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Abstract

In this paper we present a theoretical analysis to understand sparse filtering,
a recent and effective algorithm for unsupervised learning. The aim of this
research is not to show whether or how well sparse filtering works, but to un-
derstand why and when sparse filtering does work. We provide a thorough
theoretical analysis of sparse filtering and its properties, and further offer an
experimental validation of the main outcomes of our theoretical analysis. We
show that sparse filtering works by explicitly maximizing the entropy of the
learned representations through the maximization of the proxy of sparsity, and
by implicitly preserving mutual information between original and learned repre-
sentations through the constraint of preserving a structure of the data. Specifi-
cally, we show that the sparse filtering algorithm implemented using an absolute-
value non-linearity determines the preservation of a data structure defined by
relations of neighborhoodness under the cosine distance. Furthermore, we em-
pirically validate our theoretical results with artificial and real data sets, and
we apply our theoretical understanding to explain the success of sparse filtering
on real-world problems. Our work provides a strong theoretical basis for under-
standing sparse filtering: it highlights assumptions and conditions for success
behind this feature distribution learning algorithm, and provides insights for
developing new feature distribution learning algorithms.

Keywords: sparse filtering; feature distribution learning; soft clustering;
information preservation; intrinsic structure; cosine metric

1. Introduction

Unsupervised learning deals with the problem of modeling data, stated as the
problem of learning a transformation which maps data in a given representation
onto a new representation. Contrasted with supervised learning, where we are
provided labels and we learn a relationship between the data and the labels,
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unsupervised learning does not rely on any provided external semantics in the
form of labels. In order to learn, unsupervised learning relies on the specifi-
cation of assumptions and constraints that express our very understanding of
the problem of modeling the data; for example, if we judge that a useful rep-
resentation of the data would be provided by grouping together data instances
according to a specific metric, then we may rely on distance-based clustering
algorithms to generate one-hot representations of the data.

Often, the tacit aim of unsupervised learning is to generate representations
of the data that may simplify the further problem of learning meaningful re-
lationships through supervised learning. |Coates et al.| (2011)) clearly showed
that very simple unsupervised learning algorithms (such as k-means clustering),
when properly tuned, can generate representations of the data that allow even
basic classifiers, such as a linear support vector machine, to achieve state-of-
the-art performances.

One common assumption hard-wired in several unsupervised learning algo-
rithms is sparsity (for a review on the use of sparsity in representation learning
see [Bengio et al.,|2013)). Sparse representation learning aims at finding a map-
ping that produces new representations where few of the components are active
while all of the others are reduced to zero. The adoption of sparsity relies both
on biological analogies and on theoretical justifications (for discussion on the
justification of sparsity see, for instance, [Foldiak & Young), (1995} |Olshausen &
Field, |1997; \Ganguli & Sompolinskyl 2012; [Bengio et al.l 2013]). Several state-
of-the-art algorithms have been developed or have been adapted to learn sparse
representations (for a recent survey of these algorithms, see [Zhang et al., 2015).

1.1. Sparse Filtering and Related Work

In 2011, Ngiam et al.| (2011]) proposed a novel unsupervised learning frame-
work for generating sparse representations. Most of the successful unsupervised
algorithms may be described as data distribution learning algorithms that try
to learn new representations which better model the underlying probability dis-
tribution that generated the data. In contrast, they proposed the possibility of
developing feature distribution learning algorithms that try to learn a new rep-
resentations having desirable properties, without the need of taking into account
the problem of modeling the distribution of the data.

Consistently with the feature distribution learning framework, they defined
an algorithm named sparse filtering, which ignores the problem of learning the
data distribution and instead focuses only on optimizing the sparsity of the
learned representations. Sparse filtering proved to be an excellent algorithm for
unsupervised learning: it is extremely simple to tune since it has only a single
hyper-parameter to select; it scales very well with the dimension of the input;
it is easy to implement; and, more importantly, it was shown to achieve state-
of-the-art performance on image recognition and phone classification (Ngiam
et al., |2011; |Goodfellow et al., 2013; |[Romaszkol [2013)). Thanks to its success
and to the simplicity of implementing and integrating the algorithm in already



existing machine learning systems, sparse filtering was adopted in many real-
world applications (see, for instance, the works of Dong et al.,|2014} Raja et al.|
2015; |Lei et al.) 2015; Ryman et al., |2016]).

Some studies have also provided sparse filtering with some biological support.
Bruce et al.| (2016) analyzed different biologically-grounded principles for rep-
resentation learning of images, using sparse filtering as a starting point for the
definition of new learning algorithms. Interestingly, Kozlov & Gentner| (2016)
used sparse filtering to model the receptive fields of high-level auditory neurons
in the European starling, providing further support to the general hypothesis
that sparsity and normalization are general principles of neural computation
(Carandini & Heeger, 2012)).

1.2. Problem Statement

So far, sparse filtering has been successfully applied to many scenarios, and
its usefulness repeatedly confirmed (see, for instance, its application in [Dong
et al., |2014; Raja et all |2015; [Han et al., |2016; [Liu et al., 2016). In general,
however, a clear theoretical explanation of the algorithm is still lacking. [Ngiam!
et al| (2011) drew connections between sparse filtering, divisive normalization,
independent component analysis, and sparse coding, while |[Lederer & Guadar-
ramal (2014)) provided a deeper analysis of the normalization steps inside the
sparse filtering algorithm. However, the reasons why and on what conditions
sparse filtering works are left unexplored. In this paper, we aim at understand-
ing from a theoretical perspective why and when sparse filtering works. It is
worth clarifying that our work does not concern itself with showing whether or
how well well sparse filtering works, as there have been abundant evidence in
literature on its successes in different real applications.

We begin by arguing that any unsupervised learning algorithm, in order to
work properly, has to deal with the problem of preserving information conveyed
by the probability distribution of the data. Given that feature distribution
learning ignores the problem of learning the data distribution itself, a natural
question arises: how is the information conveyed by the data distribution pre-
served in feature distribution learning and, specifically, in sparse filtering?

The actual success of sparse filtering suggests that the algorithm is indeed
able to preserve relevant information conveyed in the distribution of the data.
However, no explanation for this behavior has been given. We suggest that
information may be preserved through the preservation of the structure of the
data. To understand how this may be, we study the properties of the transfor-
mations within the algorithm and pose the following question: is there any sort
of data structure that is preserved by the processing in sparse filtering?

Through a theoretical analysis we show that sparse filtering implemented
using an absolute-value non-linearity does indeed retain information through
the preservation of the data structure defined by the relations of neighborhood-
ness under the cosine distance. Relying on this, we investigate whether our



theoretical results can be used to explain the success or the failure of sparse
filtering in real applications. In particular we consider the following questions:
can the success of sparse filtering be explained in terms of the type of structure
preserved? Can the failure of alternative forms of sparse filtering using differ-
ent non-linearities be explained counterfactually on the grounds of information
preservation? Is it possible to identify scenarios in which sparse filtering is likely
to be helpful and other scenarios in which it is likely not to be useful?

1.3. Contributions

We summarize the contributions made in this study as follows:

e We provide a theoretical analysis to understand why and when sparse
filtering works. We show that the standard sparse filtering algorithm im-
plemented with an absolute-value non-linearity implicitly works under the
assumption of an intrinsic radial structure of the data. This assumption
naturally makes the algorithm more suitable for certain data sets.

e We empirically validate our main theoretical findings, both on artificial
data and real-world data sets.

e We provide useful insights for developing new feature distribution learning
algorithms based on our theoretical understanding.

1.4. Organization

The rest of this paper is organized as follows. We first review the concepts
and ideas forming the foundations of our work (Section . Next, we provide a
formal theoretical analysis of the sparse filtering algorithm based on a rigorous
conceptualization of feature distribution learning (Section . The theoretical
results inform the following experimental simulations (Section . We then dis-
cuss the results we collected, in relation to sparse filtering, in particular, and to
feature distribution learning, in general (Section . Finally, we draw conclu-
sions by summarizing our contributions and highlighting future developments
(Section [6)).

To facilitate our presentation, Table [If summarizes the notation system used
in this manuscript.

2. Foundations

In this section we review basic concepts underlying our study. We provide
a rigorous description of unsupervised learning, we present its formalization in
information-theoretic terms, we formalize the property of sparsity, and, finally,
we bring all these concepts together in the definition of the sparse filtering
algorithm.



Number of samples.

Original dimensionality of the samples.
Learned dimensionality of the samples.

Matrix of original representations with domain R?*% .

Data set or collection of data.

i-th sample from X; vector of shape (O x 1) with domain R®, 1 <i < N.
j-th feature from X; vector of shape (1 x N) with domain RY, 1 < j < O.

j-th feature of the i-th sample from X; scalar with domain R.

Multivariate random variable (random vector) modeling the original data
X,

Probability density function of the original representations.

Probability of the outcome X* when sampling from p(X).
p (X(i)) is the shorthand for the more rigorous notation p (X = X(i)).

Matrix of learned representations with domain RE*¥ .

Matrix of intermediate representations with domain RZ*¥ .

Vector of labels associated with the data with domain R**¥.

Matrix of weights with domain domain RY*©.

Table 1: Notation.



2.1. Unsupervised Learning

Let X = {X(i) € RO}?’:I be a set of N samples or data points represented as
vectors in an O-dimensional space. We will refer to the given representation of a
sample X in the space R? as the original representation of the sample X and
to RO as the original space. From an algebraic point of view, we can formalize
the data set as a matrix X of dimensions (O x N); from a probabilistic point of
view, we can model the data points X(? as i.i.d. samples from a multivariate
random variable X = (X7, Xo,..., Xp) with pdf p (X).

Unsupervised learning discovers a transformation f : R — R’ mapping
the set X from an O-dimensional space to the set Z = {Z() ¢ R} | in an
L-dimensional space. We will refer to the transformed representation Z® in
the space RL as the learned representation of the sample X® and to RL as
the learned space. Again, from an algebraic point of view, we can formalize the
transformed data set as a matrix Z of dimensions (L x N); from a probabilistic
point of view, we can model the data points Z(" as ii.d. samples from a
multivariate random variable Z = (Z1, Zs, ..., Zr) with pdf p(Z).

Unsupervised learning is often used for learning better representations for en-
suing supervised tasks. Suppose that we are given a set Y = {Y (@) ¢ RIN, of N
labels, such that the i*" label in Y is associated to the i*" sample in X. From an
algebraic point of view, we can formalize the labels as a vector Y of dimensions
(1x N); from a probabilistic point of view, we can model the labels Y as i.i.d.
samples from a random variable Y with pdf p(Y). Let us now consider the
new data set (X,Y) = {(X(i),Y(i)) € RO x R}j\il. In this scenario, the aim
of unsupervised learning is to learn from X representations Z(*) such that
modeling the relationship ¢’ : Z(®) — Y@ or the distribution P(Y|Z) is eas-
ier than modeling the relationship g” : X - Y ® or the distribution P(Y'|X).

Clustering. A specific form of unsupervised learning is clustering.

Hard clustering discovers a transformation f : R — R mapping the orig-
inal samples X" onto one-hot representations Z(*), where the single non-null
component of Z() encodes the assignment of the original sample to a cluster.

Soft clustering discovers a transformation f: R — RY mapping the origi-
nal samples X9 onto representations Z(?, where the value of each component
of Z() encodes the degree of membership of the original sample to each clus-
ter. Soft clustering algorithms may be used for learning representations Z(*
that simplify the problem of modeling the relationship ¢’ : Z(®) +— Y@, in
this case, the soft clustering algorithm is normally grounded in the following
assumptions. (i) Samples are taken to be first generated by a stochastic pro-
cess with pdf p (X*); the samples are corrupted by various forms of noise; the
noisy samples that we receive as original representations X follow a noisy pdf
p(X); the noiseless distribution underlying the data is referred to as true pdf
p(X*). (ii) Noiseless samples generated by the true pdf p (X*) are taken to
have a stronger correlation to the labels Y® than the original samples X ().
(iii) The true pdf p (X*) may be approximated through a mixture model. (iv)
Relationships of neighborhoodness under a chosen metric in the original space



RO allows us to recover the true pdf p (X*). Based on these assumptions, soft
clustering algorithms instantiate a set of C' clusters (each one describing one
component of the mixture model) and group into clusters nearby data points.
Two data points X1 and X falling in the same clusters are represented by
the same exemplar X, assuming that such an exemplar contains all the relevant
information carried by X() and X(®, and that the information contained in
the difference between X or X and the exemplar X amounts to noise. If
the assumptions are correct, a soft clustering algorithm will learn new represen-
tations Z() whose pdf p(Z) is closer to the true pdf p(X*) than the original
pdf p(X); therefore, it will be easier to learn ¢’ : Z(®) +— Y or p(Y|Z) than
learning ¢’ : X® — Y® or p(Y|X).

Distribution Learning. Another form of unsupervised learning is distri-
bution learning.

Data distribution learning is a generic term for algorithms that aim at esti-
mating the true pdf p (X*) from the available data. Examples of data distribu-
tion learning algorithms include (Ngiam et all 2011): denoising auto-encoders
(DAE) (Vincent et al. 2008)), restricted Boltzmann machines (RBM) (Hinton
et al., |2006]), and independent component analysis (ICA) (Bell & Sejnowski,
1997). In the context of learning for supervised tasks, if we learn a pdf p(2)
that well approximates the true pdf p (X*), we can reasonably expect that the
ensuing learning of p(Y'|Z) will be simplified (Bengio et al., |2013]).

Feature distribution learning, in contrast, denotes algorithms aimed at learn-
ing a pdf p (Z) which has a set of desirable properties. It overlooks the problem
of estimating the true distribution p (X*) and focuses instead on shaping the
learned pdf p(Z) according to chosen criteria. The most representative algo-
rithm of this family is sparse filtering (SF) (Ngiam et al., 2011). In the context
of learning for supervised tasks, learning a pdf p(Z) with specific properties
is meaningful if we know a priori that certain properties (such as sparsity or
smoothness) will be useful for supervised learning.

2.2. Information-Theoretic Aspects of Unsupervised Learning

Relying on conceptual tools from information theory, |Vincent et al.| (2010
argued that an unsupervised learning algorithm can generate good representa-
tions by satisfying two requirements: (i) retaining information about the input,
and (ii) applying constraints that lead to the extraction of useful information
from noise.

In more general terms, we may state that a good unsupervised representation
may be obtained by satisfying the two following information-theoretic require-
ments: (i) maximizing the mutual information between input and output (in-
fomazx principle, Linsker| [1989)), and (ii) maximizing a measure of information
of the output (informativeness prz'ncz'pleEI).

'We named this principle informativeness principle for lack of a better term.



As such, in order to generate good representations, an unsupervised learning
algorithm has to somehow negotiate the trade-off between the infomax principle
and the informativeness principle:

argmax D [p(X,Z) | p(X)p(2)]+ argmax D[p(Z) |a] . (1
p(Z)eP p(Z)eP
infomax principle informativeness principle

where D[] is a measure of distance or divergence between pdfs, such as the
Kullback-Leibler divergence (MacKayl, [2003), ¢ is an entropy-maximizing pdf,
and P is the space of all the pdfs defined on the space of the learned represen-
tations Z.

Maximizing the infomax principle may be expressed as the maximization
of the mutual information I[X;Z], or, equivalently, as the maximization of
the relative entropy between p(X,Z) and p(X)p(Z). Maximizing the infor-
mativeness may be expressed as the minimization of the entropy H [Z] or the
maximization of the relative entropy between the learned pdf p(Z) and the
entropy-maximizing pdf g.

Unfortunately, the objective defined in Equation[I]is bound to remain mainly
theoretical, as information-theoretic quantities are extremely hard to estimate
in practice. Therefore we need to rely on approximations or heuristics to make
these quantities tractable.

2.8. Sparsity

Given a generic vector v in an N-dimensional space, v is sparse if a small
number of components of the vector accounts for most of the energy of the
vector (Hurley & Rickard, [2009)). Practically, the vector v is sparse if n < N
components of the vector v are active (that is, have a value different from zero)
while the remaining N — n components are inactive (that is, have the value
zero). A vector v is k-sparse if exactly k components are active. By analogy,
we may define sparsity for matrices (with reference to their components) and
for random variables (with reference to their realizations).

Several measures of sparsity have been proposed in the literature (for a
review of different measures of sparsity and their properties, see [Hurley &
Rickard} 2009). A common family of measures of sparsity is the £,-norm family:

l(v) = {/Zi]\il |vi|’. The most intuitive measure is the fp-norm which com-
putes the number of non-zero components of a vector; however, this measure is
practically inadequate, as in concrete implementations the components of a vec-
tor are rarely reduced perfectly to zero. The simplest relaxation of the £y-norm
is the £1-norm, which is often referred to as activation in the sparse filtering
literature.  The negative form of the ¢1-norm works as an efficient proxy for
measuring the ¢o-norm (Elad, |2010). Given a representation Z(®), ¢, (Z(i)) or
activation (Z(i)) quantifies the sparsity of Z(*. Minimizing the activation of
th(e) learned representation Z() will maximize the £y-norm and the sparsity of
VARE



2.4. Sparse Filtering

Sparse filtering is the most representative example of feature distribution
learning algorithms (Ngiam et all 2011). Its aim is learning a pdf p(Z) which
maximizes the sparsity of the learned representations Z(*.

Enforcement of sparsity in sparse filtering. Sparse learned representa-
tions Z(?) are achieved by enforcing three constraints on the matrix of learned
representations Z:

e Population sparsity: each sample Z(*) | is required to be sparse, that is,
described only by a few features. The sparsity of a sample Z(®) is computed

. . . D\ L (2)

as its activation: ¢; (Z) = > e ‘ij

o Lifetime sparsity: each feature Zj;, is required to be sparse, that is, to
describe only a few samples. Lifetime sparsity is often referred to as
selectivity (Goh et al.,[2012). The sparsity of a feature Z; is computed as

its activation: ¢ (Z;) = Zfil ‘Z;i)

e High dispersal: all the features are required to have approximately the
same activation. The dispersal of the features is computed as the vari-
ance of the activation across all the features: Var [activation (Z;)] =

E [El (Zj)z} —E [t (Zj)]2. Lower variance corresponds to higher dispersal.

The enforcement of these three properties translates into learning non-degenerate
sparse representation.

Sparse filtering algorithm. Sparse filtering is implemented as a simple
algorithm in six steps (refer to Figure for an illustration of the transformations
on a two-dimensional data set):

AQ. Initialization of the weights: the weight matrix W is initialized sampling
each component from a normal distribution A(0,1).

A1l. Linear projection of the original data: f41(X) = WX. The weight matrix
W can be interpreted as a dictionary (Denil & de Freitas), [2012) or as a
filter bank (Dong et al.l 2015|), where each row is a codeword or a filter
applied to each sample. Refer to Figure a) and (b) for an illustration
of this transformation.

A2. Non-linear transformation: F = fa0 (WX), where fa2(-) : R — R is
an element-wise non-linear function. Although this non-linear function
can, in principle, be arbitrarily chosen, all the implementations known to
the authors used an element-wise absolute-value function f(z) = |z|. For
practical reasons, this non-linearity is implemented as a soft absolute-value
f(x) = V22 + ¢, where € is a small negligible value (for instance, e = 107%).
Refer to Figure [I[b) and [I|c) for an illustration of this transformation.



A3. ly-normalization along the features (or along the rows): F = fa3 (F) =
Fy
yil (FEL))z
N2
squared activation is one, that is, Ziil (ng)) = 1. Refer to Figure

[(c) and [1(d) for an illustration of this transformation.
A4. ly-normalization along the samples (or along the columns): Z = F =

In this step, each feature is normalized so that its

~ PO
faa (F) = | ——=—=|. In this step, each sample is normalized so

N 2
that its squared activation is one, that is, Zle (Fg”) = 1. Refer to
Figure [I(d) and [I[e) for an illustration of this transformation.

A5. (;-minimization: min 3. 13‘51) This minimization is the objective of

FERLXN
sparse filtering; by minimizing the overall activation of the matrix f‘, we
maximize the sparsity of the learned representations.

After learning, new data X’ is processed through step Al to A4, such that
Z' = faraa (X)) = faa (fas (fa2 (WX'))).

As explained by |[Ngiam et al.| (2011)), the combination of the ¢;-minimization
with the two fo-normalizations guarantees the learning of a representation with
the properties of population sparsity, lifetime sparsity, and high dispersal.

3. Theoretical Analysis of Sparse Filtering

In order to better understand sparse filtering we first re-formulate and ex-
plain this algorithm in terms of information-theoretic concepts. Relying on this
improved understanding, we will then move on to a formal analysis of the sparse
filtering algorithm.

In detail, Section [3.I] presents our thesis stating that sparse filtering must
satisfy the informativeness and the infomax principle. Section [3.2] shows how
sparse filtering satisfies the informativeness principle, while Section [3.3| intro-
duces the hypothesis that sparse filtering satisfies the infomax principle through
the preservation of structure of the data. Section [3.4] rules out the simplest hy-
pothesis that sparse filtering preserves a structure explained by the Euclidean
metric. The following three sections show important properties of sparse fil-
tering related to structure preservation: Section proves that sparse filtering
preserve collinearity, Section [3.6] proves that collinear points are mapped onto
identical representation, and finally, Section [3.7] proves that points having the
same moduli are mapped onto identical representations. Section [3.8] puts to-
gether these results to conclude that sparse filtering preserves relations of cosine
neighborhoodness Section [3.9] and Section delve deeper in the dynamics of
sparse filtering providing a geometric interpretation of the algorithm in terms
of bases of the learned space and filters in the original space. Section and

10
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Figure 1: Illustration of sparse filtering.

Sparse filtering is applied to a random set of data X constituted by the matrix X containing
five samples (N = 5) in two dimensions (O = 2). Each point is generated by sampling its
coordinates from a uniform distribution Unif (—5,5). Sparse filtering is used to learn a new
representation of the data in two dimensions (L = 2). This figure shows the transformations
determined by the sparse filtering algorithm at iteration 0, after the weight matrix W has
been randomly initialized and before any training.

(a) Original representation of the data X in R2. (b) Linear projection of the data onto the
intermediate representation WX. (c) Non-linear projection of WX using an absolute-value
function onto the intermediate representation F. (d) ¢2-normalization of the data F along the
features, yielding the intermediate representation F. (e) £2-normalization of the data F along
the samples, yielding the final learned representation F = Z.

Notice that the colors and the markers of the data points X(9) do not have any meanings. A
random color and marker have been assigned to each point in order to allow the tracking of
the location of the points through the different transformations applied by sparse filtering.
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Section [3.12]investigate the limits of the sparse filtering algorithm, by evaluating
more closely the role of the absolute-value non-linearity in the preservation of
structure and by deriving a probabilistic bound on the preservation of Euclidean
structure. Finally, Section [3.13] draws together all the results by discussing the
use of sparse filtering as a representation learning algorithm.

8.1. Information-Theoretic Aspects of Sparse Filtering

With reference to the information-theoretic description of unsupervised learn-
ing presented in Section [2:2} the aim of sparse filtering seems to be a pure op-
timization of the informativeness principle. Indeed, sparse filtering algorithm
explicitly maximizes a property of the learned distribution (related to the in-
formativeness principle), but it makes no reference to the problem of preserving
information in the original distribution (related to the infomax principle); its
loss function seems to be concerned only with the second term in Equation [I]
and to disregard the first term.

However, based on our information-theoretic understanding of unsupervised
learning we argue that, actually, sparse filtering must, in some way, take into
account the infomax principle. In the following, we demonstrate the following
thesis:

Sparse filtering does satisfy the informativeness principle through
the mazimization of the proxy of sparsity and it satisfies the infomax
principle through the constraint of preservation of the structure of
cosine neighborhoodness of the data.

3.2. Informativeness Principle in Sparse Filtering

Showing that sparse filtering satisfies the informativeness principle is straight-
forward. Since the explicit the minimization of the entropy H|[Z] is computation-
ally hard, the sparse filtering algorithm adopts the standard proxy of sparsity.
Increasing the sparsity of the representations Z(*) concentrates the mass of the
pdf p(Z) around zero; as the pdf p(Z) gets closer to a Dirac delta function, its
entropy is H[Z] is minimized (Principe, [2010; Hurley & Rickard, |2009). Using
the formalism of [Pastor et al.| (2015):

-6 (Z)t = H[Z]l,

that is, as the sparsity, measured by the negative ¢;-norm of the learned repre-
sentations Z(*) increases, so the entropy of the pdf p(Z) decreases.

8.8. Infomaz Principle in Sparse Filtering

Showing that sparse filtering satisfies the informativeness principle is more
challenging. By definition, as a feature distribution learning algorithm, sparse
filtering does not address the problem of modeling the data distribution. How-
ever, by virtue of the fact that sparse filtering works and its learned representa-
tions Z(*) allow the achievement of state-of-the-art performance when learning
p(Y|Z), it must be that the algorithm preserves information contained in the

12



original representations X (. If it were not so, sparse filtering could simply
solve its optimization problem by mapping the original data matrix X onto a
pre-computed sparse representation matrix Z, containing a constant l-sparse
learned representation Z(!), with a minimal computational complexity of O(1).
The matrix Z would have maximal sparsity, and the associated pdf p(Z) would
be a Dirac delta function centered on Z(!) with minimal entropy. However, if
we were to use Z to perform further supervised learning with respect to a vec-
tor of label Y, the pre-computed learned representations Z(® = Z() would be
useless as they would provide no information about the labels because of the
independence between the pre-computed representations and the given labels:
p(Y]Z2) = p(Y).

Since sparse filtering does not try to explicitly model the distribution of
the original data we hypothesize that it must implicitly preserve information
about the pdf p(X) through the proxy of the preservation of data structure.
The geometric structure of the data in the original space R constitutes a set
of realizations of the random variable X through which we can estimate the
pdf p(X). Preserving relationships of neighborhoodness (under a given metric)
allows us to preserve information conveyed by the pdf p(X): regions of high
density and low density in the domain of p(X) can be maintained by preserving
relationships of neighborhoodness in the domain of p(Z). Thus, preservation
of the geometric structure under a chosen metric may act as a proxy for the
maximization of mutual information I[X; Z].

8.4. Non-preservation of Fuclidean Distance

The preservation of absolute or relative distances under the Euclidean metric
is the most common way to preserve the structure of the data. However, it can
be easily ruled out that sparse filtering preserves this type of structure.

Proposition 1. Let {X(i) € RO}Z\; be a set of points in the original space RO
Then, the transformations from Al to A4 do not preserve the structure of the
data described by the Fuclidean metric.

Proof Sketch. This proposition is proved by counterexample showing that
there is at least a case for which the transformations from A1l to A4 do not pre-
serve the Euclidean distance. The full proof is available in appendix
Al m

3.5. Preservation of Collinearity

Having ascertained that sparse filtering can not preserve the data structure
defined by the Euclidean metric, we investigate other properties of the algorithm
that may lead us to discover the preservation of alternative data structures. A
first relevant observation is that sparse filtering preserves collinearity of point
lying on the same line passing through the origin of the space R©.

Theorem 1. Let XV, X2 € RO be collinear points in the original space RC.
Then, the outputs of transformations from Al to A4, that is fa1.a4 (X(l)),
faras (X®) € RE, are collinear.
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Before proving this theorem, we present a set of auxiliary lemmas. The
proofs of these lemmas are elementary and they can be found in Appendices
[Appendix A.2{Appendix A.5|

Lemma 1. Let us consider u,v € R, two generic collinear vectors, and let
f RO — RE be a linear transformation defined as f(u) = Wu, where W is
the matriz associated with the linear transformation. Then, f (u), f(v) € RE
are also collinear.

Lemma 2. Let us consider u,v € RY, two generic collinear vectors, and let
f R — RE be the element-wise absolute-value function f(u) = |u| = [Ju;l].
Then f (u), f(v) € RE are also collinear.

Lemma 3. Let us consider u,v € RY, two collinear vectors whose components
are all strictly positivtﬂ and let f : RY — RE be the €9-normalization along the
features. Then f (u), f(v) € RE are also collinear.

Lemma 4. Let us consider u € RY, a vector whose components are all strictly
positiveﬂ and let f : RY — RY be the ly-normalization along the samples. Then
f (u) € RE have the same angular coordinates as u.

Using these lemmas, we can prove Theorem

Proof of Theorem To prove that the transformations from Al to A4
preserve collinearity it is necessary to prove that all transformations preserve
collinearity.

Concerning transformation A1, by Lemmal[l] linear transformations preserve
collinearity. Concerning transformation A2, by Lemma [2| absolute-value func-
tion preserves collinearity; indeed, it rigidly folds all the orthants on the first
one. Concerning transformation A3, by Lemma [3] normalization along the fea-
tures preserves collinearity; indeed, it acts simply as a rescaling of the axes.
Concerning transformation A4, by Lemma [d] normalization along the samples
preserves angular distances in general, and, therefore, collinearity.

Since all the transformations from A1l to A4 preserve collinearity, the overall
transformation fai.44(-) preserves collinearity. B

3.6. Homo-representation of Collinear Points

An immediate consequence of the previous result is the following theorem
which states that all the collinear points in the original representation space are
mapped to an identical representation. This result is significant as it gives us a
first understanding of the principle and the type of metric that sparse filtering
uses to map original samples X (¥ onto their representations Z ().

2Notice that we can safely make the assumption of strict positivity in sparse filtering since
u and v are the output of an absolute-value function implemented as f(z) = V22 + €.

3Notice that we can safely make the assumption of strict positivity in sparse filtering since
u is the output of the normalization along the feature which preserves the positivity.
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Theorem 2. Let X1 € RO be a point in the original space RC. Then there is
a set of infinite points X € RO such that fai.as (X(l)) = fa1:44 (X(i)). The
set of the points collinear with XV is included in this set.

Proof. Let us consider a point X(*) and a generic collinear point X(?) =

kXM k # 0. Let us apply the transformation fai.44 to the points X(*) and
X (2),

fa (X(l)) = WX fai (X(2 ) = WX
faz (WXWD) = WX faz (kwx<1>) =k [WXD)|
faz ([WXWD]) = co |[WXW| fas (K |WXW]) =k (c OJWX(DL)
co|wx (™) colwx
Faa (oo [WXO]) = SIXHL 1 oo fwx])) = HeelWX D

where c is a vector of normalizing constants and o is the element-wise product
(as in Lemma . Now, since 5 (X@)) = ket (X)), it follows:

k(co[WXW])  k(co|WXWD)

ls (X(2)) = Kty (X(l)) = fA4 (C o

WX<1>D .

Thus, X" and any collinear point X are mapped onto the same representa-
tion fa1.44 (X(l)). | |

8.7. Homo-representation of Points with Same Moduli

A further analysis of sparse filtering reveals that not only collinear points
are mapped to the same representation, but also points in the learned repre-
sentation space having the same moduli (that is, the same absolute value for
their components) are mapped to identical representations. Again, this result is
relevant since it sheds light on the type of structure preserved by sparse filtering.

Theorem 3. Let F(Y) € R be a point in the codomain of the linear map defined
by the matriz W. It holds that for FY strictly in the first orthant, there are at
least 2% points F) € R such that fao.a4 (F(l)) = fa2:44 (F(i))_

Proof. By definition, F\") > 0, Vj, 1 < j < L. It follows that f42(F(!)) =
F() as the application of the absolute-value maps F() to itself.

However, all the vectors F(¥) such that F(z) :l:F( ) are mapped to F() by
the absolute-value faz(+). By combinatorial analybls there are 2L possible ways
of picking the values of F(") thus defining 2% points in RY that are mapped to
the same value F(1). Since all the points F(!) are mapped to the same point F(1)
at the end of step A2, the application of the remaining deterministic functions
will map them to the same representation, faz.a4 (F) = fag.a4 (F¥)). B

3.8. Preservation of Cosine Neighborhoodness

In Theorem [2] we have shown that sparse filtering maps points having the
same angles to the same representation. However, this property is not sufficient
to preserve any complex structure. Here we further prove that sparse filtering
maps points having a small cosine distance in the original space onto point
having small Euclidean distance in the representation space.
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Theorem 4. Let XV, X2 € R be two original data samples and let ZV | Z(3) €
R be their representations computed by sparse filtering. If the cosine distance
between the original samples is arbitrarily small Do [X(l), X(Q)] <6, for § >0,
then the Euclidean distance between the computed representations is arbitrarily

k+|v25—62
small Dg [Z(l),Z(Q)} <e€, fore >0, ande=1L- ( elz(F("’)) - 52(1%(1))); where

k is a constant accounting for partial collinearity and f (l:"(i)> 1s the ly-norm

of the representations computed by sparse filtering after step A3.

Proof Sketch. We provide here a synthetic sketch of the proof; the full
proof is available in appendix

We prove this theorem with the following approach: at each step of sparse
filtering, (i) we consider the displacement between the representation of the two
points XM and X®); (ii) we upper bound the displacement.

Before sparse filtering the displacement vector X between X and X(?) is:

X=(k-1)XD+B (2)

where k € R, k # 0, is a constant accounting for partial collinearity and B is a
bias vector. Knowing that the cosine distance between the samples is bounded
by D¢ [X(l),X@)} < 6, the displacement can be upper bounded component-

wise as:
X; <X (k;— 1+ \/25—52). (3)

After steps Al and A2, the new displacement is:
F=(k-1)F" + |WB|, (4)

whose upper bound is:
§ (1)
_ N (1
Flg(k—1+’\/26—62‘> S wOxM| (5)
Jj=1

After the normalization along the rows in step A3, the displacement is re-

duced to: WB
FO L | \z

Cl

F=(k—1)F (6)

where {cl}lel, ¢ € R are constant accounting for feature-dependent sums across
the N samples. Consequently the new upper bound is simply:

= 1.
F < —F, (7)
c

Finally, after step A4, the new displacement is:

F)
t (F )_1 720 _IWB,

Z, = k&(f‘(?)) ! m, (8)
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which can be upper bounded as:

; S WX (v )
' Cz n(Fe) 6 (F0))

Therefore, the overall Euclidean distance between the representations Z") and
Z) can be bounded by:

k+[v26 =32 1

0 (F(Z)) 0 (ﬁ(l))

Dy {z“), Z(Q)} < (10)

_ k+|v/26—57| 1
Thus e = L - ( GE®) ez(l‘rm))' u

Sparse filtering can then preserve cosine neighborhoodness by mapping points
that have similar angular coordinates to representations that are close to each
other under an Euclidean metric. However points that have large cosine dis-
tance in the original space will not necessarily be far in the representation space;
this is a consequence of the fact that transformation in sparse filtering preserve
collinearity and cosine neighborhoodness, but not cosine metric in general.

3.9. Basis and Basis Pursuit

Let us now consider the space of the learned representations R”. This
space is spanned by the canonical set of orthonormal bases {ei}iLzl, where
ee=[10 ... 0],ea=[0 1 ... 0],..,eg=[0 0 ... 1]

Let Z be the set of vectors {Z(")}i\i1 produced by the sparse filtering algo-
rithm through the steps Al to A4. If we now consider the optimization in step
A5, it is easy to prove that the optimal set Z that minimizes the ¢;-norm is
given by a multi—seﬁ of the orthonormal bases of RL.

Proposition 2. Let Z = {Z(i)}il be a set of vectors such that Z) € RY and

N 2
Zle (Z;l)) = 1. Then an optimal set of vectors that solve the optimization

problem min Zf\;l Zle Z;i) is given by a multi-set of the orthonormal bases
ZERLX
of RL.

Proof Sketch. This proposition is proved geometrically, following the proof
given by (Bishop, [2007) to show that the solutions to regularized least-squares
optimization problems are sparse. The full proof is available in appendix [Ap]
u

Thus, the optimal solution for the sparse filtering algorithm is to map a
set of original representations X(? € R onto the orthonormal bases of R, as

4We now explicitly refer to Z as a multi-set because the optimal Z may contain repeated
orthonormal bases of RE in case N > L.
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the bases {ei}iL:1 have a minimal /;-norm in RY under the constraint of sparse
filtering.

Ideally, through gradient descent, sparse filtering progressively pushes all the
learned representations Z(Y € RY towards the orthonormal bases of RY. How-
ever, in general, notice that sparse filtering is not guaranteed to find an optimal
solution and it may settle into a local minimum, where the original representa-
tions X are mapped onto k-sparse (k > 1) representations in R”. The quality
of the solution depends on the original data set X, on the dimensionality of the
learned space L, and on the random initialization of the weight matrix W.

Understanding the dynamics of sparse filtering in terms of bases and pursuit
of bases naturally prompts a comparison with other sparse learning techniques
used in signal processing and machine learning. Basis pursuit (Chen et al.|
2001) defines a similar ¢;-minimization problem, but it considers only a con-
straint given by a linear transformation, while sparse filtering transforms the
data through non-linear transformations. Matching pursuit (Mallat & Zhang)
1993) aims at learning a sparse representation; differently from sparse filtering
which operates on all the data in parallel, matching pursuit works by finding a
linear decomposition in an iterative way by selecting one basis at each iteration.
Dictionary learning algorithms, such as the method of optimal directions (En-
gan et all|1999) or k-Singular Value Decomposition (Aharon et al.,2006), try to
learn a dictionary and a sparse representation at the same time; however, they
typically alternate between updating the dictionary and the sparse representa-
tion, while sparse filtering explicitly optimizes only the sparsity of the learned
representation.

8.10. Representation Filters

The idea of orthonormal bases and pursuit of these bases allows us to intro-
duce a last conceptual tool that gives us a better insight into the dynamics of
sparse filtering.

From Theorem [2] we learned that sparse filtering identifies sets of collinear
points in the original space to be mapped onto bases; from Theorem [3] we can
deduce that there must a symmetric structure around lines of collinear points;
from Theorem [4] we learned that cosine neighborhoodness is translated into
Euclidean neighborhoodness. Putting together these results, we can infer that
sparse filtering defines precise maps in the original representation space R in
the form of representation filters:

Definition (Representation Filter). A representation filter R® is a
function R® : RO — R>( mapping points in the original representation space
RO to their Euclidean distance from the basis e;.

Plotting a representation filter R® in the original representation space R?
defines a region of space having a hyper-conical shape, such that all the points
on the line of its height are mapped onto the basis e;, and all the points in the
neighborhood defined by its volume are mapped into the neighborhood of the
basis e;. Moreover, given a point X#) € RO, we say that the representation
filter R;(i) is centered on X () if R;m (X(i)) = 0, that is, the point X lies on

€

the line of the height of the representation cone defined by Ry ;).
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The optimization process of sparse filtering can be interpreted as the search
for an optimal location of the representation filters: hyper-conical representation
filter are rotated in a continuous way in the original representation space during
learning, until their placement provides an optimal solution in terms of sparsity
of the learned representations. Inspecting the representation filters can provide
a way to assess the progress of learning in sparse filtering.

8.11. Non-preservation of Cosine Neighborhoodness in Alternative Implementa-
tions of Sparse Filtering

The choice of the absolute-value non-linearity in step A2 of sparse filtering
is crucial for guaranteeing the preservation of cosine neighborhoodness. [Ngiam
et al.|(2011)) suggest that this non-linearity may be substituted by other non-
linear functions; for instance, standard non-linear functions from the neural
networks literature, such as the sigmoid non-linearity or the rectified linear unit
(ReLU), may be used. Despite this possibility, all the implementations of sparse
filtering so far have relied on the absolute-value non-linearity. An unpublished
technical report by Thalerﬂ states that sparse filtering with alternative non-
linearities (ReLU and quadratic non-linearity) does not perform as well as the
absolute-value non-linearity, but does not clarify the reasons of this failure. For
plain empirical reasons, the absolute-value has always been recommended as the
best non-linearity for sparse filtering.

One theoretical reason for the limited success of alternative implementa-
tions of sparse filtering is the fact that other non-linearities can not provide
strong guarantees on preservation of relevant data structures. If we replace
the absolute-value non-linearity with another non-linearity, such as sigmoid or
ReLU function, we lose the property of preservation of structure guaranteed by
standard sparse filtering, as it is proved by the following two propositions.

Proposition 3. Let us consider the sparse filtering algorithm implemented us-
4 N

H% Let {X(l) S Ro}izl be a set of

points in the original space RC. Then, the transformations A1, A2* A3 and

A4, where A2% is the sigmoid non-linearity, do not preserve the structure of the

data described neither by the Euclidean metric nor by the cosine metric.

ing a sigmoid non-linearity o(x) =

Proof Sketch. This proposition is proved by counterexample. The full
proof is available in appendix [ |

Proposition 4. Let us consider the sparse filtering algorithm implemented us-
ing a soft ReLU non-linearity ReLU (x) = max (e, x), where € is a small negligi-
ble value (for instance, € = 1078). Let {X(i) € Ro}il be a set of points in the
original space RC. Then, the transformations A1, A2*, A3 and A4, where A2*
1s the ReLU non-linearity, do mot preserve the structure of the data described
neither by the Euclidean metric nor by the cosine metric.

5htt:ps ://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/
forums/t/4717/1st-place-entry
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Proof Sketch. This proposition is proved by counterexample. The full
proof is available in appendix [ |

The non-preservation of the Euclidean metric is not surprising and it is
due to the fact that the normalization in step A4 does not preserve Euclidean
distances. The non-preservation of cosine distances, collinearity or cosine neigh-
borhoodness is instead due to the sigmoid and ReLLU non-linearities in step A2,
since these non-linearities do not determine a folding of the space in the same
way of the absolute-value function.

Despite this result, it may still be possible to implement sparse filtering with
alternative non-linearities in order to preserve other types of structures. It is
important that the preservation properties of alternative non-linearities agree
with the structure preserved by the other steps of sparse filtering (A1, A3, A4).
From a theoretical perspective, the absolute-value non-linearity is a good choice
for the sparse filtering algorithm, in that it preserves the common property
of collinearity which is also preserved by all the other steps of the algorithm,
therefore guaranteeing the preservation of the overall structure defined by cosine
neighborhoodness.

8.12. Bounds on Probability of Preserving Euclidean Neighborhoodness

Interestingly, despite the fact that sparse filtering can not guarantee the
preservation of the Euclidean metric, it is still possible to determine probabilis-
tic bounds on the preservation of the Euclidean neighborhoodness under very
simplified assumptions on the dimensionality of the original space R® and the
region of space within which the samples X(*) may be drawn.

Theorem 5. Let X1 € R? be a point in the original space RO and let R;’(’“(l)

be a representation filter centered on X, that is, R)e(’“(l) (X(l)) = 0. Let us
now consider a point X2 € RO within the same representation cone, that is, a

point such that R‘;("(l) (X(Q)) < € for an arbitrarily small e € R, € > 0.

Let us assume that: (i) points X distribute in a limited region of space
bounded by M; and, (ii) points X distribute uniformly in this limited region
of space.

Then, given that RS, (X(2)) <, it follows:

05 T (%) 1) 72 05 T (%)
e o <P (e [0 <0) <50 poy

where § € R, § > 0 defines the neighborhood of X, m is the distance of X()
from the origin, and T'(-) is the gamma function.

Proof Sketch. This proposition is proved geometrically, evaluating the
limit of the ratio between the volume of a representation filter and the neigh-
borhood of the a point when the dimensionality tends to infinity. The full proof

is available in appendix [Appendix A.10] B
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Notice that this proof is based on two simplified assumptions. First, the
region of the original space in which a point X9 can fall is limited; this as-
sumption is reasonable because, practically, the range of any feature is always
bounded within a certain interval. Second, a point X has a uniform probabil-
ity of falling anywhere within the area defined by the representation filter R;Ck(l) ;
this is clearly a simplified assumption because the pdf of the data p(X) may have
a very irregular distribution within the area defined by the representation filter
R;’“(l); however, assuming a uniform distribution, which is a distribution that
maximizes our uncertainty, seems a reasonable choice. If these two assumptions
are accepted, approximate bounds can be computed to evaluate the probability

that sparse filtering will preserve relationship of Euclidean neighborhoodness.

8.13. Sparse Filtering for Representation Learning

Given the above results, we may now interpret sparse filtering as a soft
clustering algorithm for representation learning.

Indeed, we may state that sparse filtering implicitly makes all the assump-
tions made by traditional soft clustering algorithms (see Section[2.1)): (i) it aims
at discovering less noisy representations 7" whose pdf p(Z) may automatically
be closer to the true stochastic generating process with pdf p (X*); (ii) it ex-
pects the true pdf p (X*) to have a stronger correlation to the labels Y@, (iil) it
models the true pdf p (X*) with a mixture model whose components are related
to the bases {e; }jLzl; and, (iv) it relies on the cosine metric to evaluate relation-
ships of neighborhoodness in the original space R?. From this perspective, we
can interpret the dimensionality of the learned space as the number of clusters
for soft clustering, the bases as the cluster centroids in a space described by the
cosine metric, the pursuit of the bases as the sequential process of update of the
location of the centroids, and the learned representations Z(*) as the (stochastic)
degree of membership of the original data samples X to each cluster.

Given this interpretation, we can align and meaningfully compare sparse fil-
tering with other soft clustering algorithms for representation learning that use
different metrics. The choice of an appropriate metric is critical for a distance-
based clustering algorithm (Xing et al., |2003)), and it expresses our understand-
ing on which spatial directions encode relevant changes (Simard et al., [1998).
It is natural then to compare sparse filtering with other standard algorithms
which adopt the Euclidean metric to explain the data. Preserving the rela-
tionships of neighborhoodness under the Euclidean metric means preserving the
information conveyed by the pdf p(X) in the representation space defined by
the Cartesian product of the random variables X7, X5, ..., X, while preserving
the relationships of neighborhoodness under the cosine metric means preserving
information conveyed by the pdf p(X) in the representation space defined by
the projection into polar (or hyper-spherical) coordinates of the random vari-
ables X1, Xo,...,Xo. Choosing one metric instead of the other depends on our
expectation whether the structure of the data with respect to a set of labels
p(Y]X) is better explained by an Euclidean structure or by a radial structure.
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4. Empirical Validation

Based on the theoretical analysis provided in the previous section, we con-
duct a set of simulations aimed at verifying our theoretical results empirically.
In order to make our results visualizable and easily understandable, we first
conduct simple simulations in low dimensions; experiments in higher dimen-
sions generalize our results but they do not add anything conceptually new to
our conclusions. We further validate our theoretical findings with a number of
benchmark data sets pertaining to real-world applications.

4.1. Properties of Sparse Filtering

First, we run simulations on elaborately designed toy data sets in order to
validate our basic understanding of sparse filtering. These simulations aim at
verifying: (i) the property of homo-representation of collinear points (see Section
3.6); (ii) the usefulness of representation filters (see Section [3.10)); and, (iii) the
dynamics of pursuit of bases (see Section [3.9).

We generate a random set of data X of three samples (N = 3) in two-
dimensional space (O = 2). Each point is generated using spherical coordinates:
the radial distance p is sampled from a uniform distribution Unif (—5,5); the
angular coordinate 60 is set to % for the first two points and sampled from a
uniform distribution Unif (0, ) for the third point. A sparse filtering module
is trained on this data set in order to learn a new representation of the data
in two dimensions (L = 2). After training, we create a dense mesh of points
X’ in the original representation space RY; we project each point X’ to its
representation Z’ in the learned representation space R, and we compute the
distance from each basis e; in RZ. The plot of each representation cone is then
shown as a two-dimensional contour plot in the original space R.

Figure [2] shows the state of sparse filtering before training. From the plots
b) and (d) we can immediately verify the property of homo-representation
of collinear points; indeed, in the learned space R” the collinear points occupy
the same location and their matrix representation is the same. From the plots
e) and f) we can verify the existence of representation filters in the original
space RY and appreciate how points in the original space are mapped onto bases
of the learned space. Notice that, at this point, after the random initialization
of the weight matrix W, the quality of the representations generated by the
untrained sparse filtering module is far from satisfactory.

Figure [3] shows the state of sparse filtering at the end of training. From the
plots3[(b) and [3[(d) we can see that the trained sparse filtering module has found
an optimal solution that maps all the points to bases; as expected, the collinear
points are mapped to the same basis, while the third point is mapped to the
remaining basis. From the plots [3|(e) and [3|f) we can validate our intuition
about the pursuit of bases; indeed, training corresponded to a rotation of the
representation filters in order to center them on the available samples.
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Figure 2: Experimental validation of the properties of sparse filtering (homo-representation
of collinear points, representation filters).

Data is generated as explained in the text (the blue circle dots represent collinear points).
(a) Data in the original representation space R?; (b) data in the learned representation space
RZ; (c) matrix plot of the original data X; (d) matrix plot of the learned representations Z;
(e) plot of first representation filter showing distances from the basis e; = [0,1]T; (f) plot of
the second representation filter showing distances from the basis ez = [1,0]7.
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Figure 3: Experimental validation of the properties of sparse filtering (pursuit of bases).
Data is generated as explained in the text. The meaning of the subplots is the same as in

Figure El
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4.2. Preservation of Cosine Neighborhoodness

Next, we run more simulations on other toy data sets in order to validate
the properties of data structure preservation in sparse filtering. These simu-
lations aim at verifying: (i) that sparse filtering preserves a structure defined
by cosine neighborhoodness (see Section [3.8); and, (ii) that the absolute-value
non-linearity is crucial in preserving structure and substituting it with other
non-linearities negates this property (see Section .

We generated a random set of data X of nine samples (N = 9) in two-
dimensional space (O = 2). Each point is generated by randomly sampling
its spherical coordinates. The first three points have a radial distance p ~
Unif (—2,0) and an angular coordinate 6 ~ Unif (§ —n, 5 +n); the following
three points have a radial distance p ~ Unif (0,3) and an angular coordi-
nate 0 ~ Unif (%” -1, %’T —|—77); the last three points have a radial distance
p ~Unif (2,4) and an angular coordinate 6 ~ Unif (%T -, %r + 77). The pa-
rameter 7 is meant to represent a form of noise and its value is set to n = .
In this way, we generate three clusters of points, such that the cosine distances
among the points belonging to the same cluster are small, while the cosine
distances among points belonging to different clusters are large. Three im-
plementations of sparse filtering with different non-linearities (absolute-value,
sigmoid, and ReLUEI) are used to learn a new representation of the data in two
dimensions (L = 2).

Figure [4] shows the state of the modules of the three implementations of
sparse filtering at the end of the training. From the plots[d|(a){d(c) we can imme-
diately verify that sparse filtering with an absolute-value non-linearity preserves
cosine neighborhoodness. The plots of representation filters show that points
with similar angular coordinates fall within the same representation filter. The
matrix plot shows that points with similar angular coordinates are projected
onto very similar representations; in other words, points that originally had a
small cosine distance are projected onto almost identical representations. On the
other hand, from plots d)i) we can easily see that sparse filtering with an
alternative non-linearity does not preserve cosine neighborhoodness. The plots
of representation filters show that the sigmoid and the ReLLU non-linearity do
not induce representation cones, but, instead define large regions of the original
space to be mapped onto a basis; several points are thus indistinctly mapped
onto a basis. The matrix plots show that the representations computed by
these alternative sparse filtering modules are not related to the original cosine
distances anymore; points originally belonging to the same cluster are mapped
to opposite representations, and, vice versa, points originally belonging to dif-
ferent clusters are mapped to identical representations.

6ReLU has been implemented in a soft version, like the absolute-value: softReLU(x) =
{x ife >0

. fore=10"8
e otherwise
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Figure 4: Experimental validation of the preservation of cosine neighborhoodness.

Data is generated as explained in the text (first set of points as blue circle dots, second set of
points cyan diamond dots, third set of points as green square dots). (a, d, g) Plot of the first
representation filter showing distances from the basis e; = [0, I]T, respectively for the sparse
filtering with absolute-value, sigmoid, and ReLU non-linearity; (b, e, h) plot of the second
representation filter showing distances from the basis ex = [1, O]T, respectively for the sparse
filtering with absolute-value, sigmoid, and ReLU non-linearity; (c, f, i) matrix plot of the
learned representations Z, respectively for the sparse filtering with absolute-value, sigmoid,
and ReLU non-linearity.
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4.8. Sparse Filtering for Representation Learning

In the following set of simulations, we compare sparse filtering against an-
other unsupervised algorithm in order to show under which conditions sparse
filtering is a good choice for processing data. These simulations aim at verifying
the following intuitive implication: if the structure of the data with respect to
a specific set of labels p(Y|X) is better explained by the cosine metric, then
sparse filtering is likely to be a good option for unsupervised learning.

In our comparison, we measure sparse filtering against the soft k-means al-
gorithm (MacKay, 2003). We choose this algorithm for the following reason:
(i) like sparse filtering, the soft k-means algorithm is a soft clustering algorithm
producing sparse representations; (ii) the algorithm is based on the Euclidean
metric, thus providing a different interpretation of the data from sparse filter-
ing; and, (iii) k-means is a well-known and easy-to-interpret algorithm (even
if, analogous results may be obtained with other algorithms, such as Gaussian
mixture models or sparse auto-encoders).

To validate our hypothesis, we generate two data sets, X gycriq and Xeosine-
The data set X gycriq contains data where p(Y|X) is explained by the Euclidean
metric. It is composed of nine samples (N = 9) in two dimensions (O = 2)
sampled from three multivariate normal distribution. The first three points

are sampled from N ({ L } , [ 050 })7 the second three points are sam-

1 0 .05
pled from A 31 , '%5 85 }), the last three points are sampled from
-1 .05 0 .
N 2o sl ) The data set X osine contains data where p(Y|X)

is explained by the cosine metric. The data is generated following the same
protocol used in the simulation in Section [£.2] Sparse filtering is used to learn
a new representation of the data in three dimensions (L = 3).

From Figure [5] we can see that our understanding of sparse filtering is cor-
rect: if p(Y|X) is better explained by the cosine metric, then sparse filtering
produces a good representation; otherwise, if p(Y'|X) is better explained by the
Euclidean metric, then it is reasonable to opt for a different unsupervised learn-
ing algorithm, such as soft k-means. In the case of the data set with Euclidean
structure, plot b) shows that sparse filtering is not able to preserve the iden-
tity of the generating clusters, and indeed it maps samples from the first and
the third clusters onto the same representation (because of their collinearity);
instead, plot (c) shows that soft k-means algorithm maps points from different
clusters to different representations. In contrast, in the case of the data set with
cosine structure, plot e) shows that sparse filtering preserves the identity of
the generating clusters, while plot f) shows that the soft k-means algorithm is
unable to map samples from different clusters onto consistent representations.

4.4. Sparse Filtering on Real Data Sets

In this last set of simulations we apply our discoveries about sparse filtering
to real-world data sets to further verify our results. Once again, these experi-
ments aim at validating the connection between the radial structure of the data
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Figure 5: Representation data with Euclidean and cosine data structure.

Data is generated as explained in the text (first set of points as blue circle dots, second set
of points cyan diamond dots, third set of points as green square dots). (a, d) Samples in
the original space; (b, ) matrix plot of the representations learned by sparse filtering; (c, f)
matrix plot of the representations learned by soft k-means.
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and the success of sparse filtering. In the first simulation, we extend the result
that we proved in Section [£.3]for toy data sets to real data sets; that is, we verify
the direct implication: if the structure of the data with respect to a specific set
of labels p(Y'|X) is better explained by the cosine metric, then sparse filtering is
likely to be a good option for unsupervised learning. In the second simulation,
we validate, instead, the reverse implication: if sparse filtering happens to be
a good option for unsupervised learning, then the structure of the data with
respect to a specific set of labels p(Y|X) is likely to be better explained by the
cosine metric.

When dealing with real data sets, it is very challenging to assess the struc-
ture of the data. With few samples in low dimensions and with the simplified
assumption that all the data belonging to a given class are generated by a single
highly localized cluster, a simple visualization or a computation of distances is
enough to understand which metric is underlying the data. However, when we
consider real data sets, we have to deal with a large number of samples in high
dimensions, and with the fact that samples belonging to the same class may be
generated by different clusters spread throughout the space. In order to explore
high-dimensional data in the original space before any normalization, we decided
to rely on the k-nearest neighbors algorithm (KNN). We implemented two ver-
sions of KNN;, one selecting k neighbors according to the Euclidean distance and
one selecting k£ neighbors according to the cosine distanceﬂ If p(Y|X) is better
explained by the Euclidean distance, we expect KNN with the Euclidean met-
ric to provide better results; alternatively, if p(Y|X) is better explained by the
cosine distance, we expect KNN with the cosine metric to provide better results.

Berlin Emotional data set. The Berlin Emotional (EMODB) data set is
a well-known audio data set in the emotion recognition community (Burkhardt
et al, [2005); it contains recordings of ten German actors expressing seven dif-
ferent types of emotions. We opted for this data set to validate the direct
implication between data structure and effectiveness of sparse filtering for the
following reasons. (i) Samples in EMODB naturally lend themselves to alterna-
tive labellings; the same data may be used both for speaker recognition (using
subject labels) and for emotion recognition (using emotional labels). (ii) The
same set of Mel-frequency cepstrum (Childers et al., [1977) coefficient (MFCC)
features may reasonably be used both for speaker recognition and for emotion
recognition (Wu et al., |2010; [Schuller et al., 2011)). Thus, the same features we
can be used to explore the data under different labeling.

We first explore the structure of the data with respect to the two different la-
beling systems in order to evaluate whether the Euclidean distance or the cosine
distance better explains the structure of the data. We run the KNN algorithm

“The KNN using cosine distance has been implemented relying on the “trick” that the
cosine distance between vectors u, v is the same as the Euclidean metric on the £o-normalized
vectors. Therefore, we perform an f2-normalization of each data sample and then we run
KNN with Euclidean distance, re-using off-the-shelf KNN code optimized for the Euclidean
metric.
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Figure 6: Analysis of the data structure and the classification of the EMODB data set with
respect to emotion labels.

Classification is performed as explained in the text. (a) Exploration of the data via KNN
with Euclidean metric (green continuous line) and with cosine metric (blue dashed line); (b)
Classification using a linear SVM after processing with a GMM algorithm (green line) and
with sparse filtering (blue line). The plot shows the average accuracy and the standard error
of SVM (over fifty simulations).

with different values of neighbors (k = {2, 3,5, 7,10, 15, 20, 25, 50, 75,100} ); for
each configuration of KNN, fifty simulations are executed; in each simulation
the data set is randomly partitioned into a training data set (900 samples) and
a test data set (311 samples); KNN is then trained and tested using one of the
two available metrics.

After this analysis, we use both an Euclidean-based unsupervised learn-
ing algorithm, Gaussian mixture model (Bishop, 2007), and a cosine-based
unsupervised learning algorithm, sparse filtering, to project the data into an
L-dimensional space. We opted for the Gaussian mixture of models (GMM)
algorithm because it is based on the Euclidean metric and yields better perfor-
mance than the soft k-means algorithm. After processing the data, we then run
a simple linear SVM classifier on the processed data and we analyze how our
observations on the structure of the data relate with the actual classification
performance. We consider several values of dimensionality (L = {2,3,...,40});
for each configuration, fifty simulations are executed; as before, in each simula-
tion the data set is randomly partitioned into a training data set (900 samples)
and in a test data set (311 samples).

Figure @(a) shows that the structure of EMODB data with respect to emo-
tional labels is better explained by the Euclidean distance. This result is fur-
ther confirmed by the classification with the linear SVM module in Figure [6|(b).
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Figure 7: Analysis of the data structure and the classification of the EMODB data set with
respect to subject labels.
The meaning of the subplots is the same as in Figure @

Classification using the GMM-processed data with low learned dimensional-
ity (L < 15) returns an accuracy that is significantly better than using sparse
filtering-processed data (Wilcoxon signed-rank test, p-value P = 5-107%5); how-
ever, in higher dimensions the classification with sparse filtering-processed data
approaches and overtakes the accuracy obtained using GMM-processed data. In
general, in low dimensions, the Euclidean structure assumed by GMM explains
the data better; in high dimensions, sparse filtering provides good results (most
likely thanks to the property of sparsity), but the gap between the accuracy
provided by the two representations remains limited. On the other hand, Fig-
ure a) shows that the structure of EMODB data with respect to the speaker
identity labels is better explained by the cosine distance. This result is fur-
ther confirmed by the classification with the linear SVM module in Figure [7|(b).
Classification using the sparse filtering-processed data returns, for all learned di-
mensionality, an accuracy that is significantly better than GMM-processed data
(Wilcoxon signed-rank test, p-value P = 4 -1073%7). The assumption of the co-
sine metric allows sparse filtering to explain the data much better, as is evident
from the large gap between the accuracy provided by the two representations.

These results confirm a connection between the radial structure of the data
with respect to a set of labels and the usefulness of sparse filtering.

Kaggle Black Box Learning Challenge data set. The Kaggle Black
Box Learning Challenge (KBBLC) data set is a visual data set made up of
obfuscated images of house numbers; the original images are taken from the
well-known Street View House Numbers (SVHN) data set (Netzer et al., [2011)).
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Each sample in the KBBLC data set contains a single obfuscated digit and it
is accompanied by a label specifying the value of the digit. We opted to vali-
date the reverse implication between data structure and effectiveness of sparse
filtering on this data set for the following reasons. (i) Sparse filtering provided
state-of-the-art performance in the competitive KBBLC contest, thus showing
that sparse filtering was a particularly suitable choice for this data set. (ii)
The KBBLC data set is available with labels. During the challenge the authors
provided obfuscated data without labels; however, after the challenge they re-
vealed the original source of the dataﬂ and they released the code they used
for obfuscatiorﬂ Thanks to this information, we were able to retrieve a large
amount of data and obfuscate it, and thus recreate the original conditions of
the challenge. However, differently from the challenge, we retain the labels in
order to explore the structure of the data. (iii) During the challenge, the orig-
inal samples from the data sets were processed without undergoing operations
of windowing or convolution. Since sparse filtering was directly applied to the
samples, we can analyze the structure of the samples straightforwardly. This
condition is not always true. If we consider other image data sets on which
sparse filtering provided good results, such as CIFAR-10 (Krizhevsky & Hinton,
2009) or STL-10 (Coates et al., 2011), sparse filtering was not applied to the
original samples but to random patches extracted from the images; in this case,
we should not analyze the data structure of the original samples, but the data
structure of the patches. However, patches are not labeled, which hinders our
ability to carry out an analysis of the data structure.

In exploring the structure of the data (with respect to the digit labels), we
aim at evaluating whether the Euclidean distance or the cosine distance better
explains p(Y|X). We run the KNN with the same settings as in the previous
experiment. In each simulation a random subset of 10000 samples from the data
set was selected and then partitioned into a training data set (9000 samples)
and a test data set (1000 samples). KNN was then trained and tested using one
of the two available metrics.

Figure [§] confirms our intuition. For all the different values of k we consid-
ered, the cosine distance proved to be a better metric to explain the structure
of the data in the Kaggle Black Box Learning Challenge. This provides an ex-
planation why sparse filtering proved so useful with the KBBLC data, when
compared to other standard unsupervised learning algorithms, especially those
based on the FEuclidean metric. This result agrees with the fact that the Eu-
clidean metric is not a suitable metric for measuring distances among samples
of digits represented in the pixel space (Simard et al., [1998).

8http://ufldl.stanford.edu/housenumbers/
9nttps://www.kaggle.com/c/challenges-in-representation-learning-the-black-box-learning-challenge/
forums/t/5167/the-data
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Figure 8: Analysis of the data structure of the Kaggle Black Box Learning Challenge data

set.

The KNN with Euclidean metric (green continuous line) and with cosine metric (blue dashed
line) has been used to explore the structure of the data. The plot shows the average accuracy
and the standard error of KNN (over five simulations).
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5. Discussion

Our theoretical and empirical analysis showed that the standard sparse fil-
tering algorithm implemented with an absolute-value non-linearity preserves the
data structure explained by the cosine neighborhoodness In our experiments, we
have shown that, when the relevant structure of the data has a radial structure,
then sparse filtering may be expected to perform significantly better than the
standard Euclidean-based alternatives. Indeed, sparse filtering may be seen as
an algorithm approximately transforming cosine distances in the original space
into Euclidean distances in the representation space.

It is normally assumed that the data points X(*) are best explained as sam-
ples from a multivariate random variable X = (X3, X5,..., X0p), where each

random variable X; describes a component X?. However, given the data points
X @ it is possible to assume that the generating process is better described by
a multivariate random variable X = (X i, Xé, e 7X(/)_1)’ where each random

variable describes an angular coordinate 6; of X;Z). Sparse filtering tries to
preserve the information about the O — 1 angular coordinates 6;, discarding
the information about the radial coordinate p. If p(Y|X) is better explained in
terms of radial coordinates, then sparse filtering is a very reasonable choice for
unsupervised representation learning.

Our study allow us to conclude that our original thesis is correct: sparse
filtering satisfies both the informativeness principle and the infomax principle.
In particular, the informativeness principle is satisfied through the adoption of
the proxy of sparsity, as shown in section [3.:2} The infomax principle is satisfied
through the preservation of a precise structure underlying the data, that is, the
radial structure of the data. Mutual information between the original represen-
tations X9 and the learned representations Z(" is retained when the structure
of the data is explained by the cosine metric, that is, in an ideal case, when all the
information is carried by the angular coordinates of the data, as demonstrated in
section[3:8l Indeed, the mutual information between the original and the learned
representations can be formally expressed as: I [X, Z] = H [X]|—H [X|Z]. Given
that the entropy of the distribution of the data p(X) is fixed, the only way
to maximize the mutual information is by minimizing the conditional entropy
H [X|Z]. Since the representation Z preserve all the information about the
angular coordinates of the original data, the uncertainty about X given Z is
minimized if the structure of the data has indeed a radial structure.

Following this reasoning, we suggested an interpretation of sparse filtering
as an unsupervised soft clustering algorithm based on the cosine metric. This
perspective allowed us to contrast the results of sparse filtering with other stan-
dard algorithms for clustering based on the Euclidean metric and conclude that
sparse filtering does not provide a better processing of the data in absolute
terms, but instead it offers an alternative interpretation of the data based on a
different metric.
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While in our experiments, we were aware a priori of the metric underlying
synthetic data sets, in a real-world setting such knowledge may not be available
and simple exploratory analysis of the data (using, for instance KNN) may be
unsuitable. Sparse filtering, thanks to its scalability and its efficiency, could also
be used to infer the data structure underlying the data. The usefulness of polar
coordinates in several scientific fields and physical applications may suggest that
interpreting data according to cosine distance could be a sensible choice.

Additionally, we proved that, in high dimensions, sparse filtering can still
probabilistically preserve Euclidean distances. This is justified by the fact that,
under the assumptions we made, the probability that unrelated points with high
Euclidean distance will have the same angular coordinates 6; can be bounded

(Section [3.12)).

Interestingly, our study of sparse filtering as an unsupervised learning algo-
rithm shares a similar methodology with the very recent work by McNamara
et al.| (2016). Re-casting our analysis in their framework we can demonstrate
that, with high probability, sparse filtering working on radial data contributes
to the reduction of the risk in standard supervised learners by showing that: (i)
P(X) has a structure explained by cosine neighborhoodness; (ii) P(Y'|X) share
the same structure as P(X); (iii) sparse filtering relies on the cosine distance;
(iv) a supervised learner, such as SVM, can exploit the new Euclidean structure
in the learned representations.

6. Concluding Remarks

In this paper, we have explained why sparse filtering works (by proving its
property of preservation of cosine neighborhoodness) and when it should be ex-
pected to provide useful representations (by considering the data structure of
the samples).

Our theoretical analysis and simulations were not designed to show that
sparse filtering is able to provide state-of-the-art performance against other al-
gorithms, but, instead, to show how the implicit assumptions and constraints
of sparse filtering make it better suited for certain scenarios instead of others.
In particular, for the standard sparse filtering algorithm implemented using an
absolute-value non-linearity we demonstrated that its success is tied to the data
having a structure explained by cosine neighborhoodness. Consistently with the
no-free lunch theorem (Wolpert & Macready, [1997), we reached the conclusion
that sparse filtering is not a better algorithm than other Euclidean-based clus-
tering algorithms, but that there is a specific set of problems (in which p(Y]X)
is explained by the cosine metric) where the performance of sparse filtering is
excellent, balanced by a set of problems (in which p(Y|X) is explained by the
Euclidean metric or other metrics) where its performance is less outstanding.
This led us to interpret the representation of sparse filtering as a “view” of the
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data according to the cosine metric alternative to the more standard Euclidean
view. Combining these two different views could provide representations with
more discriminative power.

At the foundation of our analysis lies the understanding that sparse filtering
must preserve some information carried by the pdf p(X). Despite sparse filtering
ignoring the problem of explicitly modeling the true pdf p (X), we showed that
the algorithm is hard-coded with an implicit constraint that guarantees the
preservation of some data structure. This is clearly a specific conclusion about
the particular algorithm of sparse filtering, but we can expect that this principle
will be applicable to the whole class of feature distribution learning algorithms.
We might expect that any feature distribution learning algorithm, in order to be
successful, must take into account, through constraints or priors, the problem
of preserving the mutual information between the original representations X (%)
and the learned representations Z(®.

Being aware of this requirement can give a precious contribution in the fu-
ture research and design of new feature distribution learning algorithms; for
instance, it may prevent us from considering in sparse filtering alternative non-
linearities that do not preserve any interesting structure (such as, the ReLU
function) or it may help us to avoid solutions that, being unable to preserve
any structure of the data, are bound to produce unsatisfactory representations.
Ongoing research is focused on discovering which structures may be preserved
by alternative version of sparse filtering, with a particular focus on periodic
structures that may be learned using trigonometric functions.

A deeper theoretical understanding of the dynamics of sparse filtering may
be developed in connection with manifold learning and information geometry
(Amari, |2016)). The property of preservation of structure that we uncovered
in this paper may be more formally explained in the framework of differential
geometry, by modeling the data samples as a points on a Riemannian manifold.
Relevant data structures (that we presented in terms of Euclidean or cosine
distance) may then be described in terms of Riemannian metric tensors, and
preservation properties may be studied in terms of preservation of these tensors.

Another promising avenue in our research is the extension of sparse filtering
to semi-supervised learning. Indeed, the paradigm of feature distribution learn-
ing seems perfectly suited for the scenario in which we are provided with few
labeled samples and many unlabeled samples: we may exploit the information
carried by the labeled samples to better shape the feature distribution p(Z),
without addressing the problem of estimating the true pdf p (X*); at the same
time, the constraint of sparsity would help us to not overfit, and the constraint
of structure preservation would help us to preserve the information conveyed
by p(X). Furthermore, assuming some regularity in the original representation
space, we hypothesize that we could use the information in the labeled samples
to address the problem of covariate shift (Sugiyama & Kawanabe, [2012) in a
semi-supervised learning scenario.
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Appendix A. Proofs

Appendiz A.1. Proposition[]]

Proposition 1. Let {X(i) € Ro}il be a set of points in the original space
RO. Then, the transformations from A1 to A4 do not preserve the structure of
the data described by the Euclidean metric.

Proof. We prove this proposition by counterexample.

Let us consider the case in which X is a vector such that Xg»l) = %, Vi,
1 <j <0, X® is another vector such that X(?) = - X1 L =0, and W =1,
where I is the identity matrix.

The Euclidean distance between the vectors X1 and X(?) is:

Dy (X, X)) = i (;5 + \2)2 = VAL
j=1

Let us now apply the transformation fa1.44 to the vectors X1 and X®):

far (XW) =1X® = XM far (X®) =1X® = X
faz (X)) = [XB | =xXD) faz (X@) = [X®| = xXO
X2 xDv3
fas (K0) = %3] = [ 4] i (X0) = [Z22] = [ 4]

() = ()= [l =2 () - [258] - ) -

Thus, far.as (XP) = ZM and far.aa (XP) = ZW. Now, the Euclidean
distance between the vectors fa1.44 (X(l)) and fa1.44 (X(Q)) is:

Dy (z<1>,z<1>) —0.

Therefore the transformations from Al to A4 do not preserve the structure of
the data described by the Euclidean metric. B

Appendiz A.2. Lemmal]]

Lemma 1. Let us consider u,v € RP, two generic collinear vectors, and
let f: RO — RE be a linear transformation defined as f(u) = Wu, where W
is the matriz associated with the linear transformation. Then, f (u), f(v) € RL
are also collinear.

Proof. Let us consider the two collinear vectors u and v. By definition,
collinearity means that there exists k € R, k # 0, such that v = ku. Let us now
consider the linear transformation f encoded by matrix W and let us apply it
to the vector v:

fv)=Wv =W (ku) =k (Wu) =k f(u).

Therefore, collinearity is preserved.
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Appendiz A.3. Lemmal[g

Lemma 2. Let us consider u,v € RY, two generic collinear vectors, and let
f R — RE be the element-wise absolute-value function f(u) = |u| = [Ju;l].
Then f (u), f(v) € RE are also collinear.

Proof. Let us consider the two collinear vectors u and v. By definition,
collinearity means that there exists k € R, k # 0, such that v = ku. Let us now
consider the element-wise absolute-value function f and let us apply it to the
vector v:

f(v) = vl = kul = [k] - [u] = [k] - f(u).

Therefore, collinearity is preserved. B

Appendiz A.4. Lemmal[3

Lemma 3. Let us consider u,v € RY, two collinear vectors whose compo-
nents are all strictly positivep_vl, and let f : RY — RY be the ly-normalization
along the features. Then f (u), f(v) € RL are also collinear.

Proof. Let us consider the two collinear vectors u and v. By defini-
tion, collinearity means that there exists k € R, k # 0, such that v = ku.
Let us now consider the function of normalization along the features f(u) =

{ﬁ} . Normalizing along the features means dividing each compo-
w={u,v...} j

nent u; by a constant c; equal to the fy-norm of the component j across all
u;

the available vectors u, v, ..., that is f(u) = [C_ } = c o u, where c is the vector
J

containing all the constants c¢; and o is the element-wise product. Let us now
apply the normalization along the features to the vector v:

f(v)=cov=co(ku)=k-(cou)=k- f(u).
Therefore, collinearity is preserved. H

Appendiz A.5. Lemmal[j

Lemma 4. Let us consider u € RY, a vector whose components are all
strictly positive E and let f : RY — RE be the lo-normalization along the
samples. Then f (u) € RY have the same angular coordinates as u.

Proof. Let us consider the function of normalization along the features
f(u) = {5’112} . Normalizing along the samples means dividing each compo-

iy

nent u; by the f-norm of the same vector u, that is f(u) = [%} = Wlu) ‘.

Multiplying all the components of the same vector u by the constant k = m

leaves the angular coordinates unaltered. Therefore, the angular coordinates
are preserved. l

10Notice that we can safely make the assumption of strict positivity in sparse filtering since
u and v are the output of an absolute-value function implemented as f(z) = V22 + €.

1 Notice that we can safely make the assumption of strict positivity in sparse filtering since
u is the output of the normalization along the feature which preserves the positivity.
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Appendiz A.6. Theorem[]]

Theorem 4. Let XM X®) € RO be two original data samples and let
ZM 72 ¢ R be their representations computed by sparse filtering. If the co-
sine distance between the original samples is arbitrarily small Do [X(l), X(Q)} <
8, for § > 0, then the Euclidean distance between the computed representations is

L k+|v25—62
arbitrarily small D [Z(l),Z(z)} <€, fore >0, ande = L-( e|2(17*<2>) | _ 62(131‘(1))),

where k is a constant accounting for partial collinearity and {o (F(i)> 18 the lo-

norm of the representations computed by sparse filtering after step A3.

Proof. In order to prove this theorem we adopt the following strategy:
we compute the representations at each step of the computation (before sparse
filtering, after steps Al and A2, after step A3 and after step A4) and we up-
per bound the displacement accounting for the Euclidean distance between the
representations.

Recall that given two generic points X1 and X we can express X(?) as
a function of X plus a displacement vector X:

X® =x® 4 X, (A1)

so that we can easily account for the Euclidean distance between XM and X
just as a function of the displacement vector X:

D [X0,X®] = 15 (X).

(Before sparse filtering.) Let us now consider two points X! and X()
which are almost collinear with an arbitrary small cosine distance D¢ [X(l), X(z)] <
5. We can then express X(?) as a point collinear with X to which a bias vector
B is added:

X® = kx® 4+ B,

where k € R is a constant that preserves collinearity. With no loss of generality,
we will assume k£ > 1; we exclude values of k£ smaller than zero which would
generate a reflection (reflections are not relevant for the following treatment
as they induce a cosine distance far greater than ¢) and we ignore values of k
between zero and one (in such a case, our proof will hold once we swap XM
and X(?)). The bias vector B accounts for a relative displacement between the
perfectly collinear sample kX1 and the almost collinear sample kX1 + B.
With reference to Equation the displacement vector X is:

X =(k—1)X1 +B, (A.2)
from which follows that:
D [XO, X =5 (X) = > ((k— )XV + B)
(Before sparse filtering - Upper bound) To upper bound Dg [X(l), X(Q)} ,

we can evaluate the maximum value that 5 (X) can reach, consistent with the
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constraint of a bounded cosine distance D¢ [X(1)7 X(z)}. Formally, we can set
up the optimization problem:

45 (X
o £ (X)

under the constraint:
D¢ [X“),X@} <.

The maximization can be rewritten as:

O
0 (X)) = X2
. (1) 2
= o Z((kfl)xj +Bj)
Jj=1
O
_ '2
= max Z(Bj)
Jj=1
= max By,
B;cR

assuming: (i) that X and k are given, and (ii) that Xg-l) and B; are both
positive (as this constitute the worst case that needs to be considered in the
analysis of the upper bound). An upper bound on the displacement X can
be then computed from the solution to the individual constrained optimization
problems for each component B;:

max B;
B]’G]R

under the constraint:
5§ > Dc [XU),X(?)}

— Do [X(l), EX® 4 B] .

By construction, we know that D¢ [X(l),kX(l)] = 0. Therefore the entire
cosine distance must be accounted by the bias vector B. Trigonometrically,
from the cosine distance § we can recover the angle opposite to a cathetus
corresponding to the radius of an hypersphere centered on kX" and bounding
the module of B. Let 6 be the underlying angle between X(*) and X(2):

= 1—cost
6 = arccos(l—9).
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The radius of the hypersphere centered on kX inducing at most a cosine
distance ¢ is:

B, < Xg-l) sin arccos(1l — 9)
= X1 (10
= X\Vy/25 - 62

Substituting in Equation [A22] the displacement on each component can the be
upper bounded as:

X, = (k-1)X+B
(k — )XY 4+ X /25 — 52
= X (k=14 V20— 07).

This upper bound depends on the original cosine distance §, but, more sig-
nificantly on the module of X and the stretching constant k. Indeed, the

IN

Euclidean distance along each component is given by the stretch (Xg-l) (k—1))

plus a small distance due to the angle (Xgl)\/ 20 — 42).
(Steps A1 and A2) Let us now apply the linear projection and the absolute-
value function defined in transformation A1l and A2:

FO = fanaz (X)) = [wxO)|

FO = faran (X<2>) = ’W(kX(1)+B)‘:kF(1)i\WB|.

Component-wise we have:

O
Fl(l) — ZWI(J)X§1)
j=1
Fi? = kFY+ WB[ =k WX =Y wiB,|.
j=1 j=1

The new displacement and the new Euclidean distance are:

F = (k—1)F" +|WBJ,, (A.3)

Dp [F(l),F(Z)} =0, (F) = ZL: ((k; ~1)FWY 4 |WB|Z)2.
=1

(Steps A1 and A2 - Upper bound) The upper bound of each component
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of the new bias vector follows immediately:

O
|WB|1 = Zwl(j)Bj
j=1
o
< [ DowPxiVy/28 - 62
j=1

o
V22| |y wx
j=1

and then the upper bound on each component of the displacement in Equation

[A3]is:

F, o< (k- Mm\ wu >

IN

[0 ]
=1 S WX [Vas 2| S wx
Jj=1 j=1

(k=1+|v20-2)) XO:VWDX;”
j=1

(Step A3) Let us now apply the normalization along the rows defined in
transformation A3:

. F(l)
Fl(n — fas (Fl(l)) _ l
N (1)
> (F7)
kFY 4+ 'WB . WB
= fas (F(z)) _ KE A WB| L po,  [WB,

Notice that the denominator is given by a feature-dependent sum across N
samples; for simplicity, we will take this value to be a constant {cl}lel, ceR:

~ e
Fl(l) _ l
a
. . WB
PO kFlu)Jrl L
a

The new displacement and the new Euclidean distance are:

IWB|,
Cl

F=Fk-1F"Y 4+ (A.4)
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D 50, 59)] =1y (F) = |3 (e n#0 + WY

c
=1 t

(Step A3 - Upper bound) The upper bound of each component of the
new bias vector follows immediately:

O (3~ (1)
we, VI wx|

Cy Cl

and then the upper bound on each component of the displacement in Equation

M
/25 52 o W j X
| ‘ ‘Zj_—l l(j) 51)‘

U

E < (kh-DFY+

a
p0 V25— [0, wiPx(|
_ (kj _ 1) 1 + J J
Cy C

l
V25— || o), wix

O j 1
S WX
_ 1) +

- (k
( Cy C
k=14 V26 = 8] [ () (1)
= o > WX
j=1
1.
— ZF,
a

Not surprisingly, after transformation A3, the Euclidean distance Dg {f‘(l), ]?‘(2)}

is just rescaled since each component of the displacement F; is reduced by a fac-
1

tor - =
c

1
JEN(FO)?

(Step A4) Finally, let us apply the normalization along the samples defined
in transformation A4:

(1)
_ PO Fcl
2V = fa(F) ==
0 (F(l)) 0 (F<1>)
- (2) =(1) , |[WB|, F |WB,
N F kF; + —¢ k
2 = g (FP) - Lo Ty
05 (F<2>) A (F<2>) 0 (F<2>) A (F<2>)
' ) vt by 2EY).
Let us now consider the first term of Z;” and let us multiply it by LED)
kFgl) ’, (];-\(1)) |[WB, 0 (ﬁ(l)) |WB,
ZZ(Q): c cl _ 1.7(1) c

6 (F) 6 (F0) i (Fe) =k 6 (FO) " (F2)
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The new displacement and the new Euclidean distance are:

7 () 1)z 4 _WBI;

“ 0y (F<2>) Lt (ﬁ@))’ (4-5)
D [z(l) z(2)} =0, (Z) = zL: k@ 1| zm 4+ _IWBJ, 2
: , i =1 lo (F(Z)) cils (F(2)>
(A.6)

For consistency, notice that if X(1) and X2 were to be collinear, then ¢, (F(Q)) =

kls (F(1)>, and, by construction, B = 0; therefore, in case of collinearity,

Dg [Z(l), Z(Q)] computed in Equation would be zero, thus agreeing with
Theorem

(Step A4 - Upper bound) Now, the upper bound of each component of
the bias vector can be immediately upper bounded:

WB|,  _ V25 =8| |, wiPx(Y)|
el (ﬁ<2>) N el (m)

)

and then the upper bound on each component of the displacement:

W V=, wox)
Z,”’ +

ls (F(Q)) cils (F(Z))

0 (ﬁ(l)) F V25— 57| ‘ZJ»O:I W§j>x§1)‘
= | k—— -1 L + a

0 (F<2>) el (F(l)) il (F<z>)

£ (FO) Sr WO ves = [, wix(|
= |k - -1 — + -

wfm) ) ) ()

20 WO [ =]

1
¢ 0 (ﬁ(z)) 0 (fv(l))

o w@xm o\ 2
Notice that w < 1 since ¢ = \/Z?I (Fl(l)) . Thus:

I e e B
I (F(‘A‘)) @(ﬁ(l))
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The overall Euclidean distance between the representations Z(") and Z® can
then be bounded by:

L
l:l

(k+|m; 1

Dy {Zm 7.2 )} =

A (Fu))

k+|v26— 52|
6 (F@) F<1>

Thuse:L-( .l

Appendiz A.7. Proposition [

Proposition 2. LetZ = {Z(i)}ilil be a set of vectors such that Z(Y) € RY
and Zle (Zgi))2 = 1. Then an optimal set of vectors that solve the optimiza-
tion problem ZergiLriN Ef\il Zle Z;i) 18 given by a multi-set of the orthonormal

bases of RL.
Proof. We will prove this proposition geometrically.
Let us consider the optimization problem:

subject the constraint:

The constraint defines the set of points describing a unitary hyper-sphere in
R%, while the minimization problem defines diamond-shaped level sets (Bishop,
2007). The minimal level set intersecting the unitary hyper-sphere is the di-
amond inscribed in the unit sphere. The intersection points constitute the
solution of our minimization problem. These points are the intersection points
between the unit hyper-sphere and the axes of RY, having a single component
set to one, while all the others are set to zero. By definition, these 1-sparse
vectors are the orthonormal bases {ei}le. [ ]

Appendiz A.8. Proposition [3
Proposition 3. Let us consider the sparse filtering algorithm implemented
- N
H%' Let {X(z) € Ro}izl be a set of
points in the original space RC. Then, the transformations A1, A2* A3 and

A4, where A2% is the sigmoid non-linearity, do not preserve the structure of the
data described neither by the Fuclidean metric nor by the cosing metric.

using a sigmoid non-linearity o(x) =
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Proof. We divide this proposition in two parts and we prove each one by
counterexample.

Let us focus first on the non-preservation of the Euclidean metric. Let us
consider the case in which X is a vector such that Xg»l) =1,Vj,1<5<0,
X ?) is another vector such that X®*) =2,Vj,1<j<0,L=0,and W =1,
where I is the identity matrix.

The Euclidean distance between the vectors X(!) and X®) is:

o
> (-2 =VL

Jj=1

Dg (X(l)7 X(2)) -

Let us now apply the transformation f1.44 to the vectors X® and X@:

fa (X(l)) = IX® = x® far (X(Q)) = IX® =x©
fas- (X(l)) S (X(l)) - »1) fage (X(Q)) -0 (X(Q)) - n®)
s (B0) = | = s (2@) = | =
w = o VEL =D

=M =
25;2”] B [ﬁ} =ZW  fa ([m] - [%] _ 7).

Thus, far.as (XP) = ZW and far.aa (XP) = ZW. Now, the Euclidean
distance between the vectors fa1.44 (X(l)) and fa1.44 (X(Q)) is:

Dy (z<1>,z<1>) —0.

Therefore the transformations from Al to A4 do not preserve the structure of
the data described by the Euclidean metric. This proves the first part of the
proposition.

Let us focus now on the non-preservation of the cosine metric. Let us consider
the case in which X() is a vector such that X§-1) =2,Vj,1<;j<0,X® i
another vector such that X2 = - XM [ =0 =2, and W = I, where I is the
identity matrix.

The cosine distance between the vectors X(!) and X®) is:

O 1 2
£ X)X

VE (x) 5 (x7)

D¢ (X<1>,X<2>) —1— —0.
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Let us now apply the transformation fa1.44 to the vectors X® and X@:

fan (XO) = IXO =Xy (X@) = IXO) =X
faz- (X(l)) =0 (X(l)) —»n® fase (X(2)) =g (X(Q)) = @)

faz (BW) = [ z faz (B?) = 2

/EN Z( i) /EN E( )
=" = 2
fA4< W]) :Z(l) fA4< 7@ ) :Z()-

Thus, far.as (X)) = ZW and far.ag (XP) = Z?, where ZH = [ 0.99 0.14 |
and Z(? = [ 0.70 0.71 ] Now, the cosine distance between the vectors
farias (X)) and far.aq (XP) is

DC(ZU z”);ﬁo

Therefore the transformations from Al to A4 do not preserve the structure of
the data described by the cosine metric. This proves the second part of the
proposition. B

Appendiz A.9. Proposition [

Proposition 4. Let us consider the sparse filtering algorithm implemented
using a soft ReLU non-linearity ReLU (x) = max (e, ), where € is a small negli-
gible value (for instance, e = 1078). Let {X(i) € Ro}ij\il be a set of points in the
original space RC. Then, the transformations A1, A2* A3 and A4, where A2*
is the ReLU non-linearity, do not preserve the structure of the data described
neither by the Fuclidean metric nor by the cosing metric.

Proof. We divide this proposition in two parts and we prove each one by
counterexample.

Let us focus first on the non-preservation of the Euclidean metric. Let us
consider the case in which X is a vector such that X(l) = —% Vi, 1< <0,

X @ is another vector such that X(?) = —-L V], 1<j<0,L =0, and

W =1, where I is the identity matrix.
The Euclidean distance between the vectors X and X®) is:

Dp (X, X)) = EO: (—55 + %)2 = VAL
j=1

Let us now apply the transformation fa1.44 to the vectors X1 and X2):

far (XW) =1X® = x<1> far (X<2>)_Ix<2>:x<>

fazr (KUV) = ReLy (X1) = Jan (XC)) £ ReLU (X)) =
fmm:[ ﬁ mm#b1=§{

e ([2]) = [l =[] =2 s ([o]) =[] =[] = 2
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Thus, far.as (X®) = Z0) and far.aa (XP) = ZW. Now, the Euclidean
distance between the vectors fa1.44 (X(l)) and fa1.44 (X(Q)) is:

Dy (z<1>,z<1>) —0.

Therefore the transformations from Al to A4 do not preserve the structure of
the data described by the Euclidean metric. This proves the first part of the
proposition.

Let us focus now on the non-preservation of the cosine metric. Let us consider
the case in which X is a vector such that Xg-l) = 2J, Vi, 1<j<0,X® is
another vector such that X2 = - XM [ =0 =2, and W = I, where I is the
identity matrix.

The cosine distance between the vectors X(!) and X®) is:

(1) (2)
D¢ (X“) X 2> X% -0

Y ) (o)

Let us now apply the transformation fai.44 to the vectors X and X(2):

fay ( D) = IX(® = X far (X@P) =1IX® = X®
Faze (XD) = ReLU (X)) = XD faz- (X)) = ReLU (X)) = [¢]
x (M €2j
fas (X(l)) = [ 1122112} - {\/1+122152} fasz ([e]) = [ /71+22]2162}
N S _ €2j_
fA4 (|:\/1+122j€21|) \/E\/MT ] = Z(l) fA4 ([ﬁ%}) — \/L1+2272;2j€2 = Z(Q)
J=1 142272 i=1 112252

Thus, far:a1 (X(V) = Z0 and far.a0 (X®) = ZC), where 20 = | YIS YIHZ |

V2+20€2 2+20€2
/ 2 / 2 . .
and Z(?) = [ éiég:z 2 51’2;":2 ] Now, the cosine distance between the vec-

tors fai1.a4 (X(l)) and fa1.44 (X(Q)) is:

DC( 7,1 Z(2)) £ 0.

Therefore the transformations from Al to A4 do not preserve the structure of
the data described by the cosine metric. This proves the second part of the
proposition. W

Appendiz A.10. Theorem [J

Theorem 5. Let XV e RO be a point in the original space RC and let
R‘;(k(l) be a representation filter centered on XV that is, R)e("(l) (X(l)) =0. Let
us now consider a point X2) € RO within the same representation cone, that
18, a point such that qu) ( X (2 ) < € for an arbitrarily small e € R, € > 0.

48



- A& e, - -
:,emrafi R X it A \\
dimension \
! |
| !
\ f
o M /
i
e
- R —
&
ln, i
!
mx_ X
>
first
dimension

Figure A.9: Schema of the data point X@) | the neighborhood of X @) and the representation

filter R;"'(l) in two-dimensional space.

Let us assume that: (i) points X distribute in a limited region of space
bounded by M ; and, (ii) points X distribute uniformly in this limited region
of space.

Then, given that R‘;(’“(l) (X(Q)) <€, it follows:

05 T (%) 1 7@ 05 T (%)
o weg) <7 (Pe (2020 <0) < ey,

where § € R, § > 0 defines the neighborhood of XV, m is the distance of XV
from the origin, and T'(-) is the gamma function.

Proof. Let us consider X() € R and let us define its neighborhood as the
set of points X(? within a hyper-sphere of radius d, that is, Dy [X(l), X(i)] <.

Let us consider now the representation filter R;’“(l) and let m be the distance
X
as the hyper-cone of height m and radius § inscribing the neighborhood of X 1),

We also define a maximal representation filter RS ,, as the hyper-cone of height

of XM from the origin. We first define the minimal representation filter R

X (1)
M and, by trigonometry, radius A = M - %. For illustration, refer to the schema
in Figure [AZ9] where we represented this setup in the case O = 2.

Let us now consider the point X(?) sampled within the representation filter
R;e("'m. Since the sampling probability is uniform within the representation filter
R‘;(’“(l), we can evaluate the probability of X(?) to fall in the neighborhood of
X1 as the volume of the neighborhood of X(*) normalized by the total volume
of the representation filter R, .

Let us consider the neighborhood of X1, Its volume can be computed as:

V;‘phe7'e(07 6) = VO507
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where Vg is the following function:

n
T 2

=
Let us now consider the representation filter R‘;“(l). We bound this volume
considering the minimal and maximal hyper-cone described above. The volume
of the hyper-cone depends on the volume of the lower-dimensional hyper-sphere
in the base (Ball, [1997)) and it can be computed as:

1 1

5 sme Vvsphe'r'e(O - 175) < Vcone(Oa 5, l) < 5 M - ‘/sphere(O -1, A)
l. Y 6071 < v (0,6,1) < l.M.V . Mﬁ o
0O m-Vo-1 = Veonel\t, 0,0) = 5 0-1 m

Let us now consider the ratio of the volume of the hyper-sphere and the volume
of the hyper-cone:

Voi© < Viphere(09) Voo

i O-1 - Vcone.(oaévl) - % -m - VO,l . (50_1

05m°' T(99)  _ vi0s) - 08 T (%)
MO T(02) = Vene0dD = T T(@2)

Thus, since we assumed that R‘;(’“(l) (X(z)) < ¢, it follows that ( MO)‘?H .
O+1 "
r(°#)

r(%:*)

< P(Dp[z0,20] <5) <2 15 g
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