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Abstract

Low-Rank Representation (LRR) is arguably one of the most powerful paradigms

for Multi-view spectral clustering, which elegantly encodes the multi-view lo-

cal graph/manifold structures into an intrinsic low-rank self-expressive data

similarity embedded in high-dimensional space, to yield a better graph par-

tition than their single-view counterparts. In this paper we revisit it with a

fundamentally different perspective by discovering LRR as essentially a latent

clustered orthogonal projection based representation winged with an optimized

local graph structure for spectral clustering; each column of the representation

is fundamentally a cluster basis orthogonal to others to indicate its members,

which intuitively projects the view-specific feature representation to be the one

spanned by all orthogonal basis to characterize the cluster structures. Upon this

finding, we propose our technique with the followings: (1) We decompose LRR

into latent clustered orthogonal representation via low-rank matrix factoriza-

tion, to encode the more flexible cluster structures than LRR over primal data

objects; (2) We convert the problem of LRR into that of simultaneously learn-

ing orthogonal clustered representation and optimized local graph structure for

each view; (3) The learned orthogonal clustered representations and local graph

structures enjoy the same magnitude for multi-view, so that the ideal multi-view
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consensus can be readily achieved. The experiments over multi-view datasets

validate its superiority, especially over recent state-of-the-art LRR models.

Keywords: Low-Rank Representation, Multi-view Subspace Learning,

Clustering

1. Introduction

Spectral clustering [1], which partitions the data objects via their local

graph/manifold structure relying on the Laplacian eigenvalue-eigenvector de-

composition, is one fundamental clustering problem. Unlike K-Means clus-

tering [2], the data objects within the same group characterize not only the

large data similarity but also the similar local graph/manifold structure. With

the rapid development of information technology, the data are largely avail-

able with the multi-view feature representations (e.g., images can be featured

by a color histogram view or a texture view), which naturally paves the way

to multi-view spectral clustering. As extensively claimed by the multi-view

research [3, 4, 5, 6], the information encoded by multi-view features describe

different properties; thus leveraging the multi-view information can outperform

the single-view counterparts. One critical issue on a successful multi-view incor-

poration implied by the existing work [7, 8, 9, 10, 11, 12], lies in how to achieve

the multi-view consensus/agreement.

Following such principle, a lot of multi-view clustering methods [13, 14] claim

that similar data objects should be within the same group across all views.

Based on that, the consensus multi-view local manifold structure is further

explored with great efforts [15, 16, 17, 8] for multi-view spectral clustering.

Among all these methods, Low-Rank Representation (LRR) [18] coupled with

sparse decomposition based model has been emerged as a substantially elegant

solution, due to its strength of exploring their intrinsic low-dimensional manifold

structure encoded by the data correlations embedded in high-dimensional space,

while exhibiting strong robustness to feature noise corruptions addressed by

sparse noise modeling, hence attracting great attention.
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Before proceeding further, some notations that are used throughout the pa-

per are shown below.

1.1. Notations

For Matrix M , the trace of M is denoted as Tr(M); ||M ||F =
√∑

i,jM
2
i,j

(or || · ||2 for vector space) denotes the Frobenius norm; ||M ||1(
∑
i,j |Mi,j |) is the

`1 norm, and MT denotes the transpose of M , and its unclear norm as ||M ||∗
(sum of all singular values); M(i, ·) and M(·, i) as the ith row and column of M .

M � 0 means all entries of M are nonnegative. I is the identity matrix with

adaptive size. 1 indicates the vector of adaptive length with all entries to be 1.

| · | indicates the cardinality of the set.

1.2. Motivation: LRR Revisited for Multi-View Spectral Clustering

Specifically, the typical LRR model for multi-view spectral clustering stems

from the formulation below:

min
Z,Ei
||Z||∗ + λ

∑

i∈V
||Ei||1

s.t. Xi = XiZ + Ei, i ∈ V, Z � 0,

(1)

where Xi ∈ Rdi×n is the data representation for the ith view with di as its fea-

ture dimension, n as the number of data objects identical for each view, λ is the

balance parameter, and V is the view set. Z ∈ Rn×n is the self-expressive low-

rank similarity representation shared by all |V | views, constrained with ||Z||∗
based on Xi(i ∈ V ) , which can also be substituted by the other specific dictio-

naries; ||Ei||1 is modeled to address the noise-corruption for the ith view-specific

feature representation. Z � 0 ensures the nonnegativity for all its entries. Based

on such optimized low-rank Z, the spectral clustering is finally conducted. One

significant limitation of Eq.(1) pointed out by [16] is that, only one common Z

is learned to preserve the flexible local manifold structures for all views, hence

fails to achieve the ideal spectral clustering result. To this end, various low-rank

Zi are learned to preserve the ith view-specific local manifold structures, mean-

while minimize their divergence via an iterative-views-agreement strategy for
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multi-view consensus, followed by a final spectral clustering stage. Despite its

encouraging performance, the following standout limitations are inattentively

overlooked for LRR model: (1) The low-rank data similarity may not well en-

code the flexible latent cluster structures over primal view-specific feature space;

worse still for the non-ideal local graph construction over such representation for

spectral clustering; (2) The low-rank data similarities coming from multi-views

may not be within the same magnitude, so that the divergence minimization

may not achieve the ideal multi-view clustering consensus.

Our new perspective. The above facts motivate us to revisit the low-rank

representation Zi to help XiZi reconstruct Xi below for the ith view

min
Zi∈S
||Xi −XiZi||2F , (2)

where S denotes the set of Zi ∈ Rn×n with low-rankness e.g., cluster number

c far less than di; Instead of narrowing Low-Rank Zi as self-expressive

data similarity from the conventional viewpoint, it is essentially seen

as a special case of a generalized Low-Rank projection, to map feature

representation to a low-dimensional space to reconstruct Xi with min-

imum error. As discussed, the self-expressive similarity projection equipped

with LRR models still suffer from the aforementioned non-trivial limitations.

Here we ask a question: Is there a superior low-rank projection

Zi to minimize Eq.(2), meanwhile address the limitations over the

existing LRR models. Our answer to this question is positive. Specifically,

we propose to consider Zi as a latent clustered orthogonal projection, via Zi =

UiU
T
i , where

1. Clustered orthogonal projection: Ui ∈ Rn×c, where each column in-

dicates one cluster to characterize its belonging data objects. Compared

with LRR over original feature space, the latent factor Ui can better pre-

serve the flexible latent cluster structure.

2. Feature reconstruction with cluster basis: Instead of low-rank data

similarity, Zi essentially serves as a mapping to reconstruct the view-
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specific features via the column of Ui to encode the latent cluster struc-

tures.

3. Rethinking XiZi: We revisit the intuition ofXiZi via (XiUi)U
T
i through-

out two stages, remind that Xi ∈ Rdi×n where

� XiUi is performed to obtain the new projection value for all di fea-

tures over c orthogonal columns of Ui;

� XiUiU
T
i is subsequently the projected representation for all di fea-

tures spanned by c clustered orthogonal column basis of Ui.

4. Same magnitude for multi-view consensus: All Ui(i ∈ V ) enjoy the

same magnitude due to their orthonormal columns. Hence, the feasible

divergence minimization will facilitate the multi-view consensus.

Before shedding light on our technique, we review the typical related work for

multi-view spectral clustering

1.3. Prior Arts

The prior arts can be classified as per the strategy at which the multi-view

fusion takes place for spectral clustering.

The most straightforward method goes to the Early fusion [19] by concate-

nating the multi-view feature vectors with equal or varied weights into an unified

one, followed by the spectral clustering over such unified space. However, such

method ignores the statistical property belonging to an individual view. Late

fusion [20] may address the limitation to some extents by aggregating the spec-

tral clustering result from each individual view, which follows the assumption

that all views are independent to each other. Such assumption is not effective

for multi-view spectral clustering as they assume the views to be dependent

so that the multi-view consensus information can be exploited for promising

performance.

Canonical Correlation Analysis (CCA) is applied for multi-view spectral

clustering [21] by learning a common low-dimensional representations for all

views, upon which the spectral clustering is performed. One salient drawback
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lies in the failure of preserving the flexible local manifold structures for dif-

ferent views via such common subspace. Co-training based model [8] learned

the Laplacian eigenmap for each view over its projected data representation

throughout the laplacian eigenmaps from other views, such process repeated till

the convergence, the final similarity are then aggregated for spectral clustering.

A similar method [17] is also proposed to coordinate multi-view laplacian eigen-

maps consensus for spectral clustering. Despite their effectiveness, they have to

follow the scenario of noise free for the feature representations. Unfortunately, it

cannot be met in practice. The Low-Rank Representation and sparse decompo-

sition models [16, 15] well tackle the problem, meanwhile exhibits the robustness

to feature noise corruptions. However, they still suffer from the aforementioned

limitations. To this end, we make the following orthogonal contributions to

typical LRR model for multi-view spectral clustering.

1.4. Our Contributions

� We revisit the classical Low-Rank Representation (LRR) for multi-view

spectral clustering with a fundamentally novel viewpoint of finding it as

essentially the latent clustered orthogonal projection based representation

with optimized graph structure, to better encode the flexible latent cluster

structures than LRR over primal data objects.

� We convert the problem of learning LRR into that of simultaneously learn-

ing the clustered orthogonal representation and its optimized local graph

structure for each view, rather than directly rely on the local graph con-

struction over original data objects.

� The learned multi-view latent clustered representations and local graph

structures enjoy the same magnitude, so as to facilitate a feasible diver-

gence minimization to achieve superior multi-view consensus for spectral

clustering.

Extensive experiments over multi-view datasets validate the superiority of our

method.
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2. Learning Clustered Orthogonal projection with Optimized Graph

Structure

In this section, we formally discuss our technique. We get started by revis-

iting the conventional Low-rank representation model by Eq.(1) of yielding a

low-rank Zi, and revisit that from a novel perspective of clustered orthogonal

projection with optimized graph structure.

2.1. Problem Formulation

As previously defined in section 1.2, Xi is the data representation for the

ith view. Zi ∈ Rn×n is low-rank data similarity representation for Xi. The

Eq.(2) is equivalent to computing Ui ∈ Rn×c such that Zi = UiU
T
i , where Ui

has orthonormal columns with its gth column representing the relevance each

data object belongs to the gth cluster, and c indicates latent cluster number.

We then arrive at the following

min
Ui
||Xi −XiUiU

T
i ||2F (3)

As discussed in section 1.2, XiUiU
T
i reveals the new projection representation

for all di features spanned by the orthogonal basis of Ui to reconstruct Xi.

Optimizing Eq.(3) w.r.t. Ui is equivalent to computing the principle com-

ponents of Xi to constitute the orthogonal columns of Ui using the principle

eigenvectors. Inspired by this, we exploit the latent cluster structures of Xi to

form non-overlapping clusters with each characterized by one orthogonal column

basis of Ui, which is equivalent to exploit the ||Zi||∗ in Eq.(1), under the condi-

tion of Zi = UiU
T
i . Before that, we revisit one nice property of low-rank matrix

factorization. Thanks to [22] on low-rank matrix factorization formulated as

||Zi||∗ = min
Ui,Vi,Zi=UiV Ti

1

2
(||Ui||2F + ||Vi||2F ), (4)

where Ui ∈ Rn×c and Vi ∈ Rn×c are latent factors from Zi. Based on that, we

approximate ||Zi||∗ via the clustered orthogonal projection factorization Zi =

UiU
T
i , and convert the problem Eq.(1) of minimizing ||Zi||∗ to that of learning
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clustered projection representation Ui below

||Zi||∗ = min
Ui,Zi=UiUTi

||Ui||2F (5)

Another issue for spectral clustering is the local data manifold structure

modeling, we discuss that by the following remark.
Remark 1. Unlike the data similarity over raw data objects, Ui via the low-

rank matrix factorization can achieve the flexible latent cluster structures. An-

other crucial issue left to be addressed lies in its local manifold/graph structure

modeling over Ui, which is crucial for spectral clustering. One may directly

refer to the local graph construction over Xi. However, as previously

stated, it cannot effectively encode the local graph structure over Ui.

Towards this end, we propose to learn an optimized local graph structure over

Ui by solving the following

1

2
min

∀j∑n
k Wi(j,k)=1,Wi�0

n∑

j,k

||Ui(j, ·)− Ui(k, ·)||22Wi(j, k) (6)

= Tr(UTi LiUi),

where Li = Bi − WT
i +Wi

2 is Laplacian matrix, Bi is the diagonal matrix with

its gth diagonal entry equaled to the sum of the gth row of
WT
i +Wi

2 . The ideal

Wi reveals the probability of jth and kth data points within the same cluster

according to cluster projection representation Ui. We impose the constraint

that ∀j, ∑n
k Wi(j, k) = 1 and Wi(j, ·) � 0 to meet the probability nature of Wi.

Following [23], we will impose the regularization ||Wi||2F to avoid that only the

nearest neighbor of each data point is assigned 1 with others 0.

With all the above collected, beyond conventional Low-rank Representation

model as Eq.(1), we finally propose a novel formulation of clustered orthogonal

representation with optimized local graph/manifold structure for multi-view

spectral clustering as Eq.(7)

min
Ui,Ei,Wi(i∈V )

∑

i∈V
( ||Ei||1︸ ︷︷ ︸
sparse noise modeling

+ λ1||Wi||2F︸ ︷︷ ︸
regularized graph structure

(7)

+
λ2

2
Tr(UT

i LiUi)
︸ ︷︷ ︸

structuring Ui with optimized local manifold structure
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+
β

2

∑

j∈V,j 6=i

||Ui − Uj ||2F
︸ ︷︷ ︸

modeling the multi-view consensus over the Ui within the same magnitude

)

s.t. i = 1, . . . , V, Xi = DiU
T
i + Ei, Di = XiUi

UT
i Ui = I,Gi = Ui, Gi ≥ 0,∀j

n∑

k=1

Wi(j, k) = 1;Wi � 0,

where ||Ui||2F is omitted due to constraint UTi Ui = I; all the Ui ∈ Rn×c(i ∈ V )

share the same cluster number c for multi-view clustering consensus. λ1, λ2

and β are non-negative weights related to learning the clustered orthogonal

representation, its local graph structure and multi-view consensus modeling, and

will be studied in Section 5. The constraint UTi Ui = I ensures the orthonormal

columns of Ui.

Remark 2. We introduce two auxiliary variables Gi = Ui and Di = XiUi ∈
Rdi×c. As will be shown later, the intuition of introducing Di lies in minimizing

||Xi −DiU
T
i − Ei||2F w.r.t. Di, where

� it is similar as dictionary learning, while popping up UTi as the corre-

sponding sparse representation learning; moreover, it also enjoys the op-

timization of the isolated UTi after merging the other Ui into Di.

3. Optimization

Solving Eq.(7) is equivalent to be a unified process of simultaneously learning

Ui and Wi for the ith(i ∈ V ) view. As will be shown later, learning either of them

will promote the other. Optimizing Eq.(7) is not jointly convex to Ui, Wi and Ei,

we hence alternately optimize each of them with the others fixed. Following [24],

we deploy the Augmented Lagrange Multiplier (ALM) together with Alternating

Direction Minimization (ADM) strategy, which is widely known as an effective

and efficient solver. As the optimization process for the above variables within

each view is similar, we only present the optimization process for the ith view,

the same process holds for other jth(j 6= i)views. The augmented lagrangian
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function can be written below

min
∀j ∑n

k=1
Wi(j,k)=1,0≤Wi(j,k)≤1,UTi Ui=I

L(Ui, Ei, Di, Gi,Wi) (8)

= ||Ei||1 +
λ2

2
Tr(UT

i LiUi) + λ1||Wi||2F

+
β

2

∑

j∈V,j 6=i

||Ui − Uj ||2F + Φ(Ki
1, Xi −DiU

T
i − Ei)

+ Φ(Ki
2, Ui −Gi) + Φ(Ki

3, Di −XiUi)

+ Φ(µ, ||Xi −DiUi − Ei||2F + ||Ui −Gi||2F + ||Di −XiUi||2F ),

where Ki
1 ∈ Rdi×n, Ki

2 ∈ Rn×c, and Ki
3 ∈ Rdi×c are Lagrange multipliers.

Φ(·, ·) indicates element-wise multiplication. µ > 0 is a penalty parameter.

Solving Ui: We calculate the partial derivative of Eq.(8) w.r.t. Ui,
∂L
∂Ui

to be

0 ∈ Rn×c, while fixing others to be constant. After rearranging the terms, it

has

Ui = (λ2Li + (µ+ β(|V | − 1))I − µXT
i Xi)

−1

︸ ︷︷ ︸
With O(n3) computational complexity

S, (9)

where

S =
∑

j∈V,j 6=i
Uj + ((Ki

1)T − µUiDT
i − µETi )Di

+XT
i K

i
3 + µXT

i XiUi

Efficient Row updating strategy of Ui. As shown in Eq.(9), the bottleneck

of updating Ui lies in the high computational complexity of O(n3) caused by

the matrix inverse operation against the Rn×n. To resolve it, we propose to

update each row of Ui. Without loss of generality, we set the derivative w.r.t.

Ui(l, ·), 1 ≤ l ≤ n to be 0 ∈ Rc. It then yields the following

Ui(l, ·) = (T li + β
∑

j 6=i,j∈V
Uj(l, ·)

︸ ︷︷ ︸
Influences from other views

) (Ri +DT
i Di)

−1,︸ ︷︷ ︸
computational complexity O(c3)

(10)
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where

Ri = ((1 + µ+
n∑

k=1

(λ2Li(k, l)− µ(XT
i Xi)(k, l)))I ∈ Rc×c (11)

T li = XT
i (l, ·)Ki

3 + µ
(
Gi(l, ·)− ETi (l, ·)Di

)

−Ki
2(l, ·)− (Ki

1)T (l, ·)Di

Orthonormalize Ui: After obtaining the whole Ui by updating all rows for

each iteration, the clustering algorithm e.g., fast k-means is performed, which

yields the cluster indicator for each data point/each row, leading to orthogonal

columns then normalize each entry of Ui via the rules as: Ui(j, k) = 1√
|Ck|

if xj

is assigned with the kth cluster Ck, it is 0 otherwise. According to the processing

above, it successfully achieves the orthonormal columns of Ui (i = 1, . . . , |V |).

Remark 3. As per the row-update strategy for Ui in Eq.(10), we remark the

followings:

1. We dramatically reduces the computational complexity from O(n3) by

Eq.(9) to O(c3), due to c� n.

2. Another note goes to the process of multi-view consensus of Ui via the

row update. Specifically, during each iteration, the Ui(l, ·) is updated via

the influence from other views, while served as a constraint to guide the

Uj(l, ·)(j 6= i) updating, among all of which the divergence is decreased

towards a consensus, which is based on the same magnitude among

Ui(i ∈ V ) with orthonormal columns.

Solving Di: We get the partial derivative of Eq.(8) w.r.t. Di, then yields the

following closed form:

Di = (Ki
1Ui −Ki

3 + µ(2Xi − Ei)Ui)
(I + UTi Ui)

−1

µ
(12)

The major computational burden lies in (I + UTi Ui)
−1 ∈ Rc×c, resulting into

O(c3), which is identical to that for row-updating of Ui, hence efficient.
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Solving Ei : Optimizing Eq.(8) w.r.t. Ei is equivalent to solving the following

min
Ei
||Ei||1 +

µ

2
||Ei − (Xi −DiU

T
i +

1

µ
Ki

1)||2F . (13)

According to [25], the following closed form can be obtained

Ei = S 1
µ

(Xi −DiU
T
i +

1

µ
Ki

1), (14)

where S 1
µ

(x) = sign(x)max(||x|| − 1
µ , 0), sign(x) = 1 if x is positive, it is 0

otherwise.

Solving Gi: Optimizing Eq.(8) w.r.t. Gi is equivalent to the following

min
Gi

Φ(Ki
2, Ui −Gi) +

µ

2
||Gi − Ui||2F (15)

Based on that, we enjoy the following closed form

Gi = Ui +
Ki

2

µ
(16)

Solving Wi: The problem of optimizing Wi can be converted to the following

min
Wi

∑

j,k

(
λ2||Ui(j, ·)− Ui(k, ·)||22Wi(j, k) + λ1Wi(j, k)2

)
(17)

s.t. ∀j
n∑

k=1

Wi(j, k) = 1, 0 ≤Wi(j, k) ≤ 1

As the similarity vector for each sample is independent, we only study the jth

sample.

min
∑

k

(
λ2||Ui(j, ·)− Ui(k, ·)||22Wi(j, k) + λ1Wi(j, k)2

)
(18)

s.t.
n∑

k=1

Wi(j, k) = 1, 0 ≤Wi(j, k) ≤ 1

We convert Eq.(18) to the following

min∑n
k=1Wi(j,k)=1,0≤Wi(j,k)≤1

||Wi(j, ·) +mj
i ||22, (19)
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where mj
i ∈ Rn×1 is a vector, with its kth entry mj

i (k) =
λ2||Ui(j,·)−Ui(k,·)||22

4α ,

leading to the following closed form:

Wi(j, ·) =

(
1 +

∑s
l=1m

j
i (l)

s
1−mj

i

)

+

, (20)

where (v)+ turns the negative entries in v to 0 while with positive entries re-

mained. s denotes the number of data points that have nonzero weight con-

nected to the jth sample. We empirically set s = 5 for all views. Once the ∀j
Wi(j, ·) is obtained, we may update that to be a balanced undirected graph as

Wi+W
T
i

2 .

Consensus Wi(i ∈ V ): As Wi is solely determined by Ui according to Eq.(20),

the consensus on Ui(i ∈ V ) in Remark 3 naturally leads to the consensus over

Wi(i ∈ V ).

Multiplier updating: The lagrange multipliers Ki
1, Ki

2 and Ki
3 are automat-

ically updated as

Ki
1 = Ki

1 + µ(Xi −DiUi − Ei) (21)

Ki
2 = Ki

2 + µ(Ui −Gi)

Ki
3 = Ki

3 + µ(Di −XiUi)

Besides, µ is tuned via the adaptive updating rule according to [24].

Algorithm convergence: It is worth nothing that ADM strategy converges

to a stationary point yet no guaranteed to be global optimum. Upon that, we

define the convergence when ∀i ∈ V, ||Xi−XiUi−Ei||F ≤ θ||X||F with θ = 10−6

or maximum iteration number is reached, which is set to be 25 for our method.

The optimization process is conducted regarding each variable alter-

natively within each view, the entire process is terminated until the

convergence rule is met for all views.

Multi-view clustering output: After the above updating rule is converged,

we got the final multi-view clustered representation U =
∑
i∈V Ui ∈ Rn×c; and

multi-view optimized local graph structure W =
∑
i∈V Wi ∈ Rn×n. The nor-

malized graph cut is applied to generate the c clusters as the multi-view spectral

clustering output.
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We summarize the whole updating process in Algorithm 1.

4. Computational Complexity Analysis

We clarify its computational feasibility based on Algorithm 1. For each

view (ith view) within one iteration, the computational complexity for all major

operations is listed below

1. Updating Ui: According to the Remark 3 about Eq. (10), it is O(c3), and

efficient due to c� n.

2. Updating Wi: According to Eq.(20), it is O(s) to update each row of

Wi(j, ·), s is the number of data points having positive similarity for jth

data, far less than n. We empirically set s = 5 for the datasets.

3. Updating Di: According to Eq.(12), the major computational complexity

lies in the matrix inverse computation (I+UTi Ui)
−1 ∈ Rc×c, resulting into

O(c3).

4. Updating Ei: According to Eq.(14), computational complexity is O(nd).

As observed, the essential operation is to make comparison between each

entry against 1
µ , therefore it is quite efficient in term of implementation.

Suppose the total iteration number is T , leading to the total computational

complexity of our method as O(T (c3 + nd)).

5. Experimental Validation

The following multi-view data sets and their view-specific features are se-

lected according to [15, 16].

� UCI handwritten Digit set1: It consists of features of hand-written digits

(0-9). The dataset is described by 6 features and contains 2000 samples

with 200 in each category. Analogous to [24], we choose 76 Fourier coeffi-

cients (FC) of the character shapes and the 216 profile correlations (PC)

as two views.

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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� Animal with Attribute (AwA)2: It consists of 50 kinds of animals de-

scribed by 6 features (views): Color histogram (CQ, 2688-dim), local

self-similarity (LSS, 2000-dim), pyramid HOG (PHOG, 252-dim), SIFT

(2000-dim), Color SIFT (RGSIFT, 2000-dim), and SURF (2000-dim). We

randomly sample 80 images for each category and get 4000 images in total.

� NUS-WIDE-Object (NUS) [26]: The data set consists of 30000 images

from 31 categories. We construct 5 views: 65-dimensional color histogram

(CH), 226-dimensional color moments (CM), 145-dimensional color corre-

lation (CORR), 74-dimensional edge estimation (EDH), and 129-dimensional

wavelet texture (WT).

The following typical multi-view baselines are compared for spectral clustering,

covering Early fusion, Late fusion, CCA, Co-training strategy and LRR models

as reviewed in Section 1.3. All the parameters are tuned to their best perfor-

mance.

� MFMSC: Concatenating multi-view features to perform spectral cluster-

ing.

� Multi-view affinity aggregation for multi-view spectral clustering (MAASC)

[27].

� Canonical Correlation Analysis (CCA) based multi-view spectral cluster-

ing (CCAMSC) [21] by learning a common subspace for multi-view data,

then perform spectral clustering.

� Co-training [8]: Learning multi-view Laplacian eigenspace via a co-

training fashion over each individual one.

� Robust Low-Rank Representation Method (RLRR) [15], as formulated

in Eq.(1).

� Low-Rank Representation with Multi-Graph Learning (LRRGL) [16].
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Clustering accuracy (ACC) and normalized mutual information (NMI) are

adopted as the evaluation metric for clustering performance. Pleaser refer to

[28, 29] for their detailed descriptions. They are defined below:

ACC =

∑n
i=1 δ(map(ri), li)

n
, (22)

where ri denotes the cluster label of xi, and li denotes the true class label, n is

the total number of images, δ(x, y) is the function that equals one if x = y and

equals zero otherwise, and map(ri) is the permutation mapping function that

maps each cluster label ri to the equivalent label from the database.

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j
nin̂j√

(
∑c
i=1 ni log ni

n )(
∑c
j=1 n̂j log

n̂j
n )

, (23)

where ni denotes the number of images contained in the cluster Ci (1 6 i 6 c),

n̂j is the number of images belonging to the class Lj (1 6 j 6 c), and ni,j

denotes the number of images that are in the intersection between cluster Ci

and class Lj . To demonstrate the robustness superiority over non-LRR methods,

following [16], we set the feature corruption noise for each view is with sparse

noise as 20% entries with uniformly noise over [−5, 5] for RLRR, LRRGL

and our method, with λ1 = 0.8 in Eq.(7) for our method. All experiments are

repeated 10 times, the average clustering results are shown in Tables 1 and 2,

where our method outperforms the others, especially better than RLRR and

LRRGL, due to its strengthes of

� encoding more flexible latent cluster structures, along with the more ideal

optimized local graph structure based on such latent clustered represen-

tation.

� The superior multi-view consensus in terms of both latent clustered rep-

resentation and optimized local graph structure for all views.

To penetrate the first finding, we illustrate the visualized consensus multi-view

affinity matrix over NUS data set between our method and LRRGL in Fig. 1,

2http://attributes.kyb.tuebingen.mpg.de
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which validates the advantages of our clustered orthogonal representation over

low-rank similarity yielded by LRRGL.

To further showcase the superior consensus of our method, we define the fol-

lowing consensus metric over the multi-view data similarities yielded once the

algorithm converged

1

C2
|V |

|V |∑

i,j 6=i

max{Wi

Wj
,
Wj

Wi
}, (24)

where C2
|V | = |V |(|V |−1)

2 implies Eq.(24) to be averaged pair-wise-views simi-

larity divergence. Wi

Wj
=
∑n
k,l

Wi(k,l)
Wj(k,l)

; we choose the maximum value to reveal

the magnitude divergence. The results are shown in Table 3, where our method

enjoys a same magnitude for multi-view similarities by the value nearly to be 1

for all data sets.

Parameter Study: We further study the parameter λ2 (clustered orthogonal

representations and optimized local graph structure) and β (multi-view con-

sensus term) in Eq.(7), and against the clustering accuracy (ACC) over AwA

and NUS data sets; the parameter is tuned via grid search against [0.001, 10]

for λ2 and β, we varied one parameter while fixed the others, and the results

are illustrated in Fig. 2, where increasing either of them can improve the clus-

tering accuracy until meet the optimal pair-wise values, followed by a slight

performance decreasing. To balance Figs.2(a) and (b), we finalize λ2 = 0.7 and

β = 0.25.

6. Conclusion

In this paper, we revisit the classical Low-Rank Representation (LRR) for

multi-view spectral clustering, by viewing LRR as essentially a latent clustered

orthogonal projection winged with its optimized local graph structure. Follow-

ing this, we propose to simultaneously learn clustered orthogonal projection and

optimized local graph structure for each view, while enjoy the same magnitude

over them both for all views, leading to a superior multi-view spectral clustering

consensus. The complexity analysis is also delivered to show the computational

feasibility. Extensive experiments validate its strength.
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(a) (b)

Figure 1: The visualized multi-view data similarity consensus result between ours

and LRRGL over NUS data set. We randomly select 10 classes, where 80 samples

are randomly selected for each of them. The 10 diagonal block represents the data

samples within the 10 ideal clusters, where the whiter the color is, the ideally affinity

value will be. Meanwhile, for non-diagonal blocks, the more black the color is, the

smaller affinity will be to reveal the different clusters.
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Algorithm 1: Solving Eq.(7) for multi-view spectral clustering.

Input: Xi(i = 1, . . . , V ), λ1, λ2, β

Output: Multi-view spectral clustering result

Initialize: Ui[0](i = 1, . . . , V ) computation, all entries of1

Wi[0],Ki
1[0], Gi[0],Ki

2[0] to be 0, Ei[0] with sparse noise as 20% entries with

uniformly noise over [−5, 5], µ[0] = 10−3, k = 0

for i ∈ V do2

Solve Ui[k + 1]:3

Sequentially update each row of Ui[k + 1] via Eq.(10).4

Orthonormalizing Ui[k + 1].5

Sequentially update each row of Wi[k + 1] via Eq.(20).6

Update Ei[k + 1] via Eq.(14).7

Update Di[k + 1] via Eq.(12).8

Update Gi[k + 1] via Eq.(16).9

Update Ki
1[k + 1], Ki

2[k + 1], Ki
3[k + 1] via Eq.(21).10

Update µ according to [24].11

if Meet the Convergence Rule then12

Remove the ith view from the view set as V = V − i13

Ui[N ] = Ui[k + 1], s.t. N is any positive integer.14

end15

else16

k = k + 117

end18

end19

U =
∑

i∈V Ui[k + 1],W =
∑

i∈V Wi[k + 1] (i = 1, . . . , V )20

Return Multi-view spectral clustering results based on U and W via21

normalized graph cut.
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Table 1: Averaged clustering results in terms of ACC on three benchmark data sets.

ACC (%) UCI digits AwA NUS

MFMSC 43.81 17.13 22.81

MAASC 51.74 19.44 25.13

CCAMSC 73.24 24.04 27.56

Co-training 79.22 29.06 34.25

RLRR 83.67 31.49 35.27

LRRGL 86.39 37.22 41.02

Ours 92.22 44.55 45.78

Table 2: Averaged clustering results in terms of NMI on three benchmark data sets.

NMI (%) UCI digits AwA NUS

MFMSC 41.57 11.48 12.21

MAASC 47.85 12.93 11.86

CCAMSC 56.51 15.62 14.56

Co-training 62.07 18.05 18.10

RLRR 81.20 25.57 18.29

LRRGL 85.45 31.74 20.61

Ours 89.61 36.67 26.42

Table 3: Multi-view consensus ratio metric as per Eq.(24) between our method and

LRRGL over three data sets. Smaller value means similar magnitude.

Method UCI digits AwA NUS

LRRGL 17.39 25.78 34.21

Ours 1.15 1.18 1.21
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