j for the first
time when starting from i. Consequently, the average of the two quantities
defined in (F.2) is half the commute cost distance.

Appendix F.2. Second proof

Restarting from Equation (E.7), we now have to take the limit θ → 0+.
Assuming

∑n
j=1 qj = 1, let us compute the limit θ → 0+ of softminq,θ(x),

instead of θ →∞ in Equation (E.8), and apply as before l’Hospital’s rule

lim
θ→0+

softminq,θ(x) = lim
θ→0+

−

log

 n∑
j=1

qj exp[−θxj ]


θ

= lim
θ→0+

n∑
j=1

qjxj exp[−θxj ]

n∑
j′=1

qj′ exp[−θxj′ ]
=

n∑
j=1

qjxj

n∑
j′=1

qj′

(F.3)

Therefore, as in our case xj = (cij+φ(j, k)) and qj = prefij with
∑n
j=1 p

ref
ij = 1,

we obtain φ(i, k) =
∑n
j=1 p

ref
ij (cij+φ(j, k)) for i 6= k, together with the boundary

condition φ(k, k) = 0. But this is exactly the recurrence formula computing the
average first-passage cost in a regular Markov chain [52, 74, 81, 95]. Thus, when
θ → 0+, ∆φ = (φ(i, j) + φ(j, i))/2 reduces to half the commute cost distance
between i and j.
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Appendix G. Triangle inequality for hitting paths and weights on
nodes

To prove the result we simply adapt the corresponding proof of Appendix C.
Note that Equation (C.2) still holds. Moreover, Equation (C.3) becomes

P(s = i, int = j, e = k) =

qsiq
e
k

∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp[−θc̃(℘)]

Zw

=

qsiq
e
k

∑
℘ij∈Ph

ij

∑
℘jk∈Pjk

π̃ref(℘ij)π̃
ref(℘jk) exp[−θ(c̃(℘ij) + c̃(℘jk))]

Zw

=

qsi

 ∑
℘ij∈Ph

ij

π̃ref(℘ij) exp[−θc̃(℘ij)]

qej × qsj
 ∑
℘jk∈Pjk

π̃ref(℘jk) exp[−θc̃(℘jk)]

qek
qsjq

e
jZw

=
Zhw

qsjq
e
j

qsi ∑
℘ij∈Ph

ij

π̃ref(℘ij) exp[−θc̃(℘ij)] qej


Zhw

qsj ∑
℘jk∈Pjk

π̃ref(℘jk) exp[−θc̃(℘jk)] qek


Zw

=
Zhw

qsjq
e
j

Ph(s = i, e = j) P(s = j, e = k), for i 6= j 6= k 6= i (G.1)

where Zw =
∑n
i,j=1 q

s
izijq

e
j is the partition function for non-hitting paths (the

counterpart of Equation (39) for non-hitting paths).
As for Equation (C.4), combining this last result with (C.2) yields

P(s = i, e = k) ≥ Zhw

qsjq
e
j

Ph(s = i, e = j) P(s = j, e = k), for i 6= j 6= k 6= i

(G.2)
Then, by further considering that, from Equation (39), the following inequality
holds

Zhw

qsjq
e
j

=
1

qsjq
e
j

n∑
i,k=1

qsi

(
zik
zkk

)
qek ≥ 1 (G.3)

because the term i = k = j in the double sum is equal to 1.
We deduce that P(s = i, e = k) ≥ Ph(s = i, e = j) P(s = j, e = k).

Then, dividing both sides by (Zhwzkk) and using Equation (38), as well as
P(s = i, e = k) = (qsizikq

e
k)/Zw for weighted nodes and non-hitting paths,

provides the final result

− log Ph(s = i, e = k) ≤ − log Ph(s = i, e = j)− log Ph(s = j, e = k) (G.4)

which shows the triangle inequality for the directed surprisal distance and,
hence, the surprisal distance, in the case of weighted nodes.

The same triangle inequality result holds for the directed potential distance
with weighted nodes, defined by φ(i, j) , − 1

θ log(qsiz
h
ijq

e
j), and zhij given in

41



Equation (40). Indeed, by replacing P(·) and Ph(·) by their expressions in
function of the zhij in Equation (G.2) provides

qsiz
h
ikq

e
k ≥

1

qsjq
e
j

(qsiz
h
ijq

e
j) (qsjz

h
jkq

e
k) (G.5)

Then, because 1/qsjq
e
j ≥ 1 for every j, we obtain

−1

θ
log(qsiz

h
ikq

e
k) ≤ −1

θ
log(qsiz

h
ijq

e
j)−

1

θ
log(qsjz

h
jkq

e
k) (G.6)

which proves triangle inequality for the directed potential distance, and therefore
also for the potential distance with priors on nodes.

References

[1] S. Abney. Semisupervised learning for computational linguistics. Chapman and
Hall/CRC, 2008.

[2] T. Akamatsu. Cyclic flows, markov process and stochastic traffic assignment. Trans-
portation Research B, 30(5):369–386, 1996.

[3] M. Alamgir and U. von Luxburg. Phase transition in the family of p-resistances. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances
in Neural Information Processing Systems 24 (NIPS 2011), pages 379–387, 2011.

[4] A. L. Barabasi. Network science. To appear at Cambridge University Press; preprint
available from barabasi.com/networksciencebook, 2016.

[5] M. Belkin, I. Matveeva, and P. Niyogi. Tikhonov regularization and semi-supervised
learning on large graphs. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP2004), pages 1000–1003, 2004.

[6] M. Bell. Alternatives to dial’s logit assignment algorithm. Transportation Research
Part B: Methodological, 29(4):287–295, 1995.

[7] D. P. Bertsekas. Dynamic programming and optimal control, 2nd ed. Athena Scientific,
2000.

[8] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts.
In International Conference on Machine Learning (ICML), pages 19–26, 2001.

[9] I. Borg and P. Groenen. Modern multidimensional scaling: Theory and applications.
Springer, 1997.

[10] M. Brand. A random walks perspective on maximizing satisfaction and profit. Proceed-
ings of the 2005 SIAM International Conference on Data Mining, 2005.

[11] J. Callut, K. Francoisse, M. Saerens, and P. Dupont. Semi-supervised classification from
discriminative random walks. In Proceedings of the European conference on Machine
Learning (ECML 2008), volume LNAI5211, pages 162–177, 2008.

[12] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical
resistance of a graph captures its commute and cover times. Annual ACM Symposium
on Theory of Computing, pages 574–586, 1989.

[13] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised learning. MIT Press, 2006.

[14] O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning.
In conference on Neural Information Processing Systems, pages 585–592, 2002.

[15] P. Chebotarev. A class of graph-geodetic distances generalizing the shortest-path and
the resistance distances. Discrete Applied Mathematics, 159(5):295–302, 2011.

42



[16] P. Chebotarev. The walk distances in graphs. Discrete Applied Mathematics, 160(10–
11):1484–1500, 2012.

[17] P. Chebotarev and E. Shamis. The matrix-forest theorem and measuring relations in
small social groups. Automation and Remote Control, 58(9):1505–1514, 1997.

[18] P. Chebotarev and E. Shamis. On proximity measures for graph vertices. Automation
and Remote Control, 59(10):1443–1459, 1998.

[19] N. Christofides. Graph theory: An algorithmic approach. Academic Press, 1975.

[20] F. Chung and L. Lu. Complex Graphs and Networks. American Mathematical Society,
2006.

[21] E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.

[22] J. Cook. Basic properties of the soft maximum. Unpublished manuscript available from
www.johndcook.com/blog/2010/01/13/soft-maximum, 2011.

[23] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms, 3th
Edition. The MIT Press, 2009.

[24] T. Cox and M. Cox. Multidimensional scaling, 2nd ed. Chapman and Hall, 2001.

[25] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, Dec. 2006.
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