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Abstract

Sustainability of the global environment is dependent on the accurate land cover information over large areas. Even with

the increased number of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal

characteristics and the new data distribution policy, most existing land cover datasets were derived from a pixel-based single-

date multi-spectral remotely sensed image with low accuracy. To improve the accuracy, the bottleneck is how to develop

an accurate and effective image classification technique. By incorporating and utilizing the complete multi-spectral, multi-

temporal and spatial information in remote sensing images and considering their inherit spatial and sequential interdependence,

we propose a new patch-based RNN (PB-RNN) system tailored for multi-temporal remote sensing data. The system is designed

by incorporating distinctive characteristics in multi-temporal remote sensing data. In particular, it uses multi-temporal-spectral-

spatial samples and deals with pixels contaminated by clouds/shadow present in the multi-temporal data series. Using a Florida

Everglades ecosystem study site covering an area of 771 square kilometers, the proposed PB-RNN system has achieved a

significant improvement in the classification accuracy over pixel-based RNN system, pixel-based single-imagery NN system,

pixel-based multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN system. For

example, the proposed system achieves 97.21% classification accuracy while a pixel-based single-imagery NN system achieves

64.74%. By utilizing methods like the proposed PB-RNN one, we believe that much more accurate land cover datasets can be

produced over large areas efficiently.

Index Terms

Recurrent neural networks (RNNs), long short term memory networks (LSTMs), deep learning, remote sensing imagery,

multi-temporal, cloud/shadow pixels, spatial context, patch-based recurrent neural networks, land cover classification.
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I. INTRODUCTION

Land cover refers to the pattern of ecological resources and human activities dominating different areas of Earth’s surface.

It is a critical type of information supporting various environmental science and land management applications at global,

regional, and local scales [29], [35]. Given the importance of land cover information in global change and environmental

sustainability research, there have been numerous efforts aiming to derive accurate land cover datasets at various scales

(e.g, [4], [17], [44], [12], [46], [7]), mostly by using the remote sensing technology. However, even with the increased number

of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal characteristics and

the new data distribution policy, most existing land cover datasets were derived from a pixel-based single-date multi-spectral

remotely sensed imagery using conventional or advanced pattern recognition techniques such as random forests (RF) [37],

neural networks (NNs) [27], [23] and support vector machines (SVM) [47]. The real bottleneck is an accurate and effective

image classification technique which can incorporate and utilize the complete multi-spectral, multi-temporal and spatial

information available to provide land cover datasets for remote sensing images.

The remote sensing community has been well aware of the relevance of multi-temporal information in land cover

mapping, but only limited exploitations have been attempted in actually utilizing such information, mostly from images

with much coarse spatial resolutions such as MODIS (Moderate Resolution Imaging Spectroradiometer) time series (e.g.,

[6], [45], [31]). With the recently free availability of several major satellite remotely sensed datasets with much higher spatial

resolutions acquired by the Landsat systems, ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer),

and Sentinels, exploiting multi-temporal information in land cover mapping is becoming more affordable and feasible.

However, working with higher-resolution multi-temporal, multi-spectral imagery datasets is facing some crucial challenges

mainly caused by the frequent occurrences of pixels contaminated by clouds or shadows [48] and the incompetency of some

conventional pattern recognition methods [7]. Some pixel-based classification efforts attempted to use multiple cloud/shadow-

free images acquired at different dates [5], [3]; but they failed to utilize the information of the inherit dependency of multi-

temporal remotely sensed data and the invaluable spectral patterns associated with specific classes over time.

This work focuses on exploiting multi-temporal, multi-spectral and spatial information together for improving land cover

mapping through the use of RNNs. Recently, RNNs have been demonstrated to achieve significant results on sequential data

and have been applied in different fields like natural language processing [30], [34], [20], computer vision [32], [16], [39],

multi-modal [22], [11], [15] and robotics [28]. RNNs have been applied on various applications such as language modeling,

speech recognition, machine translation, question answering, object recognition, visual tracking, video analysis, image

generation, image captioning, video captioning, self driving car, fraud detection, prediction models, sentimental classification,

among others. Due to the inherit sequential nature of multi-temporal remote sensing data, such an effective technique

could have significant impacts on multi-temporal remote sensing image classification. The remote sensing community has

also attempted to utilize RNNs, but most of the existing efforts have been focused on the pixel-based change detection

tasks [36], [33], [26], with little on multi-temporal remote sensing image classification. Considering the inherit sequential

interdependence of multi-temporal remote sensing data and the spatial relation of a pixel to its neighbourhood, we have
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developed a patch-based RNN (PB-RNN) system for land cover classification from a Landsat-8 OLI (Operational Land

Imager) time series that are freely available from USGS [42]. We targeted medium-resolution Landsat imagery because

of their overwhelming use as the primary data for land cover classification and environmental sustainability research. Our

proposed method also includes a component to deal with pixels contaminated by clouds/shadow present in the multi-temporal

data series. Using a test site in a complicated tropical area in Florida, our proposed PB-RNN system has achieved a significant

improvement in the classification accuracy over pixel-based RNN system, pixel-based single-imagery NN system, pixel-based

multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN system.

The remainder of this paper is organized as follows. In Section II, we describe RNNs customized for remote sensing

applications. In Section III, we describe our proposed PB-RNN system to map land cover types from multi-temporal, multi-

spectral remotely sensed images. In Section IV, we present our experimental results and also compare them with the outcomes

from pixel-based RNN system, pixel-based single-imagery NN system, pixel-based multi-images NN system, patch-based

single-imagery NN system and patch-based multi-images NN system. Finally, Section V summarizes the major findings and

discusses some issues for further research.

II. RECURRENT NEURAL NETWORKS (RNNS)

In conventional multilayer NNs, all the inputs belonging to a particular sequence or time series are considered independent

to each other and are associated with different parameters present in the network. Due to the above properties, the standard

multilayer NNs are limited when dealing with sequential data because these networks are impotent to utilize the inherit

dependency between the sequential inputs. On the other hand, RNNs can deal with sequential data efficiently [13]. RNNs

consider the dependency between the sequential inputs; and use the same function and same set of parameters at every time

step. Using RNN, a sequence of vector x can be processed by applying a recurrence formula at every time step.

ht = f(ht−1, xt; Θ) (1)

In Equation 1, ht represents the new state which can be obtain using some non-linear function f with old state ht−1, input

vector xt and set of parameters Θ as the inputs. In case of simple RNN, the recurrent equations are as follows:

ht = fh(Wxxt + Whht−1 + bh) (2)

yt = fy(Wyht + by) (3)

where input, hidden state and output vector of RNN at time t are represented by xt, ht and yt, respectively, and Wx, Wh,

Wy , and bh, by are learnable parameters.

An RNN architecture can be designed in various ways based on their input/output. One-to-sequence, in which a single

input is used to generate a sequence as an output for example image captioning [22]. Sequence-to-sequence, where a

sequence of data is used to generate a sequence as an output (e.g., machine translation and video classification on frame

level) [20], [39]. Sequence-to-one architecture, which takes sequential data as an input to produce a single output (e.g.,

sentimental classification, automatic movie review) [41]. Land cover classification using our proposed approach to remote

sensing imagery bears similar property to the sequence-to-one architecture, where multi-temporal data sequence can be used
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Fig. 1. LSTM Architecture1

as an input to classify the desired location into one of the defined classes. Each sample defines a sequence of patches of

size X ×Y ×Z labeled using the center pixel, over the time interval of the sequence length; where each datum point in the

sequence represents a flatten p-dimensional vector of length p, whose size is X × Y × Z at a specific time. However, with

the small sequence length, the standard RNN version with non-linear function like sigmoid or hyperbolic tangent works

pretty well but the standard version is not capable of dealing with long-term dependencies because of the gradient vanishing

and exploding problem while backpropagating in the training stage of RNN. Fortunately, a special kind of RNN named,

long short term memory networks (LSTMs) can overcome the gradient vanishing and exploding problem and are capable of

dealing with long-term dependencies. The proposed system has also used LSTM to avoid gradient vanishing and exploding

problem.

Basically, LSTMs (see Figure 1) work using a gating mechanism with a memory cell. Hidden state is represented as a

vector and is calculated using three gates named as input i, forget f and output o gates. All of these gates use sigmoid

function, which restrict the value of these vectors between 0 and 1. By element-wise multiplying these gates with another

vector, these gates define the proportion of other vector they allow to let through. The input gate defines the proportion of

newly computed state for the current input it allows to let through. The forget gate controls how much of the previous state

it allows to be considered. The output gate decides the proportion of the internal state it passes to the external network.

Memory cell c defines the combination of previous memory and the new input. Memory cell c at time t is calculated

by combining the element-wise multiplication of the memory cell at previous time point with the forget gate, and the

element-wise multiplication of newly computed state with input gate. Finally, LSTM calculates hidden state ht at time t

by multiplying the memory cell with the output gate element-wise. The whole architecture can be defined using following

equations:

it = sigmoid(Wx1xt + Wh1ht−1) (4)

ft = sigmoid(Wx2xt + Wh2ht−1) (5)

1Obtained from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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ot = sigmoid(Wx3xt + Wh3ht−1) (6)

gt = tanh(Wx4xt + Wh4ht−1) (7)

ct = ft � ct−1 + it � gt (8)

ht = ot � tanh(ct) (9)

where input, forget and output gates at time t are represented by it, ft and ot, respectively; ct represents the cell c at time

t. Both, current input vector xt at time t and previous hidden state ht−1 are used as the inputs in the LSTMs. Wx1, Wx2,

Wx3, Wx4, and Wh1, Wh2, Wh3, Wh4 are learnable parameters; The element-wise multiplication is denoted by � symbol.

These gates with memory cell allow LSTMs to analyze the long dependencies by going deep in time without facing

gradient vanishing and exploding problem. Using the input gate, LSTMS are also capable of avoiding cloud/shadow points

present in the sequence.

III. PROPOSED PATCH-BASED RNN SYSTEM (PB-RNN) FOR LAND COVER CLASSIFICATION

The proposed system is adapted for the land cover classification using complete multi-temporal, multi-spectral and spatial

information together for remotely sensed imagery. While the proposed method is generic and should work for all the multi-

temporal-spectral remote sensing imagery, we have tested the new method on Landsat images. Below, we define the features

used and the architecture adopted.

A. Multi-Temporal-Spectral Data

Multi-temporal-spectral data are generated in two phases; firstly, we extracted multi-spectral layer stacks out of Landsat

images and then a series of layer stacks are combined together to get the final product. In order to convert a Landsat 8

imagery into a multi-spectral layer stack, we have calculated the top-of-atmosphere (TOA) reflectance values associated

with the pixels from the scaled digital numbers (DN) belonging to all the OLI bands (except the panchromatic band). TOA

reflectance values can be obtained by rescaling and correcting the default 16-bit unsigned integer format DN values using

radiometric (reflectance) rescaling coefficients and Sun angle provided in the MTL file present with Landsat 8 product [43].

In the multi-spectral layer stack, each pixel is represented as a vector of length Z consisting TOA reflectance values belonging

to Z OLI bands. Landsat 8 program images the entire earth every 16 days; so, if we consider a time series of N images

belonging to the desired location then the time interval between any two consecutive images in the series is equal to 16

days. Before generating multi-temporal-spectral data, all the N images in the series are converted into multi-spectral layer

stacks explained above, individually. Finally, we club these N multi-spectral layer stacks belonging to a series of N images

together.
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B. Multi-Temporal-Spectral-Spatial Samples

In the above mentioned multi-temporal-spectral data, both temporal and spectral information is automatically fused together.

However, our proposed system is trying to use the complete multi-spectral, multi-temporal and spatial information available

for land cover classification. Therefore, in order to include the spatial information in our samples, we have to extract each

sample as a sequence of patches from the above mentioned multi-temporal-spectral data instead of a sequence of N vectors

of length Z representing TOA reflectance associated to Z OLI bands belonging to a single pixel. So, each sample is extracted

as a sequence of N patches of size X × Y × Z labeled using the center pixel where N specifies the sequence length, X

the width, Y the height and Z the number of bands, respectively. In this representation, values of the sequence length

N and consisting patches of size X × Y × Z vary according to the problem and imagery type but the structure of the

multi-temporal-spectral-spatial sample remains the same. For the implementation purpose, patches are flattened into vectors

of length X × Y × Z. In the proposed architecture, a series of 23 images are considered and patches of size 3 × 3 × 8

representing TOA reflectance values of 8 OLI bands (except the panchromatic band) of 3×3 window labeled using the center

pixel are flattened into vectors of length 72 (3*3*8). Each sample defines a sequence of 72-dimensional TOA reflectance

vectors which consist of spectral and spatial information belonging to the center pixel location of a distinct 3 × 3 window

over the whole year. Each datum point in the sequence represents a TOA reflectance vector at a specific time and there is

a time interval of 16 days between any two consecutive points in the sequence; in order to cover the whole year, there are

23 datum points present in the sequence.

C. Cloud/Shadow Datum Points

In order to deal with cloud/shadow datum points in the sequence, cloud/shadow masks are generated for all the 23 Landsat

images using the Fmask Algorithm [48], individually. These masks are then used to locate all the cloud/shadow points present

in the multi-spectral layer stacks corresponding to the Landsat images. TOA reflectance vectors of the cloud/shadow locations

are set to zero vector. Input gate in the LSTM cell helps to deal cloud/shadow datum vectors by restricting these zero vectors

to let through; so that, these cloud/shadow datum points won’t effect the information from the clear datum points.

D. Training Samples

In order to be consistent with all the other pixel-based and patch-based neural networks used in this paper, image acquired

on March 30, 2014 with less than two percent cloud/shadow cover on our test site is used to extract training samples

location. In addition, we impose two constraints. First, there should be no cloud/shadow pixel present in the patch at this

date. Second, all the boundary patches should be avoided. Eighty percent samples which satisfy the above constraints are

extracted separately from all the distinct classes.

E. Architecture

Figure 2 illustrates the general overall architecture of the proposed PB-RNN system for land cover classification. Sample

X is shown in red; represents a sequence of n vectors ( X(1) to X(n) ) of equal length obtained from time point t(1) to point

t(n), respectively. In our experiment, each vector of length 72 (3*3*8) in the sequence is extracted by flattening a patch of
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Fig. 2. Architecture of the proposed patch-based RNN (PB-RNN) system for land cover classification

size 3 × 3 × 8 representing TOA reflectance values associated to 8 OLI bands of 3 × 3 window labeled using the center

pixel at a particular time point in the time series and the length of the sequence is 23 to cover the whole year. The softmax

layer generates a probability distribution over the eight classes, using the output from the LSTM cell at the 23rd time step

as its input.

The proposed system has sequence-to-one architecture, where flattened patch vectors sequence is used as an input to

classify the desired location into one of the defined classes. In order to implement this network, we have used Google’s

tensorflow (an open source software library for machine intelligence) [1] and Quadro K5200 GPU. The proposed network

minimizes the cross entropy using the ADAM optimizer [24] with a learning rate of 0.0001. The ADAM optimizer is a

first-order gradient-based optimization algorithm of stochastic objective functions, stochastic gradient descent proves to be

a very efficient and effective optimization method in recent deep learning networks (e.g. [40], [10], [18], [34]).

Using LSTM cell recurrent network, a sequence of vectors X(1:n) can be processed by applying a recurrence formula at

every time step. In order to calculate the current hidden state h(t) at time t, LSTM cell takes current input vector X(t) from

the input sequence and previous hidden state h(t-1) as inputs. Initial hidden state h(0) is initiated as a zero state. Current
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state depends on all the relevant previous states and input vectors in the sequence; the irrelevant information is controlled

by the gate mechanism by resisting it to let through. The proposed system has a fixed length of 23 for the input sequence;

so, h(23) is the final hidden state here, and Wx and Wh are the learnable weight matrices, which remain the same at every

time step.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Test Site

We chose to implement the proposed method on a test site within the Florida Everglades ecosystem; this ecosystem

has attracted international attention for the ecological uniqueness and fragility. It is comprised of a wide variety of sub-

ecosystems such as freshwater marshes, tropical hardwood hammocks, cypress swamps, and mangrove swamps [9]. Such

diverse ecological types make the Everglades an ideal site to test the reliability and robustness of this new system. A series

of 23 Landsat8 images was used in our study, where the time interval between any two consecutive images in the series is

16 days. The first image of the series was acquired on February 10, 2014 and the last image on January 28, 2015 (Path 16;

Row 42); we extract a subset with a size equivalent to 771 square kilometers (864 × 991 pixels) from the whole image as

our test site. In order to do single imagery classification, we have used the image acquired on March 30, 2014 with less than

two percent cloud/shadow cover on our test site. For multi-images based classification, we have used 4 images acquired on

February 10, 2014; March 14, 2014; March 30, 2014; and January 28, 2015 with less than four percent cloud/shadow cover

for all of them on our test site.

In order to create a reference map for our research area, we obtained ancillary data from the Florida Cooperative Land

Cover Map first and performed correction by comparing it with GPS-guided field observations and the high-resolution images

from Google Earth. We have used this reference map to generate training samples and perform accuracy assessments [25].

Using the ancillary data, we adopt a mixed Anderson Level 1/2 land-use/land-cover classification scheme [2] with eight

classes (see Table I). Based on our training sample extraction constraints, we are able to generate training samples of size

23 × 72 for the eight classes, where 23 is the sequence length and 72 (3*3*8) is the flattened patch vector size; the details

are shown in Table I.

B. Experimental Results/Comparisons

In this section, we present the experimental results of the proposed PB-RNN system and compare them from those from

pixel-based RNN system, pixel-based single-imagery NN system, pixel-based multi-images NN system, patch-based single-

imagery NN system and patch-based multi-images NN system. By comparing pixels directly in each of the classification

maps from the six different networks for the whole area to the reference map, pixel-based single-imagery NN system achieves

accuracy of 62.82%, pixel-based multi-images NN system 63.57%, patch-based single-imagery NN system 73.07%, patch-

based multi-images NN system 73.95%, pixel-based RNN system 84.09% and PB-RNN system 96.92%. However, in order to

perform quantitative evaluation of the classification results generated by six different neural networks to determine overall and

individual category classification accuracy, we have done accuracy assessment using the method described by Congalton [8].

Specifically for each method, an error matrix is generated using the weighted random stratified sampling and then the
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No. Class Name Description Training

Samples

1 High Intensity Urban Commercial, industrial, institutional constructions with large roofs. Large open spaces

and large transportation facilities. Residential areas with impervious surfaces more than

half of the total cover.

115879

2 Low Intensity Urban Residential areas with impervious surfaces less than half of the total cover. Smaller

urban service buildings, such as detached stores and restaurants, and state highways.

63726

3 Barren Land Urban areas with low percentages of constructed materials, vegetation, and low level

of impervious surfaces, including bare soil lands, beaches.

14090

4 Forest Herbaceous cover, trees, trees remain green throughout the year, some wetland evergreen

forests included.

90255

5 Cropland Crops and pastures with vegetation coverage mixed with bushes, small amount fallow

land.

77150

6 Woody Wetland Cypress/tupelo, strand swamp, other coniferous wetland, mixed wetland hardwoods,

mangrove swamp.

147851

7 Emergent Herbaceous Wetland Freshwater non-forested wetland, prairies/bogs, freshwater marshes, wet prairies, salt-

water marsh.

39103

8 Water Streams, canals, lakes, ponds, bays. 116951

TABLE I: Land cover classification scheme and training sample size.

Classified Data

Reference Data Accuracy and Conditional Kappa

High Low Barren Forest Crop Woody Emergent Water Row Producer’s User’s Conditional

Intensity Intensity Land land Wetland Herbaceous Total Accuracy Accuracy Kappa

Urban Urban Wetland (PA %) (UA %)

High Intensity Urban 154 2 0 0 1 0 0 1 158 97.47 97.47 0.97

Low Intensity Urban 3 82 0 0 0 1 0 1 87 96.47 94.25 0.94

Barren Land 0 0 50 0 0 0 0 0 50 98.04 100 1.00

Forest 0 0 0 118 1 1 0 0 120 95.93 98.33 0.98

Cropland 0 0 0 1 103 0 1 0 105 98.1 98.1 0.98

Woody Wetland 0 0 0 3 0 195 2 2 202 97.99 96.53 0.96

Emergent Herbaceous
0 0 1 0 0 2 48 0 51 94.12 94.12 0.94

Wetland

Water 1 1 0 1 0 0 0 155 158 97.48 98.1 0.98

Column Total 158 85 51 123 105 199 51 159 931

Overall Accuracy(OA): 97.21%; Overall Kappa(KAPPA): 0.967

TABLE II: Error Matrix using the Patch-Based RNN (PB-RNN) System.

overall accuracy (OA), Overall kappa (KAPPA), Producer’s accuracy (PA), User’s accuracy (UA) and conditional kappa are

calculated based on the error matrix [19].

The proposed PB-RNN system uses samples, which are in the form of time series of 72-dimensional (3*3*8) flattened

TOA reflectance patch vectors of size 23× 72. In case of pixel-based RNN system instead of a patch of size 3× 3× 8, each

vector in the sequence is representing only the center pixel vector of each patch and this pixel vector is of length 8, containing

the TOA reflectance values of 8 OLI bands at that location; so, samples are of size 23 × 8. Patch-based single-imagery

NN system uses 72-dimensional (3*3*8) flattened TOA reflectance patch vectors belonging to patches of size 3 × 3 × 8

acquired from a single date (March 30, 2014) as samples. On the other hand, pixel-based single-imagery NN system uses

only 8-dimensional TOA reflectance center pixel vectors belonging to patches extracted for patch-based single-imagery NN
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Fig. 3. Classification results for the study site from six different methods: (a) Upper Left: Pixel-based single-imagery NN system, (b) Upper

Center: Pixel-based multi-images NN system, (c) Upper Right: Pixel-based RNN system, (d) Middle Left: Patch-based single-imagery NN system,

(e) Middle Center: Patch-based multi-images NN system, (f) Middle Right: Proposed patch-based RNN (PB-RNN) System and (g) Lower Right:

Reference map.
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Land Cover Class
Conditional Kappa

Pix Single Pix Multi Patch Single Patch Multi Pix RNN PB-RNN Mean Standard Deviation

High Intensity Urban 0.54 0.57 0.69 0.71 0.81 0.97 0.72 0.16

Low Intensity Urban 0.54 0.54 0.66 0.67 0.78 0.94 0.69 0.15

Barren Land 0.52 0.66 0.60 0.64 0.85 1.00 0.71 0.18

Forest 0.48 0.53 0.52 0.56 0.79 0.98 0.64 0.20

Cropland 0.57 0.57 0.78 0.78 0.95 0.98 0.77 0.18

Woody Wetland 0.53 0.51 0.69 0.72 0.89 0.96 0.72 0.18

Emergent Herbaceous Wetland 0.57 0.63 0.72 0.83 0.75 0.94 0.74 0.13

Water 0.86 0.88 0.94 0.95 0.94 0.98 0.93 0.05

Mean-Kappa 0.58 0.61 0.70 0.73 0.84 0.97

Standard Deviation 0.12 0.12 0.12 0.12 0.08 0.02

Overall Accuracy(%) 64.74 66.40 75.54 77.63 87.65 97.21

Overall Kappa 0.58 0.60 0.71 0.74 0.86 0.97

TABLE III: Summary of the accuracy assessment for the classification results produced by the new patch-based RNN

system (PB-RNN), pixel-based RNN system (Pix RNN), pixel-based single-imagery NN system (Pix Single), pixel-

based multi-images NN system (Pix Multi), patch-based single-imagery NN system (Patch Single) and patch-based

multi-images NN system (Patch Multi).

Classified Data

Reference Data Accuracy and Conditional Kappa

High Low Barren Forest Crop Woody Emergent Water Row Producer’s User’s Conditional

Intensity Intensity Land land Wetland Herbaceous Total Accuracy Accuracy Kappa

Urban Urban Wetland (PA %) (UA %)

High Intensity Urban 137 13 0 4 0 1 0 8 163 91.33 84.05 0.81

Low Intensity Urban 4 69 1 6 1 2 0 3 86 77.53 80.23 0.78

Barren Land 2 1 43 1 2 0 0 1 50 86 86 0.85

Forest 1 1 1 101 5 8 3 3 123 80.16 82.11 0.79

Cropland 1 0 0 1 92 1 0 1 96 90.2 95.83 0.95

Woody Wetland 2 3 1 10 0 186 1 1 204 90.73 91.18 0.89

Emergent Herbaceous
1 1 2 3 1 6 45 0 59 91.84 76.27 0.75

Wetland

Water 2 1 2 0 1 1 0 143 150 89.38 95.33 0.94

Column Total 150 89 50 126 102 205 49 160 931

Overall Accuracy(OA): 87.65%; Overall Kappa(KAPPA): 0.855

TABLE IV: Error Matrix using the Pixel-Based RNN System.

system. In both patch-based and pixel-based multi-images NN system, 72-dimensional (3*3*8) flattened TOA reflectance

patch vectors and 8-dimensional TOA reflectance center pixel vectors acquired from four different dates (February 10, 2014;

March 14, 2014; March 30, 2014; and January 28, 2015) as samples. The proposed PB-RNN system achieves 97.21% in the

overall accuracy and 0.967 in Kappa index. For the individual categories, this new system achieves PA and UA values more

than 94% for all classes and the mean of conditional kappa values belonging to 8 different classes (Mean-Kappa) is 0.97

with minimum 0.94 conditional kappa index. In some classes, the system achieves significant improvements. For example

barren land, cropland, high intensity urban and woody wetland have (98.04%, 100%, 1.00), (98.1%, 98.1%, 0.98), (97.47%,

97.47%, 0.97) and (97.99%, 96.53%, 0.96) as PA, UA and conditional kappa index values, respectively. The proposed system
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is able to achieve good results for several spectrally complex classes, such as the low intensity urban and cropland. Table II

shows the complete error matrix of system with calculated OA, KAPPA of the overall system and PA, UA, conditional

kappa for all individual classes separately.

The proposed PB-RNN system achieves better results than pixel-based RNN system, pixel-based single-imagery NN

system, pixel-based multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN

system. Comparative results are summarized in Table III. Figure 3 shows the comparison to reference map from the

classification results of six different systems. The proposed system gets 97.21% OA, 0.97 KAPPA, 0.97 Mean-Kappa;

which achieves (9.56%, 0.11, 0.13), (19.58%, 0.23, 0.24), (21.76%, 0.26, 0.27), (30.81%, 0.37, 0.36) and (32.47%, 0.39,

0.39) improvements over pixel-based RNN system, patch-based multi-images NN system, patch-based single-imagery NN

system, pixel-based multi-images NN system and pixel-based single-imagery NN system, respectively. Table III also shows

that there are significant enhancements not only in the overall but also in all the individual categories. Table III shows

that the proposed PB-RNN system achieves a minimum 0.15 increase in conditional kappa values for five classes with the

maximum 0.19 when comparing with the pixel-based RNN system. In comparison to the patch-based multi-images and

single-imagery NN system, the proposed system achieves a minimum 0.20 and 0.22 increase in conditional kappa values for

six classes with maximum 0.42 and 0.46 respectively. In case of pixel-based multi-images and single-imagery NN system,

the proposed system achieves a minimum 0.31 and 0.37 increase in conditional kappa values for all the classes except water

with maximum improvements of 0.45 and 0.50 respectively. The proposed PB-RNN system shows substantial improvements

in the conditional kappa results for hard-to-classify classes also. For example, in case of low intensity urban and cropland,

there are (0.16, 0.03), (0.27, 0.20), (0.28, 0.20), (0.40, 0.41) and (0.40, 0.41) improvements in conditional kappa values

over pixel-based RNN system, patch-based multi-images NN system, patch-based single-imagery NN system, pixel-based

multi-images NN system and pixel-based single-imagery NN system, respectively.

Several previous studies have suggested single hidden layer neural networks perform better for classification of remote

sensing images [21], [38]. Therefore, we have used only one fully connected hidden layer between input and softmax

(outer) layer for both pixel and patch single-imagery NN system; the hidden layer consists of 200 neurons. Patch-based

single-imagery NN system uses 72-dimensional (3*3*8) flattened TOA reflectance patch vectors as inputs and pixel-based

single-imagery NN system uses only 8-dimensional TOA reflectance center pixel vectors. In case of both multi-images NN

systems, we have fused four single-imagery neural network classifiers belonging to different dates together by using joint

probabilities of classes at the four dates [5]. Similar to the proposed PB-RNN system, we have used Google’s tensorflow [1]

and Quadro K5200 GPU to implement all the other networks also. As shown in Table III and Figure 3, both patch and pixel

multi-images NN systems show only slight improvement over their respective single-imagery NN systems in OA, KAPPA,

Mean-Kappa of the overall systems and PA, UA, conditional kappa for all individual classes. Unlike the RNN systems,

the multi-images NN systems consider each imagery independent to each other and is unable to utilize inherit dependency

of multi-temporal remote sensing data. In patch-based multi-images NN system, there is 2.18% improvement in OA, 0.03

improvement in KAPPA, and 0.03 improvement in Mean-Kappa, over patch-based single-imagery NN system. In pixel-
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Classified Data

Reference Data Accuracy and Conditional Kappa

High Low Barren Forest Crop Woody Emergent Water Row Producer’s User’s Conditional

Intensity Intensity Land land Wetland Herbaceous Total Accuracy Accuracy Kappa

Urban Urban Wetland (PA %) (UA %)

High Intensity Urban 130 36 4 8 11 4 4 13 210 76.02 61.90 0.54

Low Intensity Urban 8 29 0 0 6 1 2 4 50 30.85 58 0.54

Barren Land 5 0 27 8 5 1 1 3 50 69.23 54 0.52

Forest 1 3 4 50 9 14 10 1 92 40 54.35 0.48

Cropland 10 10 3 10 71 3 5 3 115 62.28 61.74 0.57

Woody Wetland 6 14 0 43 7 170 23 7 270 83.74 62.96 0.53

Emergent Herbaceous
4 0 0 6 3 5 30 2 50 40 60 0.57

Wetland

Water 7 2 1 0 2 5 0 130 147 79.75 88.44 0.86

Column Total 171 94 39 125 114 203 75 163 984

Overall Accuracy(OA): 64.74%; Overall Kappa(KAPPA): 0.583

TABLE V: Error Matrix using the Pixel-Based Single-Imagery NN system.

based multi-images NN system, there is 1.66% improvement in OA, 0.02 improvement in KAPPA, and 0.03 improvement

in Mean-Kappa, comparing to pixel-based single-imagery NN system. Considering spatial information, patch-based single-

imagery NN system improves significantly over both pixel-based single-imagery NN system and multi-images NN system.

In the patch-based single-imagery NN system, there are 10.71% and 9.05% improvement in OA, 0.13 and 0.11 improvement

in KAPPA, and 0.12 and 0.09 improvement in Mean-Kappa, comparing to pixel-based single-imagery NN system and

multi-images NN system, respectively. However, without any spatial information the pixel-based RNN system is able to

utilize the information of the inherit dependency of multi-temporal remotely sensed data and the invaluable spectral patterns

associated with specific classes over time improves significantly over both patch-based NN systems. In pixel-based RNN

system, there is 10.02% improvement in OA, 0.12 improvement in KAPPA, and 0.11 improvement in Mean-Kappa, over

patch-based multi-images NN system. The same weighted stratified sampling is used for accuracy assessments in all these

networks too. The details of the error matrices, OA, KAPPA, PA, UA and and conditional kappa are given in Table IV for

pixel-based RNN system, in Table V for pixel-based single-imagery NN system, in Table VI for pixel-based multi-images

NN system, in Table VII for patch-based single-imagery NN system and in Table VIII for patch-based multi-images NN

system, respectively. The substantial improvements will lead to more accurate land cover data that are essential for many

applications (e.g., agriculture monitoring, energy development and resource exploration).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new patch-based RNN system tailored for land cover classification. The proposed system

uses new features to exploit the complete multi-temporal, multi-spectral and spatial information together for land cover

mapping. Specifically for Landsat data, we have computed multi-temporal-spectral-spatial samples representing sequence of

23 patches of size 3×3×8 belonging to the center pixel location of a distinct 3×3 window over the whole year from multi-

temporal-spectral remote sensing imagery. The proposed system is capable of utilizing the spatial information of the inherit

dependency of multi-temporal remotely sensed data and the invaluable spectral patterns associated with specific classes over

time; by using input gate in the LSTM cell, we are able to deal cloud/shadow pixels by restricting these pixel vectors to

let through the input gate. The proposed system is compared to pixel-based RNN system, pixel-based single-imagery NN
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Classified Data

Reference Data Accuracy and Conditional Kappa

High Low Barren Forest Crop Woody Emergent Water Row Producer’s User’s Conditional

Intensity Intensity Land land Wetland Herbaceous Total Accuracy Accuracy Kappa

Urban Urban Wetland (PA %) (UA %)

High Intensity Urban 136 30 6 7 9 2 5 17 212 79.53 64.15 0.57

Low Intensity Urban 7 29 1 2 6 1 1 3 50 36.71 58 0.54

Barren Land 3 1 34 5 5 0 0 2 50 66.67 68 0.66

Forest 3 1 2 46 7 12 7 0 78 35.66 58.97 0.53

Cropland 9 6 5 15 75 8 2 0 120 63.03 62.5 0.57

Woody Wetland 6 10 0 46 12 173 33 5 285 85.22 60.7 0.51

Emergent Herbaceous
1 0 1 7 3 5 33 0 50 40.74 66 0.63

Wetland

Water 6 2 2 1 2 2 0 134 149 83.23 89.93 0.88

Column Total 171 79 51 129 119 203 81 161 994

Overall Accuracy(OA): 66.40%; Overall Kappa(KAPPA): 0.602

TABLE VI: Error Matrix using the Pixel-Based Multi-Images NN system.

Classified Data

Reference Data Accuracy and Conditional Kappa

High Low Barren Forest Crop Woody Emergent Water Row Producer’s User’s Conditional

Intensity Intensity Land land Wetland Herbaceous Total Accuracy Accuracy Kappa

Urban Urban Wetland (PA %) (UA %)

High Intensity Urban 135 28 3 5 5 3 0 3 182 80.36 74.18 0.69

Low Intensity Urban 12 48 1 2 5 0 0 1 69 51.06 69.57 0.66

Barren Land 4 0 31 4 4 1 2 4 50 70.45 62 0.60

Forest 3 9 2 72 10 15 14 0 125 63.72 57.6 0.52

Cropland 8 3 4 1 86 2 2 1 107 74.14 80.37 0.78

Woody Wetland 4 6 0 27 2 168 13 2 222 84.85 75.68 0.69

Emergent Herbaceous
1 0 0 1 2 8 37 1 50 54.41 74 0.72

Wetland

Water 1 0 3 1 2 1 0 152 160 92.68 95 0.94

Column Total 168 94 44 113 116 198 68 164 965

Overall Accuracy(OA): 75.54%; Overall Kappa(KAPPA): 0.712

TABLE VII: Error Matrix using the Patch-Based Single-Imagery NN system.

Classified Data

Reference Data Accuracy and Conditional Kappa

High Low Barren Forest Crop Woody Emergent Water Row Producer’s User’s Conditional

Intensity Intensity Land land Wetland Herbaceous Total Accuracy Accuracy Kappa

Urban Urban Wetland (PA %) (UA %)

High Intensity Urban 141 21 4 9 4 2 0 5 186 84.94 75.81 0.71

Low Intensity Urban 10 47 2 2 4 2 1 0 68 64.38 69.12 0.67

Barren Land 3 0 33 4 4 0 2 4 50 71.74 66 0.64

Forest 1 2 4 78 8 21 12 0 126 63.41 61.9 0.56

Cropland 2 1 1 5 89 5 7 1 111 79.46 80.18 0.78

Woody Wetland 4 1 0 21 1 170 19 3 219 84.58 77.63 0.72

Emergent Herbaceous
0 0 1 4 2 1 42 0 50 50.6 84 0.83

Wetland

Water 5 1 1 0 0 0 0 153 160 92.17 95.62 0.95

Column Total 166 73 46 123 112 201 83 166 970

Overall Accuracy(OA): 77.63%; Overall Kappa(KAPPA): 0.737

TABLE VIII: Error Matrix using the Patch-Based Multi-Images NN system.
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system, pixel-based multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN

system.. The classification results show that the proposed system achieves significant improvements in both the overall and

categorical classification accuracies.

There are further changes that could lead to further improvements. For example, classification accuracy could improve

further by creating hierarchical structure classification on the top of the proposed system using different sizes of patches for

the same center pixel. Convolution neural network (CNN) can be incorporated with this PB-RNN system to improve the

performance even more. We believe that we can develop season-based classifier using the same technique. These and other

parameter choices are being investigated further.



16

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
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