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Abstract

Representation learning algorithms are designed to learn abstract features that character-
ize data. State representation learning (SRL) focuses on a particular kind of representation
learning where learned features are in low dimension, evolve through time, and are influ-
enced by actions of an agent. The representation is learned to capture the variation in the
environment generated by the agent’s actions; this kind of representation is particularly suit-
able for robotics and control scenarios. In particular, the low dimension characteristic of the
representation helps to overcome the curse of dimensionality, provides easier interpretation
and utilization by humans and can help improve performance and speed in policy learning
algorithms such as reinforcement learning.

This survey aims at covering the state-of-the-art on state representation learning in the
most recent years. It reviews different SRL methods that involve interaction with the envi-
ronment, their implementations and their applications in robotics control tasks (simulated or
real). In particular, it highlights how generic learning objectives are differently exploited in
the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation
learned and summarizes current and future lines of research.

Keywords: State Representation Learning, Low Dimensional Embedding Learning, Learn-
ing Disentangled Representations, Disentanglement of control factors, Robotics, Reinforcement
Learning
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1 Introduction

Robotics control and artificial intelligence (AI) in a broader perspective heavily rely on the avail-
ability of compact and expressive representations of the sensor data. Designing such representa-
tions has long been performed manually by the designer, but deep learning now provides a general
framework to learn such representations from data. This is particularly interesting for robotics
where multiple sensors (such as cameras) can provide very high dimensional data, while the robot
objective can often be expressed in a much lower dimensional space (such as the 3D position of an
object in a manipulation task). This low dimensional representation, frequently called the state of
the system, has the crucial role of encoding essential information (for a given task) while discarding
the many irrelevant aspects of the original data. By Low dimensional, we mean that the learned
state dimension is significantly smaller than the dimensionality of the observation space.

Such state representation is at the basis of the classical reinforcement learning (RL) framework
[Sutton, 1998] in which an agent interacts with its environment by choosing an action as a function
of the environment state in order to maximize an expected (discounted) reward. Following this
framework, we call observation the raw information provided by one or several of the robot sensors,
and we call state a compact depiction of this observation that retains the information necessary
for the robot to choose its actions.

While deep reinforcement learning algorithms have shown that it is possible to learn controllers
directly from observations [Mnih et al., 2015], reinforcement learning (or other control algorithms)
can take advantage of low dimensional and informative representations, instead of raw data, to
solve tasks more efficiently [Munk et al., 2016]. Such efficiency is critical in robotic applications
where experimenting an action is a costly operation. In robotics, as well as in machine learning,
finding and defining interesting states (or features) for control tasks usually requires a considerable
amount of manual engineering. It is therefore interesting to learn these features with as little
supervision as possible. The goal is thus to avoid direct supervision using a true state, but instead
use information about the actions performed by the agent, their consequences in the observation
space, and rewards (even if sparse, and when available). Along with this information, one can also
set generic constraints on what a good state representation should be [Jonschkowski and Brock,
2015, Lesort et al., 2017].

Feature learning in general is a wide domain which aims at decomposing data into different
features that can faithfully characterize it. It has been a particular motivation for deep learning
to automatically learn a large range of specific feature detectors in high dimensional problems.
State representation learning (SRL) is a particular case of feature learning in which the features
to learn are low dimensional, evolve through time, and are influenced by actions or interactions.
SRL is generally framed in a control setup constrained to favor small dimensions to characterize
an instance of an environment or an object, often with a semantic meaning that correlates with
some physical feature. The physical feature can be, for instance, a position, distance, angle or
an orientation. The objective of SRL is to take advantage of time steps, actions, and optionally
rewards, to transform observations into states: a vector of a reduced set of the most representative
features that is sufficient for efficient policy learning. It is also worth distinguishing between feature
learning on a process that is only observed, and learning the state representation of a process in
which the learning agent possesses embodiment and acts. The first one considers learning directly
from observations, e.g., pixels, and leaves no room for the agent to act. The latter gives opportunity
to exploit more possibilities to learn better representations by balancing between exploration and
exploitation, e.g., active learning, or artificial curiosity [Péré et al., 2018, Pathak et al., 2017].

As stated above, learning in this context should be performed without explicit supervision. In
this article we therefore focus on SRL where learning does not have the pattern recognition regres-
sion or classification sense, but rather the sense of the process of model building [Lake et al., 2016].
Building such models can then exploit a large set of objectives or constraints, possibly taking in-
spiration from human learning. As an example, infants expect inertial objects to follow principles
of persistence, continuity, cohesion and solidity before appearance-based elements such as color,
texture and perceptual goodness. At the same time, these principles help guide later learnings such
as object’ rigidity, softness and liquids properties. Later, adults will reconstruct perceptual scenes
using internal representations of the objects and their physically relevant properties (mass, elas-
ticity, friction, gravity, collision, etc.) [Lake et al., 2016]. In the same way, the SRL literature may
make use of knowledge about the physics of the world, interactions and rewards whenever possible
as a semi-supervision or self-supervision that aids the challenge of learning state representations
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Figure 1: General model : circle are observable and square are the latent state variables.

without explicit supervision.
Recently, several different approaches have been proposed to learn such state representation. In

this review paper, our objective is to present and analyze those different approaches, highlight their
commonalities and differences, and to propose further research directions. We extend a previously
published review [Böhmer et al., 2015] with the most recent and rapidly evolving literature of the
past years and focus on approaches that learn low dimensional Markovian representations without
direct supervision, i.e., exploiting sequences of observations, actions, rewards and generic learning
objectives. The works selected in this survey mostly evaluate their algorithms in simulations where
agents interact with an environment. More marginally, some SRL algorithms are tested on real
settings such as robotics tasks, e.g., manipulation or exploration as detailed in Section 4.4.

In the remainder of the paper, we first introduce the formal framework and notation, then
present the objectives that can be used to learn state representations, and discuss the implemen-
tation aspects of these approaches before summarizing some current and future lines of research.

2 Formalism and definitions

2.1 SRL Formalism

The nomenclature we use is very close to the one used in reinforcement learning literature [Sutton,
1998] and is illustrated in Fig. 1. We define an environment E where an agent performs actions
at ∈ A at time step t and where A is the action space (continuous or discrete). Each action makes
the agent transition from a true state s̃t to s̃t+1 which is unknown but assumed to exist. We call
the true state space S̃. The agent obtains an observation of E from its sensors, denoted ot ∈ O
where O is the observation space.

Optionally, the agent may receive a reward rt. The reward is given at s̃t by a reward function
designed to lead the agent to a certain behavior that solves a task. The reward is optional as
learning a state representation don’t aim to solve a task, but is often present as one of the goal of
SRL may be to improve task learning performance.

The SRL task is to learn a representation st ∈ S of dimension K with characteristics similar to
those of s̃t without using s̃t. More formally, SRL learns a mapping φ of the history of observation
to the current state st = φ(o1:t). Note that actions a1:t and rewards r1:t can also be added to the
parameters of φ [Jonschkowski and Brock, 2015]. In this paper, we are specifically interested in
the particular setting in which this mapping is learned through proxy objectives without access to
the true state s̃t. This family of approaches is called unsupervised or self-supervised.

Finally, we note ôt the reconstruction of ot (similarly for ât and r̂t), that will be used in various
SRL approaches.

2.2 SRL approaches

Based on the previously defined notations, we can briefly summarize the common strategies used
in state representation learning that are detailed in the next sections. In the following, θ represents
the parameters optimized by minimizing the model’s loss function. In most of the approaches we
present, this model is implemented with a neural network.
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Figure 2: Auto-Encoder: reconstructing the observation. The error is computed between obser-
vation ot and its reconstruction ôt. White components are input data and gray ones are output
data.
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Figure 3: Forward Model: predicting next state st+1 from st and at. The error is computed
between predicted state ŝt+1 and the actual next state st+1

• Reconstructing the observation: learning the function φ (Eq. 1) so that it is possible
to reconstruct the observation with a decoder φ−1 (Eq. 2) by minimizing the reconstruction
error between the original observation and its predicted reconstruction. The reconstruction
is learned under different constraints that give to st specific characteristics (e.g., dimension-
ality constraints, local denoising criterion [Vincent et al., 2010], sparse encoding constraints
[Vincent et al., 2008], etc.) (Fig. 2).

st = φ(ot; θφ) (1)

ôt = φ−1(st; θφ−1) (2)

where θφ and θφ−1 are the parameters learned for the encoder and decoder, respectively.

• Learning a forward model:

A forward model predicts st+1 from ot or st and at (Fig. 3). In this context, we want to
learn the mapping φ from ot to st using the model that predicts st+1 from ot. Hence the
prediction work in two steps, first encoding from ot to st then transition from st to ŝt+1.
We can not compute any error on st, however at t + 1 the model can learn from the error
between ŝt+1 and st+1. The error is back propagated through the transition model and the
encoding model. Consequently the methods allows to learn a model φ.

ŝt+1 = f(st, at; θfwd) (3)

Learning such a model makes it possible to impose structural constraints on the model for
state representation learning. For example, the forward model can be constrained to be linear
between st and st+1, imposing that the system in the learned state space follows simple linear
dynamics.
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Figure 4: Inverse Model: predicting action at from st and st+1. The error is computed between
predicted action ât and the actual action at
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at

ot ot+1

Figure 5: Model with prior: The error is computed by applying loss functions on several states

• Learning an inverse model:

An inverse model predicts action at given observations ot and ot+1 or states st and st+1. Like
for forward model, the goal here is to learn the mapping φ from ot to st through two steps,
encoding for ot and ot+1 and action prediction. The error is computed for action prediction
between at and ât and then back-propagated to learn the encoding

ât = g(st, st+1; θinv) (4)

Learning such model enforces that the state encodes enough information to recover the action
that modified the state (Fig. 4).

• Using prior knowledge to constrain the state space: A last approach is to handle
SRL by using specific constraints or prior knowledge about the functioning, dynamics or
physics of the world (besides the constraints of forward and inverse models) such as the
temporal continuity or the causality principles that generally reflect the interaction of the
agent with objects or in the environment [Jonschkowski and Brock, 2015]. Priors are defined
as objective or loss functions L, applied on a set of states s1:n (Fig. 5), to be minimized (or
maximized) under specific condition c. An example of condition can be enforcing locality or
time proximity within the set of states.

Loss = Lprior(s1:n; θφ|c) (5)

All these approaches are detailed in Section 3.
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2.3 State representation characteristics

Besides the general idea that the state representation has the role of encoding essential information
(for a given task) while discarding irrelevant aspects of the original data, let us detail what the
characteristics of a good state representation are.

In a reinforcement learning framework, the authors of [Böhmer et al., 2015] defines a good state
representation as a representation that is:

• Markovian, i.e. it summarizes all the necessary information to be able to choose an action
within the policy, by looking only at the current state.

• Able to represent the true value of the current state well enough for policy improvement.

• Able to generalize the learned value-function to unseen states with similar futures.

• Low dimensional for efficient estimation.

Note that these are some characteristics expected of the state representation, but they can-
not be used for learning this representation. Instead, they can later be verified by assessing the
task performance for a controller based on the learned state. Note also that multiple state repre-
sentations can verify these properties for a given problem and that therefore, there is no unique
solution to the state representation learning problem. We detail this problem when discussing the
evaluation of the learned state space in Section 4.3.

State representation learning can also be linked with the idea of learning disentangled represen-
tations that clearly separate the different factors of variation with different semantics. Following
[Achille and Soatto, 2017], a good representation must be sufficient, as efficient as possible (i.e.,
easy to work with, e.g., factorizing the data-generating factors), and minimal (from all possible
representations, take the most efficient one).

The minimal assumption is comparable to the simplicity prior [Jonschkowski and Brock, 2015].
It assumes that only a small number of world properties are relevant, and that there exists a low
dimensional state representation of a higher level input observation. Related to Occam’s razor,
this prior favors state representations that exclude irrelevant information to encourage a lower
dimensionality.

The efficiency aspect of the representation means that there should be no overlapping between
dimensions of the learned state features. Unfortunately, independence of features alone may not
be enough to assure a good quality of representations and guarantee a disentanglement of fac-
tors of variation [Thomas et al., 2017]. Higher level abstractions can, however, allow to improve
this disentanglement and permit easier generalization and transfer. Cues to disentangle the un-
derlying factors can include spatial and temporal scales, marginal independence of variables, and
controllable factors [Thomas et al., 2017].

2.4 State representation learning applications

The main interest of SRL is to produce a low dimensional state space in which learning a control
policy will be more efficient. Indeed, deep reinforcement learning in the observation space has
shown spectacular results in control policy learning [Mnih et al., 2015, Lillicrap et al., 2015, Mnih
et al., 2016] but is known to be computationally difficult and requires a large amount of data
[Rusu et al., 2016]. Separation of representation learning and policy learning is a way to lighten
the complete process. As described in most of the reviewed papers [Mattner et al., 2012, Watter
et al., 2015, van Hoof et al., 2016, Munk et al., 2016, Curran et al., 2016, Wahlström et al.,
2015, Shelhamer et al., 2017, Oh et al., 2017], this approach is used to make reinforcement learning
faster in time and/or lighter in computation.

SRL can be particularly relevant with multimodal observations that are produced by several
complementary sensors with high dimensionality as is, for example, the case of autonomous vehi-
cles. Low dimensional representations are then key to make an algorithm able to take decisions
from hidden factors extracted from these complementary sensors. This is for instance the case of
representation learning from different temporal signals in [Duan, 2017, Bohg et al., 2017]. Audio
and images are blended in [Yang et al., 2017] while RGB and depth are combined in [Duan, 2017].
SRL can also be used in a transfer learning setting by taking advantage of a state space learned
on a given task to rapidly learn a related task. This is for example the case in [Jonschkowski and
Brock, 2015] where a state space related to a robot position is learned in a given navigation task
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and reused to quickly learn another navigation task. SRL is also used as pretraining for transfer to
other applications afterwards such as reinforcement learning [Munk et al., 2016, Oh et al., 2017].
For concrete examples on SRL application scenarios see Section 4.4.

Another case where SRL could be useful is in the application of Evolution Strategies (ES)
for robot control learning [Stulp and Sigaud, 2013]. Evolution strategies are a family of black
box optimization algorithms that do not rely on gradient descent and can be an alternative to
RL techniques (such as Q-learning and policy gradients) but are less adapted to high-dimensional
problems. Indeed, the convergence time of ES algorithm depends on the dimension of the input:
the larger the dimension is, the larger amount of solutions ES has to explore [Stulp and Sigaud,
2013]. ES optimization methods have shown to be efficient for deep reinforcement learning [Conti
et al., 2017] but they could then take a clear advantage of a lower dimension input to explore faster
the parameter space than using raw data [Alvernaz and Togelius, 2017].

3 Learning objectives

In this section, we review what objectives can be used to learn a relevant state representation.
A schema detailing the core elements involved in each model’s loss function was introduced in
Fig. 2 – 5, which highlights the main approaches to be described here. This section touches upon
machine learning tools used in SRL such as auto-encoders or siamese networks. A more detailed
description of these is later addressed in Section 4.

3.1 Reconstructing the observation

A first idea that can be exploited is the fact that a true state, along with some noise, was used to
generate the observation. Under the hypothesis that the noise is not too large, compressing the
observation should retain the important information contained in the true state. While this idea
is very often exploited with dimensionality reduction algorithms [Fodor, 2002] such as Principal
Component Analysis (PCA), we focus here on the recent approaches specifically dealing with state
representation.

The PCA algorithm is a linear transformation able to compress and decompress observations
with minimal reconstruction error. PCA have been exploited to reduce the dimensionality of the
state space during learning [Curran et al., 2016]. By projecting images into a 3- or 4-dimensional
space, it is possible to produce a state that is used by a reinforcement learning algorithm and that
reduces the convergence time in Super Mario games [Karakovskiy, 2012] and different simulations
such as Swimmers or Mountain Car.

Auto-encoders are models that learn to reproduce their input under constraints on their internal
representations such as dimensionality constraints (Fig. 2). Their architecture can therefore be
used to learn a particular representation in low dimensions st by reconstructing ot.

Simple auto-encoders can be used to learn 2D representation of a real pole from raw images
[Mattner et al., 2012] (see Section 4.4 on evaluation scenarios). After training, the encoding vector
from the AE is used to learn a controller to balance the pole. An auto-encoder whose internal
representation is constrained to represent a position that serves as input to a controller is also
presented in [Finn et al., 2015] and [Alvernaz and Togelius, 2017]. The proposed model learns
a state representation from raw pixels of respectively a PR2 robot’s hand and an agent in the
VizDoom environment.

These models, based on auto-encoders that reconstruct the observation at the same time step,
can however learn only if the factors of variations are only linked to the actual state, or if very
prominent features exists [Lesort et al., 2017]. In order to relax this assumption, it is possible to
reconstruct observations from other time steps or to use constraints on the evolution of the state
(as will be more detailed in Section 3.2) to focus reconstruction on features relevant to the system
dynamics.

An example of auto-encoder tuned to take into account the system dynamics is proposed in
[Goroshin et al., 2015] where an AE with a siamese encoder projects sequences of images into a
state representation space S with constraints on the transition between st and st+1 to be linear.
They use observations at several time steps in order to take time into account in the representation,
and predict future observations through a single decoder that reconstructs ôt+1. This makes the
model able to learn representations that are related to several time steps and filter out random
features of the environment.
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The idea of using an auto-encoder to learn a projection into a state space where transitions are
assumed to be linear has also been used by [Watter et al., 2015]. The model presented, “Embed
To Control" (E2C), consists of a deep generative model that learns to generate image trajectories
from a linear latent space.

Extending [Watter et al., 2015], the representation with dynamic constraints can be learned on
policy at the same time as a reinforcement learning algorithm learns a task [van Hoof et al., 2016].
They compared different types of auto-encoders to learn visual and tactile state representations
and use this representation to learn manipulation task policies for a robot. Sharing the same idea
of embedding dynamic constraints into auto-encoders, Deep Variational Bayes Filters (DVBF) are
an extension of Kalman filters which learn to reconstruct the observation based on a nonlinear
state space using variational inference [Karl et al., 2016]. The reconstruction from a non linear
state space based on a model inspired by a Deep Dynamical Model (DDM) [Wahlström et al.,
2015] and E2C [Watter et al., 2015] is proposed in [Assael et al., 2015]. It is argued that the model
is adapted for better training efficiency and it can learn tasks with complex non-linear dynamics
[Assael et al., 2015]. Their result shows improvements over the PILCO model [Deisenroth and
Rasmussen, 2011], which learns a state representation by only minimizing the reconstruction error
without constraining the latent space.

3.2 Learning a forward model

Last subsection reviewed how reconstructing an observation is useful to learn state representations.
Now we will review how temporal dynamics of the system can also help the same purpose. Therefore
we present approaches that rely on learning a forward model to learn a state space. The general
idea is to force states to efficiently encode the information necessary to predict the next state
(Fig. 3).

As described in Section 2, in the case of the forward models we study here, the model is used
as a proxy for learning st. The model firstly makes a projection from the observation space to
the state space to obtain st and applies a transition to predict ŝt+1. The error is computed by
comparing the estimated next state ŝt+1 with the value of st+1 derived from the next observation
ot+1 at the next time step.

Note that forward models can benefit from the observation reconstruction objective presented
in Section 3.1. As an example, the works previously presented in Section 3.1 [Goroshin et al.,
2015, van Hoof et al., 2016, Watter et al., 2015, Assael et al., 2015, Karl et al., 2016] belong
to the auto-encoder category of models. However, they all predict future observations to learn
representations and therefore, they as well belong to the family of forward models.

The method these works use to combine forward models and auto-encoders consists in mapping
ot to st, and then compute the transition, with the help of at, to obtain ŝt+1. ŝt+1 is then remapped
onto the pixel space in form of a vector ôt+1. The error is then computed pixel-wise between ôt+1

and ot+1. One common assumption is that the forward model in the learned state space is linear
[Goroshin et al., 2015, van Hoof et al., 2016]. The transition is then just a linear combination of
st and at as in Eq. 6. W,U and V are either fixed or learned parameters [van Hoof et al., 2016].

ŝt+1 = W ∗ ŝt + U ∗ at + V (6)

In a similar way, the Embed to Control model (E2C) based on variational auto-encoders uses
Eq. 6 to compute the mean µ of a distribution and learn supplementary parameters for the variance
σ of the distribution [Watter et al., 2015]. Then, ŝt+1 is computed with Eq. 7:

ŝt+1 ∼ N (µ = W ∗ ŝt + U ∗ at + V, σ) (7)

Using distributions to compute ŝt+1 allows to use the KL-divergence to train the forward model.
This method is also used in [Karl et al., 2016] and [Krishnan et al., 2015]. However, the transition
model in [Krishnan et al., 2015] considers the KL-divergence

between P (st+1) and P (ŝt+1) and does not use the loss of the reconstruction based on ot+1 and
ôt+1.

The use of at is a common feature in most forward models based approaches. In fact, as several
future states st+1 from a given state are possible, st alone does not contain enough information to
predict st+1. The only approach that gets rid of the need for actions assumes that the transition
from st−1 to st allows to deduce the transition from st to st+1 and uses several past states to
predict st+1 [Goroshin et al., 2015]. Actions are therefore implicit in this approach.
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Another use of a forward model, connected to an intrinsic curiosity model (ICM) which helps
agents explore and discover the environment out of curiosity when extrinsic rewards are sparse or
not present at all, is proposed in [Pathak et al., 2017]. In this model, an intrinsic reward signal is

computed from the forward model’s loss function Lfwd (f̂ is the forward function learned by the

model, φ̂ is the encoding model):

Lfwd(φ̂(ot+1), f̂(φ̂(ot), at)) =
1

2
‖ f̂(φ̂(ot), at)− φ̂(ot+1) ‖

2
2 (8)

It is argued that there is no incentive in this model for st to learn to encode any environmental
features that cannot influence or are not influenced by the agent’s actions. The learned exploration
strategy of the agent is therefore robust to uncontrollable aspects of the environment such as the
presence of distractor objects, changes in illumination, or other sources of noise in the environment
[Pathak et al., 2017].

Forward models are therefore able to learn representations of controllable factors: in order to
predict next state, the model must understand the object being controlled. This kind of represen-
tation can also be learned through a controllability prior [Jonschkowski et al., 2017].

If a robot acts by applying forces, controllable things should be those whose accelerations
correlate with the actions of the robot. Accordingly, a loss function can be defined to minimize
the covariance between an action dimension i and the accelerations in the state dimension i. The
following formula from [Jonschkowski et al., 2017] makes it explicit:

Controllabilityi = e−cov(at,i,st+1,i), (9)

where cov(at,i, st+1,i) is the covariance between the state st+1,i at dimension i and time t and
at,i (the action at dimension i that led to such state). Note that here the learned state is assumed to
represent an acceleration. Related with this prior also is the notion of empowerment [Klyubin et al.,
2005], defined as an information-theoretic capacity of an agent’s actuation channel to influence its
own evolution. The concept of empowerment is related to accountability or agency, i.e., recognizing
when an agent is responsible for originating the change of state in the environment.

3.3 Learning an inverse model

The forward model approach can be turned around and, instead of learning to predict next state
(given previous state and action), use current and next states to predict the action between them.
The inverse model framework is used in SRL by firstly performing a projection of ot and ot+1

onto learned states st and st+1, and secondly, by predicting the action ât that would explain the
transition of st into st+1 (Fig. 4). As before, learning this model can impose constraints on the
state representation to be able to efficiently predict actions.

An example using inverse models to learn state representations is the Intrinsic Curiosity Module
(ICM) [Pathak et al., 2017]. It integrates both an inverse and forward model and the authors
argument that using an inverse model is a way to bypass the hard problem of predicting original
observations (e.g., pixels in images), since actions have much lower dimension.

A different kind of inverse model is used in [Shelhamer et al., 2017], where the policy gradient
algorithm used to learn a controller is augmented with auxiliary gradients from what is called
self-supervised tasks. In this case, in lack of external supervision, the prediction error resulting
from interactions with the environment acts as a self-supervision. They learned a inverse dynamics
model to retrieve from ot and ot+1 the action at performed between the two successive time steps.

Note that connections among forward and inverse models are important: inverse models can
provide supervision to learn representations that the forward model regularizes by learning to
predict st+1 [Agrawal et al., 2016]. In practice, this is implemented by decomposing the joint loss
function as a sum of the inverse model loss plus the forward model loss [Agrawal et al., 2016].
Conversely, [Zhang et al., 2018] shows in an ablation study that using an inverse model (along
with a forward model and an auto-encoder) is the factor that contributes the most to learning a
good state representation. Another approach including forward and inverse models, as well as a
reconstruction of the observation including multimodal inputs is [Duan, 2017].

3.4 Using feature adversarial learning

Adversarial networks [Goodfellow et al., 2014] can also be used for unsupervised learning of state
representations. The use of the Generative Adversarial Network (GAN) framework to learn state
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representations is proposed in [Chen et al., 2016]. They present a model named InfoGAN that
achieves the disentanglement of latent variables on 3D poses of objects. As described in [Chen et al.,
2016], the goal is to learn a generator distribution PG(o) that matches the real distribution Pdata(o).
Instead of trying to explicitly assign a probability to every o in the data distribution, GANs learn
a generator network G that samples from the generator distribution PG by transforming a noise
variable z ∼ Pnoise(z) into a sample G(z). The noise variable has two components. A first one,
zG, randomly sampled from a Gaussian distribution, and a second one with smaller dimension,
zU , sampled from a uniform distribution. The latter is used during training so that the G(z)
has a high mutual information with zU . Then, the sample from zU has a high correlation with
G(z) and can thus be considered as a state representation. This generator is trained by playing
against an adversarial discriminator network D that aims at distinguishing between samples from
the true distribution Pdata and the generator distribution PG. The authors succeed to learn states
corresponding to object orientations from sequences of images.

Another example of SRL with Generative Adversarial Networks is presented by [Donahue et al.,
2016, Dumoulin et al., 2016]. BiGAN and ALI are extensions of regular GANs to learn the double
mapping from image space to latent space, and from latent space to image space. They allow
the learned feature representation to be useful for auxiliary supervised discrimination tasks, and
competitive with unsupervised and self-supervised feature learning. The BiGAN has also been
experimented in [Shelhamer et al., 2017] to learn state representations used for reinforcement
learning, but lead to lower performance than their own approach (Section 3.2).

3.5 Exploiting rewards

As opposed to RL, the use of a reward value in SRL is not compulsory. However, it can be used as
supplementary information to help differentiating states and to learn task related representations.
Rewards are helpful to disentangle meaningful information from a noisy or distracting one, and to
tie the representation to a particular task. However, in a multi-task setting, this approach can also
be used to learn a generic state representation that is relevant to different tasks.

A predictable reward prior which estimates r̂t+1 given a state st and an action at is implemented
in [Munk et al., 2016] (along with a forward model) to learn a state for reinforcement learning.
Another approach that exploits reward is presented in [Oh et al., 2017]. Besides predicting the
reward similarly to [Munk et al., 2016], they also learn to predict the value (discounted sum of
future reward) of the next state and exploit this capacity to rely on planning multiple steps for
policy learning. The author state that predicting rewards for multiple steps is much easier that
predicting observations, while giving the important information for learning a policy.

A dimensionality reduction model called reward weighted principal component analysis (rw-
PCA), as another way of using rewards for state representation was proposed in [Parisi et al.,
2017]. rwPCA uses data collected by an RL algorithm and operates a dimensionality reduction
strategy which takes reward into account to keep the information into a compressed form. The
compressed data is afterwards used to learn a policy.

On the same idea of constructing a task-related representation, [Jonschkowski and Brock, 2015]
and [Lesort et al., 2017] use rewards as supplementary information to impose constraints on the
state space topology. One of these constraints makes the space more suited to discriminate between
states with different rewards. The state space is then particularly adapted to solve a given task.
This constraint is called causality prior in [Jonschkowski and Brock, 2015] and [Lesort et al.,
2017]. It assumes that if we have two different rewards after performing the same action in two
different time steps, then the two corresponding states should be differentiated and far away in the
representation space (Equation 10).

LCaus(D, φ̂) = E[e−‖ŝt2−ŝt1‖
2

| at1 = at2 , rt1+1 6= rt2+1] (10)

3.6 Other objective functions

In this section, we present other approaches assuming various specific constraints for state repre-
sentation learning. Following [Lake et al., 2016], the learning process can be constrained by prior
knowledge (either initially provided by the designer or acquired via learning) to allow the agent to
leverage existing common sense, intuitive physics, physical laws, mental states of others, as well as
other abstract regularities such as compositionality and causality. This kind of a priori knowledge
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is called prior [Bengio et al., 2012], [Jonschkowski and Brock, 2015], [Lesort et al., 2017],[Jon-
schkowski et al., 2017], and is defined through cost functions. These loss functions are applied in
the state space in order to impose the required constraints to construct the model projecting the
observations in the state space. In the following, ∆st = st+1−st is the difference in between states
at times t and t+ 1, and D is a set of observations.

• Slowness Principle
The slowness principle assumes that interesting features fluctuate slowly and continuously
through time and that a radical change inside the environment has low probability [Wiskott
and Sejnowski, 2002, Kompella et al., 2011].

LSlowness(D,φ) = E[‖ ∆ st ‖
2] (11)

This assumption can have other naming depending on the unit of st, e.g., prior of time
coherence (time) [Jonschkowski and Brock, 2015, Lesort et al., 2017] or inertia (velocity)
[Jonschkowski et al., 2017].

• Variability
The assumption of this prior is that positions of relevant objects vary, and learning state
representations should then focus on moving objects [Jonschkowski et al., 2017].

LV ariability(D,φ) = E[e−‖st1−st2‖] (12)

e−distance is used as a similarity measure that is 1 if the distance among states is 0 and goes
to 0 with increasing distance between states. Note that this prior is counter-balancing the
slowness prior introduced above as the slowness alone would lead to constant values.

• Proportionality
The proportionality prior introduced in [Jonschkowski and Brock, 2015] assumes that for the
same action in different states, the reactions to this action will have proportional amplitude
or effect. The representation then vary in the same amount for two equal actions in different
situations.

LProp(D,φ) = E[(‖ ∆st2 ‖ − ‖ ∆st1 ‖)2|at1 = at2 ] (13)

• Repeatability
This prior states that two identical actions applied at similar states should provide similar
state variations, not only in magnitude but also in direction [Jonschkowski and Brock, 2015].

LRep(D,φ) = E[e−‖st2−st1‖
2

‖ ∆st2 −∆st1 ‖2| at1 = at2 ] (14)

• Dynamic verification
Dynamic verification [Shelhamer et al., 2017] consists in identifying the corrupted observation
otc in a history of K observations ot where t ∈ J0,KK. Observations are first encoded into
states and the sequence is classified by a learned function f to output the corrupted time
step. Negative samples are produced by incorporating observations from a wrong time step
into the sequence of images. This discriminative approach forces SRL to encode the dynamics
in the states.

• Selectivity
States can be learned by using the idea that factors such as objects correspond to ‘inde-
pendently controllable’ aspects of the world that can be discovered by interacting with the
environment [Thomas et al., 2017]. Knowing the dimension K of the state space, the aim is

to train K policies πk with k ∈ J1,KK. The goal is that the policy πk causes a change in s
(k)
t

only, and not in any other feature. To quantify the change in s
(k)
t when actions are taken

according to πk, the selectivity of a feature k is:

Lsel(D,φ, k) = E

[

‖ s
(k)
t+1 − s

(k)
t ‖

∑

k′ ‖ s
(k′)
t+1 − s

(k′)
t ‖

|st+1 ∼ P a
st,st+1

]

(15)

11



where P a
st,st+1

is the environment transition distribution from st to st+1 under action a. The

selectivity of s
(k)
t is maximal when only that single feature changes as a result of some action.

Maximizing the selectivity improves the disentanglement of controllable factors in order to
learn a good state representation.

Table 1: Classification of the reviewed SRL models with regards to the learning objectives they
implement and the information they use (actions or rewards)
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AE [Mattner
et al., 2012]

no no no yes no no

Priors [Jon-
schkowski
and Brock,
2015]

yes no no no no yes

PVE [Jon-
schkowski
et al., 2017]

yes no no no no no

E2C [Watter
et al., 2015]

yes yes no yes yes no

ML-DDPG
[Munk et al.,
2016]

yes yes no no no yes

VAE/DAE
[van Hoof
et al., 2016]

yes yes no yes yes no

AE [Finn
et al., 2015]

yes no no yes no no

DVBF [Karl
et al., 2016]

yes yes no yes yes no

[Goroshin
et al., 2015]

yes yes no yes yes no

ICM [Pathak
et al., 2017]

yes yes yes no no no

[Shelhamer
et al., 2017]

yes no yes no no no

VPN [Oh
et al., 2017]

no yes no no no yes

DDM [As-
sael et al.,
2015]

yes yes no yes yes no

AE
[Wahlström
et al., 2015]

yes yes no yes yes no

[Thomas
et al., 2017]

yes no no yes no no

PCA [Cur-
ran et al.,
2015]

no no no yes no no
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PCA [Cur-
ran et al.,
2016]

no no no yes no no

rwPCA
[Parisi et al.,
2017]

no no no yes no yes

[Magrans de
Abril and
Kanai, 2018]

yes yes no no no yes

InfoGAN
[Chen et al.,
2016]

no no no yes no no

BiGAN
[Donahue
et al., 2016]

no no no yes no no

[Duan, 2017] yes yes yes yes yes no
DARLA
[Higgins
et al., 2016]

no no no yes no no

[Zhang et al.,
2018]

yes yes yes yes yes no

AE [Alver-
naz and
Togelius,
2017]

no no no yes no no

world model
[Ha and
Schmidhu-
ber, 2018]

yes yes no yes no no

3.7 Using hybrid objectives

Reconstruction of data in the observation space, forward models, inverse models, exploitation of
rewards, and other objective functions presented in the previous sections are different approaches to
tackle the state representation learning challenge. However, these approaches are not incompatible,
and models often take advantage of several objective functions at the same time.

For instance, interactively learning to poke by poking [Agrawal et al., 2016] is an example of
empirical learning of intuitive physics using ot and og as current and goal images, respectively, in
order to predict the poke action. The latter is composed by the location, angle and length of the
action that sets the object in the state of goal image og. Simulations shows that using the inverse
model or jointly the inverse and forward models improve performance at pushing objects and that
when the training data available is reduced, the joint model outperforms the inverse model with a
performance comparable to using a considerably larger amount of data.

The authors in [Finn et al., 2015, Goroshin et al., 2015] use the reconstruction of the observation
and the slowness principle in their SRL approach. [Goroshin et al., 2015, van Hoof et al., 2016,
Watter et al., 2015, Assael et al., 2015, Karl et al., 2016, Ha and Schmidhuber, 2018] combine the
reconstruction of observation and forward models. [Jonschkowski and Brock, 2015, Lesort et al.,
2017] take advantage of rewards with a causality prior (Eq. 10) and several other objective functions
such as the slowness principle, proportionality, and repeatability to learn state representations.
We illustrate, as an example, the combination of objective functions from [Watter et al., 2015] in
Figure 6.
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ŝt+1
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Figure 6: Example of hybrid model (E2C [Watter et al., 2015]) combining a set of previously
described loss term blocks of previous figures. Several errors are used to learn the state represen-
tation using at the same time a forward model error, a reconstruction error and a constraint on
the representation that enforces the transition to be linear.

Table 1 summarizes all the reviewed models by showing, for each one, which proxies or surrogate
functions have been used for learning: reconstruction of observation, prediction of the future
(forward model) and/or retrieving actions (inverse model), and what kind of information is used:
action and/or rewards.

4 Building blocks of State Representation Learning

In this section, we cover various implementation aspects relevant to state representation learning
and its evaluation. We refer to specific surrogate models, loss function specification tools or
strategies that help constraining the information bottleneck and generalizing when learning low-
dimensional state representations,

4.1 Learning tools

We first detail a set of models that through an auxiliary objective function, help learning a state
representation. One or several of these learning tools can be integrated in broader SRL approaches
as was previously described.

4.1.1 Auto-encoders (AE)

Auto-encoders (AE) are a common tool used to learn state representations that are widely used for
dimensionality reduction [Hinton et al., 2006, Wang et al., 2012, Wang et al., 2016]. Their objective
is to output a reproduction of the input. Its architecture is composed by an encoder and a decoder.
The encoder projects the input to a latent space representation (often in lower dimension than the
input), which is re-projected to the output afterwards by the decoder. In our problem setting, ot
is the input, st the latent representation, and ôt is the output. The dimensionality of the latent
representation can be chosen depending on the dimension of the state representation we want to
learn and enforcing it in such case. The AE will then automatically learn a compact representation
by minimizing the reconstruction error between input and output. The usual loss function L to
measure the reconstruction error is the mean squared error (MSE) between input and output,
computed pixel-wise. However, it can be any norm.

Loss = L(x, x̂) (16)

Auto-encoders are used in different SRL settings [Finn et al., 2015, Mattner et al., 2012]; PCA
can also be considered as a particular case of auto-encoder [Curran et al., 2016].
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4.1.2 Denoising auto-encoders (DAE)

The main issue of auto-encoders is the risk of finding an easy but not satisfying solution to minimize
the pixel reconstruction error. This occurs when the decoder reconstructs a kind of average looking
dataset. To make the training more robust to this kind of mean optimization solution, denoising
auto-encoders (DAE) [Vincent et al., 2008, Vincent et al., 2010] can be used. This architecture
adds noise to the input and makes the “average" image a more corrupted solution than the original
AE. The DAE architecture is used in [van Hoof et al., 2016] to learn visual and tactile state
representations. The authors compared state representations learned by a DAE and a variational
auto-encoder (VAE) by using the learned states in a reinforcement learning setting. They found
that, in most cases, DAE state representation models gather less rewards than those with VAE
state representations.

4.1.3 Variational auto-encoders (VAE)

The SRL literature has also benefited from the variational inference used in variational auto-
encoders (VAE) [Kingma and Welling, 2013, Jimenez Rezende et al., 2014] to learn a mapping
from observations to state representations. A VAE is an auto-encoder with probabilistic hidden
cells: it interprets S as a set sampled from distribution P (st|ot). It then approximates P (st|ot)
with a model qθ(st|ot) called the approximate posterior or recognition model. θ represents the
parameters of the model, which, for instance, can be a neural network. The VAE also provides
a generator which approximates P (ot|st) with a model pφ. φ represents the parameters of the
generator. Both models p and q are then trained by minimizing the error between ot and ôt and
the KL divergence between qθ(st|ot) and the normal distribution N (µ = 0, σ = I) (where µ is the
mean of the distribution, σ its covariance matrix and I the identity matrix). VAE-related models
that do not use exactly the original VAE, but variations of it, are [Watter et al., 2015, Assael et al.,
2015, Krishnan et al., 2015, van Hoof et al., 2016, Karl et al., 2016, Higgins et al., 2016].

4.1.4 Siamese networks

Siamese networks [Chopra et al., 2005] consist of two or more identical networks that share their
parameters, i.e., have the exact same weights. The objective of the siamese architecture is not to
classify input data, but to differentiate between the inputs (same versus different class or condition,
for example). This kind or architecture is useful to impose constraints in the latent space of a neural
network. For example it can be used to learn similarity metrics or time dependencies, as it is done
in time-contrastive networks [Sermanet et al., 2017].

In the context of SRL, siamese networks can be employed to implement some priors previously
presented in Section 3.6. For example, two siamese networks can be used to compute a similarity
loss and optimize the slowness principle (or temporality prior) between st and st+1 as in [Lesort
et al., 2017]. In [Goroshin et al., 2015] they use three siamese networks to compute three consecutive
states at the same time that are fed into another model that predicts the next state.

4.2 Observation/action spaces

This section presents a summary of the dimensionality of the observation, state and action spaces,
as well as the applications in which the reviewed papers are evaluated (Table 2). The continuity or
discreetness of the action space is also shown. These are good proxies to assess the complexity of
the problem tackled: the higher the dimensionality of observation and action, as well as the smaller
we want the dimension of the state to be, the harder is the task of learning a state representation
because much more information will need to be processed and filtered in order to keep only the
information that is substantial.

We note also that the reviewed literature often presents results with presumably higher dimen-
sionality of learned states than theoretically needed (e.g. using state of dimension 6 for a 2 joints
robotic arm). The dimensionality of the state may seem obvious when we are learning a state
that should (according to the task) correlate with a clear dimension (position, distance, angle)
in the environment. However, deciding the dimensionality of the state space is not always trivial
when we are learning more abstract states with no clear dimension associated to it. For instance,
visually representing the state associated to an Atari game scene in a complex situation is not as
easy to interpret nor assess in comparison to the dimensionality of states associated to a position
of an arm, its angle or velocity. Indeed, since the learning objective we reviewed are just proxies to
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Figure 7: Representation of siamese encoders: networks with tied (shared) parameters. In SRL,
siamese networks allow to set constraints via loss functions among several states, e.g. in robotic
priors.

guide state representation learning, they can lead to something different that the ideal and min-
imal state representation. In particular, increasing the capacity of the model by augmenting the
dimensionality of the state above the dimension of the true state can lead to a better optimization
of the learning objectives.

Table 2: Settings of each approach: characteristics of each environment and state representation
dimensions

Reference Observa-
tion
Dimen-
sion

State
Di-
men-
sion

Action
Dimen-
sion

Environment Data

Priors [Jon-
schkowski
and Brock,
2015]

16*16*3 2 25 dis-
crete

Slot cars, mobile
robot localization

Raw images

PVE[Jon-
schkowski
et al., 2017]

Unavailable 5 Discrete Inverted pendulum,
ball in cup, cart-
pole

Raw images

E2C [Watter
et al., 2015]

40*40*3 8 Discrete Agent with obstacle Raw images

E2C [Watter
et al., 2015]

48*48*3 8 Discrete Inverted pendulum Raw images

E2C [Watter
et al., 2015]

80*80*3 8 Discrete Cart-pole Raw images

E2C [Watter
et al., 2015]

128*128*3 8 Discrete 3 link arm Raw images

[van Hoof
et al., 2016]

20*20*3 3 Continuous Pendulum swing-
up

Raw images

[van Hoof
et al., 2016]

228 3 Continuous Real-robot manipu-
lation task

Tactile
data

ML-DDPG
[Munk et al.,
2016]

18 or 24 6 2 discrete 2 link arm Joint posi-
tion

ML-DDPG
[Munk et al.,
2016]

192 or 308 96 36 dis-
crete

Octopus Joint posi-
tion
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Reference Observa-
tion
Dimen-
sion

State
Di-
men-
sion

Action
Dimen-
sion

Environment Data

[Finn et al.,
2015]

240*240*3 32 Continuous Robotics manipula-
tion tasks

Raw images

DVBF [Karl
et al., 2016]

16*16*3 3 Unavailable Pendulum Raw images

DVBF [Karl
et al., 2016]

16*16*3 2 Unavailable Bouncing ball Raw images

DVBF [Karl
et al., 2016]

16*16*3 12 Unavailable 2 bouncing balls Raw images

[Goroshin
et al., 2015]

3 frames
of 32*32

2 2 discrete NORB dataset Raw images

ICM [Pathak
et al., 2017]

42*42*3 3 4 discrete 3D VizDoom navi-
gation game

Raw images

ICM [Pathak
et al., 2017]

42*42*3 2 14 dis-
crete

Mario Bros Raw images

[Shelhamer
et al., 2017]

Unavailable Un. Unavailable Atari Raw images

VPN [Oh
et al., 2017]

3*10*10 Un. 4 discrete 2D navigation Raw images

VPN [Oh
et al., 2017]

4*84*84 Un. 4 discrete Atari Raw images

[Curran
et al., 2016]

Unavailable 4 5 discrete Mountain car 3D Unavailable

[Curran
et al., 2016]

Unavailable 12 243 dis-
crete

6 link swimmer Unavailable

[Higgins
et al., 2017]

64*64*3 64 8 discrete Mujoco, Jaco arm Raw images

[Higgins
et al., 2017]

84*84*3 64 99 dis-
crete

DeepMind Lab Raw images

rwPCA
[Parisi et al.,
2017]

21*21*3 Auto. 2 contin-
uous

Picking a coin and
putting it on a goal

Raw images

[Parisi et al.,
2017]

20 Auto. 2 contin-
uous

Hit a ball with a
ping-pong paddle

Position of
objects

[Magrans de
Abril and
Kanai, 2018]

40 2 Continuous Explore a 3 room
simulated 2D map

Position of
agent

[Duan, 2017] 240*240*4 512 4 contin-
uous

Poking cube Raw images
+ depth

[Zhang et al.,
2018]

10*10*9 256 4 discrete Maze feature vec-
tor

[Zhang et al.,
2018]

Unavail-
able

200 continuous Mujoco joints

4.3 Evaluating learned state representations

This section provides a review of validation metrics and embedding quality evaluation techniques
used across the literature. These are summarized in Table 3.

The most common way of evaluating the quality of the learned state space is by letting an agent
use the states to learn a control task, and thus assessing whether the representation is general
enough to be transferable. This method is for example applied to evaluate the performance of an
SRL algorithm using reinforcement learning [Jonschkowski and Brock, 2015, Jonschkowski et al.,
2017, Munk et al., 2016, van Hoof et al., 2016, Finn et al., 2015, Pathak et al., 2017, Shelhamer
et al., 2017, Oh et al., 2017, Parisi et al., 2017, Assael et al., 2015].
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Table 3: Evaluation methods for state representation learning and their respective objective.

Metric Evaluation objective

Task performance [Jonschkowski and Brock,
2015, Jonschkowski et al., 2017, Munk et al.,
2016, van Hoof et al., 2016, Finn et al., 2015,
Pathak et al., 2017, Shelhamer et al., 2017, Oh
et al., 2017, Parisi et al., 2017, Assael et al., 2015,
Higgins et al., 2016, Zhang et al., 2018, Alvernaz
and Togelius, 2017]

Assesses that the information needed to solve a
task is contained in st. The evaluation is done
in reinforcement learning algorithms.

Disentanglement metric score [Higgins et al.,
2016]

Measures the disentanglement of the latent fac-
tors. It assumes that generative factors are
known and interpretable. Used in transfer learn-
ing, object recognition.

Distortion [Indyk, 2001] Measures the preservation of local and global ge-
ometry coherence in unsupervised representation
learning.

NIEQA (Normalization Independent Embed-
ding Quality Assessment) [Zhang et al., 2012]

Measures the local & global neighborhood em-
bedding quality assessment; not limited to iso-
metric embeddings. Used in manifold learning.

KNN-MSE [Lesort et al., 2017] Measures the degree of preservation of the same
neighbors in between the latent space and the
ground truth.

Supervised regression [Jonschkowski et al., 2017] Evaluates the performance of a supervised re-
gression between the learned states and the
ground truth.

However, this approach is often very costly and inefficient in terms of time, computation and
data. Also, various state-of-the-art RL algorithms may be applied to learn a policy and may
result in very different performances for a given state representation. The uncertainty inherent to
RL therefore makes RL algorithms sufficient but not practical nor appropriate to be a necessary
condition to validate a particular state representation. In consequence, it would be desirable to
have an intermediate manner to assess the representation that is independent of the algorithm
applied to complete the task and there are, indeed, several more direct ways to assess the learned
state space. For example, visual assessment of the representation’s quality can be done using
a Nearest-Neighbors approach as in [Sermanet et al., 2017, Pinto et al., 2016]. The idea is to
look at the nearest neighbors in the learned state space, and for each neighbor, retrieve their
corresponding observation. Visual inspection can then reveal if these two observations indeed
correspond to nearest neighbors in the ground truth state space s̃ we intend to learn.

While the nearest neighbor coherence can be assessed visually, KNN-MSE is a quantitative
metric derived from this qualitative information [Lesort et al., 2017]. Using the ground truth state
value for every observation, KNN-MSE measures the distance between the value of an observation
and the value of the nearest neighbor observations retrieved in the learned state space. A low
distance means that a neighbor in the ground truth is still a neighbor in the learned representation,
and thus, local coherence is conserved.

For an observation o, KNN-MSE is computed using its associated learned state s = φ(o) as
follows:

KNN-MSE(s) =
1

k

∑

s′∈KNN(s,k)

||s̃− s̃′||2 (17)

where KNN(s, k) returns the k nearest neighbors of s (chosen with the Euclidean distance) in the
learned state space S, s̃ is the ground truth associated to s, and s̃′ is the ground truth associated
to s′.

One of the characteristics that a good representation should possess is to produce a disentangled
representation of variation factors. The evaluation of these characteristics can be done using the
selectivity prior (see Section 3.6 and Eq. 15) from [Thomas et al., 2017]. This prior cares about the
independence among variations of the representation under each action. However, it is applicable
mainly if actions are known to be independent.
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Another way to quantitatively compare the degree of disentanglement reached by a model
is using the disentanglement metric score [Higgins et al., 2016]. It assumes that the data is
generated by a process in which the generative factors are known, interpretable, and that some are
conditionally independent. In order to measure the disentanglement, it uses a simple low-capacity
and low VC-dimension linear classifier’s accuracy (reported as disentanglement metric score). The
classifier’s goal is to predict the generative factor that was kept fixed for a given difference between
pairs of representations from the same latent factor.

Other metrics from the area of manifold learning can be used, such as distortion [Indyk, 2001]
and NIEQA [Zhang et al., 2012]; both share the same principle as two quantitative measures of
the global quality of a representation: the representation space should, as much as possible, be an
undistorted version of the original space.

Distortion [Indyk, 2001] gives insight of the quality of a representation by measuring how the
local and global geometry coherence of the representation changes with respect to the ground truth.
It was designed in the embeddings context as a natural and versatile paradigm for solving problems
over metric spaces.

NIEQA (Normalization Independent Embedding Quality Assessment) [Zhang et al., 2012] is a
more complex evaluation than distortion that measures the local geometry quality and the global
topology quality of a representation. NIEQA local part checks if the representation is locally
equivalent to an Euclidean subspace that preserves the structure of local neighborhoods. NIEQA
objectives are aligned with KNN-MSE [Lesort et al., 2017], as a measure to assess the quality
of the representation, especially locally. The global NIEQA measure is also based on the idea of
preserving original structure in the representation space, but instead of looking at the neighbors,
it samples “representative” points in the whole state space. Then, it considers the preservation of
the geodesic distance between those points in the state space.

One last mechanism to assess SRL methods is to use supervised learning to learn a regression
from the learned representation to its ground-truth [Jonschkowski et al., 2017]. The training and
test sets are separated into two datasets to evaluate if the regression can generalize to unseen
states. The assumption is that this regression measures how well meaningful features are encoded
in the state. A good generalization would show a good encoding.

4.4 Evaluation scenarios

Datasets used to validate state representation learning include varied, but mainly simulated, envi-
ronments because they are easier to reproduce and generate. Unlike in image recognition challenges
where MNIST digits or ImageNet datasets prevail, in state representation learning, a varied set
of regular video games or visuomotor tasks in robotics can be found as a test suite for robotics
control. Examples of simulated environments include, among others:

• Pendulum (Inverted or classical): The goal is to represent the state of the pendulum [Watter
et al., 2015, Jonschkowski et al., 2017, van Hoof et al., 2016, Mattner et al., 2012]. The
pendulum starts in a random position, and the objective is to swing it up so it stays upright
(there is no specified reward threshold at which the task is considered solved).

• Cart-Pole: consists of an inverted pendulum attached to a cart which moves along a friction-
less track; the system is controlled applying +1 or -1 force to the cart, and a reward of +1
is provided for every time step that the pole remains upright. The episode ends when the
pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the
center1 ([Watter et al., 2015], [Jonschkowski et al., 2017]).

• Atari games [Bellemare et al., 2013]: mostly low (2D) dimensional simulated environments
with different agents and goals. In these games, states can be represented through different
variables (time in achieving a task, amount of bonus, keeping alive, etc.) [Shelhamer et al.,
2017, Oh et al., 2017].

• More advanced test games include VizDoom, where the levels passed, reward accumulated
and exploration levels are used as evaluation metrics [Pathak et al., 2017, Alvernaz and
Togelius, 2017]. Likewise, Mario Benchmark [Karakovskiy, 2012] is a platform designed for
reinforcement learning based on the “Super Mario Bros" video game. This test suite is for
example experimented in [Curran et al., 2016, Pathak et al., 2017].

1https://github.com/openai/gym/wiki/Leaderboard#pendulum-v0
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• Other evaluation benchmarks tested in the reviewed works in this survey include simulated
octopus arms [Engel et al., 2006, Munk et al., 2016], labyrinths [Thomas et al., 2017], navi-
gation grids [Magrans de Abril and Kanai, 2018, Oh et al., 2017], driving cars [Jonschkowski
and Brock, 2015], or mountain car scenarios [Curran et al., 2016]. Another example is the
bouncing ball, where the goal is to learn a representation of one bouncing ball position in 2D
(x,y) [Karl et al., 2016].

• In the robotics domain we can find benchmarks on robot manipulation skills [Finn et al., 2015,
van Hoof et al., 2016] such as Baxter pushing a button [Lesort et al., 2017], grasping [Finn
et al., 2015], stabilizing [van Hoof et al., 2016], poking objects [Agrawal et al., 2016, Duan,
2017] or balancing a real pendulum [Mattner et al., 2012]. Nevertheless, some approaches
achieve to learn in real environment scenarios, for instance, with mobile robots that explore
an arena [Jonschkowski and Brock, 2015].

Many of the latter simulated scenarios are part of Universe and OpenAI Gym [Brockman
et al., 2016] or DeepMind Labs [Beattie et al., 2016]. These benchmarking tasks used in the most
prominent state representation learning literature are summarized in Table 2.

5 Discussion and future trends

In this section, we first discuss the implications of SRL for autonomous agents and the assessment,
comparison and reproducibility of the representation learned. Finally, we explore the consequences
of SRL on the interpretability of machine learning algorithms.

5.1 SRL models for autonomous agents

SRL methods provide unsupervised tools for autonomous agents to learn representations about
the environment without extra annotations. They need, however, that the agent gathers data to
learn. Therefore, the role of environment exploration is an important dimension to investigate in
SRL. If the space is not sufficiently explored by the agent, acquisition of varied observations and
exposure to actions that lead to optimal performance can be hindered [Pathak et al., 2017].

One way to incorporate exploration in SRL is to integrate curiosity or intrinsic motivations
[Oudeyer et al., 2007] in the algorithm that collects data. The overall idea of this approach is
to complement the extrinsic reward by an intrinsic reward that favors states where SRL makes
the most progress. This is done for example in the Intrinsic Curiosity Module (ICM) [Pathak
et al., 2017] by defining an intrinsic reward linked to the forward model error which encourages
exploration. This approach is improved in [Magrans de Abril and Kanai, 2018] by balancing this
exploratory behavior with an homeostatic drive to also favor actions that lead to familiar state-
action pairs. The reverse question of how the learned state space can influence the performance
of intrinsic motivation approaches [Péré et al., 2018] is also relevant. The automatic exploration,
designed to maximize the quality of a learned state representation, is a field to be further explored
in order to build high quality representations.

Another approach to gather enough relevant data could be to perform data augmentation by
adding data from simulation; however, the problem is to make the model benefit from simulation
data for real life applications, a problem that is known as the reality gap [Mouret et al., 2013].
Nevertheless, using both kinds of data was shown to improve results in particular applications
[Bousmalis et al., 2017]. An interesting research direction is therefore to study how to exploit
simulation data to improve SRL for real world applications.

Another problem to ultimately perform SRL autonomously (i.e., without manual parameter
tuning) is the choice of the state representation dimension, which is made empirically in most
reviewed approaches. The challenge of deciding the dimensionality automatically can be related
to a bias-variance trade-off, as the dimensionality of the representation constrains the capacity of
the model. Indeed, increasing the states dimension augments the capacity of the model, which, as
a result, will be better at reducing the training error, but also leads to overfitting. As discussed in
Section 4.2, learning criteria can be better optimized by models with large capacity, and thus, an
automatic process is prone to over estimate the dimension needed.

To avoid choosing manually the state dimension, it is possible to choose automatically a number
of features from a larger set such that they have a certain variance and are orthogonal [Parisi et al.,
2017]. It can be done by using PCA to produce a set of features in which the most significant ones
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are selected with respect to the chosen variance. PCA can also be modified to select reward related
components [Parisi et al., 2017]. Although the variance has to be fixed a priori, the authors claim
that this is usually easier than choosing the state dimension. Extending this technique to other
state representation approach could be an interesting research direction.

5.2 Assessment, comparison and reproducibility in SRL

The assessment challenge of SRL is two-sided. First, there is no easy nor certified way for validat-
ing a learned representation. Secondly, the lack of common evaluation frameworks makes a fair
comparison between approaches difficult.

As mentioned in Section 4.3, the most objective method to evaluate the quality of represen-
tations is to check if the state representation learned can be used by an RL algorithm to solve a
task more efficiently. However, this assessment is uncertain and unstable given the stochasticity of
reinforcement learning algorithms [Henderson et al., 2017]. Moreover, it is not obvious which RL
algorithm is the best choice, and thus, several should be used in the comparison. In practice, a
large amount of policy evaluation runs is therefore required in order to provide a robust assessment,
which is possible in simulation but is seldom applicable on real robots, given the robots fragility and
experimentation time involved. In this case, it is therefore interesting to use several of the other
measures presented in section 4.3, that only give partial information on the state representation
quality, but are possible to apply for a comparison with a ground truth state.

Comparing approaches from published results is also particularly hard because of the high
variability of the environments and data used in the different approaches (as illustrated in Ta-
ble 2). This points to the need of an evaluation framework incorporating several tasks and several
evaluation metrics similar to the ones proposed for reinforcement learning such as the DeepMind
Control Suite [Tassa et al., 2018]. Reproducibility guidelines with proper experimental techniques
and reporting procedures, as pointed in [Henderson et al., 2017] for RL, should also be defined for
SRL. In the mean time, as there is not yet an ideal method for state representation assessment,
researchers should at least make public their simulation environment (with possible ground truth),
and use simulation settings from other approaches to provide fairer comparisons and facilitate the
method reproducibility. Furthermore, we strongly encourage authors to entirely describe their
experiments, in particular, report their data and models’ characteristics.

5.3 Providing interpretable systems

In 2018, European Union regulations on algorithmic decision-making include a “right to expla-
nation", “right to opt-out" and “non discrimination" of models [Goodman and Flaxman, 2016].
Artificial intelligence research is thus granted with an opportunity to further provide meaningful
explanations to why algorithms work the way they do. The interpretability of results in machine
learning is however a challenging problem that needs proper definition [Lipton, 2016]. In any case,
monitoring the degree to which AI systems show the same thinking flows as humans is invaluable
and crucial; not only to explain how human cognition works, but also to help AI make better and
more fair decisions [Lake et al., 2016].

We define interpretability in the SRL context as the capacity for a human to be able to link
a variation in the representation to a variation in the environment, and be able to know why the
representation was sensitive to this variation. As SRL is designed to be able to give this level of
interpretability, it could help improving the understanding we have about learning algorithms’ out-
put. Indeed, the higher the dimension, the less interpretable the result is for humans. Therefore,
the dimensionality reduction induced by SRL, coupled with the link to the control and possible dis-
entanglement of variation factors, could be highly beneficial to improve our understanding capacity
of the decisions made by algorithms using this state representation.

6 Conclusion

State Representation Learning algorithms are designed to find a way to compress high-dimensional
observation data into a low and meaningful dimensional space for controlled systems. These models
only require the agent’s observations, its performed actions and, optionally, the reward of the
associated task.
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This work aims at presenting an accessible guide to learn about SRL approaches, the existing
tools for evaluation and the common simulation settings used as benchmark. We presented the
learning objectives of the state of the art approaches on SRL and their resemblances and differences.
We discussed afterwards the use of SRL for autonomous agents, the difficulties for comparing
existing approaches and the interpretability of results.

A general advice when building SRL models would be to integrate as many learning objectives
as possible, depending on the available data. As an example, one could use a reconstruction
objective for linking the state space to the observations, combined with a predictive objective
(forward model) to capture dynamics, and a reward-based objective to apprehend the effects of
actions performed. More general priors could also be added to force the state space to be coherent
and understandable for humans. While many models integrate several of these objectives, no
proposed model currently includes all of them together.

As SRL is designed to automatically learn representations from a set of unlabeled observations,
it could be used in future work to learn from evolving environments and could be a step towards
continual or lifelong learning. Another area to explore in the future is the integration of exploration
strategies for data collection specifically designed to be able to improve the state representation
learned.
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