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Abstract

The aim of this paper is to develop a general framework for training neural
networks (NNs) in a distributed environment, where training data is par-
titioned over a set of agents that communicate with each other through
a sparse, possibly time-varying, connectivity pattern. In such distributed
scenario, the training problem can be formulated as the (regularized) op-
timization of a non-convex social cost function, given by the sum of local
(non-convex) costs, where each agent contributes with a single error term
defined with respect to its local dataset. To devise a flexible and efficient so-
lution, we customize a recently proposed framework for non-convex optimiza-
tion over networks, which hinges on a (primal) convexification-decomposition
technique to handle non-convexity, and a dynamic consensus procedure to
diffuse information among the agents. Several typical choices for the training
criterion (e.g., squared loss, cross entropy, etc.) and regularization (e.g., `2
norm, sparsity inducing penalties, etc.) are included in the framework and
explored along the paper. Convergence to a stationary solution of the social
non-convex problem is guaranteed under mild assumptions. Additionally, we
show a principled way allowing each agent to exploit a possible multi-core
architecture (e.g., a local cloud) in order to parallelize its local optimization
step, resulting in strategies that are both distributed (across the agents) and
parallel (inside each agent) in nature. A comprehensive set of experimental
results validate the proposed approach.
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1. Introduction

We consider the problem of training a Neural Network (NN) model,
when training data is distributed over different agents that are connected
by a sparse, possibly time-varying, communication network. To grasp the
main motivation, let us consider a ‘smart’ environment, wherein thousands
of low-power sensors (e.g., cameras, wearables, etc.) are embedded to pro-
vide context-aware assistance, security provisioning, and so forth (Pottie and
Kaiser, 2000; Boric-Lubeke and Lubecke, 2002). If the amount of produced
data is small and we can count on a very reliable communication network,
we may think of a centralized approach where all the data are transmitted to
one (or more) fusion center that performs the learning task. However, in big
data applications, sharing local information with a central processor might
be either unfeasible or not economical/efficient, owing to the large size of
the network and volume of data, time-varying network topology, energy con-
straints, robustness and/or privacy concerns. Performing the computation in
a centralized fashion may raise robustness concerns as well, since the central
processor represents a bottleneck and an isolated point of failure. For these
reasons, effective learning methods must necessarily exploit distributed com-
putation/learning architectures (with possibly parallelized multi-core proces-
sors), while keeping into account the distributed large-scale storage of data
over the network and communication constraints. Very often, the implemen-
tation of such learning schemes requires the training of a shared predictive
function, i.e., a common model accessible independently by each of them.
Considering the previous example, suppose that a set of embedded cameras
is taking multiple high-resolution photos of a possible security threat. In
this case, if the threat needs to be recognized quickly in the near future, the
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sensors have to train a shared classifier that must leverage on all the cur-
rently acquired photos, in order to obtain a sufficiently high accuracy. These
problems are ubiquitous in the real world, and appear in many practical sys-
tems such as, e.g., wireless sensor networks (Predd et al., 2006), smart grids,
distributed databases (Lazarevic and Obradovic, 2002), robotic swarms, just
to name a few.

If a predictive behavior is needed, however, the designer of the distributed
system has to answer a necessary question: What kind of model should be
chosen as a classifier/regressor? Since deep NNs are currently obtaining
state-of-the-art results in several fields (Schmidhuber, 2015; LeCun et al.,
2015), employing them appears as a reasonable choice. Nevertheless, some-
what surprisingly, the literature on distributed training algorithms for NNs
satisfying all the above requirements is extremely scarce. Most authors re-
sort either to an ensemble of models trained independently by the agents
(Lazarevic and Obradovic, 2002; Zhang and Zhong, 2013), or to strategies
requiring the sum of the gradients’ contributions for all agents at every single
iteration (Samet and Miri, 2012; Georgopoulos and Hasler, 2014), exploiting
the additivity of the gradients updates. Both these approaches can be easily
shown to be unsatisfactory in general. In the former case, we have no guar-
antee that the ensemble of models will perform as good as a single model
trained on the collection of all local datasets. In the latter case, instead, a
global sum at every iteration might be infeasible due to an excessive amount
of communication, particularly for large models comprising several hundred
thousands parameters. It is also worth mentioning that a lot of research
has been devoted recently to the design of parallel, asynchronous versions of
stochastic gradient descent for training NNs on large clusters of commodity
hardware (Dean et al., 2012; Sak et al., 2014; Abadi et al., 2016). However,
all these previous methods require the presence of at least one central server
node, which coordinates the learning process; thus, they are not applicable
in our context.

One of the reasons for the lack of distributed training methods for NNs
is that, in principle, these methods require the solution of a distributed non-
convex optimization problem, which was tackled only in a few papers even
in the optimization literature (Bianchi and Jakubowicz, 2013; Di Lorenzo
and Scutari, 2016). On the other side, if we turn our attention to methods
for convex learning problems, the literature on their distributed training is
vast, including algorithms for decentralized optimization of linear predictors
(Xiao et al., 2007; Sayed, 2014; Sayed et al., 2014), sparse linear models
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(Mateos et al., 2010; Di Lorenzo and Sayed, 2013), kernel ridge regression
(Predd et al., 2006, 2009), random-weights networks (Huang and Li, 2015;
Scardapane et al., 2015, 2016b), support vector machines (Navia-Vázquez
et al., 2006; Lu et al., 2008; Forero et al., 2010; Scardapane et al., 2016a),
and kernel filtering (Perez-Cruz and Kulkarni, 2010; Gao et al., 2015).

Contribution: In this paper, we propose an algorithmic framework for
training general NN models in a fully distributed scenario, which encom-
passes several common loss functions and regularization terms.1 In partic-
ular, we build upon the in-network nonconvex optimization (NEXT) algo-
rithm proposed in (Di Lorenzo and Scutari, 2016), and recently extended in
(Sun et al., 2016) to handle general time-varying topologies. NEXT is one
of the first methods to solve distributed non-convex optimization problems
over networks of agents. The algorithm, which leverages on the so-called
successive convex approximation (SCA) family of methods (Facchinei et al.,
2015), is built upon two foundational ideas. First and foremost, at every
iteration, the original non-convex problem is replaced with a strongly convex
approximation, which is solved locally at every agent. As we will illustrate
along the paper, several kinds of convexification are possible, resulting in
different trade-offs in terms of computational complexity and speed of con-
vergence. Second, the framework exploits a dynamic consensus procedure
(Zhu and Mart́ınez, 2010), so that each agent can recover the information
relative to all the other agents, which typically is not available at its local
side. The resulting algorithms are shown to be convergent to a stationary
solution of the social non-convex problem under loose requirements relative
to the agents’ communication topology, the choice of the algorithm’s param-
eters, and the structure of the optimization problem. A further interesting
aspect of the framework presented here is that the local optimization prob-
lems can be easily parallelized in a principled way (up to one NN parameter
per available processor), without loosing the convergence properties of the
framework. Consider, for example, the case of multiple medical institutions
requiring the training of a common NN (e.g., for diagnosis purposes) leverag-
ing on all historical clinical information (Vieira-Marques et al., 2006). In this
case, a decentralized algorithm is required due to strong privacy concerns on
the release of medical, sensible information about the patients. Nonetheless,

1A preliminary version of this work, focusing only on the squared loss function, was
presented in (Di Lorenzo and Scardapane, 2016).
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each institution may have access to an internal private cloud infrastructure.
Using the framework outlined in this paper, privacy is guaranteed via the use
of a distributed protocol, while each institution can parallelize its optimiza-
tion steps using local cloud computing hardware. In this way, the resulting
algorithms are both distributed (across the nodes) and parallel (inside each
node) in nature. At the end of the (distributed) training process, each agent
has access to the optimal set of NN’s parameters, and it can apply the result-
ing model to newly arriving data (e.g., new photos taken from the camera)
independently of the other agents. A comprehensive set of experimental
results validate the proposed approach.

Outline of the paper: The rest of the paper is organized as follows. In
Section 2, we formalize the problem of distributed NN training. In Section
3 we describe the general framework for distributed NN training built upon
the NEXT algorithm. Then, in Section 4, we consider the customization of
the framework to different loss functions (squared loss, cross entropy, etc.)
and regularization terms (`2 norm, sparsity inducing penalties, etc.). Section
5 describes a principled way to parallelize the optimization phase. In Section
6, we perform a large set of experiments aimed at assessing the performance
of the proposed framework. Finally, Section 7 draws some conclusions and
future lines of research.

Notation: We denote vectors using boldface lowercase letters, e.g., a;
matrices are denoted by boldface uppercase letters, e.g., A. All vectors are
assumed to be column vectors. The operator ‖·‖p is the standard `p norm
on an Euclidean space. For p = 2, it coincides with the Euclidean norm,
while for p = 1 we obtain the Manhattan (or taxicab) norm defined for a
generic vector v ∈ RB as ‖v‖1 =

∑B
k=1 |vk|. The notation a[n] denotes the

dependence of a on the time-index n. Other notation is introduced along the
paper when required.

2. Problem Formulation

Let us consider the problem of training a generic NN model f(w; x),
where x ∈ Rd denotes the d-dimensional input vector of the network, whereas
w ∈ RQ is the vector collecting all the adaptable parameters that we aim
to optimize. Note that we are considering the NN as a function of its pa-
rameters, as this will make the following derivation simpler. We are not
concerned with the specific structure of the NN f(·) (i.e., number of hid-
den layers, choice of the activation functions, etc.), as long as the following
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assumptions are satisfied for any possible input vector x ∈ Rd.

Assumption A [On the NN model]:

(A1) f is in C1, i.e., it is continuously differentiable with respect to w;

(A2) f has Lipschitz continuous gradient, with respect to w, for some Lip-
schitz constant L, i.e.:

‖∇wf(w1; x)−∇wf(w2; x)‖2 ≤ L
∥∥w1 −w2

∥∥
2
. (1)

Assumption A is satisfied by most NN models commonly used in the lit-
erature, with the only notable exception of NN having non-differentiable
activation functions such as ReLu neurons (Glorot et al., 2011), maxout neu-
rons (Goodfellow et al., 2013), and a few others. Nonetheless, convergence
guarantees for these architectures are relatively uncommon even in the cen-
tralized case. In this paper, we are concerned with distributed architectures,
where the data required to train the NN is not available on a centralized loca-
tion, but is instead partitioned among I interconnected agents. Prototypical
examples of agents can be sensors in a wireless sensor networks (WSN),
peers in a P2P network, power units in a smart grid, or mobile robots in
a robotic swarm. At every specific time instant n, the communication net-
work enabling interaction among the agents is modeled as a directed graph
(digraph) G[n] = (V , E [n]), where V = {1, . . . , I} is the vertex set (i.e., the
set of agents), and E [n] is the set of (possibly) time-varying directed edges.
The in-neighborhood of agent i at time n (including node i) is defined as
N in
i [n] = {j|(j, i) ∈ E [n]} ∪ {i}: node i can receive information from node

j 6= i at time instant n only if j ∈ N in
i [n]. By assuming only single-hop com-

munication, the resulting framework can be applied to the broadest possible
class of problems.2 Due to this, each agent has a limited view and knowl-
edge about the overall (possibly time-varying) network. Also, we assume that
there is no agent (or finite number of them) that is able to collect all the data
and coordinate the overall learning process. Associated with each graph G[n],

2More in general, G[n] corresponds to all feasible communication links between two
agents. A multi-hop network can be described with an equivalent single-hop network by
considering all possible paths as a direct link in the equivalent graph.
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we introduce (possibly) time-varying weights cij[n] matching G[n]:

cij[n] =

{
θij ∈ [ϑ, 1] if j ∈ N in

i [n];

0 otherwise,
(2)

for some ϑ ∈ (0, 1), and define the matrix C[n] , (cij[n])Ii,j=1. These weights
are used in the definition of the proposed algorithm in order to locally com-
bine the information diffused over every neighborhood, i.e., cij represents the
weight given by agent i to the information coming from agent j. The weights
are given and are required to respect some properties listed later on in (9).
Many choices are possible, and a brief overview can be found in Di Lorenzo
and Scutari (2016). Clearly, different setups for the weights may influence
the convergence speed. Roughly speaking, simple choices like the one we de-
tail in Section 6.1 can be implemented immediately with no knowledge of the
graph topology far from each neighborhood. On the contrary, more sophisti-
cated weights can speedup convergence, while requiring global knowledge of
the network and/or the solution to some optimization problem, e.g. see the
strategies detailed in Xiao and Boyd (2004).

For the purpose of training the NN, we assume that the ith agent has ac-
cess to a local training dataset ofNi examples, denoted as Si = {xi,m, di,m}Ni

m=1,
where we consider a single-output problem with di,m ∈ R for simplicity of
overall notation. The output of the NN is an integer or a real value, de-
pending on whether we are facing a classification task or a regression task,
respectively. Given all the previous definitions, a general formulation for the
distributed training of NNs can be cast as the minimization of a social cost
function G plus a regularization term r(·), which writes as:

min
w

U(w) = G(w) + r(w) =
I∑
i=1

gi(w) + r(w) , (3)

where gi(·) is the error term relative to the ith local dataset:

gi(w) =
∑
m∈Si

l
(
di,m, f(w; xi,m)

)
, (4)

with l(·, ·) denoting a generic (convex) loss function, while r(w) is a regular-
ization term. Due to the nonlinearity of the NN model f(w; x), problem (3)
is typically non-convex. In this work, we consider the following assumptions
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on the functions involved in (3)-(4).

Assumption B [On Problem (3)]:

(B1) l is convex and C1, with Lipschitz continuous gradient;

(B2) r satisfies (B1), or it is a nondifferentiable convex function with bounded
subgradients;

(B3) U is coercive, i.e., lim
‖w‖→∞

U(w) = +∞.

The structure of the function l in (4) depends on the learning task (i.e., regres-
sion, classification, etc.). Typical choices are the squared loss for regression
problems, and the cross-entropy for classification tasks (Haykin, 2009). The
regularization function r(w) in (3) is commonly chosen to avoid overfitted
solutions and/or impose a specific structure in the solution, e.g., sparsity or
group sparsity. Typical choices are the `2 and `1 norms. All these functions
satisfy Assumption B, and will be discussed in detail in the sequel. In view
of the distributed nature of the problem, the ith agent knows its own cost
function gi and the common regularization term r, but it does not have access
to gj for j 6= i, nor can it exchange freely its own dataset Si due to a variety
of reasons, including privacy, data volume, and communication constraints.
This aspect, combined with the non-convexity of (3), makes optimizing (3)
in a distributed fashion a challenging problem, which has no ready-to-use so-
lution available in the literature. The design of such algorithmic framework
is the topic of the next three sections.

3. NEXT: In-Network Successive Convex Approximation

In this section, we review the basics of the NEXT framework proposed in
(Di Lorenzo and Scutari, 2016), which was designed to solve general noncon-
vex distributed problems of the form (3). The next section will then focus
on how to customize the framework to the NN distributed training problem
considered in this paper. Due to lack of space, we provide only a very brief
introduction to the NEXT framework, and we refer the interested readers
to (Di Lorenzo and Scutari, 2016; Sun et al., 2016) for a full treatment,
which also includes a proof of the convergence results. NEXT combines SCA
techniques (Step 1) with dynamic consensus mechanisms (Steps 2 and 3), as
described next.

8



Step 1 (local SCA optimization): Each agent i maintains a local esti-
mate wi[n] of the optimization variable w that is iteratively updated. Solving
directly Problem (3) may be too costly (due to the nonconvexity of G) and
is not even feasible in a distributed setting. One may then prefer to approx-
imate Problem (3), in some suitable sense, in order to permit each agent
to compute locally and efficiently the new iteration. In particular, writing
G(wi) = gi(wi) +

∑
j 6=i gj(wi), we consider a convexification of G having the

following form: i) at every iteration n, the (possibly) nonconvex gi(wi) is
replaced by a strongly convex surrogate, say g̃i(·; wi[n]) : RQ → R, which
may depend on the current iterate wi[n]; and ii)

∑
j 6=i gj(wi) is linearized

around wi[n]. More formally, the proposed updating scheme reads: at every
iteration n, given the local estimate wi[n], each agent i solves the strongly
convex optimization problem:

w̃i[n] = arg min
wi

Ũi (wi; wi[n],πi[n]) (5)

= arg min
wi

g̃i(wi; wi[n]) + πi[n]T (wi −wi[n]) + r(wi),

where
πi[n] ,

∑
j 6=i

∇w gj(wi[n]). (6)

The evaluation of (6) would require the knowledge of all ∇gj(wi[n]), j 6= i at
node i. This information is not directly available at node i; we will cope with
this local lack of global knowledge later on in step 3. Once the surrogate
problem (5) is solved, each agent computes an auxiliary variable, say zi[n],
as the convex combination:

zi[n] = wi[n] + α[n] (w̃i[n]−wi[n]) , (7)

where α[n] is a possibly time-varying step-size sequence. This concludes the
optimization phase of the algorithm. An appropriate choice of the surrogate
function g̃i(·; wi[n]) guarantees the coincidence between the fixed-points of
w̃i[n] and the stationary solutions of Problem (3). The main results are given
in the following proposition (Facchinei et al., 2015):

Proposition 1. Given Problem (3) under A1-A2 and B1-B3, suppose that
g̃i satisfies the following conditions:

(F1) g̃i(·; w) is uniformly strongly convex with τi > 0;
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(F2) ∇g̃i(w; w) = ∇gi(w) for all w;

(F3) ∇g̃i(w; ·) is uniformly Lipschitz continuous.

Then, the set of fixed-point of w̃i[n] in (5) coincides with that of the stationary
solutions of (3).

Conditions F1-F3 state that g̃i should be regarded as a strongly convex ap-
proximation of gi at the point w, which preserves the first order properties
of gi. Several feasible choices are possible for a given gi; the appropriate one
depends on computational and communication requirements. The goal of the
next section will be to illustrate some possible choices for the local surrogate
cost g̃i properly customized to our distributed NN training problem.

Step 2 (agreement update): To force the asymptotic agreement among
the wi’s, a consensus-based step is employed on the auxiliary variables zi[n]’s.
Each agent i updates its local variable wi[n] as:

wi[n+ 1] =
∑

j∈N in
i [n]

cij[n] zi[n], (8)

where C[n] = (cij[n])ij is defined in (2), and satisfies

C[n] 1 = 1 and 1TC[n] = 1T ∀n. (9)

Since the weights are constrained by the network topology, (8) can be im-
plemented via local message exchanges: agent i updates its estimate wi by
averaging over the current solutions zj[n] received from its neighbors. The
double stochasticity condition in (9) can be achieved according to a variety
of predefined strategies, including the Metropolis-Hastings criterion (Xiao
et al., 2007), or by optimizing a cost function with respect to the spectral
properties of the graph (Xiao and Boyd, 2004).

Step 3 (diffusion of information over the network): The computation
of w̃i[n] in (5) is not fully distributed yet, because the evaluation of πi[n] in
(6) would require the knowledge of all ∇gj(wi[n]), j 6= i, which is a global
information that is not available locally at node i. To cope with this issue,
as proposed in (Di Lorenzo and Scutari, 2016), we replace πi[n] in (5) with
a local estimate, say π̃i[n], asymptotically converging to πi[n]. Thus, we can
update the local estimate π̃i[n] in a fully distributed manner as:

π̃i[n] , I · yi[n]−∇gi(wi[n]), (10)
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where yi[n] is a local auxiliary variable (controlled by agent i) that aims to
asymptotically track the average of the gradients. This can be done updating
yi[n] according to the following dynamic consensus recursion:

yi[n+ 1] ,
I∑
j=1

cij[n]yj[n] + (∇gi(wi[n+ 1])−∇gi(wi[n])) (11)

where yi[0] , ∇wi
gi(wi[0]), and can be computed locally by every agent.

Note that the update of yi[n] and thus π̃i[n] can be now performed locally
with message exchanges with the agents in the neighborhood.

The overall procedure is summarized in Algorithm 1, where ∇gi[n] is
used as a simplified notation for ∇wi

gi(wi[n]). Its convergence properties
are reported in the following Proposition.

Proposition 2. Let {w[n]}n , {(wi[n])Ii=1}n be the sequence generated by
Algorithm 1, and let {w[n]}n , {(1/I)

∑I
i=1 wi[n]}n be its average. Suppose

that i) Assumptions A and B hold; ii) the sequence of graphs describing the
network is B-strongly connected3; iii) condition (9) holds; and iv) the step-
size sequence {α[n]}n is chosen so that α[n] ∈ (0, 1] for all n and

∑∞
n=0 α[n] =

∞. Then, (a) all the limit points of the sequence {w[n]}n are stationary
solutions of (3); (b) all the sequences {wi[n]}n asymptotically agree, i.e.,
‖wi[n]−w[n]‖2 −→

n→∞
0, for all i.

Proof. Algorithm 1 is a special case of an extension of the NEXT framework
proposed in (Sun et al., 2016) (i.e., the SONATA algorithm). Then, under
the above assumptions on the NN model in (3), the network among agents,
and the algorithm’s parameters, all conditions of Theorem 1 in (Sun et al.,
2016) are satisfied, and the convergence result follows.

It is interesting to notice that convergence conditions are particularly loose.
With respect to the network connecting the agents, it is enough to ensure
connectivity over a finite (but arbitrary) union of time instants.

Step-size sequences satisfying the conditions can be derived easily, either
fixed (and sufficiently small) as remarked in (Sun et al., 2016), or diminish-
ing, e.g., using the following quadratically decreasing rule that was found

3Formally, there exists an integer B > 0 such that the graph G[k] = (V, EB [k]), with

EB [k] =
⋃(k+1)B−1

n=kB E [n] is strongly connected, for all k ≥ 0.
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Algorithm 1 : NEXT Framework for Distributed Optimization of
(3)

Data : wi[0], yi[0] = ∇gi[0], πi[0] = Iyi[0] − ∇gi[0], ∀i = 1, . . . , I, and
{C[n]}n. Set n = 0.

(S.1) If wi[n] satisfies a global termination criterion: STOP;

(S.2) Local Optimization: Each agent i

(a) computes w̃i[n] as:

w̃i[n] = arg min
wi

Ũi (wi; wi[n], π̃i[n]) , (12)

(b) updates its local variable zi[n]:

zi[n] = wi[n] + α[n] (w̃i[n]−wi[n]) .

(S.3) Consensus update: Each agent i

(a) collects zj[n] and yj[n] from neighbors,

(b) updates wi[n] as:

wi[n+ 1] =
I∑
j=1

cij[n] zj[n] ,

(c) updates yi[n] as:

yi[n+ 1] =
I∑
j=1

cij[n] yj[n] + (∇gi[n+ 1]−∇gi[n]) ,

(d) updates π̃i[n] as :

π̃i[n+ 1] = I · yi[n+ 1]−∇gi[n+ 1] .

(S.4) n← n+ 1, and go to (S.1).
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particularly effective in our experiments:

α[n] = α[n− 1] (1− εα[n− 1]) , (13)

where α[0], ε ∈ (0, 1] must be chosen by the user.
The per-iteration cost of the algorithm is clearly dominated by the solu-

tion of the surrogate optimization problem in (12). As we will see in the next
section, the flexibility of the framework allows to select different choices of
surrogate functions, typically impacting the complexity/performance trade-
off of the algorithm. The framework can be accelerated in two ways. First, we
can parallelize the surrogate optimization in (12); this point will be discussed
in Section 5. Second, at each iteration n, we can consider an inexact solution
of the surrogate problems in (12) within a user-specified error bound εi[n].
In this case, it can be shown that convergence is still guaranteed, as long as
the following condition is satisfied:

∑∞
n=0 α[n]εi[n] <∞, ∀i ∈ 1, . . . , I, which

establish a decaying rate of the error sequence over time. For further details,
we refer to (Di Lorenzo and Scutari, 2016, Theorem 4).

4. Strategies for Distributed NN Training

In this section, we customize the NEXT framework for the solution of
several distributed NN training problems. In particular, we focus on the
choice of the surrogate functions g̃i in (5). From Proposition 1, we know that
they must be chosen to satisfy F1-F3. Thus, we explore two general-purpose
strategies that can be used to this end, before analyzing some practical algo-
rithms resulting from the combination of these two strategies with common
choices of the loss function and the regularization term. Essentially, the aim
of g̃i(·) is to provide a strongly convex approximation of (the non-convex) gi
around the current point, preserving (at least) the first-order information of
the original function. Then, the most basic idea is to linearize the entire gi,
irrespectively of the actual choice of loss function l, as:

g̃FLi (wi; wi[n]) = gi(wi[n]) +∇gi(wi[n])T (wi −wi[n])

+
τ

2
‖wi −wi[n]‖22 , (14)

where the last term in (14) is a proximal regularization term (with τ ≥ 0)
used to ensure strong convexity; in what follows, we will refer to (14) as
the full linearization strategy (FL). In general, the use of the FL strategy
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leads to the formulation of surrogate problems in (12) allowing for a simple,
closed-form solution for most choices of regularization. At the same time, this
strategy is throwing away most information of gi(·), by only keeping first-
order information on its gradient. For this reason, the resulting family of
algorithms can possess a slow convergence speed, similarly to what happens
with the use of (centralized) steepest descent optimization procedures.

To implement a more sophisticated approximation aimed at preserving
the hidden convexity in the problem, we start noticing that the loss function
in (4) is composed of the summation of terms, each one given by the compo-
sition of an exterior convex function (i.e., the loss function l), and an interior
nonlinear function (i.e., the NN model f). Then, a possible choice for g̃i is to
preserve the convexity of l, while linearizing f around the current estimate
wi[n], and a generic input point xi,m, as:

f̃(wi; wi[n],xi,m) = f(wi[n]; xi,m) +∇f(wi[n]; xi,m)T (wi −wi[n]) . (15)

Then, the surrogate g̃i is obtained as:

g̃PLi (wi; wi[n]) =
∑
m∈Si

l(di,m, f̃(wi; wi[n],xi,m)) +
τ

2
‖wi −wi[n]‖2, (16)

with τ ≥ 0. We will refer to (16) as the partial linearization (PL) strategy.
It is straightforward to check that the surrogate g̃PLi in (16) satisfies the
properties F1-F3 required by Proposition 1.

In the remainder of the section, we consider a set of practical examples
resulting from the use of our general framework.

4.1. Case 1: ridge regression cost

As a first example, we consider the use of a squared loss function combined
with a classical `2 norm regularization on the weights (also known as weight
decay in the NN literature (Moody et al., 1995)):

l(a, b) , (a− b)2 , r(w) ,
λ

2
‖w‖22 , (17)

where λ is a positive regularization parameter. Historically, this is the most
common training criterion for NNs, and it is still widely used today for regres-
sion problems. Being equivalent to a nonlinear ridge regression, we borrow
this terminology here.
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Let us begin with the FL strategy in (14). Note that, thanks to the
specific form of the regularizer, the resulting optimization problem in (12)
is already strongly convex, so that we can set τ = 0. Then, using (14) and
(17), the surrogate problem in (12) reduces to the minimization of a positive
definite quadratic function, which admits a simple closed form solution, given
by:

w̃i[n] = −1

λ

(
∇gi[n] + π̃i[n]

)
, (18)

where as before ∇gi[n] is used as a simplified notation for ∇wi
gi(wi[n]).

Eq. (18) represents the first practical implementation of the framework in
Algorithm 1 for distributed NN training. As we can notice from (18), the
FL strategy discards all information on the global cost function U in (3),
except for a first-order approximation. Thus, the descent direction in (18)
will be proportional to the opposite of the gradient of U , thanks to the
current estimate π̃i[n] of (6) that is locally available at node i. As we will
see in the numerical results, the performance of the resulting distributed
scheme is similar to a centralized gradient method, sharing its advantages
(low computational complexity) and its drawbacks (possible slow convergence
speed).

We now proceed considering the PL strategy in (16). To this aim, let us
introduce the following ‘residual’ terms:

ri,m[n] = di,m − f(wi[n]; xi,m) + Ji,m[n]Twi[n] , (19)

where Ji,m[n] = ∇wi
f(wi[n]; xi,m) is a Q-dimensional vector containing the

derivatives of the NN output with respect to any single weight parameter. In
the general case, it will be a matrix with one column per NN output. This
quantity is sometimes denoted as the weight Jacobian (Blackwell, 2012),
since it measures the influence of a small parameter change on the output
of the neural network.4 Now, using (16) in (12), it is easy to show that the
surrogate problem can be written again as the minimization of a positive

4Note that a single back-propagation step per iteration is needed to build the weight
Jacobian, as discussed in Bishop (2006, Section 5.3.4).

15



definite quadratic form, given by:

w̃i[n] = arg min
wi

wT
i

(
Ai[n] +

λ

2
I
)
wi − 2bi[n]Twi , (20)

where
Ai[n] =

∑
m∈Si

Ji,m[n]Ji,m[n]T , (21)

bi[n] =
∑
m∈Si

Ji,m[n]ri,m[n]− 0.5 π̃i[n] . (22)

As an interesting side note, in the NN literature the matrix (21) is known
as an outer product approximation to the Hessian matrix of gi(·) (i.e., the
error function local to agent i), which is obtained by assuming that the error
is uncorrelated with the second derivative of the network’s output (Bishop,
2006, Section 5.4.2). Finally, solving the resulting minimization problem in
(20), the solution w̃i[n] of the surrogate problem, to be used in (12), is given
by:

w̃i[n] =
(
Ai[n] +

λ

2
I
)−1

bi[n] . (23)

Differently from the FL strategy, whose computational complexity is linear
in the number of parameters, in this case solving the surrogate problem is of
the order O(Q3), where Q is the number of adaptable NN parameters, due
to the matrix inversion step. Nevertheless, as we will see in the numerical
results, the resulting descent direction provides a very large improvement in
terms of convergence speed. Additionally, this strategy can benefit from a
larger relative speedup when employing the parallelization strategy described
in Section 5.

4.2. Case 2a: squared error with weight sparsity

As a second example, let us consider again the use of a squared loss term
l in (17), combined this time with a sparsity promoting term given by the `1
norm on the weight vector, i.e.,

r(w) , λ ‖w‖1 = λ

Q∑
k=1

|wk| . (24)
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The `1 norm promotes sparsity of the weight vector, acting as a convex ap-
proximation of the non-convex, non-differentiable `0 norm (Tibshirani, 1996).
While there exists customized algorithms to solve non-convex `1 regularized
problems (Ochs et al., 2015), it is common in the NN literature to apply
first-order procedures (e.g., stochastic descent with momentum) followed by
a thresholding step to obtain sparse solutions (Bengio, 2012). In what fol-
lows, we illustrate the customization of the NEXT framework to this use
case, using both FL and PL strategies in (14) and (16), respectively. In the
FL case, using (14) and (24), with τ > 0 to ensure strong convexity, the prob-
lem in (12) can be written as the minimization of the sum of q independent
functions, as follows:

w̃i[n] = arg min
wi

q∑
k=1

{
(∇gik[n] + π̃ik[n]− τwik[n])wik

+
τ

2
w2
ik + λ|wik|

}
. (25)

After some easy calculations, the solution of the optimization problem in
(25) is given by the closed form expression:

w̃i[n] = Sλ/τ
(

wi[n]− 1

τ
∇gi[n]− 1

τ
π̃i[n]

)
, (26)

where

Sγ(z) = sign(z) max(0, |z| − γ), (27)

is the (component-wise) soft thresholding function.
In the PL case, using (16) and (24), the problem in (12) can be cast as

an `1 regularized quadratic program, given by:

w̃i[n] = arg min
wi

{
wT
i

(
Ai[n] +

τ

2
I
)

wi−

2 (bi[n] + 0.5τwi[n])T wi + λ ‖wi‖1

}
, (28)

where Ai[n] and bi[n] are given by (21) and (22), respectively. This is the
first case we encounter where the solution of the optimization step cannot be
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expressed immediately in a closed form. Nevertheless, problem (28) is given
by the sum of a strongly convex function and an `1 term, and many efficient
strategies can be used for its approximate solution, including FISTA (Beck
and Teboulle, 2009), coordinate descent methods (Cevher et al., 2014), and
several others.

4.3. Case 2b: group sparse penalization

The formulation introduced in Sec. 4.2 can be easily extended to han-
dle a group sparse penalization, which allows the selective removal of entire
neurons during the training process, see, e.g., (Scardapane et al., 2017). The
basic idea is to force all the outgoing weights from a neuron to be simul-
taneously either non-zero or zero; the latter resulting in the direct removal
of the neuron itself. Note that a neuron here can correspond to an input
neuron, to a neuron in a hidden layer, or to a bias term, thus allowing the
removal of input features, hidden neurons, and bias terms from the trained
network (see (Scardapane et al., 2017) for details). To this aim, let us suppose
that the neurons are ordered and indexed as 1, . . . , P . Also, let us denote
by wi,p, p = 1, . . . , P , the subset of weights of wi collecting all connections
between the pth neuron with all the neurons in the following layer. Group
sparsity can then be imposed by choosing in (3) the following regularization
term:

r(w) , λ
P∑
p=1

ρp ‖wp‖2 , (29)

where ρp =
√
rp are positive constants, p = 1, . . . , P , with rp denoting the

dimensionality of wp.
Let us now analyze the customization of our framework when the FL

strategy in (14) is applied. Then, let us define ai[n] = ∇gi[n]+π̃i[n]−τwi[n],
denoting with ai,p the restriction of ai to the indexes associated with the pth
group. Thus, the surrogate problem in (12) writes as:

w̃i[n] = arg min
wi

P∑
p=1

{
aTi,pwi,p+

τ

2
‖wi,p‖22 + λρp ‖wi,p‖2

}
. (30)

As we can notice from (30), the cost function is given by a summation of
costs, each one dependent on a single neuron. Also in this case, even if
problem (30) cannot be solved in closed form, it is possible to implement
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very fast and efficient algorithms for its solution, see, e.g., (Schmidt, 2010;
Cevher et al., 2014). Furthermore, in the case each agent has a multi-core
architecture, the structure of (30) makes straightforward the parallelization
of computation, where each local processor can take care only of a subset of
neurons. Finally, considering the PL strategy, the resulting formulation is
equivalent to (28), with the only difference that (29) replaces the `1 norm.
Again, many of the techniques mentioned before can be used to solve also
the resulting (group sparse) strongly convex problem.

4.4. Case 3: cross-entropy loss

As an additional example, let us consider the case of binary classification,
i.e., di,m ∈ {0, 1}. Then, assuming the output of the NN is limited between
0 and 1, a standard optimization criterion involves the cross-entropy loss
function in (3), i.e.:

l(a, b) , −a log(b)− (1− a) log(1− b) . (31)

In this case, using the FL strategy in (14), we obtain the same closed form
solution as in (18) (or (25)) by using the `2 (or `1) regularization, with the
only difference being that each function gi in (4) now depends on the cross-
entropy loss in (31). The PL case, instead, requires some additional care. In
particular, although the NN output is bounded, the same is not true for its
linear approximation (15). Simply substituting (15) in (31) might result in
undefined values, since the argument of the logarithm must be positive. To
tackle this issue, let us notice that in this case the NN model can be written
as:

f(w; x) = σ (fL(w; x)) , (32)

where σ(·) is a squashing function (without loss of generality, we assume it
to be a sigmoid), and fL is the NN output up to (but not including) the
activation function of the output neuron. The sigmoid σ(z) is non-convex,
but its internal composition with the cross-entropy loss in (31) is convex,
see, e.g., (Boyd and Vandenberghe, 2004). Exploiting such hidden convexity,
we can write the surrogate problem in (12), while satisfying the conditions

19



F1-F3 in Proposition 1, as follows:

w̃i[n] = arg min
wi

{
l
(
di,m, σ

(
f̃L(wi; wi[n],xi,m)

))
+πi[n]Twi + r(wi) +

τ

2
‖wi −wi[n]‖22

}
, (33)

where f̃L(·) is the first-order linearization of fL defined as in (15). Also in
this case we cannot make any further simplifications although, once again,
the strong convexity of the problem makes it relatively easy to be solved
(roughly equivalent to a traditional logistic regression).

5. Parallelizing the Local Optimization

In this section, we explore how each agent can parallelize the local op-
timization in (12), when having access to C separate computing machines
(e.g., cores, or computers in a cloud). As we stated in the introduction, this
effectively gives rise to algorithms that are both distributed (across agents)
and parallel (inside each agent) in nature. To this end, suppose that the
weight vector wi is partitioned in C non-overlapping blocks wi,1, . . . ,wi,C , so

that wi =
⋃C
c=1 wi,c (assuming that the union keeps the original order). Note

that we use a similar notation as in Section 4.3 to identify a single group,
i.e., using an additional subscript under the variable. For convenience, we
also define wi,−c[n] , (wi,p[n])C1=p6=c as the tuple of all blocks excepts the
c-th one, and similarly for all other variables. Additionally, we assume that
the regularization term r is block separable, i.e., r(wi) =

∑C
c=1 ri,c(wi,c) for

some ri,c. This is true for the `2 and `1 norms, and it holds true also for the
group sparse norm in (29) if we choose the groups in a consistent way. Then,
the key idea is to decompose (12) on a per-core-basis, and solve a sequence
of (strongly) convex low-complexity subproblems, whereby all processors of
agent i update their blocks in parallel. To this aim, we build a surrogate
function g̃i that additively decomposes over the different cores, i.e.:

g̃i(wi; wi[n]) =
C∑
c=1

g̃i,c(wi,c; wi,−c[n]) , (34)
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where each g̃i,c(·; wi,−c[n]) is any surrogate function satisfying conditions F1-
F3 on the variable wi,c. It is easy to check that the surrogate g̃i in (34)
satisfies F1-F3 on the variable wi. Given (34), each core c can then minimize
its corresponding term independently of the others, and their solutions can
be aggregated to form the final solution vector. In the case of the FL strat-
egy, parallelization is not particularly effective. In fact, the final solution is
given by simple aggregation of vectors as in (18), whose computation has
linear complexity with respect to the size of wi, eventually with a point-wise
application of the thresholding operator in (27). However, the (linear) cost
of solving the surrogate problems at each core is easily overshadowed by the
need of computing gradients via a backpropagation step. On the other side,
parallelization can largely reduce computational complexity when using the
PL strategy. To give an example of application of the proposed methodology,
in the sequel we illustrate how to parallelize the local optimization in the case
of a ridge regression cost as in Sec. 4.1. In particular, let us consider the
surrogate function in (20). To obtain the surrogate function associated to
each core c, we fix in (20) all the variables wi,−c[n], such that the resulting
function depends only on wi,c. The surrogate associated to core c is then
given by:

Ũi,c(wi,c; wi,−c[n]) = wT
i,c

(
Ai,c,c[n] +

λ

2
I
)
wi,c−

2 (bi,c[n]−Ai,c,−c[n]wi,−c[n])T wi , (35)

where Ai,c,c[n] is the block (rows and columns) of the matrix Ai[n] in (21)
corresponding to the c-th partition, whereas Ai,c,−c[n] takes the rows corre-
sponding to the c-th partition and all the columns not associated to c. The
minimum of (35) is:

w̃i,c[n] =

(
Ai,c,c[n] +

λ

2
I

)−1
(bi,c[n]−Ai,c,−c[n]wi,−c[n]) , (36)

c = 1, . . . , C, and the overall solution is given by w̃i[n] = (w̃i,c[n])Cc=1. As
we can see from (36), the effect of the parallelization is evident: At each
iteration n, each core has to invert a matrix having (approximately) size 1

C
of

the original one in (23), thus remarkably reducing the overall computational
burden. Similar arguments can be used also to parallelize the formulations
in (28), (30), and (33).
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Figure 1: Example of communication network with 10 agents (represented by red dots),
possessing a sparse, time-invariant, symmetric connectivity.

6. Experimental Validation

In this section, we assess the performance of the proposed method via
numerical simulations. We begin by analyzing the test error of the solutions
obtained by the algorithms for some representative regression and classifi-
cation datasets in Sections 6.2 and 6.3, respectively. Then, we consider the
convergence behaviors of the proposed framework, comparing it to central-
ized and distributed counterparts, in Section 6.4. In Section 6.5, we describe
the speed-up achieved thanks to the parallelization strategy outlined before.
Finally, we consider large-scale inference in Section 6.6. Python code to re-
peat the experiments is available under open-source license on the web.5 The
code is built upon the Theano (Bergstra et al., 2010) and Lasagne6 libraries.

6.1. Experimental setup

In all experiments, the original dataset is normalized so that both inputs
and outputs lie in the [0, 1] range. Then, the dataset is partitioned as fol-
lows. First, 20% of the dataset is kept separate to test the algorithms. The
remaining 80% is partitioned evenly among a randomly generated network
of 10 agents. For simplicity, we consider networks with time-invariant, sym-
metric connectivity, such that every pair of agents have a 20% probability
of being connected, with the only requirement that the overall network is
connected. An example of such connectivity is shown in Fig. 1.

5https://bitbucket.org/ispamm/parallel-and-distributed-neural-networks
6https://github.com/Lasagne/Lasagne
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Dataset Features Samples NN Topology λ Source

Boston 13 506 10 10−1 UCI

Kin8nm 7 8192 8/5 10−2 DELVE

Wine 10 4898 12 10−2 UCI

Table 1: Schematic description of the datasets used for regression. For the NN topology,
x/y denotes a NN with two hidden layers of dimensions x and y respectively.

We have selected the weight coefficients in (2) using the Metropolis-
Hastings strategy (Lopes and Sayed, 2008):

Cij =


1

max{δi,δj}+1
i 6= j, j ∈ Ni

1−
∑

j∈Ni

1
max{δi,δj}+1

i = j

0 otherwise

(37)

where δi is the degree of node i. It it easy to check that this choice of the
weight matrix satisfies the convergence conditions of the framework. Missing
data is handled by removing the corresponding example. All experiments are
repeated 25 times by varying the data partitioning and the NN initialization.

Regarding the NN structure, we use hyperbolic tangent nonlinearities
in all neurons, except for classification problems, where we use a sigmoid
nonlinearity in the output neuron. The weights of the NN are initialized
independently at every agent using the normalized strategy described by
Glorot and Bengio (2010). All algorithms run for a maximum of 1000 epochs.
In all the figures illustrating the results of the distributed strategies, whenever
not explicitly stated, we consider the evolution of the average weight vector
w[n] as defined in Proposition 2.

6.2. Results with regression datasets

We start considering three representative regression datasets, whose char-
acteristics are summarized in Table 1. Boston (also known as the Housing
dataset) is the task of predicting the median value of a house based on a set
of features describing it (Quinlan, 1993). Kin8nm is a member of the kine-
matics family of datasets7, having high non-linearity and a medium amount

7http://www.cs.toronto.edu/~delve/data/kin/desc.html
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of additive noise. Finally, Wine concerns predicting the subjective quality of
a (white) wine based on a wide set of chemical features (Cortez et al., 2009).
The fourth and fifth columns in Table 1 describe the parameters of the NN
in terms of hidden neurons and regularization coefficients. These parame-
ters are chosen based on an analysis of previous literature in order to obtain
state-of-the-art results. However, we underline that our aim is to compare
different solvers for the same NN optimization problem, and for this reason
only relative differences in accuracy are of concern.

In particular, we compare the results of our algorithms with respect to
five state-of-the-art centralized solvers, in terms of mean-squared error (MSE)
over the test data, when solving the global optimization problem with the
ridge regression cost in (17). Note that these solvers would not be available in
a distributed scenario, and are only used for comparison purposes as optimal
benchmarks. Specifically, we consider the following algorithms:

Gradient descent (GD) : this is a simple first-order steepest descent pro-
cedure with fixed step-size.

AdaGrad (Duchi et al., 2011) : differently from GD, this algorithm employs
different adaptive step-sizes per weight, which evolve according to the
relative values of the gradients’ updates.

RMSProp : equivalent to an AdaDelta variant (Zeiler, 2012), it also consid-
ers adaptive independent step-sizes; however they are adapted based
on shorter time windows in order to avoid exponentially decreasing
schedules.

Conjugate gradient (CG) : this is the Polak-Ribiere variant of the non-
linear conjugate gradient algorithm (Nocedal and Wright, 2006), im-
plemented in the SciPy library.8

L-BFGS : a low-memory version of the second-order BFGS algorithm (Byrd
et al., 1995), keeping track of an approximation to the full Hessian
matrix, also implemented in the SciPy library.

In addition, we consider the behavior of a centralized implementation of
the PL strategy in (23), denoted as PL-SCA, resulting in a novel centralized

8https://scipy.org/
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algorithm. In particular, assuming all data is available on a single location,
we can consider a centralized equivalent of (21) and (22) as:

A[n] =
I∑
i=1

Ai[n] , (38)

b[n] =
I∑
i=1

∑
m∈Si

Ji,m[n]ri,m[n] . (39)

Following similar arguments as in Sections 3 and 4.1, PL-SCA is defined by
the iterative application of the following recursion:

w̃[n] =
(
A[n] +

λ

2
I
)−1

b[n] , (40)

w[n+ 1] = w[n] + α[n] (w̃[n]−w[n]) . (41)

The centralized implementation of the FL strategy is almost equivalent to
GD, so we do not consider it separately. For the distributed algorithms,
we consider both the PL strategy in (23), denoted as PL-NEXT, and the
FL strategy in (18), denoted as FL-NEXT. For PL-SCA, PL-NEXT and FL-
NEXT we use the quadratically decreasing step-size sequence defined in (13).
To have a fair comparison, the parameters of the step-size sequence in (13)
were tuned at hand in order to select the fastest convergence behavior for all
algorithms.

The results on this set of experiments are provided in Table 2, both
in terms of the mean and the standard deviation. Several conclusions can
be drawn from the table. For the centralized algorithms, L-BFGS, being
a second-order algorithm, is able to obtain the best accuracies, and it is
matched only by CG in the Boston case (in the next section we will show
some plots of the convergence behavior of the different algorithms). Inter-
estingly, PL-SCA is able to match L-BFGS in all cases, complementing our
previous observation that the matrix in (38) acts as an approximation of the
Hessian matrix. For the distributed algorithms, we see similar distinctions
between FL-NEXT and PL-NEXT. Specifically, PL-NEXT has comparable
accuracies with respect to L-BFGS, while FL-NEXT obtains errors compa-
rable to GD and AdaGrad. Clearly, the improved convergence comes at the
cost of a higher computational burden (due to the need of inverting a ma-
trix in (23)), in line with the equivalent difference in the centralized case.
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Dataset Features Samples NN Topology λ Source

Wisconsin 9 689 10 10−0.5 UCI

CTG 28 2126 15/8 10 UCI

Table 3: Schematic description of the datasets used for classification. See Table 1 and the
text for details on the NN topology.

Summarizing, we see that FL-NEXT and PL-NEXT represent viable algo-
rithms for distributed scenarios, providing a relative trade-off with respect to
convergence and computational requirements, and matching the respective
centralized implementations that are not viable in the distributed setting
treated in this paper. Importantly, this is also achieved with a minimal (or
non-existent) increase in term of variance. We defer a statistical analysis
of the results to the next section, in order to consider also the classification
datasets.

6.3. Results with classification datasets

In this section, we analyze the performance of the distributed algorithms
when applied to two classification problems, whose characteristics are briefly
summarized in Table 3. Wisconsin is a medical classification task, aimed
at separating cancerous cells from non-cancerous ones from several features
describing the cell nucleus.9 The Cardiotocography (CGT) dataset is another
clinical problem, where we wish to infer suspect/pathological fetuses from
several biometric signals.10 In this case, we solve the global optimization
problem with the cross-entropy loss in (31) and a squared regularization term.
We analyze the behavior of both the FL strategy and the PL strategy when
compared to the state-of-the-art solvers described in the previous section. For
PL-NEXT, the local surrogate problem in (33) is solved with AdaGrad, run
for a maximum of 50 iterations (with an initial step-size of 0.1), or until the
gradient norm is below a fixed threshold of 10−6. For the local optimization
at each agent, we perform a ‘warm start’ from the current estimate wi[n].

The overall results are given in Table 4 in terms of misclassification rate.
We see that, in this case, first-order algorithms are generally competitive,

9https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Diagnostic)
10https://archive.ics.uci.edu/ml/datasets/Cardiotocography
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with the GD solver obtaining the best accuracy among the centralized solvers
for the Wisconsin dataset, and CG/L-BFGS obtaining a slightly better re-
sult in the CTG case. Nevertheless, the distributed strategies are again able
to obtain state-of-the-art results, with PL-NEXT consistently obtaining the
lowest misclassification rate, and FL-NEXT ranging close to AdaGrad and
RMSProp. In order to formalize the intuition that PL-NEXT is generally
converging to a better minimum than FL-NEXT, we perform a Wilcoxon
signed-rank test (Demšar, 2006) on the results over both regression and clas-
sification datasets. The difference is found to be significant with a p = 0.05
confidence value (although the number of datasets under consideration is rel-
atively small). We can reasonably conclude that PL-NEXT seems a better
choice in terms of accuracy, if it is possible for the agents to cope with the
increased computational cost.

6.4. Analysis of convergence

In a distributed setting, the final accuracy is not the only parameter
of interest. We are also concerned on how fast this accuracy is obtained,
because the convergence speed has a direct impact on the communication
burden over the network of agents. As we mentioned in the introduction, in
the case of general non-differentiable regularizers r, there is no ready-to-use
alternative for comparing our proposed algorithms. However, in the specific
case where the regularization function r satisfies assumption B1, we can easily
adapt the framework introduced in Bianchi and Jakubowicz (2013), resulting
in a simple method that we denote as the distributed gradient (DistGrad)
algorithm. Similarly to the NEXT framework, DistGrad alternates between
a local optimization phase and a communication phase. In the optimization
phase, each agent iteratively updates its own estimate according to a local
gradient descent step as follows:

zi[n] = wi[n]− η[n]

(
∇gi[n] +

1

I
∇r(wi[n])

)
, (42)

where η[n] is the step-size sequence. In the communication phase, the local
estimates zi[n] are combined similarly to (8). DistGrad can be seen as a
simplified version of the FL strategy, where we do not consider the dynamic
consensus step (i.e., Step 3 of NEXT). For fairness of comparison, we use the
step-size rule in (13), and the same strategy for selecting the combination
coefficients in (2).
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Figure 2: (a-b) Cost function value (per epoch). (c-d) Test error (per scalars exchanged).
(e-f) Evolution of the disagreement (per scalars exchanged). Graphs on the left column
are for the Boston dataset, graphs on the right column are for the Kin8nm dataset. For
readability, centralized algorithms are represented with dashed lines, while distributed
algorithms are represented with solid lines with specific markers.
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In Figs. 2a-2b we plot the evolution of the global cost function in (3)
for FL-NEXT, PL-NEXT, DistGrad and a few representative centralized
solvers for two different datasets. For improved readability, the behavior
of centralized solvers is depicted using dashed lines, while the distributed
algorithms are shown with solid lines. We see that the results are similar
to what we have already discussed previously for the final test error: PL-
NEXT is able to track consistently the convergence rate of L-BFGS, while
FL-NEXT achieves results comparable to (centralized) first-order procedures.
Differently, the DistGrad algorithm is slower and, for a given number of
epochs, has a very large gap compared to other methods.

Another performance metric of interest is the transient behavior of the
test error in terms of the amount of scalar values that are exchanged among
agents in the network. We plot this metric for the three distributed algo-
rithms in Figs. 2c-2d, where the y-axis is shown with a logarithmic scale. We
notice that DistGrad requires exactly half as many scalars to be exchanged
at every iteration (since it does not rely on the dynamic consensus to track
the average gradient). Nevertheless, from Figs. 2c-2d, we can see that both
PL-NEXT and FL-NEXT can reach better errors with respect to DistGrad
for any given amount of scalars exchanged, showing their better efficiency
in terms of overall communication burden. PL-NEXT is particularly well
performing, with only a very small amount of communication required for
achieving an error close to the optimal one.

A final metric of interest is the average disagreement among the agents,
which is computed as:

D[n] ,
1

I
‖wi[n]−w[n]‖∞ . (43)

We plot the behavior of (43) for PL-NEXT and FL-NEXT in Figs. 2e-2f,
where we can see that both algorithms rapidly tend to reach a consensus
among the different agents in the network.

6.5. Exploiting parallelization

Next, we investigate the speed-up obtained by parallelizing the local opti-
mization at each agent. We consider again the Boston and Kin8nm datasets,
but we vary the number of (local) processors available at every agent in the
range 2j, with j = 0, 1, . . . , 4. The relative speedup with respect to the base-
line C = 1 is shown in Figs. 3a-3b. We see that the speedup is roughly linear
with respect to the amount of available processors, so that in the case C = 16
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Figure 3: (a-b) Relative speedup (per number of local processors). (c-d) Cost function
value (per epoch). Graphs on the left column are for the Boston dataset, graphs on the
right column are for the Kin8nm dataset.

we only need ≈ 1
3

of the time for Boston, and ≈ 1
2

for Kin8nm. Additionally,
in Figs. 3c-3d, we can visualize the evolution of the overall cost function
for C = 1, C = 4 and C = 16. From the figures, we can notice that the
improvement in training time is obtained with only a limited effect on the
convergence behavior, where in the worst case we obtain only a very small
(or null) decrease.
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Figure 4: Average evolution of the loss on the MSD dataset (see the text for a full de-
scription). For AdaGrad, one epoch corresponds to an entire pass over the training data.

6.6. Experiment on a large-scale dataset

Before concluding this experimental section, we briefly discuss the im-
portant point of large-scale distributed learning, i.e., performing distributed
inference whenever Nk is very large for the majority of the agents. To this
end, we consider the YearPredictionMSD dataset (Bertin-Mahieux et al.,
2011), which is one of the largest regression datasets available on the UCI
repository. The task is to predict the year of release of a song starting from
90 audio features. There are 463, 715 examples for training, and 51, 630 ex-
amples for testing (of different authors). Similarly to before, we preprocess
the input and output values in [0, 1], and we consider a NN with two hidden
layers having, respectively, 40 and 20 neurons. We partition the training
data among 10 different agents, and we compare PL-NEXT with AdaGrad.
We choose AdaGrad for two main reasons, i.e., it was found to be extremely
fast in the previous section, and we can use it together with stochastic up-
dates over small batches of data in order to handle the large-scale dataset.
Specifically, for every iteration AdaGrad is updated with mini-batches of 500
elements, and accuracy is computed after a complete pass over the training
dataset. The regularization is chosen as λ = 10. Step-sizes are chosen in
order to guarantee a smooth convergence behavior.

The evolution of the global loss function in (3) is shown in Fig. 4. De-
spite AdaGrad making several stochastic update steps at every iteration, PL-
NEXT is able to achieve a comparable convergence behavior, with a minimum
loss value which is slightly better due to the unnoisy gradient evaluations.
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Both algorithms also achieve a similar mean squared error on the indepen-
dent test set, which is around 0.011. For comparison, the average MSE of a
support vector algorithm is around 0.013/0.014 (Ho and Lin, 2012).

This example shows two important aspects of large-scale inference over
networks. First of all, what is considered a challenging benchmark in a cen-
tralized environment might be relatively simpler in a distributed experiment,
since the training data must be partitioned over several agents. In this case,
for example, the original half a million training points must be partitioned
over 10 agents, so that each agent only has to deal with ≈ 50, 000 training
points. Thus, there is the need of designing more elaborate benchmarks to
test the capabilities of the algorithms is larger situations. Secondly, properly
handling these datasets will require the development of stochastic updates at
every agent, paralleling the stochastic algorithms used in the centralized case
and commonly used in the deep learning literature. Having such stochastic
algorithms for distributed, non-convex problems remain an open problem in
the literature, and we remark it here as the main line of research for future
investigations.

7. Conclusions and Future Works

In this paper, we have investigated the problem of training a NN model
in a distributed scenario, where multiple agents have a limited knowledge
of the training dataset. We have proposed a provably convergent proce-
dure to this aim, which builds exclusively on local optimization steps and
one-hop communication steps. The method can be customized to several
typical error functions and regularization terms. We have also described an
immediate way to parallelize the local optimization phase across multiple
processors/machines, available at each agent, with a limited impact on the
convergence behavior.

One immediate extension of the framework presented here is to handle
non-convex regularization terms, which are generally considered too challeng-
ing in practice. One example is the sample variance penalization (Maurer
and Pontil, 2009), which is defined in terms of the NN output. Additional
extensions can consider the presence of non-differentiable points in the NN
model (e.g., by using ReLu activation functions), stochastic updates of the
surrogate functions, and online formulations where new data arrives in a
streaming fashion, like in distributed filtering (Sayed, 2014). Some interest-
ing results can derive by considering the literature on distributed constraint
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optimization problems (DCOP), which deals with distributed decision mak-
ing problems where the decision variables are separated among the different
agents (Modi et al., 2005; Rogers et al., 2011). Finally, we are interested in
testing our framework on real-world applications such as, e.g., multimedia
classification and chaotic prediction tasks.
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