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Abstract

In line with the sensorimotor contingency theory, we investigate the problem of

the perception of space from a fundamental sensorimotor perspective. Despite

its pervasive nature in our perception of the world, the origin of the concept

of space remains largely mysterious. For example in the context of artificial

perception, this issue is usually circumvented by having engineers pre-define the

spatial structure of the problem the agent has to face. We here show that the

structure of space can be autonomously discovered by a naive agent in the form

of sensorimotor regularities, that correspond to so called compensable sensory

experiences: these are experiences that can be generated either by the agent

or its environment. By detecting such compensable experiences the agent can

infer the topological and metric structure of the external space in which its

body is moving. We propose a theoretical description of the nature of these

regularities and illustrate the approach on a simulated robotic arm equipped

with an eye-like sensor, and which interacts with an object. Finally we show

how these regularities can be used to build an internal representation of the

sensor’s external spatial configuration.
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1. Introduction

In the last decade progress has been made in giving more autonomy to

robots. These achievements are due in large part to the development of ma-

chine learning which progressively replaces formerly hand-crafted features with

features autonomously extracted from data [8]. Yet the ultimate goal of having

a robot perceive its environment in a completely unsupervised way still seems

far out of reach. Current best performing technologies require human beings to

explore the data, interpret it, and provide labels to the robot indicating which

aspects of its perceptual content are of interest [23]. Other more exploratory

approaches try to reduce the human input to a minimum by only providing the

rewards associated to particular tasks [25, 26, 30]. The resulting systems, al-

though often impressive on specific tasks, tend to behave like black-boxes from

which it is difficult to extract what has been perceived by the robot [9, 51], in

turn making any improvement complicated. They also show fairly poor gener-

alization performance, as knowledge acquired while solving a given task does

not transfer well to other tasks [35, 42].

In order to reach a perceptual autonomy on a par with the one observed in

animals, we believe roboticists need to take a step back and question the nature

of the artificial perception they implement in their systems. Are they building

genuine perception? To be truly autonomous, artificial perception needs to be

thought of as a mechanism which empowers the agent itself instead of satis-

fying a performance criterion defined by an engineer. This mechanism has to

be consistent from the intrinsic perspective of the agent, grounded in its sen-

sorimotor experience, the only source of information it has access to [11, 12].

It also needs to account for the different properties of perceptual experiences

and explain how they are relevant for the agent. Only then will we be able to

genuinely understand how abstract perceptual concepts can be grounded in a
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Figure 1: An agent’s physical body and its environment are both immersed in space. However
the agent’s naive ”brain” (information processing system) does not have access to the proper-
ties of space, like its topology or metric, but only to an uninterpreted sensorimotor flow from
which they need to be inferred.

robot’s experience.

The sensorimotor contingency theory (SMCT) [34] has furthermore investi-

gated this question in the more general framework of a theory of perception. It

notably claims that perception relies on an agent’s ability to ”master sensori-

motor contingencies”. The so called sensorimotor contingencies correspond to

regularities induced by the world on the way the agent’s actions transform its

sensory inputs [20]. Beyond the philosophical discussion related to this claim,

which does not belong in this paper, the SMCT standpoint gives rise to prag-

matic consequences for robots. It suggests that they should be able to au-

tonomously acquire perceptual abilities by exploring their sensorimotor space

and by discovering the regularities that the world induces in their experience. In

turn, perception is achieved by identifying the regularities which underlie an on-

going interaction with the world. Moreover properties of the agent’s perceptual

experiences would be directly connected to the properties of their underlying

sensorimotor regularities [33]. The groundbreaking viewpoint proposed by the

SMCT requires a complete overhaul of theories of perception as they are cur-

rently approached in robotics and biology. To date, some perceptual concepts

such as color [38, 50], environment [10], object [16], visual field [15], and space

[18, 21, 36, 48] have been re-addressed through the prism of sensorimotor con-

tingencies.
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The concept of space proves to be of particular interest. Indeed space con-

stitutes an essential component of our perception of the world. A vast majority

of what we perceive, including our body, appears to us as immersed in space

(see Fig. 1). Yet its fundamental nature remains mysterious [14, 32, 40]. In

robotics the notion of space is traditionally considered as given and the prob-

lem of spatial knowledge acquisition bypassed by engineers. This is obviously

true in industrial settings where the position and orientation of each part of

the robot is analytically defined (or measured) [45]. It is also true in more

autonomous settings, like for instance SLAM, where the spatial nature of the

mapping problem and of the robot’s actions are predefined [2]. More surpris-

ingly it is even the case in most developmental experiments involving spatial

knowledge. For example models for body structure discovery and forward model

learning consider the spatial configuration of some part of the robot as known

[4, 27, 41]. Nonetheless completely unsupervised approaches of spatial tasks

do exist [13, 29]. Unfortunately they boil down the robot’s experience to an

all-encompassing performance measure which rules out the specificity of spa-

tial experience. Even a posteriori analyses have so far been unable to unravel

the intricate internal states of those agents [44, 51]. Finally, other approaches

have previously been proposed to ground perceptive experience in an agent’s

sensorimotor experience [3, 31, 39]. However they mainly focused on inferring

properties of the environment without explicitly defining the specific structure

of spatial experience.

In line with the SMCT, we claim that the subjective properties we attribute

to space should be reflected in the properties of the regularities it induces in

our sensorimotor experiences. Space, being ubiquitous in our perception of the

world, should thus significantly shape those experiences. From our perceptual

experience, we can say that space is content-independent, which means that it

does not depend on the nature of the objects it contains2. Space is also shared

2Einstein would of course beg to differ as the theory of relativity describes how mass and
energy distort space-time. However we are only interested here in the scale of interaction that
humans and robots have with their environment, a context in which such distortion does not
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by an agent and its environment, which means that we perceive ourselves as

immersed in the same space as objects that surround us. Finally space has

an isotropic structure, which means that we experience space the same way in

different contexts (different environments, or different positions/orientations of

the agent).

In this work our goal is to understand how these fundamental properties are

grounded in the sensorimotor experience of a robot. We can arguably present

the field of machine learning applied to Robotics as the junction of two endeav-

ors: understanding the data structure that needs to be captured to support

intelligent behavior, and developing algorithmic solutions to capture this struc-

ture. Whereas most effort in the community is oriented towards the latter, we

believe that studying the data structure that can support artificial intelligence

is fundamental, and it is this approach we follow in this work. Our objective is

to shed new light on the possible emergence of space perception, which might

in turn inform the development of future algorithmic solutions to this problem.

Consequently our focus is not on optimizing a controller to solve a spatial task,

or on new machine learning developments, but on the fundamental definition

of the sensorimotor structure underlying spatial knowledge. This definition is

directly inspired by original ideas from H.Poincaré who wondered more than a

century ago why Euclidean geometry was natural to us [40]. His conclusion was

that space and geometry are revealed to us through the experience of sensory

variations that can be generated either by a motor command of by a change in

the environment. His insights have since been developed to propose ways for a

naive agent to discover the dimension of space [18, 37]. Later they also initi-

ated the sensorimotor characterization of the concepts of rigid displacement [49]

and points of view [21] that space enables. The results presented in this paper

build on these two related concepts to propose a richer characterization of spa-

tial experience. More precisely, we show how space induces invariants in a naive

agent’s sensorimotor experience. We define the space-related invariants that the

manifest directly.

5



agent can discover, which correspond to regularities in the way sensory inputs

change when the agent changes its motor configuration or when its environment

changes its own configuration. Intuitively, this approach leads us to describe

space as a redundancy between the agent’s configuration and the environment’s

configuration. Furthermore, the agent can actively experience this redundancy

by compensating for environmental changes through its own actions. We show

how knowledge of these space-related invariants can guide the building of an

internal representation of the agent’s external spatial configuration. Depending

on the nature of the invariants discovered by the agent, this representation can

capture both the topology and the metric regularity of the external space. We

also discuss how the nature of these invariants relate to our experience of space

as content-independent and shared with the environment.

In the following sections we propose a formalism to analyze the sensorimotor

experience of a naive agent as well as how space shapes this experience. Two

illustrative simulations are then presented in which a simple agent extracts

space-induced sensorimotor regularities. Both are based on the detection of

sensorimotor invariants, and allow the agent to build internal representations of

its spatial configuration which respectively capture the topology of space and

the regularity of the metric of space. Finally the experimental and theoretical

results, limitations, and potential improvements of the approach are thoroughly

discussed in the last section of this paper.

2. Problem statement

In this section the question of the perception of space is first addressed

from a theoretical perspective by combining insights from H.Poincaré and the

SMCT. A mathematical formalization of the problem is then proposed in order

to study how space manifests itself in an agent’s sensorimotor flow. Finally a

simple simulated system on which the simulations of the next two sections will

be evaluated is introduced.
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2.1. The sensorimotor imprint of space

The question of the nature of spatial knowledge arises most strikingly when

taking the standpoint of a naive agent with no a priori knowledge about its

body, its sensors, nor the external world (space included). The sensory flow

produced by typical sensors like cameras and microphones does not contain di-

rect spatial information such as the agent’s position and orientation. Besides,

even assuming that the sensory flow contains such specific information, thanks

to the use of dedicated sensors like gyroscopes or GPS, the agent still needs

to discover what distinguishes these sensory inputs from the non-spatial infor-

mation provided by other inputs. One thus has to specify in what way spatial

information differs from non-spatial information, and why such a distinction is

valuable and immediately useful to the agent.

The experience of a naive agent consists in the uninterpreted incoming sen-

sory flow from its sensors and the uninterpreted motor flow it can send to its

motors. This sensorimotor experience constitutes the ”inner world” the agent

lives in (see Fig. 1). It is obviously different from the external world the agent’s

physical body is embedded in and where space seems to exist as an omnipresent

persistent frame. At any time, the agent is in a certain sensorimotor state, a

point in its internal sensorimotor space, that an external observer would as-

sociate with a rich description of the agent’s configuration and of the content

of its environment. It is important to notice that a sensorimotor state, or its

description by an observer, is not ”spatial” in itself. More precisely, it is the

result of a multitude of parameters, some spatial (like the positions of objects

around the agent) and some non-spatial (like their colors). However changes in

sensorimotor states can be purely spatial, like for instance an object changing

position without changing its color. Sensorimotor changes are thus the means

by which the agent can isolate space from other properties of the world.

The sensorimotor changes an agent can undergo are of different kinds. For

an external observer, either the agent or its environment can be the source of the

change, and in each case the change can be either spatial or non-spatial. We later

refer to non-spatial changes as state changes. For instance, a spatial change of
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Figure 2: Illustration of an agent-environment system. Displacements in the system have the
particular property of being redundant from a sensory perspective: the sensory change gener-
ated by a displacement of the environment (a) can equivalently be produced by a displacement
of the agent’s sensor (b), and vice versa.

the agent could be the displacement of one of its body parts, a state change due

to the agent could be the modification of a sensor sensitivity, a spatial change of

the environment could be the displacement of an object, and an environmental

state change could be a change of the object’s color or electrical conductivity.

For the naive agent with no prior knowledge about space, there is only one

distinction: some sensory changes occur when motor commands are emitted

(active kind), while others occur while the motor state is static (passive kind).

The agent thus needs to rely on an additional property to distinguish between

spatial and state changes in both active and passive cases.

Intuitions formulated by H.Poincaré as early as the late 19th century suggest

that such a property does exist in the form of sensory redundancy between the

agent and its environment [40]. Indeed while exploring its inner sensorimotor

world, a naive agent can notice the existence of peculiar sensory changes which

can be generated equivalently by sending a motor command (active mode) or by

observing the consequences of environmental changes (passive mode). We later

refer to these equivalent sensory changes as redundant sensory changes. For

example the sensory change generated by the displacement of the agent with
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respect to an object can also be generated by an opposite displacement of the

object with respect to the agent (see Fig.2). On the contrary sensory changes

induced by a state change usually do not exhibit such a redundancy property.

For instance the sensory change produced by an object changing color cannot

be equivalently generated by the agent sending a motor command3. Conversely

the sensory change induced by the agent changing the sensitivity of one of its

sensors cannot be equivalently generated by the environment. The sensory re-

dundancy that an agent can internally discover thus seems to correspond to what

an external observer would characterize as the spatiality of changes in the agent-

environment system. Moreover this concept of redundancy naturally accounts

for space being experienced as shared between the agent and the environment,

as both of them play a symmetrical role in the sensory redundancy. In addition

it accounts for space being subjectively content-independent since redundant

sensory changes remain redundant independently of the objects present in the

environment. Finally it also explains the subjective isotropy of space, as equiv-

alent redundant sensory changes can be experienced regardless of the agent’s

and object’s positions and orientations.

The insight proposed by Poincaré was not focused on the concept of redun-

dancy but on its corollary, the concept of compensability. Because there exists

a set of redundant sensory variations that can be generated both by the agent

or its environment, there is the possibility for one of them to compensate for

the (spatial) sensory variations of the other. As an example, the redundant

sensory change produced by the displacement of an object in the environment

can be compensated, or canceled out, by the same displacement of the agent,

and vice versa (see Fig.3). As the relative positions of the agent and the object

are identical before and after the two displacements, so is the agent’s sensory

input. Interestingly this ability to compensate for spatial changes in the envi-

ronment suggests that the agent could have an active role in the discovery of

3This is true for the kind of motor capacities that biological and robotic systems usually
have. The possibility of more exotic actions will be considered and discussed in Sec. 5.
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Figure 3: Due to the sensory equivalence of displacements of the agent and of the environ-
ment, it is possible for one of them to compensate for the other. By undergoing the same
displacement as the environment (a), the agent can cancel out the resulting sensory change
(b), and vice versa.

space. Instead of merely observing sensorimotor changes in the hope of detecting

redundancy, the agent could be inclined to compensate them. A fundamental

drive for such a behavior could be the necessity for the naive agent to control

its sensorimotor experience, an endeavor in which discovering sensory changes

that can be compensated at will is valuable. Space would thus correspond to

the general structure underlying redundant/compensable sensory experiences.

2.2. Formalization

In this section we propose a mathematical formalism to describe the senso-

rimotor experience of an agent and its relation with the environment. In partic-

ular the concept of point of view, proposed in previous work [21], is recalled and

its limitations with regards to spatial knowledge are highlighted. Redundant

sensory changes are then defined and their relation with compensable sensory

changes made explicit.
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2.2.1. The sensorimotor experience:

In this work we consider so called ”naive” agents which are connected to

an unknown body and immersed in a world they have no a priori knowledge

about. They only have access to raw sensory and motor information. Although

this distinction between the sensory and motor flows might seem artificial in a

holistic description of the agent, it reflects the fundamental distinction between

what the agent does not directly control (the sensory flow it receives) and what

it does (the motor flow it generates). At any moment we assume that the agent’s

sensory and motor states can be respectively described by vectors s and m in

the corresponding linear spaces S = RR and M = RN . Although the nature

and properties of the sensors and motors associated with this sensorimotor ex-

perience do not need to be specified, the sensorimotor experience is assumed

to comply with some assumptions. First we consider that the sensory state

only carries exteroceptive information. Proprioceptive information is supposed

redundant with the motor state and is ignored in the following developments.

Second we assume as a first approximation that the system’s dynamic can be

ignored. The agent’s actuators are thus instantaneously controlled in position

via the motor state, while its sensors generate the sensory state without any

transient phase.

Note that this formalism does not exclude the possibility of a pre-processing

of sensory inputs or post-processing of motor outputs. The sensory state s

could potentially correspond to the output of some module(s) processing the

raw inputs from the sensors. Similarly the motor state m could potentially feed

some module(s) which generates the actual commands sent to the actuators. If

these modules cannot be directly controlled in any way by the agent, they are

transparent to it and are considered part of its unknown body, or more globally

part of the unknown world it interacts with. As a result our approach does not

require unprocessed data and is not in conflict with the fact that evolution most

probably endowed our brains with hardwired pre- and post-processing modules.

Furthermore our approach aspires to be code-independent. It should thus be
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robust to any data transformation that does not destroy the information the

agent needs to capture.

The agent’s sensorimotor experience does not provide a complete picture of

the agent-environment system. We consider a subset of all possible environments

which we assume can be parametrized by vectors e of a vector space E = RP .

This space of environmental states is of course different from the space in which

the agent-environment system is embedded and that we seek to characterize.

For instance, if the only degree of freedom of the environment corresponds to

an object swapping between 4 colors, then the environmental space E would

be a discrete set of 4 states. Although the naive agent does not have directly

access to it, the environmental state e influences its sensorimotor experience. It

shapes the mapping between the motor state m and the associated sensory state

s. Using the notation introduced in [36], we denote φ this mapping parametrized

by e:

s = φe(m). (1)

This mapping captures the structure that the world induces in the sensorimotor

experience. Along with the parameter e, the mapping φ embodies everything it

would be useful for the agent to know about the world, the properties of its envi-

ronment, and the properties of its body. In particular the mapping must contain

information about the existence and the structure of space. Nevertheless, with

only access to m and s, the agent can only probe φe via its sensorimotor flow.

It has to ground properties of the world in its own sensorimotor experience.

2.2.2. Points of view:

We argue that the concept of space emerges through the discovery of spe-

cific sensorimotor invariants. In previous work the concept of point of view was

introduced as a proto-concept of spatial configuration by capturing a certain

basic sensorimotor invariant [21]. This invariant corresponds to the sensory in-

variance induced by redundancy in the mechanical structure of the agent (see

Fig. 4). Indeed different motor states can sometimes lead to the same effective

configuration of the agent relative to the environment, and thus to the same

12



Figure 4: (a) A point of view corresponds externally to a configuration of the agent relative
to its environment, and internally to a set of motor states that always generate equivalent
sensory states. Nonetheless a point of view is not equivalent to a spatial configuration as it
captures every degree of freedom of the agent, regardless of its spatial or non-spatial nature.
Both a spatial change, as illustrated in (b), or a non-spatial change, like the change in sensor
structure illustrated in (c), lead to a different point of view. In (c), the agent interprets its
experience as a new point of view despite the fact that its sensor’s spatial configuration has
not changed compared to (a).

sensory state. Moreover this equivalence of the motor states remains true re-

gardless of the state of the environment. Formally we associate to each motor

state mi a point of view, denotedMi, defined as the set of all motor states mj

that generate the same sensory states as mi for any state of the environment e:

Mi =
{
mj such that φe(mj) = φe(mi) for all e

}
. (2)

Note that we assume here that the same motor states are possible for any state

of the environment. Following Eq. (2) we propose to extend the definition of

the mapping φ so that it applies to points of view:

s = φe(M), where s = φe(m) for all m ∈M. (3)
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For an external observer, different setsM correspond to different configurations

the agent’s sensors can have relative to the environment, hence the name point

of view (see [21] for a more detailed discussion). Nonetheless there exist excep-

tional situations in which the sensory equivalence captured by points of view

could also be due to symmetries in the world or limits in the agent’s sensory

capabilities. An extreme example would be a half-empty world in which half of

the motor states would be associated with the same sensory state. This peculiar

property of the world would be invisible to the agent, since it would interpret

it as just another particular point of view.

For the agent, identifying points of view is interesting on two levels. First it

supports a more compact encoding of the agent’s experience in which knowing

the current point of viewMi instead of the particular motor state mi is sufficient

to describe the sensorimotor experience. Second the knowledge of these sets has

the advantage that it allows the agent to predict in advance the sensory state

s associated with all motor states mj ∈ Mi from the experience in mi. These

two mechanisms fit well with the type of fundamental drives which have been

typically proposed in the literature on unsupervised learning [1, 7, 43].

As displayed in Eq. (2), points of view have the interesting property of

being independent from the state of the environment, despite being derived from

sensorimotor experiences which depend on it. Indeed e influences the sensory

state s but not the motor space in which the setsM are defined. This property

echoes the subjectively experienced content-independence of space. It suggests

that the notion of space should fundamentally be anchored in the agent’s motor

space. Nonetheless points of view are not a direct internal representation of

the agent’s spatial configuration. Indeed they capture all the agent’s effective

degrees of freedom, which are not all necessarily spatial. As an example, imagine

an agent which can control the spatial configuration of its sensors as well as some

other non-spatial parameter of the sensors, like their sensitivity. Any change

in this non-spatial parameter leads to a different sensory state and thus to

a different point of view M, when no spatial change actually occurred for the

agent. An illustration of this limitation is proposed in Fig. 4(a)(c) with an agent
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that can change the strucutre of its sensor array. The concept of point of view

is thus insufficient to internally characterize the agent’s spatial configuration

independently from its other potential degrees of freedom. However we propose

to use this compact representation of the motor experience in later developments

to get rid of the agent’s mechanical redundancy.

2.2.3. Agent-environment redundancy:

By observing the influence of the motor state on the sensory state, we have

shown how a naive agent can detect a simple form of redundancy which can be

captured in the form of points of view. Points of view internally represent the

agent’s external configuration, including both spatial and non-spatial parame-

ters. In order to isolate the spatial component of this configuration we claim

that the agent can detect a more sophisticated form of sensory redundancy.

As described in 2.1 it consists in a redundancy between how either the agent’s

motor state or the environmental state can change the agent’s sensory state.

By identifying such redundant changes, the agent should be able to distinguish

which points of view are related through spatial transformations and which are

not.

Let us consider a reference state of the agent-environment system denoted

(e0,m0 ∈M0). Given its dual nature, the system can undergo changes from two

sources: the motor state and the environmental state. In the first case we denote

by ma the motor state after a change m0 →ma, andMa its associated point of

view after the corresponding change M0 →Ma. For the sake of simplicity we

drop hereinafter the notation based on the motor state in favor of the one based

on the point of view, without any loss of generality (see Eq (2)). In the second

case we denote by eb the environmental state after a change e0 → eb. According

to Eq. (1), these state changes in the system generate sensory changes. Let sa

denote the sensory state associated with the configuration (e0,Ma) after the

motor change:

s0 = φe0(M0)→ sa = φe0(Ma). (4)

Similarly, let sb denote the sensory state associated with the configuration
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(eb,M0) after the environmental change:

s0 = φe0
(M0)→ sb = φeb

(M0). (5)

The redundancy we are interested in corresponds to sensory changes which can

be generated both by a motor change or an environmental change (see Fig. 2).

Formally we’re looking for states Ma and eb such that:

sa = sb ⇐⇒ φe0
(Ma) = φeb

(M0). (6)

According to the line of argumentation of section 2.1, this sensory equivalence

should be due to the spatial nature of the changes M0 → Ma and e0 →

eb. However it could also theoretically be due to some specific invariance in

particular environments. Indeed one could imagine a particular environment for

whichM0 →Ma is not a spatial change but still has a sensory-wise equivalent

e0 → eb. As spatial changes, or more generally the structure of space, should

be common to all possible environmental states, we rule out these outliers by

looking for points of viewM∗a for which an equivalent environmental state exists

for any initial state e0 of the environment:

For all e0, there exists eb such that: φe0
(M∗a) = φeb

(M0). (7)

The set of all M∗a corresponds to all points of view related to M0 by a motor

change which has a sensory-equivalent environmental change, regardless of the

initial state of the environment. We denote it
{
M∗

}
0

and claim that it internally

represents all the agent’s motor configuration which are related toM0 through

spatial transformations.

2.2.4. From redundancy to compensability:

As noted in section 2.1, H.Poincaré suggested that an naive agent can ac-

tively acquire spatial knowledge by discovering compensable sensory changes.

This concept of compensability is directly related to the one of redundancy in-

troduced in the previous section. Intuitively, it corresponds to the fact that if

there exists a motor change which compensates for the sensory change induced
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by an environment change, then this motor change is itself redundant with the

opposite environmental change. By compensating for sensory changes gener-

ated by the environment, the agent can thus discover motor changes which are

redundant with environmental changes, i.e. displacements. An illustration of

the phenomenon is presented in Fig. 3.

More formally, let (e0,M0) be the reference state of the agent-environment

system, (eb,M0) the state of the system after a change e0 → eb, and sb its

associated sensory state. Let us now assume that the agent can find a point of

view Ma which compensates for the experienced sensory change for any initial

state of the environment e0, i.e.:

φeb
(Ma) = φe0(M0). (8)

According to Eq. (7) and Eq. (8) if we consider eb as the initial state of the

environment, making (eb,M0) the new reference state of the system, then:

Ma ∈
{
M∗

}
0
. (9)

This means that the change of point of view M0 → Ma compensates for the

change e0 → eb and is sensory-redundant with the opposite change eb → e0

(see Fig. 3). Consequently the agent can actively discover the spatially related

points of view of
{
M∗

}
0

by trying to compensate for the sensory changes its

environment generates.

Before introducing the simulated system that will be used to illustrate the

approach, let us summarize how space manifests itself in a naive agent’s ex-

perience. While exploring the world, a naive agent can notice some simple

invariants in its otherwise uninterpreted sensorimotor experience. For the sake

of clarity we distinguished two kinds of such invariants, although they could

both be captured by the agent at the same time during exploration. The first

kind of invariant has been called point of view and corresponds to the sets

of motor states that are redundant in the sense that they provoke equivalent

sensory states. These points of view internally characterize the agent’s body
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configuration in the world, but capture both spatial and non-spatial aspects of

this configuration. The second kind of invariant corresponds to the equivalence

between certain sensory changes due to the environment (the agent does not

act) and certain sensory changes due to the agent’s motor changes. It can be

seen as a redundancy not in the agent’s body but between the agent’s motor

state and the state of the environment. An agent can actively discover this

redundancy by compensating for the sensory changes it passively experiences.

Using our usual spatial language, we refer to these redundant changes as dis-

placements, and claim that they are the foundation of the agent’s concept of

space. This discovery of spatial knowledge could be based on a fundamental

but simple drive for the agent to control its sensorimotor experience. Indeed it

is very noteworthy and useful for an naive agent to discover invariants, which

later allow it to predict the sensory outcome of some of its actions. Moreover,

because these specific space-related invariants are independent of the content of

space, they provide a useful generalization capacity to the agent.

2.3. Simulated agent-object system

A simple simulated agent-environment system will be used in the following

sections to illustrate how the topology and metric structure of space are accessi-

ble in a naive agent’s sensorimotor experience. The system, illustrated in Fig.5,

consists in a robotic arm moving in the plane and observing an object. It is

complex enough to avoid any trivial outcome of the simulation, while simple

enough to ensure an intuitive analysis and visualization of the results.

The agent: The agent consists in a three-segment serial arm with a static

base and a rotary sensor at its end-tip. Each of the three segments is of unitary

length. The relative orientations in radians of its K = 4 joints are controlled by

the four elements m(k) of its motor state m = [m(1),m(2),m(3),m(4)]. The

arm tip has 3 degrees of freedom in the plane: two for its position [xtip, ytip]

and one for its orientation αtip. We call this triplet the spatial configuration

of the agent’s sensor. The end-sensor coarsely imitates an eye. It is made

up of a pinhole lens in front of a linear retina covered with 6 light-sensitive
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Figure 5: Presentation of the simulated system. (a) The agent is a three-segment serial
arm equipped with hinge joints, and an eye-like sensor that it can move in the plane. The
environment consists in an object made up of 10 point light sources that can translate rigidly
in the plane. (b) Light emitted by the object is projected on the sensor’s retina and generates
sensations.

receptors. The position pr of each receptor r ∈ {1, 2, 3, 4, 5, 6} on the 1-D retina

is randomly drawn at the beginning of the simulation. Each receptor is sensible

to light in the environment. For a single point light source l in the environment,

the output sl(r) generated by the receptor r is defined as:

sl(r) =
e−(pr−pl)

2

dl
, (10)

where pl is the position of the light-source projection on the retina, and dl is

the distance between the center of the lens and the light source l (see Fig. 5).

For L point light sources in the environment, the output s(r) of the receptor r

is the sum of the outputs for each source:

s(r) =

L∑
l=1

sl(r). (11)

Note that given the projective nature of the sensor, any light source behind

the lens is not projected on the retina and does not generate any excitation.

Likewise, in this projective setting it is not relevant to specify the dimensions

of the retina, which can consequently be considered unitary. Finally the agent’s

sensory state is defined as the concatenation of all the receptor outputs: s =

[s(1), . . . , s(6)].
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It is important to highlight that the agent’s structure, motors, and sensor

have been defined arbitrarily. However our approach claims to be generic enough

to lead to qualitatively similar results with a different design of the agent. The

only design limitations are twofold. First the sensor should be rich enough so

that two different configurations of the sensor generate two different sensory

states. Second the agent should have a fixed base in the world. The latter

assumption could however be loosened, as will be discussed in Sec. 5.

The environment as an object: The environment is made up of L = 10 point

light sources randomly distributed around the agent at the beginning of the

simulation. They are considered as part of a single rigid body, or ”object”,

which can translate in the plane. The environmental state e is defined as the

position [xobj , yobj ] of the object’s ”center”, which is arbitrarily set in [0, 0] at

the beginning of the simulation. Note that the object’s center is defined only

for the purpose of describing the simulation. It does not impact in any way the

sensorimotor experience of the agent. In the simulation, environmental changes

ei → ej can be of two kinds. Either the object’s center and all the light sources

undergo a rigid translation in the plane, which corresponds to a spatial change

[∆xobj ,∆yobj ]. Or the lights sources undergo a random redistribution around

the agent, which corresponds to a state change. During such a redistribution,

the center of the object is considered unmoved. The state change can thus be

seen as a change in the nature of the object but not in its position.

Note that the environment could be made more complex. Links between the

different light sources could for instance be defined to explain the rigid struc-

ture of the object. However such an improvement would not alter the agent’s

sensorimotor experience if these links do not emit light. Additionally note that

the light sources have been randomly distributed and do not exhibit any specific

structure. They only comply to the implicit constraint that the environment

should present no symmetry from a sensory perspective. This way, two differ-

ent configurations of the sensor relatively to the environment necessarily lead

to two different sensory states. Finally, although it was considered in [21], we

purposefully excluded the possibility of object rotations during spatial changes.
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There are two reasons for this choice. First, by artificially removing this spatial

degree of freedom, we limit the spatial configuration to be discovered by the

agent to the translations in the plane. This will ensure that we are able to

visualize the internal representation built by the agent. Second, it indirectly

means that rotations of the sensor will eventually be interpreted by the agent as

non-spatial (state changes) because it cannot experience their compensability.

This way, we can illustrate state changes of two different origins in the system:

one from the environment and one from the agent itself.

In the following sections we apply the formalism developed so far to show

how a naive agent can discover the topology of the spatial configuration of its

sensor, as well as the regularity of the spatial metric.

3. Capturing the topological structure of space

We claim that spatial knowledge is fundamentally based on the existence of

sensory-redundancy between some motor changes of an agent and some changes

of its environment. In this section we illustrate, using the system introduced

in 2.3, how an agent can discover such a redundancy while interacting with

its environment, and in particular by trying to compensate for sensory changes

generated by the external world. The structure underlying the redundant ex-

periences of the agent will be captured by building an internal representation

whose topology will be shown to be identical to its sensor’s spatial configura-

tion. First, we introduce a method to estimate the point of view set associated

with any motor configuration of the arm. Based on this proto-spatial concept

we then show how the agent can identify which point of view changes are redun-

dant (compensable) with environmental changes. Finally we propose a method

to let the agent build an internal representation of its spatially related points

of view. Note once again that the focus of this paper is on identifying the sen-

sorimotor structure underlying spatial knowledge and not on finding the best

way to capture this structure. As a consequence the methods introduced below

will sometimes rely on analytic methods to shortcut exploration phases which
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would otherwise require the development of complete machine learning solutions

in themselves.

3.1. Estimating the agent’s points of view

The agent described in Sec. 2.3 is mechanically redundant as it controls

the 3 degrees of freedom of its sensor through 4 motorized hinge joints. This

constitutes an interesting case study in which the motor state is not directly

homeomorphic to the sensor’s spatial configuration. As introduced in [21]

and described in Sec. 2.2.2, the agent’s sensorimotor experience can be rep-

resented more compactly by defining points of view M as sets of motor states

m which generate identical sensory states s for any state of the environment e

(see Eq. (2)). Internally, considering points of view M instead of motor states

m allows a more compact representation of the sensorimotor experience where

equivalent motor states are reduced to a single state. It also saves replicating ex-

ploration of the motor states discovered in one point of view when subsequently

exploring the environment. Externally this allows to describe the relevant pa-

rameters of the agent’s configuration (spatial and non-spatial) while discarding

mechanical redundancy of the body or other potential irrelevant symmetries in

the system. In this section we propose a method to estimate the point of view

associated with any motor configuration of the arm.

The system was designed to exhibit no peculiar symmetry with respect to

the agent’s sensory experience. Consequently the elements m ∈ M of a point

of view can be discovered by exploring a single environmental state e. In a less

favorable scenario, symmetries in the system for some environmental state e

could result in different spatial configurations of the sensor generating the same

sensory state. In such a case exploring multiple environments in which these

symmetries are inconsistent would be required to sort out these ”false positive”

and correctly define each point of view M. Nonetheless if every environmental

state e consistently were to present the same symmetries, this property of the

world would be directly captured in the sets M extended in this way without

affecting the agent’s ability to interact with its environment.
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Figure 6: (a) Visualization of the point of view manifold associated with a random motor
configuration (in blue). Configurations of the arm are shown on the left, and the correspond-
ing motor states on the right. Moving along the looped 1D manifold in the motor space
corresponds to a continuous change of the arm configuration which keeps the retina fixed. (b)
Visualization of the manifolds, on the right, associated with multiple arm configurations, on
the left, such that the retina moves along the x-axis. When the arm’s tip is more than 1 unit
from its base, the points of view correspond to looped 1D manifolds. However when the tip is
closer than 1 unit from the base, the manifold breaks into two disconnected submanifolds, due
to the mechanical constraints of the arm (red and orange). An arm configuration belonging
to both those submanifolds and producing the same spatial configuration of the sensor are
shown on the left (in red and orange).

Because each set M is potentially infinite in the case of continuous mo-

tor commands, we propose to approximate it by a finite number N = 100 of

motor states m ∈ M. The search for these samples could be performed by ex-

haustively (and/or randomly) exploring the motor space M and tracking which

motor states generate the same sensory input. Other approaches could also be

proposed like for instance the use of a neural network to directly build an inter-

nal space of points of view by capturing the topology of the sensory space(s) (see

previous work [19]). Although these options are more realistic in terms of data

accessible to the naive agent, we propose instead to use an analytic approach

for the sake of computational efficiency. It makes use of the arm’s Jacobian
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and of its kernel to sample the subspace associated with M. More precisely,

given the mechanical structure of the arm, the hinge nature of its joints, and

their continuous control law, each point of view M corresponds in the simu-

lated system to a closed 1-D manifold in the 4-D motor space M (see Fig. 6(a)).

Starting from a motor state mi, we thus propose to sample states mj ∈Mi by

iteratively moving along this 1-D manifold with a small step ε until the initial

motor state is reached again. The direction of each step in the motor space is

given by the kernel of the arm’s Jacobian ker
(
Jf (mj)

)
which corresponds to a

vector pointing in the direction along which local motor changes do not generate

sensory changes:

ker
(
Jf (mj)

)
= ker

(
∂f

∂m

∣∣∣∣
mj

)
, (12)

where f is the forward kinematic model:

f : m 7−→ (xtip, ytip, αtip). (13)

Starting from mj = mi, new samples are thus generated iteratively as follows:

mj+1 = mj + γε
ker
(
Jf (mj)

)
‖ ker

(
Jf (mj)

)
‖
, (14)

where ε = 10−3 is the step size, and γ = ±1 is a parameter to ensure the

successive steps consistently move in the same direction along the manifold (the

kernel only defines the vector orientation). Note that the vector added to mj

is never of zero magnitude as there is no degeneration in the arm’s kinematics.

The sampling stops once at least 50 motor states have been collected and the

last sample mj lies at a distance less than 10−2 from the initial motor state mi.

Finally N = 100 samples regularly distributed along the manifold are defined

by interpolation over all the collected samples. These final samples are the only

ones stored by the agent in order to limit memory usage during the simulation.

A more complete description of the sampling method is available in [21].

Note that this sampling method induces a constraint on the range of points of

view that can be estimated. Indeed it cannot sample setsM which are made of

two disjoint subsets. This peculiar situation happens for any arm configuration
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such that the distance between the tip and the base is less than the length of its

segments (see Fig.6(b)). Consequently these configurations are ignored during

the simulation, which leaves a hole in the center of the arm’s effective working

space. This limitation is to be attributed to the analytic sampling method

we proposed and not to the more general approach. Other methods could be

implemented to discover the two disjoint subsets.

3.2. Estimating spatially related points of view

The set of all points of view that an agent can estimate captures the variabil-

ity of its sensor’s external configuration. Yet not all changes between points of

view are necessarily spatial. In this simulation we are interested in identifying

the set
{
M∗

}
0

all points of view which are spatially related to a configuration

m0 ∈M0 the agent is initially in. This means that we look for all points of view

related toM0 through sensory changes redundant with environmental changes.

Given the continuous nature of the agent’s motor experience, the set
{
M∗

}
0

is potentially infinite. We thus propose to approximate it by a finite number

of points of view Mi. As described in 2.2.4, the agent can actively identify

points of view Mi ∈
{
M∗

}
0

by trying to compensate for sensory changes gen-

erated by the environment. We propose to take advantage of this mechanism

by introducing a tracking-like behavior for the agent. Starting from a random

configuration of the system (e0,M0), the exploration phase of the simulation

consists in successively changing the environmental state and letting the agent

try to compensate for the resulting sensory changes. Each environmental change

ei → ei+1 is either a spatial change (translation of the object) or a non-spatial

change (change of the object structure). In either case it generates a sensory

change si → si+1 that the agent then tries to compensate for. It does so by

searching for a new configuration mi+1 ∈Mi+1 such that the sensory variation

is canceled out and the final sensory state is again si (see Fig. 3). Note that the

environment is considered static during this search. If the agent finds such a

motor state mi+1, the associated point of viewMi+1 is estimated (see Sec 3.1)

and considered a sample of
{
M∗

}
0
. If not, the experience is discarded, the arm
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resumes its previous motor configuration mi+1 = mi, and waits for the next

environmental change. From an external perspective, the agent should be able

to compensate for sensory changes which are generated by a spatial changes of

the object. On the contrary, it should not be able to find a compensating motor

configuration when the environmental change is non-spatial. Additionally any

displacements of the object which would require the sensor to move out of the

arm’s working space should also be discarded due to non-compensability.

Compensation: The search for compensating motor states mi+1 ∈ Mi+1

could be done by exhaustively exploring the motor space M or taking advantage

of a tracking-like heuristic. Instead we propose an analytic approach for the sake

of computational efficiency. The method relies on the arm’s kinematic model f

of Eq. (13), as well as the desired sensor configuration required to compensate

for a displacement of the object’s center [∆xobj ,∆yobj ]:

[xtipi+1, y
tip
i+1, α

tip
i+1] = [xtipi , ytipi , αtip

i ] + [∆xobj ,∆yobj , 0]. (15)

The displacement of the object is null in the case of a non-spatial change. The

method consists in searching a minimum for the function

|| f(m)− [xtipi+1, y
tip
i+1, α

tip
i+1] ||2 (16)

through a conventional minimum search method (Nelder-Mead simplex algo-

rithm). If the minimized error is less than a threshold ξ = 10−3, the corre-

sponding motor state mi+1 is considered to compensate for the environmental

change. Otherwise the sensory experience is discarded.

Object displacements: During the simulation any translation of the object

could be considered. However we propose to constrain them to a regular grid of

positions in order to allow an intuitive interpretation of the simulation results.

As illustrated in Fig. 7(a), the grid is made of 622 regularly distributed positions

centered on [0, 0]. The width and height of the grid is set to 12 units, which en-

sures that the whole agent’s working space can be covered by the compensatory
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arm displacements4 regardless of its initial motor configuration m0. During the

exploration phase, the object is successively moved into each position in the grid,

in no particular order. Between two such displacements it can also undergo a

non-spatial change with a probability of 10% by redistributing the light sources.

Results: Figure 7 present the motor configurations mi obtained by compen-

sation of the object displacements and the corresponding external arm configu-

rations for a given random initial motor configuration m0 = [0.1,−1.5, 2.2,−3].

Over the 642 positions taken by the object during the exploration phase, 648 led

to a compensation experience. The others were discarded because the search

method was unable to converge to a satisfying solution. The found motor con-

figurations are such that the end-tip sensor regularly covers the planar working

space of the agent while maintaining a constant orientation. This seems to in-

dicate that the agent successfully identified translations of its sensor as spatial

changes, while rotations of its sensor are not considered spatial due to a de-

liberate lack of compensability in the simulation. Note that a position lying

inside the working space has also been falsely identified as non-spatial due to a

non-convergence of the search method (see red outlined position in Fig. 7(a)).

Finally Fig. 7 also presents the estimated points of view sets Mi ∈
{
M∗

}
0

associated with the motor states mi discovered by compensation during the ex-

ploration. These estimated manifolds represent the internal structure that was

actually captured by the agent in its motor space.

3.3. Building a topological representation of spatial configuration

As can be observed in Fig 7(d), the spatially related manifoldsMi ∈
{
M∗

}
0

seem to exhibit an underlying topological structure in the motor space. Given

the continuous nature of the arm’s forward model, we indeed expect the set{
M∗

}
0

to define a manifold. Moreover we expect this manifold to be homeomor-

phic to the space of the sensor’s position [xtip, ytip]. We propose to capture its

4The arm’s maximum reach is 3 units long, which means that its working space has a
maximum diameter of 6 units. This is the distance the grid must then cover in every direction.
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Figure 7: (a) The initial arm configuration, and the grid of positions taken by the object
during the simulation. The arm’s working space is shown in green, and the positions of the
object for which the agent was able to compensate the associated sensory change are displayed
in blue. They are shifted to the left relatively to the working space because the initial position
of the sensor lies on the right of the arm’s base. One object position is outlined in red. It
correspond to a theoretically compensable object displacement for which the search method
did not converge. (b) All the arm configurations found by compensating for the successive
sensory variations generated by the object. The configurations are colored according to the
angle the arm tip makes with the x-axis. (c) All the motor states found by compensation and
corresponding to the arm configurations of the previous panel. The initial motor state of the
agent is displayed in bold black. (d) All the estimated point of view sets associated with the
compensating motor states of the previous panel.
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topology in a low-dimensional representation of the points of viewMi ∈
{
M∗

}
0
.

In contrast with previous work where the topology of the set of all points of view

was estimated [21], we aim here at capturing the topology of spatially related

points of view only. The final internal representation built by the agent should

thus be a representation of the sensor’s spatial configuration.

A simple way to define a topology is to introduce a metric on the con-

sidered set
{
M∗

}
0
. This metric will also be used to project the data into a

low-dimension representational space . We propose to use the Hausdorff metric

to define a distance dM(., .) for each pair in
{
M∗

}
0
. The Hausdorff distance

is the greatest of all the distances from a point in one set to the closest point

in the other set. The distance between two points of view is thus defined as

follows:

dM(Mi,Mj) = max
{

sup
ma∈Mi

inf
mb∈Mj

dm(ma,mb) ,

sup
mb∈Mj

inf
ma∈Mi

dm(ma,mb)
}
,

(17)

with dm the metric defined in the motor space M. The latter is the natural Eu-

clidean metric but slightly modified to take into account the periodicity induced

by the arm’s hinge joints. Indeed the physical structure of the arm implies that

the agent’s experience is invariant modulo 2π on any of its motor. The metric

between two motor states in the motor space is thus defined as follows:

dm(ma,mb) =

√√√√ K∑
k=1

arccos
(

cos
(
ma(k)−mb(k)

))2
, (18)

where m(k) is the k-th element of the vector m. This motor metric ensures that

the distance between two elements m(k) of two motor states is not greater than

π, which means that the distance dm(ma,mb) between two motor states is not

greater than 2π for K = 4. Although we impose this periodicity property in the

motor metric, the agent could also potentially discover it, since the periodicity

induced by the arm’s hinge joints implies an equivalent sensory periodicity.

Finally note that the metric we define on the set
{
M∗

}
0

is derived from the

motor space and has nothing to do with the external metric which applies to

the sensor’s spatial configuration.
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The metric dM is applied to compute distances between all pairs in
{
M∗

}
0
.

These distances enable the use of a dimension reduction method to build a low-

dimensional representation of the set. We chose the Curvilinear Component

Analysis (CCA) method to perform the projection [5]. Like its famous couter-

part Isomap [47], CCA is a non-linear projection method, except that it does

not rely on the assumption that the manifold underlying the data is developable

[24]. To preserve the data topology during the projection, CCA preserves small

pairwise distances while allowing long range distortions (unfolding). For the

sake of visualization we arbitrarily project the data into two separate 2D and

3D representational spaces. This manual tuning of CCA’s output dimension

could potentially be replaced by a data-driven estimation of the manifold in-

trinsic dimension [18].

Results: Figure 8 presents the projection of the set
{
M∗

}
0

in 2D and 3D.

It appears that the manifold underlying the data has an intrinsic dimension of

2. Nonetheless it is highly curved, as revealed by its 3D projection, and CCA

has been unable to unfold it in 2D without a cut (see Fig. 8(a)). This result is

however consistent with the experiences collected by the agent during the ex-

ploration phase. It did indeed translate its sensor in a plane to compensate for

the object’s displacements, which effectively corresponds to a two-dimensional

manifold. Moreover the consistent color code used in the figures show that the

topology of this external plane has been correctly captured by the agent. The

whole agent’s working space and the neighborhood relations of the sensor spa-

tial configurations are correctly represented (this is true for the 3D projection,

and for the 2D projection if we omit the cut induced by CCA to flatten the

manifold). The internal representation built by the agent based on its own sen-

sorimotor experience is thus a suitable topological representation of the spatial

configuration of its sensor. An element-wise comparison of the distances between

the points of view in the external Euclidean metric and the Hausdorff metric

derived from the motor space is proposed in Fig.16(a). The same comparison

between the Hausdorff metric and the low-dimensional metric after projection in
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Figure 8: Projections of the points of view M ∈
{
M∗}

0
in 2D (a) and 3D (b), using the

same color code as in Fig.7. The underlying manifold of points of view appears to have a 2D
cylindrical structure. Its curvature is too strong for CCA to project it in 2D without a cut
(red dashed lines).

2D/3D is also presented in Fig.16. They show that the metric estimated by the

agent differs from the external metric and that the low-dimensional projections

further distort it (see Fig.16(b)).

4. Capturing the regularity of the spatial metric

By experiencing compensable sensory changes, a naive agent can discover

motor changes which are redundant with environmental changes from a sen-

sory perspective. These noteworthy experiences exhibit an underlying structure
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Figure 9: Illustration of the metric difference between the external grid of sensor positions
(a), and its internal representations in 2D (b) and 3D (c). All red (resp. blue) transitions
in the grid correspond to equivalent external vertical (resp. horizontal) displacements, and
thus have the same magnitude. However they are internally represented by vectors or various
magnitude. Note that abnormally large vectors in (b) are due to the manifold being cut during
the projection in 2D.

homeomorphic to the agent’s spatial configurations. As presented in previous

section in the case of a simple simulated arm, this structure can be captured

explicitly in an internal representation whose topology is identical to the one of

the external space the agent is moving in. Yet the metric of the internal repre-

sentation noticeably differs from the one of the external space, as revealed by

the shape of the projected manifold in Fig. 8. The data cloud appears there as

a tube instead of a flat surface that would correspond to the shape of the actual

grid of positions the sensor has been in during the simulation (see Fig. 7(a)).

This difference is expected as the agent does not have direct access to the ex-

ternal Euclidean metric. The internal representation is instead derived from

the motor metric. This results in two equivalent displacements in the external

space to be represented internally by two vectors of different magnitude and

orientation, as illustrated in Fig. 9.

However we claim that a naive agent can discover the metric regularity of

the external space and modify its internal metric accordingly. This can be done

through the discovery of new invariants accessible through a more sophisticated

exploration of the environment. In this section we describe this exploration

strategy and how the metric regularity manifests itself in the agent’s sensorimo-

tor experience using the same simulated system as before. We then propose a
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method to modify the internal metric estimated by the agent and consequently

its whole internal representation. Finally we analyze the resulting final represen-

tation of the sensor’s spatial configuration and evaluate it on a simple reaching

task.

4.1. Discovering the spatial metric regularity

We subjectively experience space as homogeneous or isotropic: the length of

an object does not change depending on the point of view of the observer. For

instance the distance between the two ends of a rigid stick is constant, regardless

of where it is positioned in our field of view. This metric invariance is of course

not to be mistaken with the stick appearance which does vary depending on our

point of view (for example it grows smaller with distance). This metric regularity

is so far not captured in the internal representation built by the agent. Let us

imagine a stick of length equal to the distance between two positions in the

external grid of object positions. Moving from one end of the stick to the other

always requires a displacement of the same magnitude, regardless of where the

stick is placed in the working space. On the contrary, the projection of these

displacements in the internal representation leads to changes of different length

depending on the position of the stick (see Fig. 9).

In order to capture the external metric regularity, the agent has to discover

that different point of view changesMi →Mi′ correspond to equivalent exter-

nal displacements. This can be achieved by building on the already acquired

sensorimotor knowledge and performing an exploration inspired by the invari-

ance that was just illustrated with the stick example. However the nature and

length of a specific object, like a stick, is not an information directly accessible

to the agent. Instead we thus consider displacements of objects as a ”measur-

ing rod” in the external space. The rationale behind this choice is once again

that an agent should discover the properties of space through the displacements

it allows. This way compensability can be used to characterize these sensori-

motor experiences and modify the agent’s internal representation accordingly,

regardless of the specific content of space.
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Figure 10: (a) A single environmental change (here ei → ei+1) can be compensated from mul-
tiple initial motor states (here mij and mij′ ). This way, the agent can infer that the different

corresponding motor changes (here mij → mi+1j and mij′ → mi+1j′ ) compensate for the

same external displacement, and should thus be of equal magnitude. (b) If the environmental
displacement corresponds to the displacement between the initial motor states, then some new
motor states found by compensation actually correspond to some initial motor states already
stored in memory. Here the motor state mi+1j found by compensation corresponds to the
initial motor state mij′ (see the arm configuration in red). Motor states m have been used

in this illustration for the sake of simplicity, but the same rationale can be applied to points
of view M.

We propose a more sophisticated way for the agent to explore its environ-

ment. It is similar to the one introduced in the previous simulation (see Sec. 3.2)

except that multiple points of viewMij are considered at each step of the sim-

ulation instead of a singleMi. Its principle is illustrated in Fig. 10(a). Initially

the agent observes an object, in the envionmental state e0, from different points
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of view denoted M0j , respectively generating sensory states s0j , where index

j ∈ {1, . . . , J} denotes the point of view. Similarly to the previous simulation,

we then let the environmental state iteratively change ei → ei+1 via either spa-

tial or non-spatial transformations. This results in sensory changes sij → si+1j

associated with each point of view j. The agent can try to compensate each of

them by finding a point of view Mi+1j which cancels out the sensory change

and generates sij again. For each point of view j, if the environmental change is

compensable, the agent can find such a suitableMi+1j . Interestingly all the in-

ternal changesMij →Mi+1j correspond to a single change in the environment.

This is equivalent to exploring the same stick from different starting points of

view. They should thus all have the same magnitude in the internal metric and

comply to the following constraint:

∀(j, j′) ∈ {1, . . . , J} , d̂M(Mij ,Mi+1j ) = d̂M(Mij′ ,Mi+1j′ ). (19)

where d̂ denotes the desired modified metric. From an external perspective,

the exploration phase would look like the agent first observes the environment

from different points of view, then experiences the environment moving, and

tries to find new motor configurations which ensure the same set of relative po-

sitions with the environment. It is analogous to a multi-point-of-view tracking

behavior. Note that we assume here that the environment does not move while

the agent searches for the multiple compensating points of view. When the

environmental change is a state change, the agent cannot find suitable points

of view Mi+1j to compensate for the associated sensory change. In this case

the experience is discarded, the agent resumes its previous configurations Mij

and waits for the next environmental change. For some j, non-compensability

can also occur for some spatial environmental changes which would require the

sensor to move out of the agent’s working space. In those cases, the experience

is discarded like in the case of state changes.

Optimized simulation setting: The exploration strategy we just proposed has

been described in a generic form. For instance the different initial points of view
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Figure 11: Three examples of sets of point of view changes Mij → Mi+1j associated with
three environmental displacements. They are shows in the external space, where they corre-
spond to identical displacements, and in the 2D and 3D representational spaces, where they
correspond to changes of various magnitudes.

M0j can be taken anywhere in the space of points of view. This means that they

are not necessarily related through spatial changes and do not necessarily belong

to a unique set
{
M∗

}
. In the simulated system where rotations are considered

state changes, this would correspond to points of view M0j associated with

different orientations of the sensor. Similarly, any spatial environmental changes

ei → ei+1 can be considered during the exploration. This means that the new

points of view Mi+1j found by compensation can lie anywhere in the space

of points of view and do not necessarily correspond to points of view that the

agent already explored. Although the approach we described to discover metric

regularity applies to such generic cases, we propose to carefully select the initial
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points of view M0j and the spatial changes ei → ei+1 in order to limit the

computational cost of this second simulation. The goal is to consider the points

of view Mi ∈
{
M∗

}
0

estimated in the previous simulation as a given and to

ensure that no new point of view needs to be created and stored in memory.

This is done by taking already known points of view as initial points of view,

M0j =Mi ∈
{
M∗

}
0
,

and by taking all possible displacements in the grid of positions already explored

in 3.2 as spatial changes ei → ei+1. This way all initial points of view M0j ,

and consequently all the potentialMi+1j found by compensation, belong to the

same set
{
M∗

}
0
. The simulation thus focuses on a single manifold

{
M∗

}
and

how capturing metric regularity changes its structure. Moreover by considering

displacements of the objects inside the grid of positions that originally generated

the points of view Mi ∈
{
M∗

}
0

(and thus the points of view M0j ), we ensure

that any new Mi+1j found by compensation actually corresponds to an initial

point of view (see Fig. 10(b)):

for all (i, j), there exists j′ ∈ {1, . . . , J} such that: Mi+1j =M0′j
. (20)

This way no new point of view needs to be estimated and stored in memory

during the whole simulation. The internal modification required to capture reg-

ularity can then be done directly on the already estimated metric dM(Mi,Mi′),

∀(Mi,Mi′) ∈
{
M∗

}
0
.

In the simulation all possible translations of the object in the grid of posi-

tions are experienced by the agent, in no particular order, which ensures that

each internal distance dM(Mi,Mi′),∀(Mi,Mi′) ∈
{
M∗

}
0

is taken into ac-

count during the metric regularization process. Like in previous simulation, we

opted for an analytical solution in order to bypass a computationally expensive

exploration of the agent. For any point of view Mij and environmental change

ei → ei+1, the compensating point of viewMi+1j is estimated by looking for the

point of view in
{
M∗

}
0

which generates the same displacement [∆xobj ,∆yobj , 0]

of the sensor (see Eq. (15)).
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4.2. Modifying the internal metric

Following the exploration strategy we just described, for all i the agent is

able to discover sets of J points of view changes Mij → Mi+1j associated

with the same external change ei → ei+1
5. Yet they correspond to different

distances dM(Mij ,Mi+1−j) in the internal metric estimated by the agent. This

phenomenon is illustrated in Fig. 11 for three different displacements of the

object. We thus propose to modify this internal metric to comply with the

equality constraints inferred from the agent’s sensorimotor exploration. The

target metric d̂M(Mij ,Mi+1j ) after regularization should be such that:

d̂M(Mij ,Mi+1j ) = Di,i+1 , for all j (21)

where Di,i+1 is a distance shared by all point of view changes associated with

the environmental change ei → ei+1. Yet the equality constraints discovered

by the agent during the exploration do not define the value of Di,i+1. We thus

propose to derive it from the existing metric defined in the motor space during

previous simulation. The distance Di,i+1 is set to be equal to the average of the

set of distances it is associated with:

Di,i+1 =
〈
dM(Mij ,Mi+1j )

〉
j
, (22)

where 〈.〉 denotes the average operator.

Iterative unfolding procedure: The regularization method described in Eq. (21)

and (22) does not necessarily lead to a consistent (low-dimensional) metric. In-

deed there is no interplay between the different values Di,i+1 associated with

different displacements. Consequently two object displacements with a ratio of

2:1 in magnitude are not necessarily associated with internal distances Di,i+1

respecting the same ratio. In order to enforce consistency in the modified met-

ric, we project it in low dimension, the same way the initial metric was pro-

jected in Sec. 3.3. Forcing the data to lie in a low dimensional space further

5In practice, given the limits of the arm’s working space, less than J points of view changes
are discovered for each i.
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Figure 12: Projections of the points of view in 2D and 3D after the first and last iterations of
internal metric regularization. A small distortion of the metric in 2D is visible after the first
iteration, but disappears after 10 iterations. A large distortion of the metric in 3D is visible
after the first iteration. After 10 iterations, the metric appears regular but the manifold still
displays a global curvature. For the sake of visualization, the missing configuration of Fig. 7(a)
is displayed in red.

alters the internal metric by having the different distances dM(Mi,Mi′), for all

(Mi,Mi′) ∈
{
M∗

}
0
, interact when positioning each projected data point Mi.

The metric obtained after projection is then considered the new internal metric

between the points of view estimated by the agent.

The whole process of assessing the values Di,i+1, modifying the internal dis-

tances dM(Mij ,Mi+1j ), and projecting the resulting metric in low dimension is

repeated 10 times in order to let it iteratively converge to a stable equilibrium.

The final metric is expected to both respect the distances equalities inferred

during the exploration and be consistent in low dimension. As in the previous

simulation, we independently project the data described by the modified metric

in 2D and 3D.

Results: Figure 12 presents the 2D and 3D projections of the set
{
M∗

}
0

after the first and last iterations of the regularization process. Compared to the
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Figure 13: Opposite sides of each square in the grid of points of view are constrained, but not
their diagonals. This allows a residual curvature when the representational space is of higher
dimension than the manifold’s intrinsic dimension.

previous internal representation of Fig. 8, the metric regularization has greatly

impacted the shape of the projected manifold. Both 2D and 3D projections

still capture the topology of the grid of positions the sensor has visited but

now also exhibit a regular metric structure. Direct neighbors in the internal

representations now tend to be equidistant.

Thanks to the metric regularization, CCA has been able to project the data

in 2D without cutting the underlying manifold. Consequently the resulting

projection appears to be a good internal representation for the 2D spatial con-

figuration of the agent’s sensor. More precisely it is an affine transformation

of it, as can be seen in the metric comparison of Fig. 16(c). This shows that

the internal 2D representation is an excellent representation for its true external

counterpart. This is expected as the manifold of points of view is intrinsically

2-dimensional and thus fits perfectly in a 2D representational space after reg-

ularization. On the other hand, the final 3D projection appears as a slightly

folded version of the external grid of positions. Given the additional dimension

of the representational space and the equality constraints imposed on the metric,

such a seemingly developable manifold is a suitable solution for the projection.

Indeed the proposed exploration strategy ensures that the agent discovers that

opposite sides of any square in the grid should be equal in length, but does not
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Figure 14: Visualization of three reaching trajectories determined by using the 2D represen-
tational space, before and after the internal metric regularization. (a) Trajectories in the
representational spaces are straight (given the graph constraints they need to respect). (b)
The corresponding motor trajectories sometimes appear to jump around the motor space due
to the 2π-periodicity of its metric. (c) The initial representational space generates curved
external trajectories of the sensor (ligh trajectories). After regularization of its metric, both
internal and external trajectories are straight (darker trajectories). (For the sake of visualiza-
tion, only 10% of the point of view sets are displayed in (b).)

enforce such a constraint regarding the two diagonals of this square, as illus-

trated in Fig. 13. As a consequence we can see in Fig. 16(c) that the internal 3D

projection is a good representation of its external counterpart for small distances

but that larger ones are underestimated due to the bending of the manifold.

4.3. Evaluating the internal representations

In order to evaluate the benefit of the metric regularization and the quality of

the final internal representation of the sensor’s spatial configuration, we propose

a simple reaching task for the agent to solve.

The task consists in finding the shortest path between a starting point of

view Ms and a target point of view Mt, both randomly drawn from
{
M∗

}
0
.

We are particularly interested in visualizing through which intermediary points

of view Mp the internal representation would require the agent to go during
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Figure 15: Visualization of three reaching trajectories determined by using the 3D represen-
tational space, before and after the internal metric regularization. (a) Trajectories in the
representational spaces are geodesics (given the graph constraints they need to respect). (b)
The corresponding motor trajectories sometimes appear to jump around the motor space due
to the 2π-periodicity of its metric. (c) The initial representational space generates curved
external trajectories of the sensor (light trajectories). After regularization of its metric, the
trajectories they generate are straight (darker trajectories). (For the sake of visualization,
only 10% of the point of view sets are displayed in (b).)

the reaching. To do so, the set
{
M∗

}
0

is considered a graph in which each

Mi is a node and each dM(Mi,M′i) corresponds to the length (weight) of the

undirected edge between the nodes i and i′. Nevertheless such a fully connected

graph contains a direct link between any two nodes, that the agent could take

to reach Mt from Ms without the need for intermediary steps. We thus prune

the fully connected graph to retain only local connections. Any edge of length

greater than dM(Mi,M′i) = 0.72 is arbitrarily pruned. This value has been

manually set so that each node Mi is not connected to more than 50 nodes

around it. This way the search for the shortest path is required to use only local

transitions in the internal representation. Finally the optimal path betweenMs

andMt is determined by applying Dijkstra’s algorithm [6] on the pruned graph.

In order to keep the visualization uncluttered, only 3 pairs {Ms,Mt} are

randomly drawn for the evaluation. Four different internal representations are
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considered to solve the reaching tasks: the 2D and 3D representations before

regularization, and the 2D and 3D representations after regularization.

Note that the reaching task as been formalized at the level of points of view.

However points of view are an abstraction of the actual motor states the agent

controls. In order to know which motor states the agent has to go through during

the reaching task, we can look inside each intermediaryMp for the motor state

mp ∈Mp which is the closest to previous motor state:

mp = argminmk∈Mp

(
dm(mk,mp−1)

)
, (23)

with m0 = ms a starting motor state randomly drawn in Ms.

Results: The trajectories found by the agent for the two 2D representations

are displayed in Fig. 14. Their 3D counterparts are displayed in Fig. 15. For each

type of representation, we can see that the internal trajectories are topologically

consistent with the actual trajectories followed by the sensor in the external

space. This indicates that all internal representations correctly captured the

topology of the space of spatial configurations of the sensor, as was already

discussed in Sec. 3.3.

The internal metric regularization however greatly affects the trajectories

found by the agent. By construction the internal trajectories correspond to

straight lines (in 2D) and geodesics (in 3D). More precisely, they are as straight

as they can be, given the constraint of going through nodes in the grid and

the presence of a hole in the center of the working space. However, before

regularization their corresponding external trajectories appear curved. This is

due to the difference between the internal metric initially derived from the motor

space and the external Euclidean metric. On the contrary, after regularization,

the external trajectories also appear straight. This shows that the regularity of

the external Euclidean metric has been correctly captured by the regularized

representation.
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Figure 16: Comparisons between the external Euclidean metric computed on the grid of
positions taken by the sensor, the Hausdorff metric computed between the points of view, and
the internal metrics in the 2D and 3D representational spaces before and after regularization.
Each dot corresponds to a pair of positions taken randomly in the grid of positions (for the sake
of visualization, only a randomly selected 5% subset of all possible pairs are displayed, with
no qualitative impact on the results). The abscissa and ordinate of each dot in the different
plots correspond to the distance between the two positions in the corresponding metrics. (a)
The Hausdorff metric derived from the motor space greatly differs from the external metric.
Moreover the low-dimensional projections in 2D and 3D further distort the original Hausdorff
metric. This is particularly true for the 2D projection as we see that CCA was unable to
preserve larger distances. (b) The initial metrics in the 2D and 3D representational spaces
differ greatly from the external metric, for both small and large distances. The distortion
is even greater for the 2D space due to the impossibility for CCA to correctly unfold the
manifold of points of view. (c) After regularization, the final 2D and 3D metrics are a more
satisfying internal representations of the external metric. This is particularly true for the 2D
projection which is almost a perfect mapping due to the fact that the manifold is intrinsically
2D. However we can see that the 3D projection tends to underestimate larger distances. This
corresponds to the residual curvature of the manifold displayed in Fig. 12.

5. Discussion

The primary goal of this work was to define the sensorimotor structure un-

derlying the perception of space by a naive agent. This includes understanding

how spatial knowledge is grounded in the agent’s sensorimotor experience, why

it is relevant for the agent to extract it, but also how this sensorimotor structure

relates to the properties that characterize our subjective perception of space.

These properties are that space contains both the agent and its environment,

that it is invariant to its content, and that it is isotropic.

Taking inspiration from the SMCT and intuitions by H.Poincaré, we pro-

posed to ground spatial knowledge in the way an agent can transform its sen-
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sorimotor experience. More precisely this led us to consider displacements as

a suitable way to characterize space. Fundamentally space is indeed the frame

that allows displacement. More interesting, displacements of the agent can also

be internally distinguished from other sensorimotor experiences thanks to their

sensory redundancy with displacements in the environment (and vice versa).

They also support the spatial characteristics we want to capture: both the

agent and its environment can undergo displacements, any content of space can

be displaced, and displacements can be carried out the same way regardless of

the agent’s position and orientation. Our assumption is that the sensory redun-

dancy induced by displacements is worthy for a naive agent to capture. Such

knowledge indeed enables it to predict the sensory outcome of some of its motor

commands. It also offers a more compact way to represent the agent’s sensori-

motor experience. Finally, the structure of the set of displacements an agent can

produce is independent of the content of the environment, which ensures some

generalization capacities for the agent. Overall, space would then be a conve-

nient and useful way for the agent to account for its redundant sensorimotor

experiences.

Two simulations have been proposed in this paper to illustrate how a naive

agent can discover displacements in its raw sensorimotor experience and how it

can derive from it the topology and metric regularity of its spatial configuration.

The simulated system involved a simple robotic arm observing an object made

of multiple light sources through an eye-like sensor. By observing displacements

of an object and trying to compensate for them from a sensory perspective, the

agent was able to isolate the motor changes which are redundant with changes

in the environment. We then proposed to capture the structure underlying

these specific motor changes and to build an internal representation of them.

This representation was based on the pre-definition of the proto-spatial concept

of point of view which compacts the agent’s experience by grouping together

motor states which are equivalent from a sensory perspective (or mechanically

redundant from an external perspective). After the agent experiences the possi-

bility of compensating multiple object displacements from a single initial point

45



of view, the resulting internal representation it builds successfully captures the

topology of its sensor’s position in the external space. Moreover, by compen-

sating for multiple object displacements from different initial points of view, we

showed how the metric of the internal representation can be modified to capture

the metric regularity of space, making the final internal representation a good

internal representation for the sensor’s external spatial configuration. Finally we

showed how this internal representation can be used to solve simple spatial tasks,

like finding the shortest path (both internally and externally) in a reaching task.

It is important to notice that the sensorimotor characterization of space

we put forward is independent of the particular encoding of the motor and

sensory information, and also independent of the structure of the agent’s body.

Obviously the sensory states experienced by an agent depend on the nature

and characteristics of its sensors, and the actions it can perform in the world

depend on the nature and characteristics of its motor. Yet the existence of

redundant transformations between the agent and its environment is induced by

the structure of external space, on which the agent’s hardware has no influence.

Through its exploration of the world, an agent is thus bound to experience these

specific transformations, although they might be encoded differently for different

agents. This independence to the encoding and importance of embodiment in

the grounding of perceptual experience is directly in line with the SMCT.

Of course this encoding-independence has its limits. One could for example

imagine an agent with sensors so simple or exotic that they would destroy or

not capture the information needed by the agent to discover space. More in-

teresting, limited motor capacities could also prevent an agent to fully explore

the structure of space. An agent lacking the degrees of freedom to produce mo-

tor changes redundant with some displacements in the environment (and thus

compensate for them) would not interpret them as displacements but as state

changes. The resulting internal representation of space would thus be truncated.

In our simulated system, if the object was also able to move along a depth axis

(3D space), the agent, still restricted to motions in the plane, would neverthe-
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less build a 2D internal representation of space. Consequently any displacement

of the object orthogonal to this plane would be interpreted as a state change,

similarly to the way we perceive rotations of a 4D hypercube as changes in 3D

structure. Although incomplete from an external perspective, this truncated

characterization of space is nevertheless adapted and useful for the agent which

cannot have any effect in this extra spatial dimension.

In our simulations, we purposefully designed an opposite setting in which we

limited the degrees of freedom of objects. Objects were limited to translations

in the plane, without the possibility of rotation. Consequently, any rotation of

the sensor is not redundant with any potential environmental change. Although

artificial, this setting allowed us to restrain displacements identifiable as such

by the agent to an easily visualized set of 2D translations, while rotations of the

agents’ sensor are interpreted as state changes. The final results demonstrated

that rotations have been correctly excluded from the internal representations

built by the agent.

Our characterization of space gives the possibility of incomplete representa-

tion of space, but it can also lead to the discovery of extra spatial dimensions.

This would happen if the agent was able to generate motor changes redundant

with some state changes in the environment (and thus to compensate for them).

One can for instance imagine an agent able to control the sensitivity of its sen-

sors, which would then be redundant with an overall change of light intensity in

the environment. This redundant state change would thus be incorporated in the

internal representation of the agent as an extra ”spatial” dimension. Although

incorrect from an external perspective, this representation would yet again be

adapted and useful for the agent which can compensate for these specific state

changes as if they were displacements.

Note also that even in a standard setting – like our simulations in which the

agent correctly discovers the expected spatial dimensions – the internal repre-

sentation of space cannot capture all properties of space. Indeed some of them

like its unit of length or its orientation are arbitrarily defined by an external

observer. Consequently the scale and orientation of the internal representation
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is different from its external counterpart (grid of positions). The agent has no

means to access these properties, but also no incentive to do so as they have no

relevance to its ability to change its spatial configuration.

The general approach and simulations we proposed in this paper give some

insight into the sensorimotor grounding of the concept of space. Yet they also

have multiple limitations. The agent-environment system we considered is rel-

atively simple. The agent is a single serial arm equipped with a single low

dimensional sensor. Although the concept of redundancy/compensability holds

for more complex agents (see for instance an agent equipped with two inde-

pendent moving eyes and two ears in [17]), the occurrence of compensation

experiences appears less probable, and the tracking-like behavior more difficult

to achieve. For instance, imagine the agent was made of two arms instead of

one. Compensable experiences would consist in jointly moving both arm tips

in a rigid fashion to follow the displacements of an object. On the contrary,

moving a single arm would be interpreted as a state change. Thus compensable

experiences are not impossible but more difficult to encounter when the agent

gets more complex. An interesting solution to this problem could be for the

agent to build multiple local notions of space (one for each arm in the previous

example) by experiencing redundancy/compensability in subspaces of its whole

sensory space. At a later developmental stage, all these local descriptions of

space could be united in a single consistent internal representation which would

capture information about both space and the structure of the agent’s body.

The simplicity of the agent mechanical structure also allowed us to imple-

ment a method for estimating basic points of view. It takes advantage of the

fact that the arm has a single mechanical degree of redundancy and hinge joints,

making each point of view a closed 1D manifold. The method would however

not directly scale up to manifolds of greater dimensions and/or with boundaries.

The environment considered in the simulations is also very simple; it comes

down to a single object made up of rigidly connected light sources. This unre-

alistic setup was proposed for the simplicity of the simulation, and to guarantee
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the possibility of compensation in the system. In the presence of a more com-

plex environment made up of multiple objects, the displacement of a single

object would generate a sensory variation that the agent could not entirely

compensate. Indeed the tracking of the moving object would also lead to a

relative motion of all the other objects that did not move. A potential solution

to adapt the approach to more realistic environments would be to identify re-

dundancy/compensability in sensory subspaces that capture information about

only a subpart of the environment (similar to a receptive field in the retina).

This way the agent could track the moving object in such a subspace, while

discarding the variations it generates in the rest of the sensory space during its

exploration. Another solution would consist in assuming that the environment

is static most of the time but that the agent can move its base in space, the

same way we can move on our feet. Such a displacement of the base would be

equivalent, from a sensory perspective, to an opposite displacement of the whole

environment that the agent could try to compensate by moving the rest of its

body. This would however suggest that only agents capable of moving their base

in the world are able to develop a notion of space. To avoid this unnecessary

limitation, a mix of both solutions appears more promising.

The methods we proposed in this paper are partly based on analytic solu-

tions which rely on the knowledge of the arm’s forward model and Jacobian, as

well as the actual displacement of the object in space. The primary purpose of

the computational method implemented in these simulations is thus illustrative.

They are unrealistic from a developmental standpoint in which these informa-

tion are not accessible to the naive agent. One could however consider possible

solutions to avoid these analytic shortcuts. They would require the development

of exploration strategies that efficiently discover motor states which always gen-

erate equivalent sensory states, or those which compensate for a given sensory

change. The building of the internal representation could also be made more

realistic by using for example a neural network like was already proposed in

[19]. Such approaches should also be made robust to more realistic exploration

scenarios in which the agent cannot necessarily sample its whole working space
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between two displacements of the object. This should not present a challenge,

as our approach is theoretically able to accommodate itself to an incremental

discovery of all displacements. The only fundamental assumption that needs

to be respected is that the agent can statistically move more often than the

environmental state changes. Otherwise it would be impossible for the agent to

estimate the effect of its actions on a sensory flow which is constantly changing

at a rapid rate due to the environment.

It is also important to notice that, although internal representations were

built in the two simulations of this paper, we do not claim that such explicit

representations are necessary for an agent to interact with its environment. In-

deed all relevant information about space topology and metric regularity are

contained in the internal metric derived from the motor space and modified by

the redundancies discovered by the agent. The metric knowledge is sufficient

to define the manifolds the agent has to capture without the need for low-

dimensional embedding. This is for instance illustrated in section 4.3 in which

only the knowledge of the metric dM(M,M), representing the estimated dis-

tances between underlying sets of motor states, is used to solve the reaching task.

Thus, beyond their illustrative power, we do not argue that the low-dimensional

representations built in this work are necessary for spatial knowledge. We rather

think that the predictive capacity supported by the sensorimotor invariants is

constitutive of this spatial knowledge (for instance, knowing that a set of motor

commands would generate the same sensory input as the one currently experi-

enced). In our second simulation, the explicit embedding of the metric in low di-

mension has however been useful to enforce consistency (see section 4.2). Other

ways to regularize the metric could nonetheless be considered. For instance by

observing rotations as well as successive displacements of objects, it might be

possible for the agent to discover relations between the different distances that

constitute its internal metric, without the need for a low-dimensional embed-

ding that the agent has a priori no incentive to produce. Interestingly such a

regularization would also solve the problem of inconsistent diagonal lengths that

was noticed in Fig. 13 and led to a curved internal representation in Fig.12.
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Although desirable to fully regularize the internal metric, the addition of

rotations in the system introduces other problems. In this paper rotations have

artificially been kept out of the simulations by allowing only translations of the

object. Consequently any rotation of the sensor is considered a state change,

due to a lack of compensability, and ignored in the building of the internal

representation. Yet in a more realistic setting, rotations in the plane are also

compensable and should therefore also be considered displacements in a math-

ematical sense. This has been partly illustrated in [21] in which a similar agent

captures both translations and rotations of its sensor in a 3D internal repre-

sentation. The low-dimensional projection of such a 3D manifold is however

made difficult by the looped third dimension induced by rotations. It makes

it impossible to project and visualize the data in 3D, although it corresponds

to the manifold’s intrinsic dimension. But more importantly, the addition of

rotations would disrupt the metric regularization method we proposed in this

paper. Indeed for a rotation of the object, the amplitude of the compensating

displacement of the sensor depends on the distance to the center of rotation.

Thus the regularization of the metric along the dimension related to rotations

would not be straightforward. A solution to this problem could be to distin-

guish rotations from translations, based on their different properties. Rotations

and translations for instance do not follow the same compositionality rules: the

order of translations in a sequence of transformations does not affect the end

result, which is not true for rotations. Another property is that dimensions

associated with rotations loop on themselves. Finally, unlike translations, ro-

tations keep points unchanged in space (the axis of rotation). These different

properties relate to our subjective experience of rotations. Studying how they

manifest themselves in an agent’s sensorimotor experience might be the way to

better capture them in the internal representation of spatial configuration.

Beyond the several potential improvements of the current simulations we

just mentioned, future work on the sensorimotor grounding of space perception

has to answer many important questions. In our approach spatial knowledge
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is fundamentally rooted in the motor space. As presented in this paper, it

provides a characterization of the agent ’s spatial configuration. Yet our spatial

perception extends past our own body to include our environment. Thus in

order to reach a more complete perception of space, it is necessary to develop

the sensorimotor framework to account for the spatial configuration of objects

in the environment. As proposed by H.Poincaré [40], this knowledge should

fundamentally be interpreted by the agent via its own capacity to generate

spatial changes. The distance to an object would for instance be internally

encoded as the motor command needed to reach it. This way the agent can

ground these external properties it cannot directly access in its motor space,

which it can access and control. In order to fully answer this question, one will

probably have to also tackle the problem of object perception and how it can

co-emerge with the notion of space. Some preliminary steps have already been

done in this direction [16, 15]. Only once the grounding of spatial knowledge

presented in this work has been extended to the spatial configuration of the

environment will it be possible to consider complex applications for robotics,

like navigation or object manipulation.

Finally our long term objective is to let a robot build its own grounded knowl-

edge of how its body and objects around it behave in space, first by theoretically

defining the type of sensorimotor structure which supports this knowledge and

second by developing algorithmic solutions to capture this structure. This spa-

tial common-sense knowledge could then be re-used in an open-ended manner

to efficiently solve unforeseen spatial tasks the robot would face in the world.

Nonetheless, beyond this technical motivation, we also aim to shed some light

on the fundamental nature of space and how our perception of space emerges.

We try to trace back the origin of our subjective experience of space and explic-

itly define how its peculiar properties manifest themselves in our sensorimotor

experience.

On a more philosophical side, the approach developed in this paper sug-

gests that the concept of space might emerge from sensorimotor interactions

with the environment, without the need for specific spatial prior knowledge. In
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that sense, and within the current discussion about the importance of priors

in artificial intelligence [22, 28, 46], our approach suggests the possibility of a

fully data-driven emergence of perception. However this claim needs to be put

in perspective, since the mechanisms that would lead an agent to capture the

sensorimotor invariants supporting spatial knowledge are not yet fully under-

stood (in particular from an algorithmic point of view). Nevertheless we aim at

pushing the SMCT-based approach we have developed as far as possible using

the assumption of minimal prior knowledge. This has also led us to challenge

the idea that the convolution mechanism used in today’s successful convolu-

tional neural networks, and often considered an argument for the necessity of

priors, has to be pre-implemented in the perceptive system [15]. Regardless of

the unfolding of this theoretical debate and its consequence for the field of arti-

ficial perception, it is nonetheless probable that natural selection has endowed

us with particular priors to bootstrap and speed up the development of our

perceptive abilities. This would of course include priors about the concept of

space, which would certainly be very useful due to the pervasiveness of space

in our perception of the world. On the other hand, the presence of such priors

in our brain, proven or not, does not solve the problem of roboticists who still

need to identify and implement them in their robots if they want to accelerate

their development.
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