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Abstract

Neurons in the primate middle temporal area (MT) encode information about
visual motion and binocular disparity. MT has been studied intensively for
decades, so there is a great deal of information in the literature about MT
neuron tuning. In this study, our goal is to consolidate some of this infor-
mation into a statistical model of the MT population response. The model
accepts arbitrary stereo video as input. It uses computer-vision methods to
calculate known correlates of the responses (such as motion velocity), and
then predicts activity using a combination of tuning functions that have pre-
viously been used to describe data in various experiments. To construct the
population response, we also estimate the distributions of many model pa-
rameters from data in the electrophysiology literature. We show that the
model accounts well for a separate dataset of MT speed tuning that was not
used in developing the model. The model may be useful for studying relation-
ships between MT activity and behavior in ethologically relevant tasks. As
an example, we show that the model can provide regression targets for inter-
nal activity in a deep convolutional network that performs a visual odometry
task, so that its representations become more physiologically realistic.
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1. Introduction

The middle temporal cortex (MT) receives strong feedforward input from
early visual areas V1, V2, and V3 (Maunsell and Van Essen, 1983; Markov
et al., 2014), as well as direct sub-cortical input (Sincich et al., 2004; Born
and Bradley, 2005). It projects to the higher-level middle superior temporal
and ventral intraparietal areas, and also receives strong feedback connections
from these. Electrical stimulation of MT affects perception of visual motion
(Nichols and Newsome, 2002). Inactivation or damage of MT impairs mo-
tion perception (Newsome and Pare, 1988; Rudolph and Pasternak, 1999)
and the ability to smoothly follow a moving object with the eyes (Newsome
et al., 1985). Illusions in speed perception have also been linked with subtle
properties of MT neuron responses (Boyraz and Treue, 2011).

Consistent with these effects, many neurons in MT respond strongly to
visual motion. The spike rates of individual MT neurons vary with a num-
ber of stimulus features, including direction and speed of visual motion, and
binocular disparity. Many MT neurons are sensitive to motion in depth, i.e.
toward or away from the eyes (Czuba et al., 2014). MT is the earliest visual
region in which a substantial number of neurons solve the motion “aperture
problem”, responding to the actual direction of motion of a stimulus, rather
than the component of motion that is orthogonal to local edges, which re-
quires only local computations (Pack and Born, 2001; Smith et al., 2005). In
summary, MT exhibits a particular representation of visual motion, which is
similar in scope to scene flow (Mayer et al., 2015).

Although much is known about this representation, and its causal role in
visual motion perception, some aspects of the relationship between the rep-
resentation and ethologically relevant functions are less clear. For example,
the accuracy of smooth-pursuit eye movement, self-motion perception, and
motion-based segmentation may be sensitive to particular tuning properties
or population statistics, in addition to artificial disruptions of MT activity.
Computational models can be used to study such relationships, and sophis-
ticated computational models of MT responses have been developed (Nishi-
moto and Gallant, 2011; Baker and Bair, 2016). However, we wondered if
a new model could be developed that spans a more comprehensive range of
MT response phenomena, and captures MT response statistics in more de-
tail. Rather than building on existing mechanistic models of MT, we instead
pursued an empirical model, in which we directly specify the neurons’ tuning
curves. This approach allows us to approximate the response statistics in
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almost arbitrary detail, without requiring a complete understanding of how
these responses arise in the brain.

1.1. Deep representations and realistic neural function

A potential application of this model is to make the internal representa-
tions of deep networks more physiologically realistic. In general, deep learn-
ing may facilitate development of visual cortex models with more ethologi-
cally realistic functions. For example, various deep networks excel in scene
segmentation (Chen et al., 2016, 2017; He et al., 2017), depth estimation from
stereo disparity (Žbontar and LeCun, 2016), and scene flow (Mayer et al.,
2015). The internal visual representations of deep networks that have been
trained for object recognition have striking relationships with representations
in the ventral stream (Yamins et al., 2014; Cadieu et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Hong et al., 2016; Yamins and DiCarlo, 2016) (re-
latedly, Güçlü and van Gerven (2017) found that action-recognition CNNs
were predictive of function magnetic resonance imaging data from the dorsal
stream), but there are also striking differences (Tripp, 2017).

Our empirical model of MT may provide regression targets for interme-
diate network layers, helping to impose a physiologically realistic represen-
tation. A related approach was taken by Arai et al. (1994), who optimized
a two-layer network model of superior colliculus with two cost terms, one
(applied to the output) related to the task, and the other (applied to the hid-
den layer) derived from neural activity. More recently, Yamins et al. (2014)
trained deep networks to approximate recordings of neurons in the inferotem-
poral cortex. The resulting networks accounted for much of the variance in
held-out inferotemporal neural data. Interestingly, IT predictions of similar
quality were obtained simply by training the networks for object recognition,
although the neural dataset was small enough (5760 images) that overfitting
was possible in this case. Other groups have reported good results training
deep networks to emulate neural recordings in the retina (McIntosh et al.,
2016), V1 (Kindel et al., 2017; Klindt et al., 2017; Cadena et al., 2017), and
V4 (Oliver and Gallant, 2016). McIntosh et al. (2016) found that a deep
network generalized better across stimulus types than other models, and also
reproduced sub-Poisson noise scaling found in the retina. We previously
trained an intermediate layer of a deep network, which had motion-energy
components in a lower layer, to emulate a simplified empirical model of MT
activity, and then trained the full network to estimate self-motion speed and
direction from video (Tripp, 2016). We extend this approach with the present
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(more detailed) empirical model in section 2.8. This approach has advantages
and disadvantages compared to using MT data directly for regression targets.
The main disadvantage is reduced physiological validity. Advantages are the
possibility of unlimited training data, and the ability to directly manipulate
tuning statistics, to allow detailed exploration of the relationships between
representations and and behavior.

2. Methods

2.1. Structure of the empirical model

Our model produces approximations of MT spike rates directly from input
video. We focus on producing spike rates, rather than spike sequences. As
an aside, given these rates, it is straightforward to produce Poisson spike
sequences (Dayan and Abbott., 2001), including those with noise correlations
that are realistic for MT (Tripp, 2012).

The model structure is sketched in Figure 1. The model requires five
fields as input. The field values are defined at each image pixel x, y. The five
fields are u(x, y) (horizontal flow velocity), v(x, y) (vertical flow velocity),
d(x, y) (disparity), c(x, y) (contrast), and a(x, y) (attention). Section 2.2
below discusses calculation of these fields.

The response of each neuron is approximated as a nonlinear-linear-nonlinear
(NLN) function of these fields. The first nonlinear step requires calculation
of four additional fields for each neuron, each of which is a point-wise non-
linear function of the five input fields. We refer to these functions as tuning
functions (see details in Section 2.3). Each of these tuning functions is used
to scale the neuron’s response to a different stimulus feature. Specifically, we
calculate gs(u, v, c) (a function of flow speed and contrast), gθ(u, v) (a func-
tion of flow direction), gd(d) (a function of disparity), and gg(a, c) (a function
of attention and contrast). Whereas the first five fields are correlates of MT
responses (e.g. velocity), these additional fields represent nonlinear tuning
functions of these correlates. In the excitatory part of a unit’s receptive field,
each of these fields has a monotonic relationship with spike rates when other
fields are held constant.

The full model therefore requires calculation of four times as many of these
tuning-function fields as there are neurons with distinct sets of parameters.
The model has uniform response statistics across the visual field (similar to
convolutional networks), so there is one such set of parameters per distinct
response channel in the MT layer. This number can be specified at run time,
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but we would expect it to normally be on the order of 100-1000, therefore
400-4000 of these fields must be calculated by the full model. One additional
field per neuron is then calculated as the point-wise product of these fields
(consistent with data from Rodman and Albright, 1987; Treue and Mart́ınez
Trujillo, 1999). We refer to this as the neuron’s tuning field,

t(x, y) = gsgθgdgg. (1)

This completes the first nonlinear stage of the NLN model. Similar to convo-
lutional networks, only one tuning field is needed per channel (feature map),
corresponding to a set of model parameters, regardless of the pixel dimen-
sions of the channel. Henceforward, when we talk about a “neuron model”, it
should be understood that this “neuron model” is ultimately tiled across the
visual field to simulate many neurons with different receptive field centers.

The remaining linear and nonlinear steps consist of a conventional con-
volutional layer, with one channel per MT neuron (we specify the number
of MT neurons at instantiation time, and choose parameters for each one as
discussed below in section 2.4.2). Kernels combine tuning-field values t(x, y)
over a receptive field. However (in contrast with typical convolutional layers
with learned kernels), kernels are parameterized to resemble MT receptive
fields. The kernels include excitatory, direction-selective suppressive, and
non-selective suppressive components. Such components have been found to
account well for MT responses to complex motion stimuli (Cui et al., 2013).
The excitatory component of the kernel models the neuron’s classical recep-
tive field. This component has positive weights and a Gaussian structure,
which is elongated so that the axis of elongation is orthogonal to the neu-
ron’s preferred direction (Raiguel et al., 1995). It spans a single channel
of the tuning-field layer, and therefore has a speed and direction selectivity
that match that channel. The direction-selective suppressive component also
spans a single tuning-function channel. It has negative weights, and is also
modeled as a Gaussian function. Relative to the excitatory kernel, it can
be symmetrically larger, or elongated, or offset. For each neuron, we draw
at random from these spatial relationships with the proportions reported by
Xiao et al. (1997). The preferred direction of this suppressive component
is generally different from that of the excitatory component. We draw this
difference from the distribution in Cui et al. (2013) (their Figure 5). Finally,
the non-direction-selective suppressive component receives the same tuning-
function channel with gθ removed. It has negative weights and an annular
structure that we model as a rectified difference of Gaussians. The full kernel
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is the sum of these components. When we fit tuning curves for speed, dis-
parity, and direction tuning in response to stimuli that are spatially uniform
in these properties, we simplify the kernels as broad Gaussian functions.

The final nonlinearity is,

f(x) = [Ax+B]n+ , (2)

composed of a half-wave rectification ([]+) followed by a power function ([]n).
A and B are a scaling factor and a background spike rate, respectively.

We have chosen this form for our model (versus other possible forms with
different orders of the linear and nonlinear parts), because the linear kernel
must follow at least some of the tuning curves for consistency with data from
Majaj et al. (2007) (see our Figure 7). Also to avoid negative spike rates due
to inhibitory surrounds, the final rectifying nonlinearity must come after the
linear kernel.

2.1.1. Eccentricity and Receptive Field Size

The visual cortex differs from convolutional networks in that the receptive
fields of neurons in many visual areas scale almost linearly with eccentricity
(visual angle from the fovea). This difference could be reduced by remapping
the input images. However, to simplify use of the model with standard
uniform-resolution videos, we instead model the whole visual field uniformly,
as is typical in convolutional networks. There is also variation in receptive
field sizes at any given eccentricity. We modelled the spread of receptive field
sizes on parafoveal receptive fields (2-10 degree eccentricity) from Figure 2
of Maunsell and van Essen (1987).

2.2. Input Fields

The model requires contrast, attention, optic flow, and binocular disparity
fields.

2.2.1. Contrast

The contrast field is calculated using the definition of Peli (1990). This
is is a local, band-limited measure, in contrast with other notions of con-
trast (e.g. root-mean-squared luminance) that are global and frequency-
independent. A local definition is needed to modulate neuron responses ac-
cording to contrast within their receptive fields (as opposed to remote parts of
the image). Frequency dependence allows us to match the contrast definition
to primate contrast sensitivity (Robson, 1966; De Valois et al., 1982a).
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Figure 1: Model structure. The model uses nonlinear-linear-nonlinear models to approxi-
mate neuron responses as functions of optic flow, contrast, disparity, and attention fields.
Optic flow, contrast, and disparity are calculated from input images, as described in the
text. An example of these fields can be seen for a video input with two patches of random
dots moving in opposite directions (i.e., up and down; with far disparity) where the left
patch was attended. Units for flow and disparity maps are deg/sec and deg. Poisson spikes
can optionally be generated at the estimated spike rates to emulate neural activity more
closely, but they are not used in this paper.
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In Peli’s definition, contrast at each spatial frequency band (i) is defined
as a ratio of two functions,

ci(x, y) =
αi(x, y)

li(x, y)
. (3)

The numerator function is,

αi(x, y) = I(x, y) ∗ gi(x, y), (4)

where I is the image, gi is a spatial frequency dependent filter, and ∗ denotes
convolution. The denominator function is,

li(x, y) = Ī +
i−1∑

j=1

αj(x, y), (5)

where Ī is the image mean. Peli suggested cosine log filters as the choice for
gis since an image filtered by a bank of these filters can be reconstructed by
a simple addition process without distortion. However, to relate the contrast
definition more directly to V1, we instead used a bank of Gabor filters with
four different frequencies and four different orientations for a total of 16
contrast channels. We combined these channels in a weighted sum:

c′(x, y) =
16∑

k=1

Akck(x, y), (6)

where Aks were chosen to approximate macaque contrast sensitivity (De Val-
ois et al., 1982a,b).

We then smoothed the resulting contrast field with a 2D Gaussian kernel,
which was meant to approximate integration over V1 cells, and scaled it so
that its mean over the image was equal to the root-mean-squared contrast
measure:

c(x, y) = Ascalegaussfilt(c
′(x, y)). (7)

2.2.2. Attention

Attention is typically driven by task demands, so in general it can not
be derived from images alone (in contrast with saliency). Recent models
approximate top-down influences (Borji and Itti, 2013). However, in the
context of training neural networks that have attention mechanisms (e.g. Xu
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et al., 2015), the attention field should ideally be defined by the network
itself, to align attention modulation of activity with the network’s focus of
attention. Therefore we treated the attention field as an input to the model.
To test the model, and to compare its output with electrophysiology data,
we manually defined attended stimulus regions by drawing polygons around
them in a custom user interface.

2.2.3. Flow and disparity fields

Flow and disparity fields were calculated using computer-vision algo-
rithms. Specifically, we used the Lucas-Kanade method (Lucas and Kanade,
1981) to estimate both optic flow and disparity from images. This generally
produced good fits to MT data (see Results).

The classical Lucas-Kanade algorithm does not capture large displace-
ments, but this limitation is addressed by a multi-scale version of the algo-
rithm (Marzat et al., 2009). In this version, the Gaussian pyramids method
is used to repeatedly halve the image resolution. Flow or disparity is then
estimated at the lowest resolution first. Then at each finer resolution, the
immediate lower-resolution estimate is used to warp the earlier image, and
the Lucas-Kanade algorithm is used to find residual differences between the
warped earlier image and the later image. The multi-scale version of the
algorithm also helps to solve the aperture problem, since it finds estimates
that are consistent with global motion apparent in downsampled images. We
typically used the multiscale algorithm in our simulations, with 3-5 scales.
To simulate combined local and pattern motion selectivity (Pack and Born,
2001), we mixed the outputs of single-scale and multi-scale versions of the
algorithm.

We also explored a variety of other algorithms for flow and disparity
estimation, including semi-global matching (Hirschmuller, 2005), Classic++
(Sun et al., 2010), loopy belief propagation on a Markov random field (Felzen-
szwalb and Huttenlocher, 2006), and a convolutional neural network Žbontar
and LeCun (2016). Several of these methods extrapolated far beyond well-
textured regions, e.g. reporting motion over the whole image in response to
a small stimulus. We interpreted this as being physiologically unrealistic, be-
cause it involves lateral communication over the whole visual field. However
it does not actually expand the units’ classical receptive fields unrealistically,
because there is no response at zero contrast (see Equations 14). For our
experiments, we used the Lucas-Kanade with pyramids, because it is simple
and well established, and we did not find other methods to provide substan-
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tial advantages within the scope of this paper. However, future work may
reveal such advantages.

2.3. Tuning Functions

Given these fields, the next step in approximating a neuron’s activity was
calculation of a new four-channel image that consisted of pixel-wise nonlinear
functions of the fields. Specifically, we calculated gs(u, v, c) (a function of
flow speed and contrast), gθ(u, v) (a function of flow direction), gd(d) (a
function of disparity), and gg(a, c) (a function of attention and contrast).
These functions were adopted from previous studies, as described below.

2.3.1. Speed Tuning

We used a contrast-dependent speed tuning function, (Nover et al., 2005),

gs = exp

(
− [log

(
q(s, c)

)
]2

2σ2
s

)
, (8)

where,

q(s, c) =
s+ s0

sp(c) + s0
, (9)

s =
√
u2 + v2 is motion speed, sp is the preferred speed. The tuning curve

has parameters s0 (offset) and σs (width). Preferred speed is a function of
contrast,

sp(c) =
Apc

c+Bp

, (10)

where c is contrast at each pixel (Equation 7) and Ap and Bp are additional
parameters that define a saturating dependence of preferred speed on con-
trast.

When stimulated with sinusoidal gratings, about a quarter of MT neu-
rons show selectivity for certain spatial and temporal frequencies, rather
than speed (defined as the ratio between spatial and temporal frequencies)
(Priebe et al., 2003). Another quarter of MT neurons are selective to grating
speed, regardless of its spatiotemporal components, and the remaining neu-
rons form a continuum between these two behaviors. A similar distribution
is also observed in V1 (Priebe et al., 2006). However, more complex stimuli
containing a broader spectrum of frequencies, e.g. random dot fields, elicit
in MT selective responses to speed. Since our goal was to apply this model
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on naturalistic stimuli, which have broad frequency contents, we included
speed tuning and ignored selectivity for spatial and temporal frequencies in
the model.

2.3.2. Direction Tuning

Direction tuning was modeled as (Wang and Movshon, 2016),

gθ = exp

(
cos
(
θ − θp

)
− 1

σθ

)
+ an exp

(
cos
(
θ − θp − π

)
− 1

σθ

)
, (11)

where θ = atan2(v, u) is motion direction, θp, σθ, and an are the preferred
direction, direction width, and relative amplitude in null direction (i.e. 180
degrees away from preferred direction), respectively.

2.3.3. Disparity Tuning

Similarly, disparity tuning was modeled using Gabor functions (DeAngelis
and Uka, 2003),

gd = exp


−

(
d− dp

)2

2σ2
d


 cos

(
2πfd(d− dp) + φd

)
, (12)

where dp and σd set the center and width of the Gaussian component and fd
and φd are the frequency and phase of the oscillatory component.

2.3.4. Attention and Contrast

Lastly, the gain function was (Treue and Mart́ınez Trujillo, 1999; Martınez-
Trujillo and Treue, 2002),

gg(a, c) =





Aggc(c), if a = 1

gc(c), if a = 0

(13)

where Ag is the attentional gain and gc, is the contrast response function
defined as:

gc(c) =
Acc

n

cn +Bc

, (14)

where Ac and Bc are the contrast gain, contrast offset, contrast exponent,
and c is contrast at each pixel (Equation 7).
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2.3.5. Binocular Interactions

In many of the electrophysiology experiments that inform the model,
monkeys were free to converge their eyes on a single, flat computer display,
with constant (near zero) binocular disparity. However in a more complex
environment, some MT neurons are tuned for motion-in-depth (Czuba et al.,
2014). To account for such 3D motion encoding of MT neurons, we extended
our model by modifying Equation 2 as,

f(x) = [ALxL + ARxR +B]n+ , (15)

where AL and AR are left and right eye gains, and xL and xR are weighted
sums of tuning functions in left and right eye respectively.

A limitation is that the model of motion-in-depth is not realistically in-
tegrated with the model of binocular disparity. To retain realistic disparity
tuning, we simply used our disparity tuning field, and identical disparity
tuning curves in each eye, so that disparity and motion-in-depth tuning are
orthogonal.

2.4. Model Fitting

2.4.1. Tuning Curve Fits

To test the model, we fit various tuning curves from the electrophysiol-
ogy literature using Matlab’s nonlinear least-squares curve fitting function,
lsqcurvefit (trust-region-reflective algorithm). The fitting procedure for a
given tuning curve selected the parameters of the relevant tuning functions
(e.g. gs(u, v, c)), along with parameters A and B of Equation 2. As the opti-
mization was non-convex, we initiated it from at least 100 different starting
points for each neuron, and took the most optimal answer.

This approach was designed to have a high success rate, in order to reli-
ably support development of a rich statistical model of MT activity. Aside
from failures of the optimization procedure (which we minimized by restart-
ing from many initial parameter values), the approach has two potential
failure modes. The first would arise from a poor choice of nonlinear function,
however we chose functions that are well supported by previous work. The
second would be a failure of the computer vision algorithms to estimate the
relevant parameters from the images. We generally had good results with
the Lucas-Kanade algorithm (see Results).
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2.4.2. Parameter Distributions

We drew the neurons’ tuning parameters from statistical distributions
that were based on histograms and scatterplots in various MT electrophys-
iology papers. The model required distributions of preferred disparity, pre-
ferred speed, speed tuning width, attentional index (Treue and Mart́ınez
Trujillo, 1999), and a number of other tuning properties. As a first step
in approximating these distributions, we extracted histograms and scatter-
plots of various tuning properties from the literature using Web Plot Digitizer
(http://arohatgi.info/WebPlotDigitizer/). We then modelled each histogram
using either a standard distribution (one of Gaussian, log-Gaussian, Gaussian
mixture, gamma, t location-scale, exponential, and uniform), or the Parzen-
window method (Parzen, 1962). For Parzen-window method, we selected the
bandwidths using Silverman’s rule of thumb (Silverman, 1986). In each case,
we chose the distribution model that minimized the Akaike Information Cri-
terion (Akaike, 1974). The parameter distributions are summarized in Table
1.

2.4.3. Correlation between Model Parameters

To make our model more realistic, we looked for studies that examined the
correlation between the tuning parameters in area MT. Bradley and Andersen
(1998) found that the center-surround effects of disparity and direction are
mainly independent of each other, supporting the way we combine them over
the MT receptive field. In another study, DeAngelis and Uka (2003) did not
find a correlation between direction and disparity tuning parameters. They
reported a non-zero correlation between speed and disparity tuning (neurons
with higher speed preference tend to have weak and broad disparity tuning).
However, this correlation was weak (see their Figure 11.A) and therefore we
ignored it in our model. They also found a correlation between the preferred
disparity and the disparity phase of the neurons whose preferred disparity
is close to zero. We included this correlation by modelling the conditional
distribution of disparity phase given the preferred disparity.

2.5. Dynamics of Component and Pattern Selectivity

The neurophysiology of the aperture problem in optic flow has been stud-
ied with overlapping pairs of drifting sinusoidal gratings at different angles,
which together form a percept of a plaid pattern moving in an intermediate
direction. MT is the earliest visual area to solve the aperture problem, in the
sense that many MT neurons respond to the direction of the plaid pattern

13



Table 1: Distribution families used for various tuning parameters, and sources in the
literature from which distributions were estimated. The number in the bracket specifies
the dimension of a parameter, for those that have more than one.

Parameter Distribution Source

Preferred direction Uniform DeAngelis and Uka (2003)

Direction bandwidth Gamma Wang and Movshon (2016)

Null-direction
amplitude

t location-scale Maunsell and Van Essen (1983)

Preferred speed Log uniform Nover et al. (2005)

Speed width Gamma Nover et al. (2005)

Speed offset Gamma Nover et al. (2005)

Attentional index t location-scale Treue and Mart́ınez Trujillo (1999)

Contrast influence
on preferred speed (2)

2D Gaussian mixture Pack et al. (2005)

Contrast influence
on gain (3)

Conditional on
attentional index

Martınez-Trujillo and Treue (2002)

Preferred disparity t location-scale DeAngelis and Uka (2003)

Disparity frequency Log normal DeAngelis and Uka (2003)

Disparity phase
Gaussian mixture
(two components)

DeAngelis and Uka (2003)

Ocular dominance t location-scale DeAngelis and Uka (2003)

CRF size t location-scale Maunsell and van Essen (1987)
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rather than the sinusoidal components (Movshon J, 1985; Tsui et al., 2010).
Pattern selectivity in MT evolves over time (Pack and Born, 2001; Smith
et al., 2005). A rather complete study of MT neural response dynamics has
been conducted by Smith et al. (2005). They examined the responses of 143
MT neurons over cumulative time windows, and reported the Z-transformed
pattern and component-response correlations (Z-scores). They classified each
of the cells, based on their Z-scores in the last time window, as pattern di-
rection selective, component direction selective, or “unclassified”.

Our model approximates the distributions of pattern and component se-
lectivity in each time window, and also realistic trajectories of the mean
selectivities of each category of cells. To reproduce this behavior, we first fit
2D Gaussian distributions to scatterplots of pattern and component selectiv-
ity (Figures 3 and 5 of Smith et al. (2005)). To create a model of an n-neuron
population, we drew n samples from the distribution for each time window.
Then, to model each cell, we grouped together one pattern/component selec-
tivity sample from each time window, as follows. Starting from the final time
window, we classified the pairs to one of the three classes (pattern, compo-
nent, or unclassified, as in (Smith et al., 2005)). Then we used the Hungarian
algorithm (Kuhn, 1955) to match each sample in the second-last time win-
dow with a sample in the last time window. The match minimized the total
of Euclidean distances between matched pairs of samples, except that we
perturbed these distances with Gaussian noise, 0 +/- 2.5SD, to reproduce
overlap between groups in the second-last time window. We continued this
assignment process backwards in time until the pairs of the first time window
were assigned to those of the second.

We produced responses with specified pattern and component correla-
tions by combining pure pattern and component responses. To do this, we
began by drawing a direction-tuning width sample. We then calculated the
correlation between the pattern and component responses, rpc (which de-
pends on the direction-tuning width), and we calculated the partial pattern
and component correlations Rp and Rc from the corresponding Z-scores. We
then constructed a new signal St = F (Sc, Sp,p) where F is a function of
the component-direction-selective response (Sc), pattern-direction-selective
response (Sp), and a vector of parameters p. We found the parameters p in
an optimization process whose objective was to fit the partial pattern and
component correlations (Rp and Rc).
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We tried the simple additive form for F :

St = F (Sc, Sp,p) = p1Sc + p2Sp, (16)

but this gave poor results. We therefore considered three other forms,

1. Multiplicative, St = F (Sc, Sp,p) = p1Sc + p2Sp + p3ScSp,

2. Expansive St = F (Sc, Sp,p) = p1Sc + p2Sp + p3(Sc + Sp)
2,

3. Compressive St = F (Sc, Sp,p) = p1Sc + p2Sp + p3(Sc + Sp)
.5.

(see Results for comparison).

2.6. Comparison With Previous Models

We compared tuning curves of our model to the models of Nishimoto and
Gallant (2011) and Baker and Bair (2016), with some modifications. We
chose these models because they are recent and video-driven. Both build on
a previous influential MT model (Rust et al., 2006). Below we describe our
adaptations of these models. Note that we only use these models to provide
points of comparison with our empirical model, which is otherwise unrelated.

In the model of Nishimoto and Gallant (2011), a video sequence first
passes through a large bank of V1-like spatiotemporal filters with rectifying
nonlinearities. The filter outputs are combined over local neighborhoods
through divisive normalization. Finally, the normalized outputs are weighted
optimally to approximate neural data.

As in Nishimoto and Gallant (2011), we used a bank of N = 1296 filters,
including those with spatial frequencies up to two cycles per receptive field. In
a departure from Nishimoto and Gallant (2011), we used multivariate linear
regression to optimize the weights, as in Rust et al. (2006). More specifically,
to optimize the weights, we generated training and testing movies for each
tuning curve. Each movie was 2000×M frames in length, where M was the
number of data points in the tuning curve. We used the training movie as
input to the model and found the weights that minimized the error function,

E(w) =‖Xtrainw −R‖2 + λ‖w‖2 , (17)

where w ∈ IR10N is the weight vector, Xtrain ∈ IR2000M×10N is a matrix
containing normalized V1 responses (from the spatiotemporal filters) when
the training movie was used as input, R ∈ IR2000M is a vector containing the
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MT responses, and λ is a regularization constant. The optimal weights that
minimize this error function can be computed from,

w =
(
XT
trainXtrain + λI

)−1
XT
trainR, (18)

where T denotes matrix transpose, −1 denotes matrix inverse, and I denotes
the identity matrix.

The model of Baker and Bair (2016) is composed of two cascaded circuits.
The first circuit calculates the motion response while the second calculates
disparity. However, they used only the first circuit to approximate the mo-
tion tuning of MT neurons. We implemented their motion circuity, which
is similar to that of Nishimoto & Gallant, but includes an additional V1
opponency stage.

The motion circuity described by Baker and Bair (2016) included a pop-
ulation of units tuned to different motion directions. However, their popu-
lation did not span multiple motion speeds or texture frequencies. To make
the model respond realistically to a wider range of stimuli, we replaced their
groups of twelve direction-selective units with the same filter bank that we
used for the Nishimoto and Gallant (2011) model (1296 filters). A separate
filter bank was used for each eye (2592 filters in total). We used the same pro-
cedure to find the optimal weights as we did for Nishimoto and Gallant (2011)
model. More specifically, given the normalized responses of spatiotemporal
filters corresponding to the left and right eye Xl

train and Xr
train shown the

same training movie (zero disparity), we first calculated the motion-opponent
suppressed responses in each eye Ol

train and Or
train. For example for the left

eye,

Ol
train =

[
Xl
train − coppYr

train

]
+
, (19)

where Yr
train ∈ IR2000M×N is the result of reordering Xr

train such that each
column corresponding to a filter’s response with direction θ was replaced by
the column corresponding to the opponent filter (i.e., a filter with θ − 180◦

direction) and copp is the motion-opponency parameter (e.g., copp = 0.5 means
the normalized V1 responses from the opponent motion filters are scaled by
0.5 before being subtracted). Finally, []+ denotes half-wave rectification.

We then calculated the binocular-integrated response in the left and right
eye, Ml

train and Mr
train. For example for the left eye,

Ml
train = bOl

train + (1− b)Or
train, (20)
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where b is the binocular-integration parameter. We set b = 0.5.
We defined the error function,

E(w) =‖Ptrainw −R‖2 + λ‖w‖2 , (21)

where w ∈ IR2N is the weight vector, Ptrain ∈ IR2000M×2N is a matrix contain-
ing the concatenated binocular-integrated responses Ol

train and Or
train when

the training movie was used as input, R ∈ IR2000M is a vector containing
the target MT responses after transforming by the inverse of nonlinearity
a exp(bx), and λ is a regularization constant. We finally found the weights
using regularized linear regression, as

w =
(
PT
trainPtrain + λI

)−1
PT
trainR, (22)

where T denotes matrix transpose, −1 denotes matrix inverse, and I denotes
the identity matrix.

After finding the weights, the predicted MT responses to the test movie
was calculated as,

mt = a exp(bPtestw), (23)

where exp() denotes the exponential function, and a and b are the parameters
of this nonlinear function.

2.7. Prediction of Unseen MT Data

We validated the empirical model by predicting a neural dataset that
had not been used to develop or parameterize the model. Specifically, we
used 73 speed-tuning curves from a previous study where MT cells were
shown patches of random-dot stimuli moving in eight different motion speeds
(Boyraz and Treue, 2011). We created model neural populations of different
sizes, and found how well the single most-similar model neuron accounted
for the response of each MT cell. The inputs to the model were random-dot
stimuli that were based on the description in (Boyraz and Treue, 2011).

We also used this dataset to validate and test sensitivity to a related
response distribution parameter (see 3.3), specifically the scale parameter
of the gamma distribution from which we drew the speed tuning widths
(see Table 1). We compared how well our model predicted the speed-tuning
dataset with our original scale parameter versus a range of alternative scales.
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2.8. A Deep CNN for Visual Odometry

A potential application of the empirical model is to shape intermediate
representations of deep networks so that they more closely resemble those of
the primate dorsal stream. To experiment with this approach, we developed
a deep CNN to solve a visual odometry task, and used our empirical model to
train one of the middle layers of the network. Visual odometry is the process
of using visual information to estimate self-motion, a function that probably
involves the dorsal stream. Neurons in the middle superior temporal area
(MST), which receives strong input from MT, respond to large optic flow
patterns such expansion and spiral motion, which are highly relevant to self
motion.

2.8.1. Architecture

We created a deep convolutional network that was based loosely on the the
macaque dorsal visual stream. The network architecture is shown in Figure
3, and Table 2 lists the network parameters. The left and right input layers
(stereo frames) were each followed by a convolutional layer. We then merged
these two layers together and connected the result to the third convolutional
layer. This convolutional layer was followed by a max-pooling layer. These
layers correspond roughly to the primary visual cortex (V1), which includes
binocular neurons and complex cells. We used two convolutional layers to
model each of V2, V3/V3a, MT, and MST, to model a separation between
input and output cortical layers in each area. We added skip-connections
consistent with (Markov et al., 2014). Specifically, the first convolutional
layer corresponding to V3/V3a received input from the last layers of both
areas V1 and V2, and the first convolutional layer of area MT received input
from the last layer of all earlier areas. After the MST layers, we added a
dense layer with 1024 hidden units and an output layer with three units
to estimate medio-lateral, antero-posterior and angular velocities from input
frames.

2.8.2. Dataset

We needed a stereo odometry dataset, with high frame rate, but did
not find suitable existing datasets. We therefore created a new synthetic
dataset in Unreal Engine 4. We used the Modular Neighborhood Pack, which
contains a residential neighborhood that looks fairly realistic.

We used UnrealCV plugin to move a stereo camera system along curvi-
linear paths inside this virtual world. The baseline of the camera system
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Figure 2: Two example stereo frames from our odometery dataset. Both left and right
frames were 76x76 pixels.

was 60mm, which is within the range of human interpupillary-distance. The
dataset consisted of “moves” of six frames each, starting at different locations
and moving along different trajectories. For each move, we drew random
numbers for medio-lateral, antero-posterior and angular velocities. For each
move, we collected six grayscale 76x76 stereo frames (at 60 FPS). Figure 2
depicts two example stereo frames from the dataset.

The dataset had 75000 moves for training and 9000 moves for validation
and testing. For each move, the deep CNN took the stereo sequence as in-
put and medio-lateral, antero-posterior and angular velocities as regression
targets for the output layer. To train the middle layer of the deep CNN,
corresponding to area MT, we calculated dense direction, speed, and dispar-
ity fields (pyramidal Lucas-Kanade method) as well as contrast fields (Peli
method) for every frame of the sequence. For each of these four fields, we
fed the sequence-average field to our empirical model, to produce regression
targets for the MT layer. The target therefore reflects average stimulus fea-
tures over several frames, roughly consistent with the low-pass properties of
MT neurons Bair and Koch (1996).
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Layer # Kernels Kernel Size Shape Pool Nonlinearity

V1-1 256 7 x 7 70 x 70 None ReLU

V1-2 256 7 x 7 70 x 70 None ReLU

V1-binocular 256 7 x 7 64 x 64 3 x 3 ReLU

V2-1 256 7 x 7 21 x 21 None ReLU

V2-2 256 7 x 7 21 x 21 None ReLU

V3-1 128 7 x 7 21 x 21 None ReLU

V3-2 128 7 x 7 21 x 21 None ReLU

MT-1 64 5 x 5 17 x 17 None ReLU

MT-2 64 5 x 5 13 x 13 2 x 2 ReLU

MST-1 128 9 x 9 6 x 6 None ReLU

MST-2 128 9 x 9 6 x 6 2 x 2 ReLU

Dense 1024 ReLU

Output 3 None

Table 2: Structure of the example CNN that we used in the visual odometry task.

Left Img BN C

M BN C BN P C BN C BN M BN C BN C BN M BN C BN C* BN P C BN C BN P BN Dense BN Output

Right Img BN C

V1
V2 V3/V3A MT MST

Figure 3: Structure of the CNN. BN: batch normalization, M:merge layer, C: Convolutional
layer, P: pool layer. *The MT cost is applied at the output of the second convolutional
layer in MT.
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2.8.3. Training

To train the deep network to both approximate odometery and emulate
the empirical model we pursued two approaches. In the first approach, we
first trained the network up to MT-2 layer (see Table 2) to only approximate
MT activity, for forty epochs. We used the root-mean-square error of MT-2
layer outputs and the MT activity targets as the training loss. These target
activities were calculated with a simplified version of our empirical model
where the dynamics of pattern and component selectivity and motion-in-
depth tuning were omitted, and we chose difference of Gaussian kernels as
receptive fields. Each of these kernels was elongated orthogonal to the pre-
ferred direction of its respective unit. After training for MT activity, we
“froze” these layers and trained the rest of the network (i.e. from MST-1
layer to the end) for odometery task, for forty epochs. Here we used the
root-mean-square error of the network outputs and velocity labels in our
odometery dataset as the training loss. Finally to achieve a better perfor-
mance on odometery task, we unfroze all network layers and trained it only
on odometery for another five epochs.

In the second approach, we trained the network on both odometery and
MT activity simultaneously. In this case, our training loss was a linear com-
bination of both MT activity and odometery losses. This combined loss
function can be written as,

E = A1

∑

v

(yv − tv)2 + A2

∑

i

(yi − ri)2, (24)

where tvs are target velocities, yvs are network outputs, ris are normalized
neural responses, computed using our empirical model on input frames, and
yis are unit activities of MT-2 feature maps. Finally, A1 and A2 are linear
weights.

We implemented the convolutional network in Keras (Chollet et al., 2015)
using TensorFlow (Abadi et al., 2016) as a backend, and trained it on an
NVIDIA GeForce GTX Titan Xp GPU.

We used the Adam algorithm (Kingma and Ba, 2014) as the optimizer
with the default parameters. We also used batch normalization (Ioffe and
Szegedy, 2015) in some layers (see Figure 3). Like dropout (Srivastava et al.,
2014), batch normalization has regularization benefits, which reduces over-
fitting, while it also speeds up training.
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2.9. Sensitivity Analysis of Response Features on Odometery Performance

Our model provides the possibility of investigating the influence of in-
dividual MT response features on task performance. To illustrate this, we
chose two response features: (1) direction tuning bandwidth and (2) speed
tuning width. We only used the part of the deep CNN after the layers corre-
sponding to MT (i.e. from MST-1 layer to output layer). Hence, the network
received empirical model responses as input. This simplification allowed us
not only to train faster but to make sure that the change in performance was
directly due to the modification of the response feature under study not the
failure of the deep CNN in emulating the modified response because of that
feature.

3. Results

3.1. Tuning Curve Approximation Examples

We tested how accurately our model could reproduce tuning curves of real
MT neurons from the electrophysiology literature. For each tuning curve, we
generated the same kinds of visual stimuli (e.g. drifting gratings, plaids, and
fields of moving random dots) that were shown to the monkeys. We used
these stimuli as input to the model, and optimized the model parameters to
best fit the neural data.

Table 3 summarizes the results of the tuning curve fits for our model,
which we call Lucas-Kanade Nonlinear-Linear-Nonlinear (LKNLN), and our
adaptations of the previous models by Nishimoto and Gallant (2011) (NG)
and (Baker and Bair, 2016) (BB). Note that Baker and Bair (2016) provide
a software implementation of their model, but it has a small filter bank
(see Methods) that is inadequate for processing many stimuli. We optimized
relevant model parameters individually for each tuning curve. In our LKNLN
model, there are relatively few such parameters, because the tuning curves
are independent, and we did not change the calculation of the input fields.
So only the parameters of the relevant tuning function and final nonlinearity
were optimized. For the NG and BB models we optimized all the models’
variable parameters, including weights of the spatiotemporal filters, for each
tuning curve. Examples of tuning curve fits are shown in the following figures.
Sources of error in our empirical model include non-ideal behavior of the
computer-vision methods operating on input images, and the data falling
outside the tuning curve function family.
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#Tuning Curves LKNLN NG BB

Speed 11 (8) 0.0531 0.1075 0.1654

Speed/Contrast 2 (8) 0.0543 0.2959 0.3650

Attention/Direction 2 (12) 0.0384 0.0848 0.1100

3D Motion 8 (12) 0.2144 NA 0.2450

Stimulus size 2 (7) 0.0667 0.0841 0.0599

Table 3: Summary of RMSE comparison between our model (LKNLN), Nishimoto and
Gallant (2011) (NG), and Baker and Bair (2016) (BB) to the neural data for different
tuning parameters. The second column provides the number of tuning curves (along with
the number of points in each tuning curve). Note that the NG model is monocular, so it
does not reproduce binocular phenomena.

Figure 4 shows the speed tuning curves of four neurons (with different
preferred speeds) where the monkeys were shown fields of random dots mov-
ing with different speeds. Our model approximates the neural data more
closely than our adaptations of the models of Nishimoto and Gallant (2011)
and Baker and Bair (2016).

Figure 5 illustrates the speed tuning of a neuron for moving random
dots in two cases: when dot luminance was high, resulting a high contrast
stimulus (Figure 5A), and when dot luminance was low, resulting a low
contrast stimulus (Figure 5B). As shown in the figure, increasing the contrast
not only modulated the response gain (peak spike rate) but it also shifted
the preferred speed (position of the peak on the speed axis). Our model
reproduces both these phenomena, whereas the previous models reproduce
only the first. Note however that our empirical model does not provide a
mechanistic explanation of the MT data, but only a fit.

Figure 6 shows models’ fits to data on the effect of attending to stimuli in a
neuron’s receptive field. Attending to stimuli modulates responses of different
MT neurons to varying degrees. While our model received attention masks,
there was no mechanism for attention modulation in the other models. In
our adaptations of these models, we modulated their responses with a scalar
gain for attended stimuli. This gain was found such that the mean-squared
error of data and model responses were minimized.

Majaj et al. (2007) showed that motion integration by MT neurons oc-
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curs locally within small sub-regions of their receptive fields, rather than
globally across the full receptive fields. They identified two regions within
the receptive fields of a neuron where presenting the stimulus evoked similar
neural responses. Then, they studied motion integration by comparing the
direction selectivity of MT neurons to overlapping and non-overlapping grat-
ings presented within the receptive field. Since motion integration was local,
the ability of the neurons to integrate the motions of the two gratings was
compromised when gratings were separated. Our model approximates this
neural behavior well (see Figure 7). According to Nishimoto and Gallant
(2011), their model does not account for this phenomenon, and extending
it to do so would require including nonlinear interactions between the V1
filters of the model, which would drastically increase the number of param-
eters, making estimation more difficult. Other previous models that treat
overlapping and non-overlapping features identically (Simoncelli and Heeger,
1998; Rust et al., 2006; Baker and Bair, 2016) would also not reproduce this
phenomenon.

MT neurons also encode binocular disparity, with a variety of responses
across the MT population, including preferences for near and far dispari-
ties, and various selectivities and depths of modulation. Our model closely
approximates a wide variety of MT neuron disparity-tuning curves (Figure
8).

Recent studies (Czuba et al., 2014) have revealed that some MT neurons
respond to 3D motion, confirming area MT’s role in encoding information
about motion in depth. Figure 9 shows the neural responses of two different
neurons to monocular and binocular stimuli. One neuron (Figure 9A-D) is
tuned for fronto-parallel motion while the other neuron is tuned for motion
toward the observer (Figure 9E-H). Our model approximates both types of
neuron.

Size tuning is a result of antagonistic surrounds. Increasing the size of
the stimulus to a certain point (optimal size) will increase an MT neuron’s
response, while larger-than-optimal stimuli evoke smaller responses. Fig-
ure 10 shows an approximation of two size-tuning curves using a symmetric
difference-of-Gaussians kernel, one of three types that we adapt from (Xiao
et al., 1997).

3.2. Dynamics of Pattern and Component Selectivity

Figure 11 shows the distribution and dynamics of pattern and motion
selectivity in the empirical model. The model closely approximates the data
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Figure 4: Speed tuning curves of four MT neurons, plotted on a logarithmic speed axis.
Responses have been normalized so that the peak response of each neuron is equal to 1
. Mean ± SD error for (A): 0.00± 0.06 spike/s (LKNLN), 0.00± 0.18 spike/s (NG), and
0.06±0.21 spike/s (BB); for (B): −0.01±0.06 spike/s (LKNLN), −0.00±0.18 spike/s (NG),
and 0.09±0.23 spike/s (BB); for (C): −0.01±0.06 spike/s (LKNLN), −0.00±0.08 spike/s
(NG), and 0.11± 0.21 spike/s (BB); for (D): −0.00± 0.02 spike/s (LKNLN), −0.00± 0.02
spike/s (NG), and 0.02± 0.09 spike/s (BB). Data replotted from Nover et al. (2005).
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Figure 5: Effect of contrast on speed tuning curves. A, Speed tuning in high contrast.
Mean± SD error: −1.19±3.35 spike/s (LKNLN),−0.18±4.40 spike/s (NG), and 1.55±8.90
spike/s (BB). B, Speed tuning in low contrast. Mean ± SD error: 1.19 ± 2.97 spike/s
(LKNLN), 13.09±17.83 spike/s (NG), and 3.22±24.84 spike/s (BB). Contrast modulates
the response and also shifts the peak (i.e., the preferred speed). While contrast modulates
the response amplitude in all three models, only our model (LKNLN) accurately shifts the
peak. Data replotted from Pack et al. (2005).
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Figure 6: Attentional modulation of direction tuning. A, When the stimulus inside the
RF was not attended. Mean ± SD error: −0.90 ± 2.73 spike/s (LKNLN), −0.02 ± 8.51
spike/s (NG), and 3.34 ± 11.26 spike/s (BB). B, When the stimulus inside the RF was
attended. Mean ± SD error: 0.90±4.63 spike/s (LKNLN), −1.73±7.44 spike/s (NG), and
−3.52± 7.43 spike/s (BB). Neural data for both cases replotted from Treue and Mart́ınez
Trujillo (1999). Our model (i.e., LKNLN) receives attention masks as input, so we defined
the masks so that they did not cover the stimulus for the unattended case and covered for
the attended case. For the other two models, we first found the best fit for the unattended
case by multivariate regression. Given the unattended solution we then found the gain
that minimized the error difference between the attended tuning curve and the modulated
unattended solution.
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Figure 7: Response of an MT cell to gratings and plaids placed within different regions
of the cell’s receptive field (RF). The response magnitude is plotted on the radial axis,
and the angular axis is the direction of motion. A,D, The neuron’s response to grating
stimuli at two different patches within RF. B, E, The neuron’s response to plaids placed
at two different regions over RF. The plaid stimuli are made by overlapping two gratings
oriented 120◦ apart. Since this cell is selective for the motion of plaids independent of the
orientation of their components (gratings), it is classified as a pattern direction selective
(PDS) neuron. D, F, The two grating components of the plaids in (B,E) separated to
different parts of the receptive field. If motion integration in MT cells were global (i.e., if
these cells simply pooled all of their inputs from V1 cells), these plots would be similar plots
as (B,E). Instead, the response in this case is close to the component direction selective
(CDS) prediction, indicating that motion integration in MT cells are local rather than
global. Our model produces realistic responses. Neural data (red) and CDS prediction
(gray) replotted from Majaj et al. (2007); blue is our model.
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Figure 8: Disparity tuning curves of four neurons. Data replotted from (DeAngelis and
Uka, 2003). A, Near (0.00± 1.96 spikes/s; mean error ± SD). B, Far (0.50± 1.58 spikes/s;
mean error ± SD). C, Tuned-zero (−0.43 ± 2.93 spikes/s; mean error ± SD). D, Tuned
inhibitory (1.38± 3.77 spikes/s; mean error ± SD).

from Smith et al. (2005).
As described in the Methods, we experimented with four different ways

of combining pattern and component responses. To compare performance
between these different forms, we used the population Pearson correlation
coefficient between Z-scores that we randomly drew from the distributions,
which were approximated for each time window, and the Z-scores that we
calculated after building the response St based on Sc, Sp, and p, which
we found in the optimization process. Table 4 summarizes the results for a
population of 500 neurons. The best results were obtained by the compressive
form where we linearly combined pattern response, component response, and
a third term, which was constructed by passing the sum of these two responses
through a compressive nonlinearity.

3.3. Parameter Distributions

The empirical model is meant to closely approximate population activ-
ity in MT, so statistical distributions of parameters are also an important
part of the model. Such distributions have frequently been estimated in the
literature. However, past computational models of MT have typically not
attempted to produce realistic population responses, except along a small
number of tuning dimensions (e.g. Nover et al., 2005).

Figure 12 shows nine examples of fits of parameter distributions. In each
case we chose the best of seven different distributions according to the Akaike
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Figure 9: Examples of direction tuning of two MT neurons to monocular and binocular
stimuli. A–D, An MT neuron tuned for frontoparallel motion. A-B, Direction tuning for
gratings presented monocularly to the left (A) and right eye (B). C, Direction tuning for
binocular presentation of identical gratings. D, Direction tuning for gratings drifting in
opposite directions in the two eyes. E–H, Responses of an MT neuron tuned for motion
toward the observer. Direction tuning curves for monocular gratings (E, F), binocularly
matched (G), and binocularly opposite motion (H). Neural data replotted from Czuba
et al. (2014) in red, prediction of our model (LKNLN) in blue, and prediction of Baker
and Bair (2016) model (BB) in gray. Mean ± SD error, A: -1.11 ± 1.77 spikes/s (LKNLN)
and 4.62 ± 10.63 spikes/s (BB), B: -0.25 ± 7.04 spikes/s (LKNLN) and 5.70 ± 11.39
spikes/s (BB), C: -0.61 ± 5.25 spikes/s (LKNLN) and 5.27 ± 9.85 spikes/s (BB), D: -
0.71 ± 12.91 spikes/s (LKNLN) and 8.95 ± 9.40 spikes/s (BB), E: 1.48 ± 2.88 spikes/s
(LKNLN) and 2.84 ± 3.02 spikes/s (BB), F: 0.52 ± 1.30 spikes/s (LKNLN) and 2.58 ±
4.84 spikes/s (BB), G: -2.47± 3.98 spikes/s (LKNLN) and -0.45 ± 1.42 spikes/s (BB), H:
1.42 ± 4.96 spikes/s, (LKNLN) and 8.15 ± 10.85 spikes/s (BB).
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Figure 10: Two examples of size tuning curves. The kernels, which gave rise to the size
tuning in our model (LKNLN), were radially symmetric difference of Gaussians centered
at the centre of video frames (the same as neuron’s receptive field centre). A, Neural
data replotted from DeAngelis and Uka (2003). Mean ± SD error: -0.00 ± 5.32 spikes/s
(LKNLN), 4.21 ± 7.86 spikes/s (NG), and 2.18 ± 6.16 spikes/s (BB). B, Neural data
replotted from Pack et al. (2005). Mean ± SD error: 0.00 ± 4.54 spikes/s (LKNLN), -0.35
± 2.50 spikes/s (NG), and -0.01 ± 0.59 spikes/s (BB).

Form 30-50ms 30-70ms 30-90ms 30-110ms 30-320ms

Additive 0.31 0.52 0.06 0.57 0.53

Multiplicative 0.65 0.98 1.00 0.993 0.80

Expansive 0.99 0.99 0.99 1.00 0.91

Compressive 1.00 1.00 1.00 1.00 0.95

Table 4: Summary of comparison between four different forms of combining component
and pattern direction selective responses. A population of 500 neurons was modelled.
Numbers indicate the population Pearson correlation coefficients between the sampled
and calculated Z-scores based on a specific form for the corresponding time window. For
example, 0.53 in the last column of the second row indicates that ρsampled,calculated = 0.53
where sampled refers to the population of 1000 sampled Z-scores (500 Zcs and 500 Zps)
drawn from the modelled distribution of 30-320ms time window, and calculated means
the Z-scores calculated for Sc, Sp, and St where St was calculated by combining Sc and
Sp signals in the additive form (see Equation 16). The compressive form had the best
performance (highest Pearson correlation) in all time windows.
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Figure 11: Pattern selectivity of empirical model. A-E, Scatterplots of Z-transformed
pattern and component correlations (Zp and Zc) for 500 modelled neurons over time.
The red and blue dots represent the pattern and component neurons, respectively. The
black dots represent neurons which are not classified. For the final time window (E), we
classified each neuron based on its location on the Z-transformed-correlations plane as
in Smith et al. (2005). For other time windows (A-D), we used Hungarian algorithm to
match each sample in a time window (e.g. D) to its latter time window (e.g. E) so that the
total Euclidean distance between matched samples, perturbed with Gaussian noise (0 +/-
2.5SD), was minimized. F, the time evolution of each class. Each data point represents
the average Zp and Zc values, of a particular class, in a time window whose ending time
has been written next to it (see Figures 5-6 of Smith et al. (2005) for comparison with
actual neural data; we do not replot the data here because some of the dots are too dense
to be extracted accurately).
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Figure 12: Examples of parameter distributions. In each case we replot the data (his-
tograms) along with the selected distribution. A-C, speed parameters including preferred
speed (log uniform) in logarithmic space, speed width (gamma), and speed offset (gamma)
(Nover et al., 2005). D-F, disparity parameters including preferred disparity (t location-
scale), disparity frequency (log normal), and disparity phase (Gaussian mixture) (DeAn-
gelis and Uka, 2003). G, Attentional index (t location-scale) (Treue and Mart́ınez Trujillo,
1999). H, Direction bandwidth (gamma) (Wang and Movshon, 2016). I, Ocular dominance
(t location-scale) (DeAngelis and Uka, 2003).

Information Criterion (Akaike, 1974), as described in the Methods.

3.4. Neural Response Predictions

Beyond examining fits of published tuning curves and distributions of
response properties, we further validated the model using a more detailed
dataset of speed tuning in 73 MT cells, from a previous study (Boyraz and
Treue, 2011). This experiment involved random dot stimuli moving coher-
ently at one of eight different speeds (0.5, 1, 2, 4, 8, 16, 32, 64deg/sec).

We approximated the responses of these MT cells by creating a population
of N synthetic neurons of our empirical model. We chose N to be 8, 16, 32,
64, 128, 265, or 1048. At each speed of motion, we recreated ten sequences
of moving random dot stimuli (with the same dot size, density, contrast, and
replotting scheme as the original study) and fed them to the synthetic neural
population. The final response of each synthetic neuron in the population
at each speed was calculated as the average of the ten sequences at that
speed. Next, for each MT cell, we selected the synthetic neuron from the
population that had the highest correlation with that MT cell. We calculated
the coefficient of determination (r2) as the proportion of the variance in the
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Figure 13: Explained variance vs. population size of empirical model. As the popula-
tion of empirical model grows, the probability of having a synthetic neuron with more
similar response increases. Each point and error bar, respectively, represents the average
and standard deviation of 365 (73x5) r2 values (73 MT cells times five different model
populations for any given population size).

MT cell, which was predictable from that synthetic neuron. In summary,
we used a nearest-neighbor approximation of each cell rather than linear-
regression from the full model population.

Because of the stochastic population parameters of the empirical model,
two N-neuron populations sampled from these distributions will not have
identical responses. Therefore, instead of a single N-neuron population, we
created five populations, repeating the above process for each population.

Figure 13 illustrates how the average explained variance for 73 MT cells
increases as the empirical model grows in size. Each point of the curve is
the average of 365 (73x5) r2 values, because there were 73 MT cells and five
different populations for any given population size.

We repeated this process with various scale parameters of the gamma
distribution (see Table 1) from which the speed tuning widths (see Equation
8) were drawn, to validate this parameter and test sensitivity to it. We chose
64 as the population size N and again created five different populations. As
can be seen in Figure 14, there is a modest dependence on this parameter,
and the averaged explained variance is indeed highest when the speed tuning
widths were drawn from our original estimate.

3.5. CNN for Visual Odometery

We trained convolutional neural networks (CNNs) to estimate self motion
from visual input, as described in the Methods. The dataset included natural-

34



0.25 0.5 1 2 4
Speed Tuning W idt h (x Original)

0

20

40

60

80

100

E
x

p
la

in
e

d
 V

a
r
ia

n
c

e
 (

%
)

Figure 14: Explained variance vs. the scale parameter of the speed-tuning-width gamma
distribution of empirical model (see text for details). We changed the scale parameter
by multiplying it with one of [0.25, 0.5, 1, 2, 4] values. The model population size was
64. Each point and error bar, respectively, represents the average and standard deviation
of 365 (73x5) r2 values. Our original scale parameter produced the best predictions on
average.

istic visual stimuli, but since the dataset was synthetic, we had ground-truth
velocity labels. We used the empirical model for MT labels, but we omitted
the dynamics of pattern and component selectivity, as emulating these dy-
namics might require a more complex recurrent network. Figure 15 shows the
validation loss curves of two different networks. CNN-O network was trained
only on odometery task (no emulation of MT responses). CNN-OMT was
trained with a linear combination of both costs (Equation 24). We chose
A1 = 1 and tested different values for A2. We found A2 = 4 to be the best
choice, as larger values prevented the combined validation loss from going
down, and smaller values made the second cost negligible compared to the
first. We also trained a third network, CNN-3Phases, in three phases (as
described in section 2.8.3): we first trained the part of the network up to
MT, with the MT cost (CNN-MT); then the rest of the network with the
odometry cost (with the weights up to the MT layer frozen); and finally the
full network with the odometry cost. Figure 16 shows a scatter plot of ac-
tual velocities (of the validation set) against the velocities predicted by these
three networks. As the correlations between the network-output and target
velocities suggest, all three networks perform quite well.

In Figure 17, we show the MT validation loss curves for CNN-OMT and
CNN-MT (i.e. the first phase of CNN-3Phases). The loss is higher for CNN-
OMT since the network had to learn not only to emulate MT activity targets
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Figure 15: Validation loss curves for odometry task in two networks. CNN-O: the network
was trained only with odometry cost, CNN-OMT: the network was trained simultaneously
with MT and odometery costs.

but also to estimate velocity targets. Although we tried both larger and
smaller values for A2, we could not reduce MT loss any further for CNN-
OMT (data not shown). To confirm that this was in fact due to the odometry
cost, rather than details of the training approach, we continued training of
CNN-OMT with the odometry cost removed. The MT cost then declined
rapidly (dashed line).

3.6. Speed and Direction Tuning of CNN Units

In this section we examine speed and direction tuning of units in the MT
layers of three CNNs: one trained for the odometry task alone (CNN-O), one
trained for MT response approximation alone (CNN-MT), and one trained
with both these cost terms simultaneously (CNN-OMT).

Figures 18 and 19 show tuning curves of CNN-O (trained for the odometry
task alone). Previous work (e.g. Yamins et al., 2014) has shown that task-
trained CNNs often have physiologically relevant representations. Indeed,
our CNN-O units have tuning for both direction and speed of visual motion.
This is unsurprising, because the task depends entirely on the pattern of
direction and speed across the visual field. However, the tuning curves are
somewhat different than physiological tuning curves. Many of the direction-
tuning curves are narrow (Figure 20), and most of the speed tuning curves
are monotonic and high-pass. Also, the tuning curves of many units are quite
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Figure 16: Scatter plots of actual vs. predicted self-motion velocities of the validation
set. Top: CNN-O, the network only trained with odometry loss. Middle: CNN-OMT,
the network trained simultaneously with both MT and odometery losses. Bottom: CNN-
3Phase, the network trained in three phases: (1) up to the MT-2 layer with MT loss, (2)
after the MT-2 layer with odometery loss, (3) the complete network with odometery loss.

Figure 17: Validation loss curves for MT regression. CNN-MT: the network was trained
only with MT cost, CNN-OMT: the network was trained with MT and odometery costs.
The dashed line shows the training curve of CNN-OMT for seven epochs when we trained
only with MT cost (no odometry cost), initialized with 33th-epoch weights that gave us
the lowest MT loss.
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Figure 18: Direction-tuning curves of example units in CNN-O. The red and blue curves
are responses to natural-scene stimuli and random-dot stimuli, respectively. The networks
were trained only on natural-scene stimuli. The direction-tuning curve of each unit is
measured at the maximum of 0.5◦/s and speed at which the unit responded most strongly.
We used minimum of 0.5◦/s because the computer-vision results were less reliable at
lower speeds, resulting in noisier tuning curves. The curves are normalized to their peak
responses.

sensitive to the stimulus used to calculate the curves. In particular, they are
quite different for dot stimuli vs. scene stimuli.

Figures 21 and 22 show example tuning curves for CNN-MT, along with
the target curves for each unit, from the empirical model. Despite fairly
low regression error on the validation stimuli, some substantial differences
are evident in the tuning curves. This is likely because the distribution of
stimuli in the odometry task is different than the distribution of stimuli used
to make the tuning curves. For example, in the task stimuli, horizontal
motion is represented more strongly than motion in other directions, due to
horizontally curvilinear self-motion paths.

The sensitivity of the tuning curves to the stimulus (i.e. random dots
vs. natural scenes) is much lower in CNN-MT than CNN-O (Figure 25, top
vs. middle row), despite the fact that both networks were trained only on
natural scenes, and in fact with the same set of stimuli.

Figures 23 and 24 show example tuning curves of CNN-OMT. This net-
work’s tuning was weakly related to the targets from the empirical model.
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Figure 19: Speed-tuning curves of example units in CNN-O (the same units as in Figure
18). These were measured at the motion direction that evoked the strongest response.
Conventions as in Figure 18.
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Figure 20: Left, half-height widths of direction-tuning curves in the empirical model units
that make up the target population for CNN-MT and CNN-OMT. Second left, half-height
widths of direction-tuning curves in the MT layer of CNN-MT. Second right, half-height
widths of direction-tuning curves in the MT layer of CNN-OMT. Right, half-height widths
of direction-tuning curves in the MT layer of CNN-O (trained only for the odometry task).
Many of these direction-tuning curves are narrow.
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Figure 21: Direction-tuning curves of example units in CNN-MT. The red and blue traces
are tuning with natural-scene and dot stimuli, respectively. The dashed lines indicate
target values from the empirical model. These are slightly different for natural-scene and
dot stimuli, due to differences in interpretation by the computer-vision algorithms, and
differences in contrast between the stimuli. Similar to Figure 18, the direction-tuning
curves were measured at the preferred speeds of the empirical model, or 0.5◦/s, whichever
was greater. Preferred speeds were calculated separately for dot and natural-scene stimuli,
based on their mean contrasts.
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Figure 22: Speed-tuning curves of example units in CNN-MT, calculated at the preferred
directions of the empirical model units. Conventions as in Figure 21.

40



0 180 345 0 180 345 0 180 345 0 180 345 0 180 345 0 180 345 0 180 345 0 180 345

Direct ion (deg)
Network-Natural

Target -Natural
Network-dots
Target -dots

Figure 23: Direction-tuning curves of example units in CNN-OMT. Conventions as in
Figure 21.

For example, the direction-tuning curves are quite broad (see also Figure 20).
This is somewhat surprising, because the MT regression error was only mod-
erately higher in this network than in CNN-MT (root mean-squared error
.048 vs. 0.015). Low regression cost may be possible, despite poor tun-
ing curves, due to good prediction of low activities, and good prediction for
speeds and directions that are most commonly seen in training and testing.
This outcome suggests that changes to the regression cost may be needed
to produce realistic tuning in this context. Possible changes include training
with a different distribution of stimuli, or weighing the cost of rare cases
more heavily. This network CNN-OMT was also sensitive to the stimulus
(Figure 25, bottom row).

Figure 26 compares correlations between target and actual tuning curves
for CNN-MT (top row), CNN-3Phases (second and third rows), and CNN-
OMT (bottom row). These plots show that many tuning curves of CNN-
OMT are poorly related to those of the empirical model, particularly for dot
stimuli. The same can be said for CNN-3Phases especially as the third train-
ing phase (i.e. training only on odometery task) advanced (first epoch vs.
fifth epoch). Also, pursuing different training approaches (see 2.8.3) affected
the tuning similarities, hence CNN-OMT had higher speed-tuning correla-
tions vs. CNN-3Phases with moderately higher direction-tuning correlations.

One effect on tuning of the additional task cost in CNN-OMT (compared

41



0 32 64 0 32 64 0 32 64 0 32 64 0 32 64 0 32 64 0 32 64 0 32 64

Network-Natural

Target -Natural
Network-dots
Target -dotsSpeed (deg/s)

Figure 24: Speed-tuning curves of example units in CNN-OMT. Conventions as in Figure
21.

Figure 25: Correlations between tuning curves with dot stimuli and scene stimuli. Corre-
lations for direction-tuning curves are shown on the left and those for speed-tuning curves
are shown on the right. The correlations are frequently high in the CNN-O network (top),
and very high in the CNN-MT network (middle). However, those in the CNN-OMT net-
work are nearly uncorrelated on average, indicating that tuning in this network is highly
sensitive to details of the stimuli.
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Figure 26: Correlations between empirical-model tuning curves and CNN tuning curves.
Each point indicates these correlations for dot stimuli (horizontal axis) and natural-scene
stimuli (vertical axis). Higher correlations mean that the tuning curves more closely re-
flect the empirical model. This is related to the regression error, but it differs due to the
very different distributions of tuning-curve stimuli vs. training stimuli (for example, most
training stimuli are not at the units’ preferred speed or direction). The top row shows cor-
relations for CNN-MT. Individual units’ correlations are similar for dot and natural-scene
stimuli. The second and third rows respectively show correlations between empirical-model
and network tuning curves in CNN-3Phases after the first and fifth training epochs of the
third training phase (i.e. training only for odometery task). As the third training phase
progresses, the correlations for many units become weaker. The bottom row shows corre-
lations between empirical-model and network tuning curves in CNN-OMT. Correlations
in direction tuning, especially in response to natural scenes, include many high values.
However speed-tuning correlations are more spread. Comparing the two bottom rows
demonstrates how our two approaches of training on both MT activity and odometery
affects the correlations. The CNN-OMT direction-tuning curves are less similar to those
of the empirical model, especially in response to natural scenes, whereas the CNN-3Phases
speed-tuning curves are more different from the empirical model, especially in response to
dot stimuli.
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to CNN-MT) was to reduce the depths of the direction and speed tuning
curves. When tuning curves were normalized to the peak of their targets,
the standard deviation of CNN-OMT direction-tuning curves averaged 0.32
(vs. 0.63 for CNN-MT). Similarly, the standard deviation of the normalized
CNN-OMT speed-tuning curves averaged 0.71 (vs. 0.67 for CNN-MT). The
MT cost affected tuning. For example the speed tuning curves are less uni-
formly high-pass in CNN-OMT than in CNN-O. However, the MT cost did
not make tuning realistic in either CNN-OMT or CNN-3Phases. The two
cost terms may have exerted conflicting influences on tuning during training,
suggesting either a limitation of the model or the training algorithm, or low
specialization of MT for visual odometry.

3.7. Sensitivity Analysis

We studied the sensitivity of visual odometry performance to changes in
the speed-tuning-width and direction-tuning-width distributions, using net-
works that had the empirical model as input. Both of these were drawn from
gamma distributions (see Table 1). A gamma distribution has two param-
eters, shape and scale. We altered each of these two gamma distributions
by changing their scale parameters. Hence, the distribution of speed-tuning
widths and direction-tuning bandwidths changed and we could examine how
these changes influenced odometery performance.

Figure 27 illustrates the RMSE of the odometery task vs. different scale
parameters for gamma distribution of direction-tuning widths. We changed
the bandwidth by multiplying the original scale parameter, which we had
estimated from literature, by each of [0.25, 0.5, 1, 2, 4]. The ∞ symbol refers
to not having any direction selectivity in the model (i.e. direction band-
width is infinite). We found the best performance at four times the original
scale parameter. To verify this, we created another three populations, all
using four times the original scale parameter. The average RMSE of these
four populations was lower than other cases, although the 0.5x, 1x, and 2x
means differed by less than five percent. We tested statistical significance
of differences in mean absolute errors with each of these scale factors, com-
pared to the 4x scale factor, using multiple t-tests. Only the 0.5x errors
were significantly higher (α < .05) with a Bonferroni correction for multiple
comparisons.

Figure 28 shows the RMSE of the odometery task vs. different scale
parameters for gamma distribution of the speed-tuning widths, where we
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Figure 27: Task performance comparison with respect to changing direction-tuning-
bandwidth distribution of the empirical model. To change the distribution we multiplied
the original scale parameter of the modelled gamma distribution with [0.25, 0.5, 1, 2, 4].
The ∞ symbol refers to the case where we omitted direction selectivity of the response.
For four times the original scale parameter case, we created four different populations
(hence the error bar).

applied the same idea for speed-tuning widths as we did for the direction-
tuning bandwidths. In this case, two times the original scale parameter out-
performed the other cases in all four different populations that we tested.
Mean absolute errors in the 2x case were significantly lower than all other
cases (α < .05), accounting for multiple comparisons. This suggests that
odometry task performance is more sensitive to moderate modulations of
speed-tuning widths than to similar modulations of direction-tuning widths.
However, comparing the RMSEs of∞-width cases of Figures 27 and 28, elim-
ination of direction tuning had a noticeably larger impact than elimination
of speed tuning.

4. Discussion

We developed a video-driven, empirical model of activity in the primate
middle temporal area (MT) that emulates many tuning properties and statis-
tics from the literature. The model uses well-supported tuning curves, and
well-established computer-vision methods of generating represented signals
such as speed and disparity.

As far as we know, this is the most thorough video-driven model of MT
population activity developed so far. We expect that it will be useful in
the future for examining relationships between features of MT population
activity and performance of tasks that make use of visual motion information.
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Figure 28: Task performance comparison with respect to changing speed-tuning-width
distribution of the empirical model. To change the distribution we multiplied the original
scale parameter of the modelled gamma distribution with [0.25, 0.5, 1, 2, 4]. The∞ symbol
refers to the case where we omitted speed selectivity of the response.

As a preliminary example, we showed in Figures 27 and 28 that estimation
of ego-motion in our model is sensitive to speed tuning width, but fairly
insensitive to direction tuning width over an order of magnitude. In general,
embedding our model in deep networks that perform visually sophisticated
tasks may help to clarify the functional significance of MT tuning properties.

Compared with other MT models (Perrone and Thiele, 2002; Tsui et al.,
2010), a limitation of our approach is that its responses are not produced
by biologically plausible mechanisms. That is, the model is empirical rather
than mechanistic. This may impair the model’s ability to generalize beyond
the source data.

When we used the empirical model to train convolutional networks, the
interaction between the task cost and the MT-regression cost was complex.
We trained odometry networks to use the empirical MT model as input
(Figures 27 and 28), and these performed as well as odometry networks with
video input (Figure 15), indicating that our model of the MT representa-
tion is compatible with the odometry task. We also trained an odometry
network with video input, and included another cost term that encouraged
an intermediate layer to approximate the empirical model. In this case the
task performance was barely affected, but the network failed to learn an MT-
like intermediate representation. We believe this is a robust negative result.
When we first trained networks with the MT cost alone, the representation
degenerated with further training on the odometry cost (Figure 26). When
we trained with both costs together, and then continued training without the
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odometry cost, the MT approximation rapidly improved (Figure 17), while
the odometry cost went up substantially. Combining the costs did not have
a linear effect on unit tuning. For example, compared to CNN-MT, direction
tuning was narrower in CNN-O, but wider in CNN-OMT (Figure 20). In
summary, while we found that an MT-like representation supports the task,
we were unable to produce a convolutional network that had both an MT-like
internal representation and good task performance. It may be that a different
training strategy is needed, or that more physiologically realistic mechanisms
are needed earlier in the network, such as those in Baker and Bair (2016). A
deeper network may be needed to reduce the coupling between the task and
the MT representation. We also suspect that it is important for the network
to perform a realistic range of tasks, rather than just visual odometry. Opti-
mizing the MT representation for any single task may bias the representation
toward properties that are useful for that task, rather than making it more
realistic.

It would also be useful in future work to explore variations of our CNN-
MT network, aiming to maximize similarity between target and actual tuning
curves. In addition to standard hyperparameter tuning approaches, other
potential avenues include balancing or weighting training data differently
(corresponding more closely to tuning curves), using architectures that con-
form more closely to anatomy (Markov et al., 2014), and inclusion of more
realistic mechanisms such as those in Baker and Bair (2016).

4.1. Alternative Regression Targets for Deep Representations

Training data for intermediate layers of deep networks could also be ob-
tained directly from neural recordings (Arai et al., 1994; Yamins et al., 2014;
McIntosh et al., 2016; Oliver and Gallant, 2016; Kindel et al., 2017) or from
functional magnetic resonance imaging. An ideal neuron-level dataset would
include hundreds of neurons, recorded chronically over at least tens of thou-
sands of trials, with a variety of rich visual stimuli. It is not practical to
collect such data in the macaque brain, as MT is located deep in a sulcus,
preventing use of standard multielectrode arrays without damage to nearby
visual areas. So far, recordings with up to 24-electrode arrays have been
possible in the macaque (Cui et al., 2016). In marmosets, MT is located
on the cortical surface, allowing the use of larger electrode arrays (Solomon
et al., 2014; Chen et al., 2015; Chaplin et al., 2017). This may allow rich MT
activity datasets in the future.

47



However, our approach has several advantages over potential large-scale
MT recordings. One advantage is that the model properties can be modi-
fied, allowing investigation of the influence of individual response features on
task performance. Also, empirical models allow specification of an attention
field at run-time. This should allow generation of attention-modulated ac-
tivity labels that are consistent with the attention focus of a network, rather
than the (perhaps different and/or unknown) attention focus of the animal.
Finally, the model provides infinite labelled data at low cost.
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Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A.,
and Brox, T. (2015). A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation.

McIntosh, L. T., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus,
S. A. (2016). Deep Learning Models of the Retinal Response to Natural
Scenes. Advances in Neural Information Processing Systems 29 (NIPS),
(Nips):1–9.

Movshon J, Adelson E, G. M. N. W. (1985). The analysis of moving visual
patterns. In Pattern Recognition Mechanisms. Eds. Chagas C, Gattass R,
Gross C, volume 54, pages 117–151. Rome:Vatican Press.

Newsome, W. T. and Pare, E. B. (1988). A selective impairment of motion
perception following lesions of the middle temporal visual area (mt). The
Journal of Neuroscience, 8(6):2201–2211.

Newsome, W. T., Wurtz, R. H., Dursteler, M., and Mikami, A. (1985).
Deficits in visual motion processing following ibotenic acid lesions of the
middle temporal visual area of the macaque monkey. The Journal of Neu-
roscience, 5(3):825–840.

Nichols, M. J. and Newsome, W. T. (2002). Middle Temporal Visual Area
Microstimulation Influences Veridical Judgments of Motion Direction. The
Journal of Neuroscience, 22(21):9530–9540.

52



Nishimoto, S. and Gallant, J. L. (2011). A three-dimensional spatiotemporal
receptive field model explains responses of area MT neurons to naturalistic
movies. The Journal of Neuroscience, 31(41):14551–64.

Nover, H., Anderson, C. H., and DeAngelis, G. C. (2005). A logarithmic,
scale-invariant representation of speed in macaque middle temporal area
accounts for speed discrimination performance. The Journal of Neuro-
science, 25(43):10049–60.

Oliver, M. and Gallant, J. (2016). A deep convolutional energy model of v4
responses to natural movies. Journal of Vision, 16(12):876–876.

Pack, C. C. and Born, R. T. (2001). Temporal dynamics of a neural solution
to the aperture problem in visual area MT of macaque brain. Nature,
409(6823):1040–2.

Pack, C. C., Hunter, J. N., and Born, R. T. (2005). Contrast dependence
of suppressive influences in cortical area mt of alert macaque. Journal of
Neurophysiology, 93(3):1809–1815.

Parzen, E. (1962). On estimation of a probability density function and mode.
The Annals of Mathematical Statistics, 33(3):1065–1076.

Peli, E. (1990). Contrast in complex images. Journal of the Optical Society
of America. A, Optics and Image Science, 7(10):2032–2040.

Perrone, J. a. and Thiele, A. (2002). A model of speed tuning in MT neurons.
Vision research, 42(8):1035–51.

Priebe, N. J., Cassanello, C. R., and Lisberger, S. G. (2003). The neural
representation of speed in macaque area MT/V5. Journal of Neuroscience,
23(13):5650–5661.

Priebe, N. J., Lisberger, S. G., and , J. A. (2006). Tuning for spatiotemporal
frequency and speed in directionally selective neurons of macaque striate
cortex. The Journal of Neuroscience, 26(11):2941–2950.

Raiguel, S., Hulle, M., Xiao, D.-K., Marcar, V., and Orban, G. A. (1995).
Shape and spatial distribution of receptive fields and antagonistic motion
surrounds in the middle temporal area (v5) of the macaque. European
journal of neuroscience, 7(10):2064–2082.

53



Robson, J. (1966). Spatial and temporal contrast-sensitivity functions of the
visual system. Josa, 56(8):1141–1142.

Rodman, H. R. and Albright, T. D. (1987). Coding of visual stimulus velocity
in area mt of the macaque. Vision research, 27(12):2035–2048.

Rudolph, K. and Pasternak, T. (1999). Transient and permanent deficits in
motion perception after lesions of cortical areas mt and mst in the macaque
monkey. Cerebral Cortex, 9(1):90–100.

Rust, N. C., Mante, V., Simoncelli, E. P., and Movshon, J. A. (2006). How
MT cells analyze the motion of visual patterns. Nature Neuroscience,
9(11):1421–31.

Silverman, B. W. (1986). Density estimation for statistics and data analysis,
volume 26. CRC press.

Simoncelli, E. P. and Heeger, D. J. (1998). A model of neuronal responses
in visual area MT. Vision Research, 38(5):743–761.

Sincich, L. C., Park, K. F., Wohlgemuth, M. J., and Horton, J. C. (2004).
Bypassing v1: a direct geniculate input to area mt. Nature neuroscience,
7(10):1123–1128.

Smith, M. A., Majaj, N. J., and Movshon, J. A. (2005). Dynamics of motion
signaling by neurons in macaque area MT. Nature Neuroscience, 8(2):220–
8.

Solomon, S. S., Chen, S. C., Morley, J. W., and Solomon, S. G. (2014). Local
and global correlations between neurons in the middle temporal area of
primate visual cortex. Cerebral Cortex, 25(9):3182–3196.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. (2014). Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research (JMLR), 15:1929–1958.

Sun, D., Roth, S., and Black, M. J. (2010). Secrets of optical flow estima-
tion and their principles. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2432–2439. IEEE.

Treue, S. and Mart́ınez Trujillo, J. (1999). Feature-based attention influences
motion processing gain in macaque visual cortex. Nature, 399(575-579).

54



Tripp, B. (2016). A convolutional model of the primate middle temporal
area. In ICANN.

Tripp, B. P. (2012). Decorrelation of Spiking Variability and Improved In-
formation Transfer through Feedforward Divisive Normalization. Neural
Computation, pages 1–27.

Tripp, B. P. (2017). Similarities and differences between stimulus tuning in
the inferotemporal visual cortex and convolutional networks. In Neural
Networks (IJCNN), 2017 International Joint Conference on, pages 3551–
3560. IEEE.

Tsui, J. M. G., Hunter, J. N., Born, R. T., and Pack, C. C. (2010). The
role of V1 surround suppression in MT motion integration. Journal of
neurophysiology, 103(6):3123–38.

Wang, H. X. and Movshon, J. A. (2016). Properties of pattern and com-
ponent direction-selective cells in area MT of the macaque. Journal of
Neurophysiology, page 74.2/OO9.

Xiao, D., Raiguel, S., Marcar, V., and Orban, G. (1997). The Spatial Dis-
tribution of the Antagonistic Surround of MT / V5 Neurons. Cerebral
Cortex, 7:662–677.

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R.,
Zemel, R. S., and Bengio, Y. (2015). Show, attend and tell: Neural image
caption generation with visual attention. In ICML-2015.

Yamins, D. L. and DiCarlo, J. J. (2016). Using goal-driven deep learning
models to understand sensory cortex. Nature neuroscience, 19(3):356.

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. a., Seibert, D., and
Dicarlo, J. J. (2014). Performance-optimized hierarchical models predict
neural responses in higher visual cortex. PNAS.
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