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Abstract

Learning algorithms for energy based Boltzmann architectures that rely on gradient descent are in general computa-
tionally prohibitive, typically due to the exponential number of terms involved in computing the partition function. In
this way one has to resort to approximation schemes for the evaluation of the gradient. This is the case of Restricted
Boltzmann Machines (RBM) and its learning algorithm Contrastive Divergence (CD). It is well-known that CD has a
number of shortcomings, and its approximation to the gradient has several drawbacks. Overcoming these defects has
been the basis of much research and new algorithms have been devised, such as persistent CD. In this manuscript we
propose a new algorithm that we call Weighted CD (WCD), built from small modifications of the negative phase in
standard CD. However small these modifications may be, experimental work reported in this paper suggest that WCD
provides a significant improvement over standard CD and persistent CD at a small additional computational cost.

1. Introduction

Restricted Boltzmann Machines (RBM), originally con-
ceived in the eighties (called harmonium [1]) as a topologi-
cal simplification of Boltzmann Machines (BM), have cap-
tured the attention of the neural network community in the
last decade. This is because of its role as building blocks
of multilayer learning architectures such as Deep Belief
Networks (DBN) [2] or deep autoencoders [3]. RBMs
have been successfully applied in several areas of interest,
such as image classification [3], collaborative filtering [4]
or acoustic modeling [5] to mention only a few.

An RBM is able to learn a target probability distribu-
tion from samples. RBMs have two layers, one of hidden
and another of visible units, and no intra-layer connec-
tions. This property makes working with RBMs simpler
than with regular BMs. This is because the stochastic
computation of the log-likelihood gradient may be more
efficiently evaluated, since Gibbs sampling [6] can be per-
formed in parallel. Similar to BMs, RBM are universal
approximators [7], in the sense that, given enough hidden
units, RBMs can approximate any probability distribu-
tion.

In 2002, the Contrastive Divergence learning algorithm
(CD) was put forward as an efficient training method for
product-of-expert models, from which RBMs are a special
case [8]. It was observed that using CD to train RBMs
worked quite well in practice. This fact is important for
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deep learning with RBMs since some authors have sug-
gested that a multi-layer deep neural network is better
trained when each layer is separately pre-trained, as if it
were a single RBM [3, 9, 10]. Thus, training RBMs with
CD and stacking up RBMs is a possible way to go when
designing deep learning architectures. In any case, the
probabilistic potential of the RBM has been largely over-
looked. More recently, RBMs have found interesting appli-
cations in solving challenging problems that are otherwise
very difficult to tackle [11].

Contrastive Divergence is an approximation to the true,
but computationally intractable, RBM log-likelihood gra-
dient [12, 13]. As such, it is far from being perfect: It
is biased and it may not even converge [14, 15, 16]. Also
CD, and variants such as Persistent CD (PCD) [17] or Fast
Persistent CD [18] can lead to a steady decrease of the
log-likelihood during learning [19, 20]. Furthermore, the
maximum log-likelihood models are such that the learned
probability distribution accumulates most of the probabil-
ity mass only on a small number of states.

In this paper we propose an alternative approximation
to the CD gradient called Weighted Contrastive Divergence
(WCD). The main difference consists in weighting the ele-
ments involved in the negative phase by its relative proba-
bility in the batch. This small but significant change leads
to probability distributions that more closely resemble the
target ones, at the expense of a not very large additional
computational cost. In order to illustrate these points ex-
plicitly, we address small size problems that allow for an
exact evaluation of both the partition function and the
Kullback-Leibler divergence, which is directly related to
the log-likelihood of the data. In this way we can compare
the target and model probabilities of each state, thus show-
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ing the benefits of the scheme proposed at a detailed level.
We also analyze real-world large size problems, where the
partition function can not be evaluated. Due to the in-
tractability of an exact calculation of the probabilities, we
use a Parzen window estimator [21] to measure the quality
of the results, finding that WCD provides a significant im-
provement in the resulting model. A similar approach but
with a different weighting scheme has recently appeared
in [22].

The paper is organized as follows. Section 2 reviews
the RBM model and CD. In section 3 we present the ba-
sic WCD algorithm and its natural extension, Persistent
Weighted CD (WPCD). Experiments showing the benefits
of WCD are described and presented in sections 4 and 5.

2. Standard Contrastive Divergence

Binary Restricted Boltzmann Machines are energy-
based probabilistic models whose energy function is:

Energy(x,h) = −btx− cth− htWx , (1)

where x and h are binary visible and binary hidden vari-
ables, respectively. Hidden variables are usually intro-
duced to increase the expressive power of the model. The
probability distribution of the visible variables is defined
as the marginal distribution

P (x) =

∑
h e
−Energy(x,h)

Z
, (2)

in terms of the partition function

Z =
∑
x,h

e−Energy(x,h) . (3)

The particular form of the energy function allows to
efficiently compute the Free Energy in the numerator

e−FreeEnergy(x) =
∑

h e
−Energy(x,h) of Eq. (2). In addi-

tion, since both P (h|x) and P (x|h) factorize, it is possible
to compute P (h|x) and P (x|h) in one step, making pos-
sible to perform Gibbs sampling efficiently [23]. However,
the evaluation of Z is still computationally prohibitive
when the number of input and hidden variables is large
[24].

The energy function depends on several parameters θ =
{b, c,W }. Given a data set X = {x1, . . . ,xN}, learning
with RBMs consists in adjusting θ so as to maximize the
log-likelihood of the data. In energy-based models, the
derivative of the log-likelihood can be expressed as

−∂ logP (x; θ)

∂θ
= E

P (h|x)

[
∂Energy(x,h)

∂θ

]
− E

P (
∼
x)

[
E
P (h|

∼
x)

[
∂Energy(

∼
x,h)

∂θ

]]
(4)

where the first term is called the positive phase and the
second term the negative phase. Similar to (2), the exact

computation of the derivative of the log-likelihood is in
general computationally prohibitive because the negative
phase in (4) can not be efficiently computed. This is due to
the fact that the negative phase comes from the derivative
of the logarithm of the partition function. Notice that the
log-likelihood of the data and the Kullback-Leibler (KL)
divergence contain the same information and can be used
indistinguishably [25].

The most common learning algorithm for RBMs is called
Contrastive Divergence (CD) [8]. The algorithm for CDk

estimates the derivative of the log-likelihood as

−∂ logP (x; θ)

∂θ
' E

P (h|x)

[
∂Energy(x,h)

∂θ

]
− E

P (h|xk)

[
∂Energy(xk,h)

∂θ

]
(5)

where xk is the last sample from the Gibbs chain starting
from x obtained after k steps

h1 ∼ P (h|x)

x1 ∼ P (x|h1)

...

hk ∼ P (h|xk−1)

xk ∼ P (x|hk) .

For binary RBMs, E
P (h|x)

[
∂Energy(x,h)

∂θ

]
can be easily

computed and yields

• E
P (h|x)

[
∂Energy(x,h)

∂bj

]
= −xj

• E
P (h|x)

[
∂Energy(x,h)

∂ci

]
= −lgst (ci + Wi x)

• E
P (h|x)

[
∂Energy(x,h)

∂W ij

]
= −xj · lgst (ci + Wi x)

where Wi is the i-th row of W and lgst(z) stands for the
logistic function lgst(z) = 1

1+ e−z
.

With these definitions, the modification of the weights
with standard CDk for a training set X = {x1, . . . ,xN}
reads

∆(θ) =
1

N

N∑
i=1

E
P (h|x)

[
∂Energy(x,h)

∂θ

]

− 1

N

N∑
i=1

E
P (h|xk)

[
∂Energy(xk,h)

∂θ

]
. (6)

Notice that the factor 1/N weights equally every exam-
ple in the training set, while the different probability each
state should get comes from the repetition of the examples.
This is important when the probabilities to be learned are
non-uniform.

Nowadays the standard CD algorithm is hardly used in
favor of its improved version PCD, where a continuous
Markov chain is used to sample the negative phase [17].
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3. Weighted Contrastive Divergence

In this section we describe the modification to the family
of CD algorithms proposed in this work, that we generi-
cally call Weighted Contrastive Divergence (WCD). First
we point out the main limitations of CD, then we provide
the description of the WCD algorithm, and finally present
its extension to its Persistent version.

3.1. Non-desirable Behavior of Standard CDk

As previously mentioned, the exact evaluation of the
partition function is in general not possible. Therefore, it
is difficult to compare the behavior of CDk in real world
problems with respect to the exact gradient in Eq. (4).
However, it is expected that the conclusions drawn for
small problems, where all the probabilities can be exactly
computed, may be extrapolated to large ones.

We performed an extensive evaluation of standard CDk

in problems with a tractable number of input units (see
section 4). From these experiments we can conclude that,
in practice, standard CDk shows the following properties:

1. In many cases, standard CDk is not able to obtain
good models for any combination of parameters, i.e,
it is not able to assign large enough probabilities to
the examples in the training set. This effect is more
noticeable when k is small or the number of hidden
units is small. In some cases, it happens even when k
or the number of hidden units is large (see table 2),
and it seems related to the difficulty of the problem.

2. For good combination of parameters, standard CDk

is able to obtain somewhat good models, preserving
the sum of probabilities of the training set. How-
ever, in many cases it tends to concentrate most of the
probability mass in a few states, even in cases where
all states in the training set should receive the same
probability. As a consequence, the likelihood presents
a non-monotonic behavior: it starts increasing, then
reaches a maximum and starts to decrease. Accord-
ingly, the Kullback-Leibler (KL) divergence starts de-
creasing, reaches a minimum and then increases. This
behaviour can be seen in several figures of section 4).

The idea behind the WCD algorithm is to (at least par-
tially) overcome these limitations.

3.2. Description of WCD

Since the positive phase of standard CDk is exactly equal
to the positive phase of the exact gradient, there is no
need to modify it. In contrast, the negative phase in CDk

suffers from extreme and drastic approximations that are
responsible for the limitations described above. For that
reason, we propose a modification of the negative phase of
CDk. This modification consists in weighting differently
every contributing state in the negative phase. We call this
new algorithm Weighted Contrastive Divergence, which we
describe in the following.

The negative phase of the exact gradient from Eq. (4)
reads

∑
∼
x

P (
∼
x) E

P (h|
∼
x)

[
∂Energy(

∼
x,h)

∂θ

]
, (7)

and depends on all states in the space. If we consider,
as usual in practice, optimization with stochastic gradient
ascent, the negative phase proposed by CDk is

NB∑
i=1

1

NB
E
P (h|xi

k)

[
∂Energy(xik,h)

∂θ

]
(8)

where NB is the number of examples in the batch. In this
expression, xik stands for the k-th step Gibbs-sampling
reconstruction of the i-th element xi of the batch. For
small values of NB and k (which is usually the case), it
usually is a very rough approximation.

There are several important differences between the re-
spective negatives phases in (7) and (8):

1. CDk computes the sum over the reconstructions of the
data, whereas the exact gradient computes the sum
over the whole space (which includes the reconstruc-
tions of the data). It means that CDk only explores,
for every batch, a tiny fraction of the space. This is
good from the efficiency point of view, but bad from
the statistical side.

2. CDk weights every element in the sum by a weighting
factor that comes from the k-step sampling distribu-
tions. However, for small k, large space size and mod-
est batch size, repetitions in the reconstructions are
highly unlikely and the implemented weighting factor
is nearly the constant 1

NB
, whereas the exact gradient

weights every element by the model probability P (
∼
x).

It means that CDk for low k approximately gives the
same weight to every element, in contrast to the exact
gradient that gives more importance to elements with
larger probabilities.

The WCD algorithm proposes a way to overcome the
second issue. One can assign larger weights to elements
with larger probabilities by computing the relative proba-
bilities of the elements in the batch

P (xik) =
P (xik)∑NB

j=1 P (xjk)
, (9)

where, as usual, xik is the last sample from the Gibbs chain
starting from xi and obtained after k steps, and NB is the
number of examples in the batch. In this way the proposed
negative phase in WCD becomes

NB∑
i=1

P (xik) E
P (h|xi

k)

[
∂Energy(xik,h)

∂θ

]
. (10)
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Every weight P (xik) in (9) can be efficiently computed.
First, because the partition function Z cancels out. Sec-
ond, because Eq. (9) is equivalent to

P (xik) =
e-FreeEnergy(xi

k)∑NB

j=1 e
-FreeEnergy(xj

k)
(11)

while the Free Energy factorizes in the RBM topology, as
previously mentioned. To summarize, in WCD one evalu-
ates the negative phase as described in Eq. (10), while the
positive phase is the same as in standard CD.

Intuitively, weighting the negative phase as in Eq. (10)
allows to obtain better estimators of the real negative
phase in Eq. (7), which also weights differently every state,
assigning more weight to the states that have a larger
Boltzmann probability. As we will confirm in the experi-
ments with small problems, this modification has a positive
effect on the learning process, allowing to obtain models
with much lower KL values than standard CDk. In ad-
dition, and differently from standard CDk, the proposed
approach fits better the training probability distribution
as it is shown in section 4. Moreover, the KL has a de-
creasing behavior during learning. Therefore, weighting
the negative phase helps overcoming the non-desired be-
havior of standard CDk pointed out in section 3.1. Even
though such a detailed study is unfeasible with real-world
large problems, the approach employed in section 5 seems
to indicate that the use of a weighted negative phase also
improves the statistical representativity of the model.

3.3. Generalization to Weighted Negative Phase

One can easily generalize the previous procedure to any
variant of standard CD. To do so, one changes the re-
constructions of the data in Eq. (10) by a suitable choice
of a set of points Y = {y1,y2, . . . ,yM}, leading to the
Weighted Negative Phase, defined as

M∑
i=1

P (yi) EP (h|yi)

[
∂Energy(yi,h)

∂θ

]
. (12)

The previous definition does not impose any condition on
the subset Y . This gives a lot of flexibility, but it also
presents the additional problem of selecting a good set of
candidates. In principle, any subset could be used. For
instance, in the special but relevant case of PCD, Y can
be taken as the set of persistent reconstructions of the
data. We will denote its corresponding Weighted version
as Weighted Persistent CD (WPCD). On the other hand,
if Y spans the whole space, Eq. (12) is the negative phase
of the exact gradient. Obviously, the computational cost
is directly proportional to the number of elements in Y .
Notice that, in general the computational overhead asso-
ciated to the calculation of the negative phase in Eq. (12)
is small compared with the one corresponding to the eval-
uation in standard CDk, although this obviously depends
on Y .

4. Experiments with small size problems

In the following we perform a series of experiments to
test the proposed approach. More precisely, we compare
standard CDk for k = 1 and k = 10, together with PCD,
to their Weighted counterparts, WCDk and WPCD. In
this section we restrict the analysis to small dimensional
spaces where exact calculations can be performed. Our
goal is to compare the different models at the lowest pos-
sible level and to avoid drawing conclusions from a coarse
approximation, as usually done when dealing with larger
problems. In particular we evaluate the exact partition
function of each model, compute the exact probabilities of
the whole space, and compare the probabilities of the data
in the different models. We also evaluate the exact KL of
the obtained models.

4.1. Data Sets

We have tested the proposed approach in a series of data
sets described in the following. Training is performed in-
cluding examples and probabilities. We will denote tar-
get distribution the set of probabilities assigned to all the
states in each data set. Three different schemes have been
used to establish the target distributions. The simplest
one is the empirical distribution, that sets the same (uni-
form) probability to each state. The second one draws
the probabilities from a Gaussian profile. The third model
assigns different but uniform probabilities to separate sub-
sets. We will call training space to the combination of data
and target distribution associated to the data.

The first problem, denoted Bars and Stripes, consists in
detecting vertical and horizontal lines in binary images
containing either of them but not both. Two versions
of this problem were tested, containing 3 × 3 (BS09) or
4 × 4 (BS16) images, respectively. The second problem,
named Labeled Shifter Ensemble (LSE), consists in learn-
ing a number of states formed as follows: given an initial
N -bit pattern, generate three new states concatenating to
it the bit sequences 001, 010 or 100 and a new N -bit pat-
tern computed as the original one shifting one bit to the
left if the intermediate code is 001, copying it unchanged
if the code is 010, or shifting it one bit to the right if
the code is 100. The size of the states are 2N + 3 bits.
Again, two versions of this problem were evaluated, with
N = 4 (LSE11) and N = 6 (LSE15). These problems have
already been explored in [19].

The third data set tested is the Parity problem, which
consists in learning whether the number of bits with value
1 is even or not. The Parity problem is known to be very
difficult to learn with classical neural networks [26, 27]. It
is easy to understand that this is a very difficult problem
to learn in the context of Boltzmann Machines as in a high
order model it requires a single weight connecting all units
simultaneously [28]. This problem was tested with 8 and
10 input variables (P08 and P10, respectively).

The target distributions associated to the BS09, BS16,
LSE11, LSE15, P08 and P10 problems are the correspond-
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ing empirical distributions. That is, every element in each
data set has a probability equal to one over the number of
elements in the data set.

The fourth tested problem, which we call Int12, is a data
set containing N = 212 integers. The unnormalized prob-
ability assigned to the each integer n ∈ {0, 1, 2 . . . , 212−1}
is given by the following expression

q(n) = pmaxe
−λn2

, (13)

where λ is a parameter that depends on the maximum
and minimum probabilities in the data set, pmax and pmin.
The probability assigned to each element in the data set
is computed as follows:

p(n) =
q(n)∑N

m=0 q(m)
, (14)

where

λ =
1

(N − 1)2
ln

(
pmin
pmax

)
.

The last two data sets assign different probabili-
ties to the same 212 integers, formed by the ordered
list [0, 3, 6, . . . , 1, 4, 7, . . . , 2, 5, 8, . . .]. The first variant,
Mult3G, assigns to each position in the list the proba-
bility defined by Eq. (14). The second variant, Mult3D,
assigns three different probability values to the elements
in the list that belong to the 3̇, 3̇ + 1 and 3̇ + 2 sublists,
respectively. These values are fixed imposing the sum of
the probabilities in each group to be 0.6, 0.3 and 0.1. We
denote this scheme as Discrete. Table 1 summarizes the
main properties of the training spaces used in the experi-
ments.

4.2. Experimental Setting

The experiments were performed in two steps. In the
first one we selected, for every data set, suitable parame-
ters for standard CDk (k = 1 and k = 10) and standard
PCD. This selection was performed independently for ev-
ery model. In the second step, we used the parameters
found in the first step to test WCDk and WPCD.

Networks were trained with standard gradient ascent for
the BS09, BS16, LSE11, LSE15, P08 and P10 problems,
and stochastic gradient ascent (with a batch size of 100)
for the Int12, Mult3G and Mult3D data sets. Weights
were initialized with a Gaussian distribution of zero mean
and a variance that was suitably selected for every model.
No weight decay was used. Every network was trained for
106 epochs in the BS09, BS16, LSE11, LSE15, P08 and
P10 cases, and for 105 epochs in the Int12, Mult3G and
Mult3D problems.

In order to find the optimal CDk parameters, we per-
formed a grid search by varying the following values:

• Number of hidden units: Nv, 2Nv, 3Nv, 4Nv and 5Nv,
where Nv is the number of visible units.

• Variances of the initial Gaussian weights: 1.0, 0.1,
0.01, 0.001 and 0.0001.

• Learning rates: 0.1, 0.01, 0.001, 0.0001 and 0.00001.

Momentum was set to 0.9. An optimal combination of
parameters was selected for every k and every problem,
as explained next. Every configuration of parameters was
tested 10 times with different random seeds. Therefore,
1250 experiments were run for every k and every data set.
Out of these experiments, we selected the combination of
parameters that achieved the smallest KL at any step of
the learning process.

A similar model selection was performed for PCD. The
differences are described in the following. First, since we
observed that for CDk the smallest KL values were usually
obtained with 5Nv hidden units, only this value was tested.
Second, the learning rates values tested spanned the range
from 10−1 to 10−8 in powers of 10 in two different schemes,
fixed and linearly decaying. Third, since momentum is a
relevant parameter of PCD, we have tested models with
momentum values set to 0.9 and to 0.0. In the end, and
as for CDk, the optimal parameters were chosen as those
that achieved the smallest KL at any step of the learning
process.

After selecting the parameters for CD1, CD10 and PCD,
the final models were obtained for every data set in sim-
ilar conditions. To that end, we tested CD1 and WCD1

with the parameters selected for CD1. Furthermore, each
experiment was performed varying the number of hidden
units in {Nv, 2Nv, 3Nv, 4Nv, 5Nv}, where Nv is the num-
ber of visible units, and repeated 10 times with different
random seeds. The same procedure was applied to CD10

and WCD10 with the parameters of CD10 and to PCD and
WPCD with the parameters of PCD, respectively. Notice
that, while the results for the weighted models may not
be optimal, only better results can be achieved when their
parameters are specifically optimized.

4.3. Results for the Whole Training Space

In the following we show results for the models and data
sets described above when trained with the whole training
space. Table 2 summarizes statistical averages over the 10
repetitions of each run, together with the standard devia-
tions. In the table we report the mean KL obtained along
the learning processes. As it can be seen, in general the
Weighted version of each algorithm performs better than
its non-weighted counterpart, in some cases the differences
being significantly large. Notice that, as explained above,
the learning parameters for WCDk and WPCD have not
even been optimized. Furthermore and as will be shown in
the figures, the minimum KL in the CD and variant mod-
els is achieved at an early stage of the learning process, but
afterwards degenerates. In contrast, the evolution of the
KL in the Weighted versions is much more smooth, and
the minimum KL is attained at the end of the training.
Notice also that, overall, WCD10 is the best performer,
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Data set Input dimension Data set size Target distribution
BS09 9 14 Empirical
BS16 16 30 Empirical
LSE11 11 48 Empirical
LSE15 15 192 Empirical
P08 8 128 Empirical
P10 10 512 Empirical
Int12 12 4096 Gaussian Profile
Mult3G 12 4096 Gaussian Profile
Mult3D 12 4096 Discrete

Table 1: Description of the different data sets used

CD1 CD10 PCD WCD1 WCD10 WPCD Data set

0.0450 (0.0206) 0.0035 (0.0013) 0.0962 (0.0052) 0.0011 (0.0001) 0.0011 (0.0001) 0.0464 (0.0088) BS09

0.1657 (0.0578) 0.0212 (0.0077) 0.1850 (0.0062) 0.0008 (0.0001) 0.0007 (0.0001) 0.1060 (0.0141) BS16

0.2986 (0.0641) 0.0634 (0.0274) 0.1918 (0.0172) 0.1043 (0.0363) 0.0113 (0.0024) 0.1050 (0.0070) LSE11

0.7767 (0.0913) 0.2194 (0.0441) 0.2379 (0.0136) 0.3558 (0.0888) 0.0233 (0.0021) 0.1822 (0.0071) LSE15

0.6464 (0.0858) 0.1530 (0.0435) 0.2681 (0.0591) 0.6535 (0.0791) 0.0201 (0.0043) 0.1515 (0.0189) P08

0.6933 (0.0001) 0.3062 (0.0169) 0.1810 (0.0456) 0.6937 (0.0019) 0.0681 (0.0232) 0.1638 (0.0313) P10

0.0221 (0.0262) 0.0007 (0.0014) 0.0220 (0.0003) 0.0022 (0.0034) 0.0021 (0.0025) 0.0220 (0.0003) Int12

0.5453 (0.0001) 0.0220 (0.0009) 0.1778 (0.0336) 0.0041 (0.0009) 0.0064 (0.0012) 0.1960 (0.0948) Mult3G

0.4246 (0.0001) 0.3120 (0.1113) 0.1958 (0.0250) 0.0036 (0.0007) 0.0052 (0.0013) 0.2025 (0.0206) Mult3D

Table 2: Mean KL values for the different problems described in the text. The standard deviations are in parenthesis.
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Figure 1: KL divergence during learning (left panel) and optimal probabilities (right panel) of the models found by CD1 (red dashed line and
stars) and WCD1 (blue solid line and bullets) for the BS16 data set. The x-axis on the left panel accounts for the number of epochs/50. The
x-axis on the right panel corresponds to an integer index labelling each state in the training set. The target probabilities are shown with a
black line.

leading always to small KL values that are reflected in
good probabilistic models.

Since we are interested in the best probability distribu-
tions, we report in the following figures the probabilities
of the data in the training space for the best models out of
the 10 repetitions performed in each case. These probabil-

ities are compared with the corresponding target ones (on
the right). We also report the KL values during the train-
ing process (on the left) as a way to evaluate the evolution
of the models found during learning. Figure 1 shows the
CD1 and WCD1 results obtained for the BS16 problem.
As it can be seen, while the CD1 probabilities are not dra-
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Figure 2: Same as in figure 1 for the LSE15 problem.
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Figure 3: The top panels are the same as in figure 1 for the P10 problem. The bottom panels are the same as in figure 1 for the P10 problem
in CD10 (orange dot-dashed line and squares) and WCD10 (light blue dot-dot-dashed and triangles).

matically wrong, the comparison between WCD1 and the
target probabilities is outstanding. Regarding the KL, not
only the optimal and asymptotic values are much better in
WCD1, but also the models found are much more stable,
according to the small local variability of the WCD1 KL
curve.

Figure 2 shows the same quantities for the LSE15 prob-
lem. In this case the evolution of the KL in CD1 is much
more smooth than in the previous case, though its op-
timal value found is much worse than the one found in
the BS16 problem. Once again, the optimal WCD1 KL is
much lower than the corresponding CD1 one, pointing to

a better probabilistic model when compared to the target
distribution. In the same way, the WCD1 KL performs
roughly as in the BS16 case, though convergence to the
asymptotic value is much slower, while it still keeps its de-
creasing behavior. All these features are reflected in the
optimal probabilities reported on the right panel. As it
can be seen, the WCD1 probabilities are much closer to
the target ones than those generated by CD1, being also
much more uniform. Furthermore, the CD1 probabilities
present much larger oscillations, and in particular there are
several outlayers that take a large amount of the probabil-
ity mass individually, as mentioned in the introduction. In
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Figure 4: Optimal probabilities of the models found by CD1 (red stars on the left panel), WCD1 (blue bullets on the left panel), CD10 (orange
squares on the right panel) and PCD (green diamonds on the right panel) for the Mult3G data set. The target probabilities are depicted as
a black line. The x-axis on both panels is the index of every element of the data set in the corresponding ordered list (see text)
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Figure 5: Same as figure 4 but for the data set Mult3D

this case, however, though the WCD1 algorithm produces
almost uniform probabilities as desired, the exact value is
not reproduced as in the BS16 case, meaning that states
not contained in the training space acquire non-zero prob-
abilities. This does not happen in the WCD10 estimate,
which achieves a very small KL value and therefore fits
very well the target probabilities. As a matter of fact, this
also happens in the BS16 problem, where the model prob-
abilities already sum up to 1. The smaller version of the
same problems (BS09 and LSE11) show similar behavior.

Figure 3 shows results for the toughest problem analyzed
in this work, the P10 data set. The upper and lower plots
show the (W)CD1 and (W)CD10 results, respectively. In
this case neither CD1 nor WCD1 are able to learn a sensi-
ble model, maybe because of the difficulty of the problem.
Remarkably, the optimal CD1 KL is almost identical to
the optimal WCD1 KL, and the evolution of the KL along
learning in both cases is very similar and smooth but poor.

The consequence of all this is that the resulting probabil-
ity distributions are almost identical, none of them making
much sense. Notice that while the probabilities found are
quite uniform, they are still far away from the real tar-
get values: the training space, consisting in half the total
space, receives half the total probability while it should
sum up to 1. A different situation is found for the CD10

and WCD10 predictions, as shown in the lower plots in the
same figure. In this case the CD10 KL finds a minimum
but degenerates afterwards, while in the WCD10 case it
behaves as in the previous problems, monotonically de-
creasing and approaching its asymptotic value, which is
much lower than the CD10 one. The resulting probabili-
ties are closer to the target ones in both cases, but it is
remarkable how better WCD10 performs. While the result-
ing CD1 and WCD1 models are very similar, going from
k = 1 to k = 10 leads to a much more accurate model
in the WCD10 case, whereas CD10 produces once again a
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Figure 6: Probabilities of the test set corresponding to the models with minimum KL in the training set found by CD1 (red stars) and WCD1

(blue bullets) for the Mult3G problem. Top Left: 80%/20% training/test. Top Right: 60%/40% training/test. Bottom Left: 40%/60%
training/test. Bottom Right: 20%/80% training/test. The x-axis are similar to figure 4, but only the examples in the test set are shown.
The target probabilities are shown with a black line.

highly non-uniform distribution with scattered values in a
broad range.

In Fig. 4 we report in two panels our results for the
Mult3G problem. We have split them in two because of the
different scales of the resulting probability distributions.
The left panel shows CD1 and WCD1, while the right panel
depicts the probabilities obtained in CD10 and PCD. As
expected, the quality of the Weighted version is markedly
better than the standard CD1 prediction, the later being
clearly unable to reproduce the target distribution. In the
same token, WCD1 performs better than CD10 and PCD.
It is important to take into account that the ordering of the
states in the Mult3G problem is relevant. Three different
classes have been built, the first one containing the states
corresponding to the values 0, 3, 6, . . . in this order, the
second one containing the values 1, 4, 7, . . . in this order,
and so on. As it can be seen, CD1 detects that lower
values have larger probabilities, but it is not able to discern
among the different classes. In the CD10 and PCD cases,
both estimations of the distribution probabilities capture
the main trends of the target probabilities. However, in
both cases fluctuations around the right values are large
and comparable, maybe PCD performing a little bit worse,
in agreement with the KL values reported in the table. On
the other hand, WCD1 once again recovers a nice model,
clearly discriminating among the three groups.

Finally, in Fig 5 we report the probability distributions
for the Mult3D problem obtained in CD1, WCD1, CD10

and PCD as in Fig. 4. In this case the WCD1 prediction
is dramatically better than the CD1 one, as the later is
only able to assign essentially the same probability to each
state, not being able to discern any feature of the problem.
In contrast, WCD1 performs well and clearly discriminates
the three categories of the problem, with quite uniform
probability in each group. In We also see that CD10 and
PCD performs similarly to the Mult3G case.

4.4. Generalization Results

The experiments described in the previous section were
focused on trying to obtain the models with minimum
KL in order to fit the probabilities of the training space.
Therefore, they were analyzing the approximation capa-
bility of the respective models. In this section we focus on
the generalization capability, which in many cases is the
most important objective of the system.

To that end, we performed a number of experiments
with the Int12, Mult3G and Mult3D data sets. The train-
ing set in these cases was taken to be a fraction of the whole
training space used in the previous section, leaving the
rest of states for the test set. The fraction values used for
the training/test sets were 80%/20%, 60%/40%, 40%/60%
and 20%/80%. The model with the minimum KL in the
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Figure 7: Same as in figure 6 for the Mult3D data set.

training set was saved and subsequently tested on the test
set. As in the previous experiments, we compared stan-
dard CD1, CD10, PCD, and their Weighted counterparts,
WCD1, WCD10 and WPCD. The parameters of the mod-
els were those already selected in the experiments per-
formed with the complete training space.

Figure 6 depicts results for the Mult3G problem. In
essence, both CD1 and WCD1 keep the same structure
observed when all states in the training space are used
for learning. That means that CD1 is always missing the
main trends of the target probability, while WCD1 keeps
up fairly well. Still, the quality of WCD1 worsens when the
fraction of states used for training is reduced, as expected.
But it is remarkable that, in all these cases, WCD1 is able
to generalize successfully. In particular, we notice that
WCD1 trained with just a 20% of the complete training
space performs much better that bare CD1 trained with
the whole training space. Finally, figure 7 presents the
same quantities as in the previous figure, for the Mult3D
problem. As discussed above, this is a hard problem for
CD1 as it is never able to capture any single feature of the
data. In contrast, WCD1 holds up quite well even under
severe training space restrictions. Similar results are found
for the rest of the models and data sets when the training
space is reduced as above.

5. Experiments with large size data sets

In this section we show how the WCD technique per-
forms in real-world, high dimensional data sets where an
exact computation of the probability of each state is unfea-
sible. Since the evaluation of the likelihood is not possible,
we employ an alternative estimation of the quality of the
results by using a Parzen window estimator [21] of the
probabilities of the test set, obtained from a set of sam-
ples performed over the learned model. For computational
reasons, we do not use the AIS algorithm to estimate the
probabilities, which, in addition, is very hard to validate
in really high dimensional spaces as the ones considered
here. In short, our Parzen window estimator uses a Gaus-
sian probability density distribution g(x;xi, σi) centered
at each point xi of the sample set and with standard de-
viation σi (which we take to be the same for all points),
as in [21]. The idea then is to assign a probability den-
sity at each point yj in the test set equal to the averaged
sum of g(yj ;xi, σi) over all samples. One then uses these
averaged probability densities to build an unnormalized
log-likelihood (uLL) of the test set, which depends on the
set of samples used. More specifically, we assign to each
point of the test set yj an averaged Gaussian value

G(yj) =
1

Ns

∑
i

g(yj ;xi, σi)
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Figure 8: Comparison of the quality of the samples generated using a Parzen window procedure for WPCD (blue curves) and PCD (red
curves) in for the Caltech101 (upper left), Fashion-MNIST (upper right), MNIST (lower left) and OCR-Letters (lower right) problems. The
x-axis represents the number of samples generated by each model and used to compute the uLL.

where Ns is the number of samples employed, and

uLL =
1

Nt

∑
j

lnG(yj) ,

with Nt the number of members of the test set. For the
sake of comparison, we perform this procedure twice, us-
ing a maximum of 105 samples generated by the model
obtained with WPCD and PCD, respectively.

We have tested the proposed approach on the follow-
ing four data sets: MNIST, Fashion-MNIST, Caltech101
silhouettes and OCR letters. The MNIST data set is a
well known benchmark problem corresponding to 28× 28
grayscale images of hand-written digits. The fashion
MNIST contains 28×28 grayscale images, associated with
10 different clothing categories (dress, coat, shirt, . . .).
The CalTech101 Silhouettes data set contains 28 × 28 bi-
nary images, containing items from 101 different categories
(faces, leopards, ants, butterflies, . . . ). Finally, the OCR-
Letters data set contains 16×8 samples of grayscale images
of handwritten letters. Table 3 shows the number of fea-
tures of each data set and number of samples in the train
and test partitions.

In both the WPCD and PCD cases, the architecture of
the network contained a variable number of visible units
(depending on the problem) and a fixed number of hidden
units, which was set to 500. In all cases, the networks
were trained for 1000 epochs with stochastic gradient as-
cent and a batch size of 100 examples. Different values of
the learning rate have been tested, in a logarithmic mesh
spanning the range [0.001, 1.0] to find the optimal value
in each case. The momentum and the weight decay fac-
tors were set to 0.75 and 0.0002, respectively. Finally, the
learning rate followed a linearly decaying scheme. Other
combination of parameters have also been tested, to find
that the best values lay in the mentioned ranges. In all
cases, the selection criterion was set to get the highest
test accuracy in supervised models were the labels were
appended to the training examples with a one-hot cod-
ing representation. The final models were trained in an
unsupervised way with the optimal values found with the
model selection described above.

Figure 8 shows the comparison of the uLL of the test
set as a function of the number of samples employed in
the Parzen window estimator, for the four data sets an-
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Table 3: Details of the data sets employed in the experiments

Dataset Train size Test size Num. of features
Caltech101 Silhouette 4100 2307 784
OCR-Letters 32,152 10,000 128
MNIST 60,000 10,000 784
Fashion-MNIST 60,000 10,000 784

alyzed. In all cases, the blue and red curves correspond
to the results obtained in WPCD and PCD, respectively.
The upper left and right panels show the uLL for the Cal-
tech101 and Fashion-MNIST, while the lower left and right
panels correspond to the MNIST and OCR-Letters prob-
lems. As can be seen, in all cases WPCD produces higher
uLL values, pointing to a better model (in a Parzen win-
dow sense) of the learned model with respect to the test
set. In must be kept in mind, however, that the uLL is
not a real estimation of the log-likelihood of the data, and
that in all cases there is an arbitrary constant that sets
the origin on the scales. That means that only the relative
differences between two estimations make sense. Anyway,
higher scores can be attributed to better models, although
it is not possible to quantify how better. Notice that there
is always a transient regime at the beginning of the curves
where the variation of the uLL is large, corresponding to
a poor statistical representation produced by the reduced
number of samples employed. However, as this number
increases, the curves approach a more stable regime where
the predictions seem to stabilize, with WPCD approaching
a better statistical representativity with a smaller number
of samples.

6. Conclusions

In summary, in this work we propose a variant of the
standard CD learning algorithm for RBMs that modifies
the negative phase of the gradients involved in the weights
update rule. The new negative phase is computed as a
weighted average over the members of the batch, where
the weighting coefficients are the relative model proba-
bilities in the batch. This is a cheap modification that
nevertheless delivers better performance, both in terms of
KL and optimal model probabilities. We have tested the
proposed algorithm against a set of small problems where
exact probabilities can be evaluated, to find that the sta-
tistical representation of the learned models is much better
than the one obtained in CD and PCD. In large problems,
were a direct measure of the probabilities is unfeasible, a
Parzen window evaluation of the quality of the resulting
models still indicates that WPCD performs better that
their alternatives. In any case, it is important to realize
that, when the data can be processed and reduced to a
small-dimensional space (for example, in a feature extrac-
tion stage), weighting the negative phase is a good choice
that improves the probability description of the model.
Furthermore, the weighting scheme can be extended to

other useful techniques alternative to CD.
Possible future work involves a more sophisticated selec-

tion of elements entering in the weighted negative phase.
This can, for instance, involve not only members from the
training set, but also neighboring ones that, for continu-
ity reasons, could also contain relevant information. For
small problems, comparison to exact gradient calculations
can also be carried out in order to contrast the statisti-
cal averages of the exact calculation to the approximated
one in the learning scheme. Another interesting aspect
is to analyze the convergence properties of the proposed
methodology. Along this line, one can try to extend the
analysis performed in [29, 30, 31], although the task is not
evident for the first two since they apply to continuous
units and not binary ones.
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[25] A. C. Coolen, R. Kühn, P. Sollich, Theory of neural information
processing systems, OUP Oxford, 2005.

[26] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning In-
ternal Representations by Error Propagation, in: D. E. Rumel-
hart, J. L. McClelland (Eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition (vol. 1), MIT
Press, 1986, pp. 318–362.

[27] Y. Bengio, Y. LeCun, Chapter 14: Scaling Learning Algorithms
towards AI, in: D. D. L. Bottou, O. Chapelle, J. Weston (Eds.),
Large-Scale Kernel Machine, MIT Press, 2007, pp. 321–359.

[28] E. Farguell, F. Mazzanti, E. Gomez-Ramirez, Boltzmann Ma-
chines Reduction by High-order Decimation, IEEE Transactions
on Neural Networks 19 (10) (2008) 1816–1821.

[29] A. Hyvarinen, Connections between score matching, contrastive
divergence, and pseudolikelihood for continuous-valued vari-
ables, IEEE Transactions on Neural Networks 18 (5) (2007)
1529–1531.

[30] R. Karakida, M. Okada, S. ichi Amari, Dynamical analysis of
contrastive divergence learning: Restricted boltzmann machines

with gaussian visible units, Neural Networks 79 (2016) 78 – 87.
[31] I. Sutskever, T. Tieleman, On the convergence properties of

contrastive divergence, in: Y. W. Teh, M. Titterington (Eds.),
Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, Vol. 9 of Proceedings of Ma-
chine Learning Research, PMLR, 2010, pp. 789–795.

13


