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Abstract

Stochastic Gradient Descent (SGD) updates network parameters with a noisy gradient computed from a random batch, and each
[N batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the
«—{ fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on
O batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD)
to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t
E the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch’s loss, and it utilizes a
dynamic upper control limit to identify a large loss batch on the fly. Then, it solves a new subproblem on the identified batch to
2 accelerate the training while avoiding drastic parameter changes. ISGD is straightforward, computationally efficient and without
00 requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising

(\J performance of inconsistent training.
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(fj 1. Introduction

|2| The accessible TFLOPs brought forth by accelerator tech-
nologies bolster the booming development in Neural Networks.

M In particular, large scale neural networks have drastically im-
proved various systems in natural language processing [1],
video motion analysis [2], and recommender systems [3]]. How-
ever, training a large neural network saturated with nonlinearity
is notoriously difficult. For example, it takes 10000 CPU cores
up to days to complete the training of a network with 1 bil-
0 lion parameters [4]. Such computational challenges have man-
ifested the importance of improving the efficiency of gradient
— based training algorithm.

. The network training is an optimization problem that
searches for optimal parameters to approximate the intended
>< function defined over a finite training set. A notable aspect of
@
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training is the vast solution hyperspace defined by abundant net-
work parameters. The recent ImageNet contests have seen the
parameter size of Convolutional Neural Networks (CNN) in-
crease to n ~ 10°. Solving an optimization problem at this
scale is prohibitive to the second order optimization methods,
as the required Hessian matrix, of size 10° x 10°, is too large
to be tackled by modern computer architectures. Therefore, the
first order gradient descent is widely used in training the large
scale neural networks.

The standard first order full Gradient Descent (GD), which
dates back to [3]], calculates the gradient with the whole dataset.
Despite the appealing linear convergence rate of full gradient
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descent (O(p%), p < 1) [6], the computation in an iteration lin-
early increases with the size of dataset. This makes the method
unsuitable for neural networks trained with the sheer volume
of labelled data. To address this issue, Stochastic Gradient De-
scent [[7, 8] was proposed by observing a large amount of re-
dundancy among training examples. It approximates the dataset
with a batch of random samples, and uses the stochastic gradi-
ent computed from the batch to update the model. Although the
convergence rate of SGD, O(1/ Vbk + 1/k) [9] where b is the
batch size, is slower than GD, SGD updates the model much
faster than GD in a period, i.e. larger k. As a result, the faster
convergence is observable on SGD compared to GD in prac-
tice. SGD hits a sweet spot between the good system utilization
[1O] and the fast gradient updates. Therefore, it soon becomes
a popular and effective method to train large scale neural net-
works.

The key operation in SGD is to draw a random batch from
the dataset. It is simple in math, while none-trivial to be imple-
mented on a large-scale dataset such as ImageNet [11]. State
of the art engineering approximation is the Fixed Cycle Pseudo
Random (FCPR) sampling (defined in section [3.4)), which re-
trieves batches from the pre-permuted dataset like a ring, e.g.
dy » dy > dy » dy — dy — ..., where d; denotes a batch. In
this case, each batch receives the same training iterations as a
batch updates the network exactly once in an epoch. Please
note this engineering simplification allows batches to repeti-
tively flow into the network, which is different from the random
sampling in Statistics. However, it is known that the gradient
variances differentiate batches in the training [12], and gradient
updates from the large loss batch contribute more than the small
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loss ones [[13]]. This suggests that rebalancing the training effort
across batches is necessary. SGD fails to consider the issue, and
we think this is a problem.

In this paper, we propose Inconsistent Stochastic Gradient
Descent (ISGD) to rebalance the training effort among batches.
The inconsistency is reflected by the uneven gradient updates
on batches. ISGD measures the training status of a batch by the
associated loss. At any iteration ¢, ISGD traces the losses in it-
erations [t — ny, t], where n,, is the number of distinct batches in
a dataset. These losses assist in constructing a dynamic upper
threshold to identify a under-trained batch during the training.
If a batch’s loss exceeds the threshold, ISGD accelerates the
training on the batch by solving a new subproblem that mini-
mizes the discrepancy between the loss of current batch and the
mean. The subproblem also contains a conservative constraint
to avoid overshooting by bounding the parameter change. The
key idea of the subproblem is to allow additional gradient up-
dates on a under-trained batch while still remaining the proxim-
ity to the current network parameters. Empirical experiments
demonstrate ISGD, especially at the final stage, performs much
better than the baseline method SGD on various mainstream
datasets and networks.

For practical considerations, we also delve into the effect of
batch size toward the convergence rate with system factors con-
sidered. Enlarging the batch size expedites the convergence
[14], but it linearly adds computations in an iteration. In the
scenario of single node training, a small batch is favored to en-
sure frequent gradient updates. In the scenario of the multi-
node training, it entails heavy synchronizations among nodes
per iteration. The more gradient updates, the higher synchro-
nization cost is. In this case, a moderate large batch reduces
overall communications [15], and it also improves the system
saturation and the available parallelism.

In summary, the novelties of this work are:

e we propose a new training model, referred to as the incon-

sistent training, to improve the efficiency of SGD.

e we apply the inconsistent training on SGD and its variants.

2. Related Work

A variety of approaches have been proposed to improve
vanilla SGD for the neural network training. In this section,
we demonstrate the concept of inconsistent training is funda-
mentally different from the existing methods.

The stochastic sampling in SGD introduces the gradient vari-
ance, which slows down the convergence rate [9]. The problem
motivates researchers to apply various variance reduction tech-
niques on SGD to improve the convergence rate. Stochastic
Variance Reduced Gradient (SVRG) [12] keeps network histor-
ical parameters and gradients to explicitly reduce the variance
of update rule, but the authors indicate SVRG only works well
for the fine-tuning of non-convex neural network. Chong et
al. [16] explore the control variates on SGD, while Zhao and
Tong [17]] explore the importance sampling. These variance re-
duction techniques, however, are rarely used in the large scale
neural networks, as they consume the huge RAM space to store

the intermediate variables. ISGD adjusts to the negative effect
of gradient variances, and it does not construct auxiliary vari-
ables being much more memory efficient and practical than the
variance reduction ones.

Momentum [18]] is a widely recognized heuristic to boost
SGD. SGD oscillates across the narrow ravine as the gradient
always points to the other side instead of along the ravine to-
ward the optimal. As a result, it tends to bounce around leading
to the slow convergence. Momentum damps oscillations in
directions of high curvature by combining gradients with op-
posite signs, and it builds up speed toward a direction that is
consistent with the previously accumulated gradients [19]]. The
update rule of Nesterov’s accelerated gradient is similar to
Momentum [20], but the minor different update mechanism for
building the velocity results in important behavior differences.
Momentum strikes in the direction of the accumulated gradient
plus the current gradient. In contrast, Nesterov’s accelerated
gradient strikes along the previous accumulated gradient, then
it measures the gradient before making a correction. This pre-
vents the update from descending fast, thereby increases the
responsiveness. ISGD is fundamentally different from these
approaches by considering the training dynamics on batches.
ISGD rebalances the training effort across batches, while Mo-
mentum and Nesterov’s accelerated gradient leverage the cur-
vature tricks. Therefore, the inconsistent training is expected to
be compatible with both methods.

Adagrad [21] adapts the learning rate to the parameters, per-
forming larger updates for infrequent parameters, and smaller
updates for frequent parameters. It accumulates the squared
gradients in the denominator, which will drastically shrink the
learning rate. Subsequently, RMSprop and Adadelta have
been developed to resolve the issue. These adaptive learning
rate approaches adjust the extent of parameter updates w.r.t
the parameter’s update frequency to increase the robustness of
training, while ISGD adjusts the frequency of a batch’s gradient
updates w.r.t the loss to improve the training efficiency. From
this perspective, ISGD is different from the adaptive learning
rate approaches.

The core concept of inconsistent training is to spare more
training effort on the large loss batches than the small loss
ones. The rational behind the scene is that gradient updates
from the small loss batches contribute less than the large loss
ones. Simo-Serra et al. [13] adopt a similar idea in training
the Siamese network to learn the deep descriptors by inten-
tionally feeding the network with hard training pairs, i.e. pairs
yield large losses, and the method is proven to be an effective
way to improve the performance. They manually pick the hard
pairs to feed the network, while ISGD automatically identifies
the hard batch during the training. In addition, the mechanism
of ISGD’s hard batch acceleration is different from the Simo-
Serra’s method. ISGD solves a sub-optimization problem on
the hard batch to reduce the batch’s loss and avoids drastic pa-
rameter changes, while the Simo-Serra’s method simply feeds
the batch more often. Please note it is important to bound the
parameter changes, because overshooting a batch leads to the
divergence on other batches. In summary, ISGD is the first
neural network solver to consider the batch-wise training dy-



namics, and it has demonstrated promising performance on a
variety of real world datasets and models.

3. Problem Statement

This section demonstrates the non-uniform batch-wise train-
ing dynamics. Theoretically, we prove the contribution of gra-
dient updates varies among batches based on the analysis of
SGD’s convergence rate. We also hypothesize that Intrinsic Im-
age Differences and Sampling Bias are high level factors to the
phenomenon, and the hypothesis is verified by two controlled
experiments. Both theories and experiments support our con-
clusion that the contribution of a batch’s gradient update is dif-
ferent.

Then we demonstrate the Fixed Cycle Pseudo Random sam-
pling employed by SGD is inefficient to handle this issue. In
particular, the consistent gradient updates on all batches, re-
gardless of their statuses, is wasteful especially at the end of
training, and the gradient updates on the small loss batch could
have been used to accelerate large loss batches.

3.1. A Recap of CNN Training

We formulate the CNN training as the following optimiza-
tion problem. Let ¢ be a loss function with weight vector w
as function parameters, which takes a batch of images d as the
input. The objective of CNN training is to find a solution to the
following optimization problem:

1
min Y (d) + S A1 W3 (M

The second term is Weight Decay [22], and A is a parameter
to adjust its contribution (normally around 107#). The pur-
pose of Weight Decay is to penalize the large parameters so
that static noise and irrelevant components of weight vectors
get suppressed. [22].

A typical training iteration of CNN consists of a Forward
and Backward pass. Forward pass yields a loss that measures
the discrepancy between the current predictions and the truth.
Backward pass calculates the gradient, the negative of which
points to the steepest descent direction. Gradient Descent up-
dates the w as follows:

w = w =,V (d) 2)

Whereas evaluating the gradient over the entire dataset is ex-
tremely expensive especially for large datasets such as Ima-
geNet. To resolve this issue, mini-batched SGD is proposed
to approximate the entire dataset with a small randomly drawn
sample d,. The upside of mini-batched SGD is the efficiency
of evaluating a small sample in the gradient calculation, while
the downside is the stochastic gradient slowing down the con-
vergence. Let’s define a sample space Q. If y,(d) is a random
variable defined on a probability space (€2, X, P), the new objec-
tive function is

1
min E{'//w(dt)}:fl//w(dt)dp+ E/lIIWIli 3)
w Q

the update rule changes to

wo=w -V (di) )
and the following holds,
E{Viry(dy)} = Virw(d) )

3.2. Measure Training Status with Cross Entropy Error

We use the loss to reflect the training status of a batch. A
convolutional neural network is a function of R" — R, the last
layer of which is a softmax loss function calculating the cross
entropy between the true prediction probabilities p(x) and the
estimated prediction probabilities p(x). The definition of soft-
max loss function of a batch at iteration ¢ is

1np

1
Yw (dp) = — Z 4 p(x)log p(x) + 54| wii3 (6)

i

where n,, is the number of images in a batch, and A regulates
Weight Decay. Since Weight Decay is applied, the loss of a
batch fluctuates around a small number after being fully trained.

The loss produced by the cross entropy is a reliable indicator
of a batch’s training status. Given a batch dy, the cross entropy
Yw,(d¢) measures the discrepancy between the estimated prob-
abilities and the truth. In the image classification task, the truth
p(x) is a normalized possibility vector, containing most zeros
with only one scalar set to 1. The index of the vector corre-
sponds to an object category. For example, p(x) = [0,0, 1,0, 0]
indicates the object belongs the category 2 (index starts from
0). The neural network produces an normalized estimate pos-
sibility p(x), and the loss function only captures the extent of
making the correct prediction as the zeros in p(x) offset the in-
correct predictions in p(x). If p(x) is close to p(x), the loss
function yields a small value. If p(x) is far from p(x), the loss
function yields a large value. Therefore, we use the loss of a
batch to assess the model’s training status on it. Intuitively a
large loss indicates that most predictions made by the network
on the batch are false, and the additional training on the batch
is necessary.

3.3. Motivation: Non-uniform Training Dynamics of Batches

The gradient variance is the source of batch-wise training
variations. The benefit of using a random sample to approxi-
mate the population is the significantly less computations in an
iteration, while the downside is the noisy gradient. Please note
the convergence rate in this section is measured by iterations.
To analyze the training dynamics per iteration, we need define
the Lyapunov process:

he=llw —w" |5 (7)

The equation measures the distance between the current solu-
tion w' and the optimal solution w*. k, is a random variable.
Hence the convergence rate of SGD can be derived using Eq/4]
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(b) independent identically distributed (i.i.d) batches: b; randomly draw 100 images from each categories of CIFAR-10 (10 categories in total).

Figure 1: The loss traces of 10 single class and i.i.d batches in two controlled experiments. We utilize an example network provided in Caffe. There is no cropping
on input images and we shuffle the images within a batch. The datasets for each experiment is synthesized from CIFAR-10.

and Eq[7}
By = he = W =W = W = w3
- (wt+l + Wt _ zw*)(wl+l _ wt) (8)
= 2w' = 2w" — 7, Vil (d)(—17 Vi (dy))
= =27,(W' = W)V () + 17 (Vi (dy))?
d, is a random sample of d in the sample space Q, and .| — h,

is a random variable that depends on the drawn sample d; and
learning rate 7. It suggests how far an iteration step toward w*.
This equation demonstrates two important insights:

e Reducing VAR{Vyy(dy)} improves the convergence rate.
The expectation of Eq[§] yields the average convergence
rate at the precision of an iteration.

E{hi — hy} = =2m,(W' — w)E{Viy(dy))
+ N E{(Vw(do)*)

= 21w — W)E{Vihy(dy)}
+ A(E{Viy(dp)))> + VAR{ Vi (dy))

C))

To simplify the analysis of Eq[9] let’s assume the convexity
on Yw(d¢) implying that

hi1 —h <0 (10)

— (W' = WHE{Vyy(dp)} < 0. Y

E{Vyw(dy)} is the unbiased estimate of E{Vi,(d)}. There-
fore, maximizing the contribution of an iteration is re-
duced to the minimization of VAR{Vy,(d¢)}. This direc-
tion has been well addressed [23],24].

e The contribution of an iteration, h;y

— hy, varies with re-
spect to dy. According to Eq@, the variance of ;.1 — hy
is:
VAR(h1; — hy) = 42 (W' — w*)?VAR{Viy,(dy))
+7f VAR{(V(d))’}
W.)COV{Viry(dy), Vi (dy)’}

(12)
_ZU?(Wz -

The equation demonstrates VAR{A.,; — h;} # 0, which im-
plies the contribution of gradient updates is non-uniform.
It is interesting to notice that the determining factors in
this equation, Vi/y,(d)?> and Vi (dy), is contingent upon
d;, suggesting a correlation between A, — h, and dy. This
unique insight motivates us to understand what factors in
d; affect the convergence rate h;,; — h;, and how to ad-
dress the load balancing problem in the training. Although
there are extensive studies toward the variance reduction
on Vi (dy), few explores this direction. Let’s use the loss
of a batch to measure the model’s training status on it (ex-
plained in section [3.2). Fig[I|demonstrates the loss traces
of 10 separate batches during the training. It is observ-
able that the losses of batches degenerate at different rates.
Therefore, the empirical observations and Eq[T2] prompt
us to conclude that

the contribution of a batch’s gradient update is
non-uniform

This also explains the distinctive training dynamics of
batches in Fig[l] Eq[T2]suggests d, is critical for the claim.
We conduct a set of empirical evaluations to understand
how d, affect VAR{h,,; — A}, and we propose two high
level factors, Sampling Bias and Intrinsic Image Differ-
ence, to explain the phenomenon. The definitions of these



two terms are as follows:

Sampling Bias: 1t is a bias in which a sample is collected
in such a way that some members of the intended popula-
tion are less likely to be included than others.

Intrinsic Image Difference: Intrinsic Image Difference in-
dicates images from the same subpopulation are also dif-
ferent at pixels. For example, the category ’cat’ can con-
tain some white cat pictures or black cat pictures. Though
black cat and white cat belong to the cat subpopulation,
they are still different at pixels.

Sampling Bias is the first factor to explain the training vari-
ations on batches. We consider two kinds of Sampling Bias.
First, existing datasets, such as Places [25] or ImageNet, con-
tain uneven number of images in each category. As a result,
the dominate sub-population is more likely to be selected in
a batch than others. Second, the insufficient shuffling on the
dataset may lead to clusters of subpopulations. When SGD se-
quentially draws images from the insufficient permuted dataset
to form a randomized batch (explained in section@, one sub-
population is more likely to be included than others. In both
cases, they conform to the definition of Sampling Bias. For
example, the chance of sampling 1 from [1, 1, 1, 0, 2, 3] is
higher than the rest. To support the claim, we synthesized 10
single-class batches randomly drawn from an exclusive image
category in CIFAR-10 [26]]. Please note CIFAR-10 contains 10
independent image categories. Each batch represents a unique
CIFAR-10 category, and they are highly polluted with Sampling
Bias as each batch only contains one subpopulation. Fig|[Ia]
demonstrates the loss traces of ten single-class batches. It is
obvious to see the losses of ten batches degrade independently.
In particular, gradient updates from the yellow batch is more
effective than the purple batch. Therefore, these results justify
our claim about Sampling Bias and the batch-wise training vari-
ation.

Intrinsic Image Difference is the second factor to explain the
training variations on batches. To substantiate this point, we
conduct a controlled experiment on 10 independent identically
distributed batches. A batch includes 1000 images, and each
batch contains 100 randomly drawn images from category 0,
100 images from category 1, ... , 100 images from category 9.
This sequence is fixed across batches to eliminate the potential
ordering influence. In this case, each batch contains the same
number of images from 10 subpopulations in CIFAR-10 and the
only difference among them is the pixels. Hence, we consider
these batches independent identically distributed. The network
is same as the one used in Sampling Bias. Fig[Ib|demonstrates
the loss traces of 10 i.i.d batches. Although a strong correlation
persists through the training, it is still clear the losses of i.i.d
batches degrade at separate rates. Particularly, the loss of batch
4 (green) is around 0.5 while batch 3 (purple) is around 1.3 at
the epoch 400. Please note these batches are i.i.d, and they are
supposed to be approximately identical to the original dataset.
However, the training variations still exist indicating the non-
uniform contribution of gradient updates from each batches.

3.4. Problems of Consistent Training in SGD

SGD relies on a key operation, uniformly drawing a batch
from the entire dataset. It is simple in math but nontrivial in
the system implementation. ImageNet, ILSVRC2012 for ex-
ample, contains 1431167 256256 high resolution RGB images
accounting for approximately 256 GB in total size. Uniformly
drawing a random batch from the 256 GB binary file involves
significant overhead such as TLB misses or random Disk 1/O
operations. In addition, the drastic speed gap between Proces-
sor and Disk further deteriorates the issue. Existing deep learn-
ing frameworks, such as Caffe [27] or Torch [28]], alleviates
the issue by pre-permuting the entire dataset before slicing into
batches: Permute{d} — d = {dy,dy,...,dy-1,d,} = Q. During
the training, each iteration fetches a batch from the permuted
dataset Q in a sequential manner d9 — d; — ... — dy; and
restart fetching from the beginning dy after d,,, creating a fixed
circle batch retrieval pattern. We refer to this sampling method
as Fixed Circle Pseudo Random Sampling. The random reads
are subsequently reduced to sequential reads on Disk. There-
fore, FCPR Sampling is widely adopted by SGD. Let nq to be
the size of a dataset and n;, to be the batch size. The size of
sample space is ng/ ny, and the batch being assigned to iteration
j is d¢, where

t = jmod * il
np
At any iteration, the model always anticipate a fixed batch, as
the batch will flow into the model at iteration ¢+ 1 -epoch, ..., t+
n-epcoh. If the training of a batch is dominated by the gradient
update on itself, the loss of this batch is predominately reduced
atiteration t, ¢ + 1 x epoch, t + 2 x epoch, ...,t + n x epoch. Since
the contribution from a batch’s gradient update is different, the
repetitive batch retrieval pattern fosters the batches’ distinctive
training speeds. However, the FCPR sampling in SGD treats
batches identically.

The problem of FCPR sampling is the consistent gradient
updates on batches regardless of the model’s training status.
It is inefficient to update a small loss batch as frequently as a
large loss batch. Fig[Ib|demonstrates the yellow batch are fully
trained after the epoch 1600, while the blue batch does not until
the epoch 2100. During epochs [1600, 2100], the yellow batch
stays fully trained most of time indicating unnecessary training
iterations on it. Besides, we also verify that the contribution of
a batch’s gradient update is different. Therefore, regulating the
training iterations w.r.t the model’s training status on batches
will improve the efficiency of SGD.

4. Inconsistent Stochastic Gradient Descent

In this section, we present Inconsistent Stochastic Gradient
Descent that rebalances the training effort w.r.t a batch’s train-
ing status. The inconsistency is reflected by the non-uniform
gradient updates on batches. The first question is how to dy-
namically identify a slow or under-trained batch during the
training. We model the training as a stochastic process, and
apply the upper control limit to dynamically identify a under-
trained batch. The second question is how to accelerate a under-
trained batch. We propose a new optimization to be solved on
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Figure 2: Each blue dots depicts the loss of a batch produced from the CIFAR
network in Caffe on CIFAR-10, and losses are grouped by epochs. The central
line is the average loss. From the figure, it is legitimate to assume the losses
of batches in an epoch follow the normal distribution, and the training is at
reducing the mean of population tile the network converges.

the batch, the objective of which is to accelerate the training
without drastic parameters changes. For practical considera-
tions, we also study the effects of ISGD batch size on the con-
vergence rate, system saturations and synchronization cost.

4.1. Identifying Under-trained Batch

ISGD models the training as a stochastic process that slowly
reduces down the average loss of batches. We assume the nor-
mal distribution on the batch’s loss in an epoch. The reasons
are that: 1) SGD demands a small learning rate (Ir) [29] to con-
verge, and Ir is usually less than 107!, [r determines the step
length, while the normalized gradient determines the step di-
rection. The small value of Ir limits the contribution made by a
gradient update, thus the training process is to gradually reduce
down the loss toward a local optimal. 2) Each batch represents
the original dataset, and there exists a strong correlation among
batches in the training. This implies that the loss of a batch will
not be drastically different from the average at any iteration t.
Fig[2|demonstrates the loss distribution of training a network on
CIFAR-10, in which the losses are arranged by epochs. From
the figure, it is valid to assume the normal distribution on the
loss in an epoch. Therefore, we conclude that

the training is a stochastic process that slowly decreases the
mean of losses tile the network converges.

The 30 control limit is an effective method to monitor the ab-
normalities in a statistical process. Since we treat the training as
a process that decreases the average loss of batches, ISGD uti-
lizes the upper control limit to dynamically identify abnormal
large-loss batches on the fly. To get the limit, ISGD calculates
two important descriptive statistics, the running average loss
¢ and the running standard deviation o, during the training.
ISGD keeps a queue to store the losses produced by iterations
in [t — ny, t], where n;, is the size of sample space (or the num-
ber of batches in an epoch). The queue functions as a moving
window tracking the loss information in the previous epoch to
yield ¢ and 0.

p
U=— > U (ded) (13)
i=1

1
ny,

—loss
running mean
upper limit

o outlier
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Figure 3: Supervise the training of AlexNet with the proposed control limit.
The red outliers are under-trained batches. ISGD subsequently accelerate the
batches by solving AlgP}

1 & _
oy = n—b;[ww,,i(dt_o—w]z (14)

Since the queue length is fixed at n;, and the loss of a batch is
a float number, the calculations of ¢ and o, and the memory
cost for the queue are O(1) at any iteration ¢. Therefore, ISGD
is much more memory efficient than the variance reduction ap-
proaches that require intermediate variables of the same size as
the network parameters. With ¢ and o, the upper control limit
is

limit =y + 307y (15)

In this case, we adopt the 30 control limit. The multiplier be-
fore the o, plays an important role in between the exploration
of new batches and the exploitation of the current batch. Please
refer to the discussion of Alg[I]in section[9|for more discussion.
If the loss of current iteration ¢ is

W, (dy) > limit (16)

we consider d; as a under-trained batch.

Fig[3] demonstrates an example of the proposed method to
identify a under-trained batch on the fly. The blue line is the
loss of batch, and the yellow line is the running average . The
green line is the upper control limit, and the red dots are out-
liers considered as under-trained. The experiment is conducted
with AlexNet on ImageNet, and it is clear that ISGD success-
fully identifies the large-loss batches in the training with the
proposed approach.

4.2. Inconsistent Training

The core concept of our training model is to spend more it-
erations on the large-loss batches than the small-loss ones. The
batch retrieval pattern in ISGD is similar to FCPR sampling
but with the following important difference. Once a batch is
identified as under-trained, ISGD stays on the batch to solve
a new sub-optimization problem to accelerate the training, and
the batch receives additional training iterations inside the sub-
problem. In this case, ISGD does not compromise the system
efficiency of FCPR sampling, while it still regulates the training
effort across the batches. The new subproblem is



Algorithm 1: Inconsistent Stochastic Gradient Descent
Data:d ., w
Result: w’

1 begin

2 iter =0

4 E =0

5 O',/, =0

6 limit = 0

7 l05Sgueue < 0

8 while not converge do

9 broadcast(w)

10 [y, VY] = ForwardBackward(dy)
1 reduce(yy)

12 reduce(Viyy)

13 if iter < n then

14 0SS gueue-push(yy)

15 | V=T

16 else

17 I = losSgueue-dequeue()

18 oy = STD(losSqueue)

19 J — %n;[#—w

20 limit = ¢ + 3 = oy,

21 w=w-17-Vy¥

22 if > limit and iter > n then
2 | minimize Eq[17)with Alg.2
24 iter++

. 1 .
min ¢y(dy) =5 | Yw(dy) — limit||3
£
2n,,

a7
+5— Il w—well3

where n,, is the number of weight parameters in the network
and € is a parameter for the second term. The first term mini-
mizes the difference between the loss of current under-trained
batch d; and the control limit. This is to achieve the accelera-
tion effect. The second term is a conservative constraint to avoid
drastic parameter changes. Please note the second term is criti-
cal because overshooting a batch negatively affects the training
on other batches. The parameter € adjusts the conservative con-
strain, and it is recommended to be 10~'. The derivative of

Eq[I7]is:

Vow(dy) =[¢rw(dy) — limit]Vipy (dy)
L EW = wer) (18)

ny

Please note limit, wy_1 and d; are constants. Solving Eq[I7]pre-
cisely incurs the significant computation and communication
overhead, which offsets the benefit of it. In practice, we ap-
proximate the solution to the new subproblem, Eq[T7] with the

Algorithm 2: Solving the conservative subproblem to ac-
celerate a under-trained batch

Data: d¢, w, wi_1, stop, limit

Result: w
1 begin
iter =0
while iter < stop and y > limit do
[y, V] = ForwardBackward(dy)
reduce(iy)
reduce(Vir)
W = W — [{[w(dy) — limir] Vijry (dy) + 200
broadcast(w)
iter++

e e N AN AW N

early stopping. This avoids the huge searching time wasted on
hovering around the optimal solution. A few iterations, 5 for
example, are good enough to achieve the acceleration effects.
Therefore, we recommend approximating the solution by the
early stopping.

Alg[T|demonstrates the basic procedures of ISGD. Since the
training status of a batch is measured by the loss, ISGD identi-
fies a batch as under-trained if the loss is larger than the control
limit ¥ + 3 %o, (Line 20). A stringent limit triggers Eq more
frequently. This increases exploitation of a batch, but it also
decreases the exploration of batches to a network in the fixed
time. Therefore, a tight limit is also not desired. A soft margin,
2 or 3 o, is preferred in practice; and this margin is also widely
applied in Statistical Process Control to detect abnormalities in
aprocess. We recommend users adjusting the margin according
to the specific problem. ISGD adopts a loss queue to dynam-
ically track the losses in an epoch so that the average loss, ¥,
is calculated in O(1) (line 17). The loss queue tracks iterations
in the previous epoch; the length of it equals to the length of
an epoch. Similiarly, calculating o is also in O(1) time (line
18). We do not initiate Alg[2]until the first epoch to build up a
reliable limit (line 22 the condition of iter > n).

Alg[] outlines the procedures to solve the conservative sub-
problem on a under-trained batch. The conservative subprob-
lem intends to accelerate the under-trained batch without dras-
tic weight changes. The update equation in line 7 corresponds
to Eq Specifically, [yw(d¢) — limit]Viyw(dy) is the gradient
of % [| Yw(dy) — limitll% to accelerate the training of a under-
trained batch; the second term, niw(w — Wy_1), is the gradient of
ﬁ || w— wt_1||§ that bounds significant weight changes. The
limit is the same upper control threshold in Alg[l] The stop
specifies the maximal approximate iterations to reflect the early
stopping. { is a constant learning rate.

The neural network training needs gradually decrease the
learning rate to ensure the convergence [9]. It is a common
tactic to decrease the learning rate w.r.t training iterations. The
inconsistent iterations of ISGD requires a new way to guide
the learning rate. Instead, ISGD decreases the learning rate
w.r.t the average loss of a dataset. The average loss is better
than iterations, as it directly reflects the training status of the
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Figure 4: the parallelization of ISGD with the data parallelism, and <> indi-
cates the reduce of all sub-batches’ gradients to yield the gradient of original
batch.

model, while calculating the average loss of a dataset is expen-
sive. Since the average loss in Eq[I3]is from the latest scan of
dataset (or losses in an epoch), it is approximate to the average
loss of dataset. Hence, we use the average loss (Alg[I] line 19)
to guide the learning rate.

4.3. Extend to Other SGD Variants

It is straight forward to extend the inconsistent training to
other SGD variants. For example, Momentum [30]] updates the
weight with the following equations

Vi1 = UV — @V (Wy)

W1 = Wi + Vig

19)

and the Nesterov accelerated gradient follows the update rule of

Vil = UVe — aVi(We + uvy)
Werl = Wi + Ve

(20)

To introduce the inconsistent training to these SGD variants, we
only need change the line 21 of Alg[I]according to Eq[I9]and
Eq[20] respectively. The Alg[2]remains the same.

4.4. Parallel ISGD

ISGD intends to scale over the distributed or multiGPU sys-
tem using MPI-style collectives such as broadcast, reduce, and
allreduce [31]. Alg[l] and Alg[2] are already the parallel ver-
sion manifested by the collectives in them. Fig[]demonstrates
the data parallelization scheme inside ISGD. Let’s assume there
are n computing nodes, each of which is a GPU or a server
in a cluster. Each node contains a model duplicate. A node
fetches an independent segment of the original batch referred
to as the sub-batch. Subsequently, all nodes simultaneously
calculate sub-gradients and sub-losses with the assigned sub-
batches. Once the calculation is done, the algorithm reduce
sub-gradients and sub-losses (Line 10-12 in Alg[I) to a mas-
ter node so as to acquire a global gradient and loss. Then, the
master node updates network weights (line 21 in Alg[l)) and
broadcast (line 9 in Algl[T) the latest weights. Please refer to
[31]] for more discussion regarding the MPI-style collectives
and the SGD parallelization. Therefore, ISGD separates the
algorithm from the system configurations by employing MPI-
style collectives [32]]. Since MPI is an industrial and academia
standard, ISGD is highly portable on various heterogeneous dis-
tributed system.

0.1
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Figure 5: The predicted training time calculated by Eq at different batch

sizes.

4.5. Batch Size and Convergence Speed

Batch size is the key factor to the parallelism of ISGD. As op-
erations on a batch are independent, scaling ISGD on systems
with the massive computing power prefers a sufficiently large
batch. An unwieldy large batch size, however, is detrimental to
the convergence rate under the limited computing budget. Cur-
rent convergence rate analysis utilizes iterations as the only per-
formance metric, but it fails to consider the fact that an iteration
faster algorithm may cost more time than the slower counter-
part. Hence, it is practical to analyze the convergence rate in
the time domain.

Let’s assume the maximal processing capability of a system
is C;| images per second, and the time spent on synchroniza-
tions is C, seconds. Network cost is a constant because it only
depends on the size of network parameter. A gradient update
essentially costs:

Liter = z‘comp + fcomm

ny 2y

where n,, is the batch size. Given fixed time ¢, the number of

gradient updates is
t

T = (22)

Liter

After T gradient updates, the loss is bounded by [33]

1 1
+ —
Vl’le T

Let’s assume equality in Eq[23] and substitute Eq[22} It yields
Eq[24] that governs loss , time ¢ and system configurations C;

and C;:
pi= Vi |G (24)
anl C1

Fig[5| presents the predicted training time under two system
configurations calculated by Eq[24]at different batch sizes n;, €
(0,3000). By fixing ¢, the equation approximates the total
training time under different batches. The figure demonstrates
the optimal batch size of the first and second system are 500 and
1000 respectively. In this case, a faster system needs a larger
batch. The performance of both systems deteriorates afterward.
As a result, the optimal batch size is a tradeoff between system
configurations and algorithmic convergences.

¥ <

(23)
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5. Experiments

In this section, we demonstrate the performance of incon-
sistent training against SGD variants such as Momentum and
Nesterov on a variety of widely recognized datasets including
MNIST [34], CIFAR-10 and ImageNet. MNIST has 60000
handwritten digits ranging from O to 9. CIFAR-10 has 60000
32x32 RGB images categorized in 10 classes. ILSVRC 2012
ImageNet has 1431167 256 X256 RGB images depicting 1000
object categories. We use LeNet, Caffe CIFAR-10 Quick, and
AlexNet to train on MNIST, CIFAR-10, and ImageNet, respec-
tively. The complexity of networks is proportional to the size
of datasets. Therefore, our benchmarks cover the small, middle,
and large scale CNN training.

We conduct the experiments on a multiGPU system with 4
NVIDIA Maxwell TITAN X. The CUDA version is 7.5, the
compiler is GCC 4.8.4. The machine has 64 GB RAM and
1TB SSD. CPU is Xeon E5 4655 v3. Caffe is built with the
cuDNN version 4. The GPU machine was exclusively owned
by us during the benchmark.

5.1. Qualitative Evaluation of Inconsistent Training

This section intends to qualitatively evaluate the impacts of
inconsistent training. The purpose of inconsistent training is
to rebalance the training effort across batches so that the large-
loss batch receives more training than the small-loss one. To
qualitatively evaluate the impacts of inconsistent training, we
exam the progression of the loss distribution, the average loss,
the standard deviation of batch’s loss distribution, as well as the

validation accuracy. We setup the training with Caffe CIFAR-
10 Quick network on CIFAR-10 dataset. The batch size is set
at 2500 yielding 20 independent batches. Figl6al and Fig[6b|
present the loss distribution of 20 batches in the training. We
arrange losses in epochs as the solver explores a batch only once
in an epoch,

The inconsistent training has the following merits. 1) ISGD
converges faster than SGD due to the improvement of train-
ing model. We measure the convergence rate by the average
loss of batches in a dataset, and the method conforms to the
training definition in Eq[3] The average loss data in Figl6d]
demonstrates that ISGD converges faster than SGD. In contrast
with SGD, the lower average loss of ISGD after iter > 7000
(Figled) explains the better accuracy of ISGD after testing 9
(Figloe). The validation accuracy of ISGD in Fig[6e] is also
above SGD, that is consistent with data in Fig@ that the av-
erage loss of ISGD is below the average loss of SGD in the
training. These justify the convergence advantage of inconsis-
tent training. 2) ISGD dynamically accelerates the large-loss
batch in the progress of training to reduce the training gap with
small-loss batches. Therefore, the variation of batch’s training
status is less than the one trained by SGD. Please note we mea-
sure the training status of a batch with its loss, and the variation
of batch’s training status is measured by the standard devia-
tion of batch’s loss distribution. Fig[6cdemonstrates the incon-
sistent training successfully attenuates the training variations
among batches. When iter € [1000, 6000], the std of batch’s
loss distribution of ISGD is much lower than SGD. The result
is also consistent with the loss distribution in FigJ6aland Fig[6b]
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Figure 7: The validation accuracy and training loss of LeNet, Caffe-Quick, AlexNet on MNIST, CIFAR and ImageNet. ISGD consistently outperforms SGD.

Table 1: The average top accuracy and time reported from the training with ISGD and SGD on MNIST, CIFAR and ImageNet. IMP stands for the ISGD’s
improvement over SGD. The data is collected from 10 runs, and ISGD consistently outperforms SGD on 3 datasets.

Highest Reported Top/Top-5 Accuracy

Average Top/Top-5 Accuracy

Normalized Average Time to Top/Top-5 Accuracy.

SGD ISGD IMP SGD ISGD IMP SGD  ISGD IMP
MNIST 99.08%  99.19%  0.11% 99.05%  99.17%  0.12% 1 0.744 25.6%
CIFAR 76.01%  76.55%  0.54% 75.78%  76.42%  0.64% 1 0.772 22.78%
ImageNet 82.12%  81.10% 1.01% 81.83%  80.56% 1.27% 1 0.8547 14.53%

in which the loss distribution of SGD is much wider than ISGD
at epoch € [50, 300].

5.2. Performance Evaluations

The setup of each comparisons, ISGD V.S. SGD, has been
carefully set to be the single factor experiment, i.e. the only
difference is the inconsistent training. Some parameters of SGD
greatly affect the training performance, setting different values
on them jeopardizes the credibility of experiments. Therefore,
we ensure the parameters of SGD and ISGD to be same in each
comparisions. The first parameter considered is the learning
rate. The MNIST tests adopt a constant learning rate of 0.01,
and CIFAR tests adopt a constant learning rate of 0.001. Both
cases are consistent with the solver defined in Caffe. Caffe fixes
the learning rate for these two cases because networks yield the
satisfactory accuracies , 75% on CIFAR and 99% on MNIST,
without shrinking the learning rate. Since AlexNet has to shrink
Ir, the learning rate of it has 3 possibilities: Ir = 0.015 if the
average loss ¢ € [2.0, +o0], Ir = 0.0015 if ¢ in [1.2,2.0), and
Ir = 0.00015 if J in [0, 1.2). The batch size is also same for
each comparison in CIFAR, MNIST and ImageNet. We adopt a
large batch to fully saturate 4 GPUs. For other parameters such
as the weight decay and momentum, they are also same through
all the tests.

10

ISGD consistently outperforms SGD in all tests manifest-
ing the effectiveness of inconsistent training. Please note both
methods incorporate the momentum term. Since an iteration
of ISGD is inconsistent, we test every other 2, 6, 900 seconds
(only count the training time with the test time excluded) for
MNIST, CIFAR and ImageNet tests, respectively. The horizon-
tal dashed line represents the target accuracy, and the total train-
ing time starts from O to the point that the validation accuracy is
consistently above the dashed line. In the ImageNet test, ISGD
demonstrates the 14.94% faster convergence than SGD. SGD
takes 21.4 hours to reach the 81% top 5 accuracy, while ISGD
takes 18.2 hours (Fig . In the CIFAR test, ISGD demon-
strates 23.57% faster convergence than SGD. The top accuracy
for CIFAR-Quick network reported on CIFAR-10 is 75%. After
306 seconds, the test accuracy of SGD is steadily above 75%,
while ISGD only takes 234 seconds (Fig[7b). Finally, ISGD
demonstrates 28.57% faster convergence than SGD on MNIST
dataset. It takes SGD 56 seconds to reach the 99% top accuracy,
while ISGD only takes 40 seconds. Since the training is essen-
tially a stochastic process, the performance subjects to changes.
We repeat each test cases 10 times, and we list the performance
data in Table[T] The results also uphold the convergence advan-
tages of inconsistent training.

To explain the performance advantages of ISGD, we also use
the training dataset to test. Whereas, the training set of Im-
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Figure 9: Train ImageNet with the inconsistent Nesterov accelerated gradient.

ageNet 256 GB is too large to be tested, we use i in Alg
to approximate the training error. Fig[7d] Fig[7e| and Fig[Tf]
demonstrate the training error of ISGD is consistently below
the SGD. The results demonstrate the benefit of inconsistent
training, and they also explain the good validation accuracy of
ISGD in Fig[Ta] Fig[7b|and Fig[7c]

The inconsistent training is also compatible with the Nes-
terov accelerated gradient. Fig[9] demonstrates the validation
accuracy and the training loss progression on ImageNet trained
with the Nesterov accelerated gradient. The inconsistent train-
ing beats the regular Nesterov method. If set 58% top 1 ac-
curacy as the threshold, the inconsistent training takes 65 tests
to exceed the threshold, while the regular one takes 75 tests.
Please note the time interval of two consecutive tests is fixed.
Therefore, the inconsistent training demonstrates the 13.4 %
performance gain. The compatibility is under our expectation.
The Nesterov method accelerates the convergence by consider-
ing the curvature information, while ISGD rebalances the train-
ing across batches.
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5.3. Time Domain Convergence Rate W.R.T Batch Size on
MultiGPUs

Fig[§] demonstrates convergence speeds at different batch
sizes on MNIST, CIFAR and ImageNet datasets. The figures
reflect the following conclusions: 1) A sufficiently large batch
is necessary to the multiGPU training. The single GPU only in-
volves computations fyp;, while the multiGPU training entails
an additional term ?..,, for synchronizations. A small batch
size for the single GPU training is favored to ensure the fre-
quent gradient updates. In the multiGPU training, the cost of
synchronizations linearly increases with the number of gradi-
ent updates. Increasing batch size improves the convergence
rate, thereby fewer iterations and synchronizations. Besides, it
also improves system utilizations and saturations. As a conse-
quence, a moderate batch size is favored to the multiGPU train-
ing as indicated in Fig[§] 2) An unwieldy batch size slows down
the convergence. Because computations linearly increase with
the batch size, which reduces the number of gradient updates in
a limited time. The declined convergence speed is observable
in the Fig[8a] Fig[8b|and Fig[8c| when batch size is set at 3000,
10000, 3400, respectively.

6. Summary

In this paper, we propose the inconsistent training to dy-
namically adjust the training effort w.r.t batch’s training status.
ISGD models the training as a stochastic process, and it utilizes
techniques in Stochastic Process Control to identify a large-loss
batch on the fly. Then, ISGD solves a new subproblem to ac-
celerate the training on the under-trained batch. Extensive ex-
periments on a variety of datasets and models demonstrate the
promising performance of inconsistent training.
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