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Abstract 

Our mysterious brain is believed to operate near a non-equilibrium point and generate critical 

self-organized avalanches in neuronal activity. Recent experimental evidence has revealed 

significant heterogeneity in both synaptic input and output connectivity, but whether the structural 

heterogeneity participates in the regulation of neuronal avalanches remains poorly understood. 

By computational modelling, we predict that different types of structural heterogeneity contribute 

distinct effects on avalanche neurodynamics. In particular, neuronal avalanches can be triggered 

at an intermediate level of input heterogeneity, but heterogeneous output connectivity cannot 

evoke avalanche dynamics. In the criticality region, the co-emergence of multi-scale cortical 

activities is observed, and both the avalanche dynamics and neuronal oscillations are modulated 

by the input heterogeneity. Remarkably, we show similar results can be reproduced in networks 

with various types of in- and out-degree distributions. Overall, these findings not only provide 

details on the underlying circuitry mechanisms of nonrandom synaptic connectivity in the 

regulation of neuronal avalanches, but also inspire testable hypotheses for future experimental 

studies. 
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1. Introduction 

Cortical neurons continually integrate massive amounts of excitatory and inhibitory inputs 

from presynaptic neurons, and then produce diverse spatiotemporal patterns of collective activity 

(Brunel & Wang, 2003; Buzsaki, 2006). As a vital type of spatiotemporal pattern generated in the 

brain, neuronal avalanches have been widely observed in many experimental and computational 

studies (Friedman, et al., 2012; Plenz & Thiagarajan, 2007; Yu, et al., 2011). Similar to avalanches 

that emerge in other dynamical systems, the spatial and temporal distributions of neuronal 

avalanches have been identified as following power-law statistics, implying that this brain state 

operates near a non-equilibrium critical point (Bak, et al., 1987; Chialvo, 2010; Friedman, et al., 

2012). Importantly, the criticality of neuronal ongoing activity has been seen across different brain 

spatial scales in experimental data. Using in vitro and in vivo recordings, avalanches of neuronal 

activity have been discovered at relatively small spatial scales at both spike and local field 

potential (LFP) levels (Beggs & Plenz, 2003, 2004; Bellay, et al., 2015; Ribeiro, et al., 2010; 

Shew, et al., 2009). Furthermore, previous studies have also shown the whole-brain activity 

dynamics measured with noninvasive techniques, such as electroencephalography (EEG) and 

functional magnetic resonance imaging (fMRI), can also be well described by power-law statistics 

(Linkenkaer-Hansen, et al., 2001; Stam & De Bruin, 2004). More intriguingly, neuronal 

avalanches have been postulated to facilitate information processing in the brain. For instance, it 

has been reported that neuronal avalanches can optimize the neuronal dynamic range, maximize 

the amount of information that can be transmitted and stored, and improve sensitivity to sensory 

inputs (Beggs & Plenz, 2003; Haldeman & Beggs, 2005; Kinouchi & Copelli, 2006; Shew & 

Plenz, 2013; Shew, et al., 2009; Shew, et al., 2011). 

Understanding the dynamical and emergent mechanisms of neuronal avalanches may 

provide deep insights into the computational principles in the brain. Previous animal studies both 

in vitro and in vivo, together with computational modeling, have strongly suggested that the 

avalanche dynamics in neural systems may arise at the critical state in excitation-inhibition 

balanced networks and can be regulated by several intrinsic network properties, such as short-

term synaptic plasticity and the balance level between excitation and inhibition (Beggs & Plenz, 

2003; Levina, et al., 2007; Lombardi, et al., 2012; Lubenov & Siapas, 2008; Rubinov, et al., 2011; 
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Shew, et al., 2009). Consistent with experimental observations, recent investigations have shown 

that avalanches of neuronal activity preferentially emerge at a moderately synchronized state of 

collective firing activity and might coexist with both irregular firing and stochastic oscillations 

(Gireesh & Plenz, 2008; Lubenov & Siapas, 2008; Yang, et al., 2017). Notably, this finding is of 

particular interest because the co-emergence of these multi-scale cortical activities has been 

believed to ensure the cost-efficient information capacity of the brain, further emphasizing the 

functional significance of avalanche dynamics in neuronal information processing (Yang, et al., 

2017). 

Recent statistical analysis of multi-neuron population recordings has revealed that 

neighboring neurons differ highly in synaptic connectivity, implying the existence of structural 

heterogeneity in wiring diagrams among neurons (Bonifazi, et al., 2009; Okun, et al., 2015; 

Shimono & Beggs, 2014; Song, et al., 2005). This class of neuronal heterogeneity is ubiquitous 

in the brain and can be observed both between and within cell types (Okun, et al., 2015). 

Theoretically, the variability in the synaptic connectivity of neurons leads to stochasticity at the 

population level, which may further affect the spatiotemporal patterns of collective firing activity. 

Such stochastic effects indicate that structural heterogeneity may be a potential factor in the 

regulation of neuronal avalanches. Although simulations have identified the emergence of 

avalanche dynamics in heterogeneous neuronal networks in different topologies, these studies 

have generally considered a simplified assumption of uniform heterogeneity in the connectivity 

of synaptic inputs and outputs (Larremore, et al., 2011; Pajevic & Plenz, 2009). However, the 

assumption of uniform heterogeneity seems to be questionable because biological neurons may 

exhibit different degrees of structural heterogeneity in their input and output connectivity, an idea 

evidenced by accumulating observations in geometric and functional organization of cortical 

circuits (Chen, et al., 2013; Okun, et al., 2015). It remains controversial whether heterogeneous 

input and output connectivity contribute equally to evoke and regulate the critical dynamics in the 

brain. 

To address this issue, we established a biologically plausible neural circuit model to evaluate 

the precise effects of heterogeneous input and output connectivity on the regulation of neuronal 

avalanches. Through computational modeling, we show that heterogeneous input connectivity 

can evoke and regulate spike-based neuronal avalanches at an appropriate level of heterogeneity 
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by tuning the dynamics of neuronal ensembles, whereas heterogeneity in output connectivity 

influences the network dynamics slightly and cannot trigger neuronal avalanches. Importantly, 

we reproduce the similar phenomena by introducing different types of statistical distributions into 

the heterogeneous connections of the model, further demonstrating the generalizability of our 

results. These findings thus highlight the functional role of input heterogeneity in evoking and 

regulating critical dynamics in the brain. 

 

2. Model and methods 

2.1. Neural circuit model with heterogeneous connections 

We attempt to propose generalized dynamical and regulation mechanisms for neuronal 

avalanches based on a neural circuit model with special heterogeneous structures. To this end, we 

establish a neuronal network with either heterogeneous input connectivity or heterogeneous 

output connectivity. Briefly, the network comprises a total of 𝑁 = 2000  excitatory and 

inhibitory neurons with spiking dynamics. As schematically shown in Fig 1A, our model has a 

recurrent nature, which can be used to simulate the population dynamics of neurons from a local 

brain region. Similar to the excitatory-inhibitory ratio roughly observed in mammalian neocortex 

(Gerstner & Kistler, 2002), we employ 𝑁E = 1600 excitatory neurons and 𝑁I = 400 inhibitory 

neurons for all simulations.  

Our strategy is to consider different types of structural heterogeneity in the topology of 

recurrent neuronal networks independently. To generate a specific network structure with 

heterogeneous input connectivity, the total number of presynaptic neurons to a target postsynaptic 

neuron, i.e., the in-degree, is assumed to be statistically distributed around its mean 𝐾in with a 

standard deviation 𝑆in (Fig 1B, top). Given the in-degree of the 𝑖-th neuron denoted by 𝐾in
𝑖 , we 

assign it 𝐾in
𝑖  presynaptic partners randomly selected from other neurons in the network. In our 

model, we consider the link from the 𝑖-th neuron to the 𝑗-th neuron and the link from the 𝑗-th 

neuron to the 𝑖 -th neuron as different synaptic connections. In addition, we also prohibit the 

existence of self-connections, and do not allow a neuron to be coupled to another neuron more 

than once. Mathematically, the mean and standard deviation of the in-degrees over all neurons 
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can be calculated as: 

𝐾in = 1
𝑁 ∑ 𝐾in

𝑖
𝑁

𝑖=1
(1) 

and 

𝑆in =
⎷
√√
√

1
𝑁 ∑(𝐾in

𝑖 − 𝐾in)
2

𝑁

𝑖=1
. (2) 

At the network level, the level of structural heterogeneity is determined by both the type of in-

degree distribution and the parameter values of 𝐾in and 𝑆in (Fig 1B, top). For a given network 

density (i.e., 𝜌 = 𝐾in/𝑁), a relatively larger 𝑆in indicates a wider in-degree distribution. Wider 

distributions correspond to higher levels of structural heterogeneity in the established neuronal 

network (Fig 1C). Compared to heterogeneous input connectivity, the level of output 

heterogeneity in such a network is relatively low because the presynaptic neurons are randomly 

assigned in our model. It is obvious that a similar constructing algorithm can be used to generate 

a network dominated by heterogeneous output connectivity as well, with the mean and standard 

deviation of the out-degrees represented by 𝐾out  and 𝑆out  (Fig 1B, bottom). 

In simulations, we consider three kinds of statistical distributions for networks with 

heterogeneous input and output connectivity, including exponential, Gaussian and uniform 

distributions. In modeling studies, these types of statistical distributions have been widely used 

to construct neuronal networks. For simplicity, we perform experiments and summarize the main 

findings based on shifted exponential in- and out-degree distributions, and then further test our 

results using the Gaussian and uniform degree distributions. Considering the finite network size, 

we here truncate the degree distributions to make sure that the range of degrees is between 1 and 

1999. Owing to the truncated effect, a certain error of the mean and standard deviation of degree 

distributions is unavoidable when the value of S𝑖𝑛 is very large, but it is still acceptable. Unless 

otherwise noted, we use the default parameter values listed in Table 1 to establish the neuronal 

network. 

2.2. Single-neuron dynamics and simulation protocol 

The spiking dynamics of neurons is mimicked using the leaky integrate-and-fire (LIF) model 
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neuron with conductance-based synaptic current. The subthreshold membrane potential of each 

LIF neuron can be described as: 

𝐶m
𝑑𝑉𝑖
𝑑𝑡

= −𝐺L(𝑉𝑖 − 𝑉L) + 𝐼syn
𝑖 (𝑡) + 𝐼back

𝑖 (𝑡). (3) 

Here 𝐶m is the membrane capacitance, 𝑉𝑖 represents the membrane potential of the 𝑖-th neuron, 

𝐺L is the membrane leak conductance, and 𝑉L is resting potential, and 𝐼syn
𝑖 (𝑡) denotes the total 

synaptic current. In addition, each neuron in the network is also driven by an independent 

background current to maintain network activity. In this study, the independent background 

current is mimicked as: 𝐼back
𝑖 (𝑡) = 𝐼0 + 𝜎𝜉𝑖(𝑡), where 𝐼0 is the bias current, 𝜉𝑖(𝑡) is the Gaussian 

white noise with a zero mean and unit variance (here the unit of 𝜉𝑖(𝑡) is nA ∙ ms1/2), and 𝜎 is a 

dimensionless parameter representing the fluctuation intensity of the background current. When 

the membrane potential of a neuron reaches the spike threshold 𝑉th  from below, an action 

potential is emitted, and then the membrane potential is clamped at the resting potential 𝑉rest  for 

a short refractory period 𝜏ref . 

For each neuron, we assume that the total synaptic current is conductance-based, modeled 

by: 

𝐼syn
𝑖 (𝑡) = ∑ 𝐺E(𝑖, 𝑗)(𝑉𝑖 − 𝑉E)

𝑗
+ ∑ 𝐺I(𝑖, 𝑘)(𝑉𝑖 − 𝑉I)

𝑘
. (4) 

In this equation, the first and second outer sums include all excitatory and inhibitory synapses 

onto the 𝑖-th neuron, 𝐺E(𝑖, 𝑗) is the excitatory synaptic conductance from the 𝑗-th neuron to the 

𝑖 -th neuron, 𝐺I(𝑖, 𝑘)  is the inhibitory synaptic conductance from the 𝑘 -th neuron to the 𝑖 -th 

neuron, and 𝑉E  and  𝑉I  are the reversal potentials for excitatory and inhibitory synapses, 

respectively. To simulate synaptic transmission, let us consider the ℎ-th neuron as a presynaptic 

neuron of the 𝑖 -th neuron. When this neuron emits an action potential, the corresponding 

postsynaptic conductance is increased after a transmission delay 𝜏d: 𝐺E(𝑖, ℎ) ← 𝐺E(𝑖, ℎ) + ∆𝐺E 

for excitatory coupling, and 𝐺I(𝑖, ℎ) ← 𝐺I(𝑖, ℎ) + ∆𝐺I for inhibitory coupling. Otherwise, the 

excitatory and inhibitory synaptic conductances decay exponentially:   

𝑑
𝑑𝑡

𝐺E(𝑖, ℎ) = − 1
𝜏E

𝐺E(𝑖, ℎ) (5) 

and 

𝑑
𝑑𝑡

𝐺I(𝑖, ℎ) = − 1
𝜏I

𝐺I(𝑖, ℎ) (6) 
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where 𝜏E  and 𝜏I  are excitatory and inhibitory synaptic time constants, respectively. The 

coupling strengths ∆𝐺E and ∆𝐺I represent the relative peak conductances of excitatory and 

inhibitory synapses, and their values are determined by the types of pre and postsynaptic neurons. 

In simulations, we set ∆𝐺E = 𝑊EE  and ∆𝐺I = 𝑊EI  if the 𝑖 -th neuron is an excitatory 

postsynaptic neuron, and choose ∆𝐺E = 𝑊IE and ∆𝐺I = 𝑊II when the neuron is an inhibitory 

postsynaptic neuron. 

The stochastic differential system is solved by using the Euler-Maruyama method, with a 

relatively small temporal resolution of 0.1 ms to ensure an accurate simulation (Kloeden, et al., 

2012). The default parameter values of the LIF neuron and synaptic model are listed in Table 1.  

2.3. Data analysis 

Each simulation is performed for a long time (up to 200 seconds) to record sufficiently data 

for further statistical analysis. Several data analysis methods are employed to quantitatively 

evaluate the spike data generated by our model. To calculate some neuronal measurements, we 

carry out 50 trials of simulations with different global random seeds. Considering that the 

population activity of inhibitory neurons exhibits a similar trend as that of excitatory neurons, we 

analyze only spike data recorded from excitatory neurons (see Fig 2, for example). Similar 

qualitative results also can be observed using inhibitory spike data. 

Analysis of network dynamics. To assess the temporal regularity of spike trains at the 

network level, we compute the coefficient of variation of inter-spike intervals (CVISI) over all 

excitatory neurons. Mathematically, the CVISI  for the 𝑖 –th neuron is defined as (Holt, et al., 

1996): 

CVISI
𝑖 =

√〈𝑇𝑗
2〉 − 〈𝑇𝑗〉2

〈𝑇𝑗〉
. (7) 

Here the symbol 〈∙〉 represents the average over time, 𝑇𝑗 = 𝑡𝑗+1 − 𝑡𝑗 , and 𝑡𝑗  is the time of 𝑗-

th spike. Then, the mean CVISI of all excitatory neurons is given as: 

CVISI = 1
𝑁E ∑ CVISI

𝑖
𝑁E

𝑖=1
. (8) 

By definition, a smaller value of CVISI corresponds to a relatively better temporal regularity of 
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spike trains at the network level. 

The synchronization of population activity is estimated by a coherence index (X.-J. Wang, 

2002). To compute this measurement, the instantaneous population firing rate of excitatory 

neurons 𝑅(𝑡)  is calculated in 2.0-ms bins. Then, we can obtain both the mean and standard 

deviation of 𝑅(𝑡) over time, which are denoted by 𝜇𝑅 and 𝜎𝑅, respectively. As a dimensionless 

measurement, the coherence index is finally defined as: 

Syn =
𝜎𝑅
𝜇𝑅

. (9) 

Obviously, the larger the value of Syn, the better the synchronization in the network. 

In this work, neuronal oscillations are simply represented by the collective firing of 

excitatory neurons computed from 0.5-ms bins (the sampling rate: 𝑓𝑠 = 2000 Hz) and measured 

with spectral analysis. To visualize the typical features of neuronal oscillations in both the time 

and frequency domains, we use a Complex Morlet wavelet transform to calculate the continuous 

power spectrograms for the average firing rate of excitatory neurons. The default values of the 

bandwidth parameter and wavelet center frequency in such time-frequency spectral analysis are 

fixed at 1.5 and 0.8 Hz, respectively. Moreover, we employ power spectral analysis to evaluate 

the neuronal oscillations generated by the model. To do this, the power spectral density of the 

average firing rate of excitatory neurons is obtained by using the Welch’s method with a 2048-

sample Hamming widow and 50% overlap. Then, both the peak power level of the neuronal 

oscillations and the corresponding peak frequency can be captured from the curve of power 

spectral density. 

Analysis of spike-based neuronal avalanches. For analyzing neuronal avalanches, we 

sample the spike data from 𝑁S  randomly selected excitatory neurons and bin the population 

activity into time windows (∆𝑡 = 0.5 ms). This sampling process is repeated 20 times for each 

simulation, and the overall data are used for further statistical analysis. An underlying avalanche 

event is defined as a sequence of time bins in which at least one spike is emitted, ending with a 

silent time bin. For a given avalanche event, we denote its size 𝑆 and duration 𝑇  as the total 

number of spikes contained in this event and the corresponding lifetime of this event. By using 

all avalanche events recorded in a specific experiment, we can estimate the probability 

distributions of avalanche size and duration, represented by 𝑃 (𝑆) and 𝑃 (𝑇 ), respectively. 
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To characterize neuronal avalanches, we calculate the distances from the real distributions 

𝑃 (𝑆)  and 𝑃 (𝑇 )  to their corresponding best-fitted power-law distributions 𝑃fit(𝑆)~𝑆𝛼  and 

𝑃fit(𝑇 )~𝑇 𝛽 . Mathematically, these two distance measurements are given as (Yang, et al., 2017): 

𝐷𝑆 =
∑ 𝑆|𝑃 (𝑆) − 𝑃fit(𝑆)|𝑆

|∑ 𝑆|𝑃fit (𝑆)|𝑆 |
(10) 

and 

𝐷𝑇 =
∑ 𝑇 |𝑃 (𝑇 ) − 𝑃fit (𝑇 )|𝑇

|∑ 𝑇 |𝑃fit(𝑇 )|𝑇 |
. (11) 

For both avalanche size and duration, we numerically solve their best-fitted power-law 

distributions based on the lowest distance values. Obviously, the optimal slopes 𝛼 and 𝛽 are 

also determined at the lowest distance values. The lower the distance value, the closer the 

probability distribution of the real data is to the power-law distribution. In the present study, we 

consider that our model operates in the criticality region when 𝐷𝑆 < 0.4. Note that a similar 

criticality region can also be observed for 𝐷𝑇 < 0.35 . In some cases, we also compute the 

average size 〈𝑆〉(𝑇 )  conditioned on a given duration 𝑇  . With the least square method, the 

optimal slope 𝜋 can be also estimated by best-fitting the power-law distribution 〈𝑆〉(𝑇 )~𝑇 𝜋. 

Based on the universal scaling theory, it can be predicted that the model operates near a non-

equilibrium point when three critical exponents satisfy the expected relation: 𝜋 = (1 + 𝛽) (1 + 𝛼)⁄ .  

 

3. Results 

3.1. Impacts of different types of structural heterogeneity on neurodynamics 

As a preliminary step, we ask whether heterogeneous input and out connectivity contribute 

equally to the modulation of network dynamics. To answer this question, two representative 

simulations are performed by suddenly changing the levels of structural heterogeneity in networks 

with input and output connectivity. Surprisingly, we observe distinct dynamical behaviors 

emerging in networks with different types of structural heterogeneity (Fig 2). At a low level of 

structural heterogeneity, neurons in these two types of networks receive almost equal amounts of 
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total synaptic currents with relatively strong intensities (Fig 2A and 2B). Under this condition, 

such strong synaptic interactions dominate the network dynamics and drive the collective activity 

of neurons to exhibit a rhythmic synchronous firing state. By introducing an intermediate level of 

heterogeneity into synaptic inputs, we find that the perfect synchronous firing of neurons is broken 

and a moderately synchronous firing state is evoked after a short transition period (Fig 2A, left 

shaded region). Theoretically, the emergence of moderate synchrony among neurons decreases 

the overall effect of their collective firing. Such a reduction not only destroys the temporal 

structures of synaptic currents, but also tends to enhance their stochastic fluctuations (Fig 2A). 

Nevertheless, a similar desynchronized behavior does not appear in networks with heterogeneous 

output connectivity (Fig. 2B). This finding suggests that output heterogeneity might not play a 

pivotal role in tempering neurodynamics. Further increasing the structural heterogeneity in these 

two types of networks demonstrates that the network dynamics are heavily influenced only by the 

input heterogeneity (Fig 2A and 2B). With a strong level of input heterogeneity, we observe that 

the network dynamics may be even pushed into an asynchronous irregular firing state in the model 

(Fig. 2A). 

To understand why heterogeneous input and output connectivity show differential 

contributions to the modulation of network dynamics, we compare several key neuronal 

measurements in these two types of networks (Fig 3). Figure 3A shows the average standard 

deviation of the total synaptic currents received by each neuron at different levels of structural 

heterogeneity. As expected, increasing the input heterogeneity in the network significantly 

enhances the variability in synaptic currents. In principle, a strong variability in synaptic currents 

introduces a high level of stochasticity into neurons, thus leading to a reduction in network 

synchronization and triggering intrinsic irregular neuronal firing. These dynamical behaviors 

correspond to the low coherence index seen in Fig 3B and the high mean coefficient of variation 

of inter-spike intervals (CVISI) observed in Fig 3C. Such desynchronized behavior might also 

suppress the effect of collective firing activity and, therefore, a decrease in average firing rate 

appears when there is a high level of input heterogeneity. Although strengthening the output 

heterogeneity also changes the network structure, it results in almost no additional variability in 

synaptic currents (Fig 3A). Thus, heterogeneous output connectivity only slightly impacts 

collective neuronal firing, which is quantitatively confirmed by other neuronal measurements, 
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including the coherence index, the mean CVISI and the average firing rate (Fig 3B-3D). As a 

consequence, the highly synchronous firing of neurons can be well preserved in our model even 

at sufficiently strong levels of output heterogeneity (Fig 2B). 

These findings consistently reveal that not all types of structural heterogeneity contribute to 

the dynamics of neuronal ensembles. In particular, we identify that the heterogeneity of synaptic 

inputs is an important underlying factor that performs a functional role in regulating the collective 

firing of neuronal ensembles.  

3.2. Heterogeneous input connectivity evokes and regulates neuronal avalanches 

Recent experimental and computational studies have emphasized that avalanches of neuronal 

activity may emerge when there is moderately synchronous firing of neurons (Gireesh & Plenz, 

2008; Lubenov & Siapas, 2008; Yang, et al., 2017). To examine whether the critical neuronal 

avalanches can also be triggered by the structural heterogeneity in synaptic connectivity, we 

perform spike-based analysis by calculating the size and duration of each avalanche event (Fig 

4A, and see Model and methods) in the present study. For comparison with real 

electrophysiological experiments, we collect avalanche events from a small population of 

randomly chosen excitatory neurons (the sampling size 𝑁S = 400  for default), but not all 

neurons, in the network.  

Figure 4B shows the distributions of avalanche size (top) and avalanche duration (bottom) 

for networks with input heterogeneity. As we can see, the model exhibits distinct avalanche 

dynamics at different levels of structural heterogeneity. For an appropriate level of input 

heterogeneity, the distributions of both avalanche size and duration obey linear relationships in 

log-log coordinates (Fig 4B, black lines). These two linear relationships can be well characterized 

by the exponents of power-law statistics (𝛼 = −1.61  and 𝛽 = −1.8 ). Remarkably, the further 

plotting of the average avalanche size as a function of avalanche duration in the log-log 

coordinates reveals another power-law scaling, with an exponent of 𝜋 = 1.31 (Fig 4B, inset). 

These exponents satisfy the expected relation 𝜋 = (1 + 𝛽)/(1 + 𝛼)  as predicted for a critical 

system by the scaling theory of non-equilibrium critical phenomena (Rybarsch & Bornholdt, 2014; 

Sethna, et al., 2001). In agreement with previous in vivo and in vitro experiments, these findings 

together suggest the occurrence of avalanche dynamics in our model (Beggs & Plenz, 2003, 2004; 
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Bellay, et al., 2015; Ribeiro, et al., 2010; Shew, et al., 2009). However, both increasing and 

decreasing the input heterogeneity can push the self-organized criticality of the system into other 

dynamical states. A significant reduction of input heterogeneity causes neurons to fire in a highly 

synchronous manner, which increases the chance of large-size avalanches and evokes 

supercritical avalanche dynamics (Fig. 4B, red lines). In contrast, the increase in input 

heterogeneity may lead to asynchronous irregular neuronal firing, triggering subcritical dynamics 

with exponential-type distributions of avalanche size and duration (Fig 4B, blue lines). However, 

a similar tuning effect is not observed in networks with heterogeneous output connectivity (Fig 

4C). Theoretically, this finding is not surprising because variability in synaptic outputs has been 

shown to contribute weakly to the collective neuronal firing. The above results thus indicate that 

a suitable level of input heterogeneity can evoke neuronal avalanches in the brain.  

To characterize the performance of avalanche dynamics, we compute distances between real 

and best-fitted power-law distributions for both avalanche size and duration at different levels of 

input heterogeneity (Fig 5A, and see Model and methods). Obviously, a smaller distance implies 

better network performance towards to the self-organized criticality. As the input heterogeneity is 

increased, both distance measurements first drop and then rise, and neuronal avalanches occur at 

intermediate levels of input heterogeneity (Fig 5A, shaded region). This evidence further 

demonstrates that appropriately heterogeneous input connectivity can trigger critical dynamics in 

neural systems. Moreover, fitting the power-law statistics for avalanche events also reveals that 

the slope parameter 𝛼 (avalanche size) is dramatically impacted by 𝑆in, but the slope parameter 

𝛽 (avalanche duration) shows insensitivity to the input heterogeneity (Fig 5B). In the criticality 

region, both of these values are close to -1.5, and the slope 𝛼 displays decreasing values with 

increased input heterogeneity (Fig 5B, shaded region). By assessing the relationships between the 

two distance measurements and the coherence index, we find that neuronal avalanches appear at 

moderately synchronous levels of neuronal firing (Fig 5C), indicating the co-emergence of multi-

scale activities generated by our model. Note that this observation might be biological significant, 

because the co-emerged cortical activities are believed to be essential for efficient information 

processing in the brain. Increasing the input heterogeneity not only decreases the strength of 

neuronal oscillations due to desynchronization, but also increases the peak oscillation frequency 

(Fig 5D and 5E). Interestingly, such modulation of neuronal oscillations occurs at the low beta 
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band (13-20 Hz). We highlight these results because neuronal oscillations in the beta band have 

been widely observed in experimental recordings and are believed to play important roles in both 

cognitive processing and working memory (Engel & Fries, 2010; Gireesh & Plenz, 2008).  

Our model confirms that the heterogeneity in synaptic inputs can not only evoke spike-based 

neuronal avalanches and induce the co-emergence of multi-scale cortical activities, but also 

regulate the intrinsic properties of neuronal avalanches. 

3.3. Roles of sampling size in the neuronal avalanche observations 

Previous experimental studies have shown that randomly removing events from both spike- 

and LFP-based recordings can significantly impact the distributions of the underlying neuronal 

dynamics, thus suggesting that subsampling might prevent the observation of characteristic 

power-law statistics (Hahn, et al., 2010; Petermann, et al., 2009; Priesemann, et al., 2009). 

However, due to limitations in current experimental techniques, neuronal data used in these 

studies are recorded from limited numbers of electrodes or neurons. It is still unknown whether 

the oversampling of neuronal data may also destroy the power-law distributions of neuronal 

avalanches.  

To explore both the effects of subsampling and oversampling in our simulated data, we alter 

the number of the sampled excitatory neurons to control the sampling level in this study. Using 

the spike data generated in the same experiment (Fig. 4B, 𝑆in = 240 ), we recalculate the 

distributions for both avalanche size and duration at different sampling sizes. As shown in Fig 6A 

and 6B, fine power-law statistics of avalanche events can be preserved for a relatively large range 

of intermediate sampling sizes. To a certain extent, this confirms the stability and consistency of 

the neuronal avalanches generated in our model. Further examinations of distance measurements 

versus sampling size reveal inverse bell-shaped profiles for both avalanche size and duration, 

indicating that either a too small or a sufficiently large number of samples tends to mask the 

power-law distributions of avalanche events (Fig. 6C). In partial agreement with experimental 

observations, recording insufficient spike-based events from a limited number of neurons might 

prevent the observation of the characteristic power-law due to the excessive loss of large-size 

avalanches (Fig 6A and 6B, 𝑁S = 200). In contrast, collecting data from a very large population 

of neurons might both markedly reduce the chance of small-size avalanches and increase the 
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possibility of large-size avalanches, resulting in a pseudo-supercritical behavior with gentle 𝛼 

and 𝛽 slopes (Fig. 6A and 6B, 𝑁S = 800). This observation implies that the power-law statistics 

of neuronal avalanches might also be broken in cases of extreme oversampling. Indeed, similar 

shaping effects also exist for different intermediate sampling sizes. Consequently, we find that the 

best-fitted slopes for power-law distributions of avalanche size and duration are progressively 

increased towards to 0 with the growth of sampling size (Fig. 6D). 

Our above findings demonstrate that both extreme subsampling and oversampling of 

neuronal data might prevent the observation of the power-law statistics of the underlying 

avalanche dynamics, and sampling size might serve as an important intrinsic parameter when 

identifying critical neurodynamics in experiments. 

3.4. Our results can be extended to other in- and out-degree distributions 

By assuming exponential in- and out-degree distributions, we have shown that the 

heterogeneity level in synaptic inputs significantly modulates network dynamics and can evoke 

spike-based neuronal avalanches under suitable conditions. A natural arising question is whether 

similar results can also be reproduced in networks with other types of degree distributions. To 

answer this question, we perform additional simulations considering both Gaussian and uniform 

distributions for heterogeneous input and output connectivity in our model. Similar to that of 

exponential distribution (Fig 2 and 3), our preliminary analysis confirms that heterogeneous input 

connectivity modulates the network dynamics in a significant way, whereas heterogeneity in 

output connectivity influences the network dynamics only slightly (data not shown). In Fig 7, we 

plot several typical distributions of avalanche events at different levels of input heterogeneity. For 

networks with both truncated Gaussian and uniform in-degree distributions, the spike-based 

avalanche events exhibit fine power-law distributions at intermediate levels of input heterogeneity, 

which can be characterized by three exponents satisfying the relation: 𝜋 = (1 + 𝛽)/(1 + 𝛼). This 

theoretical signature indicates the occurrence of critical dynamics. Further examination of the 

distances between real and best-fitted power-law distributions versus the parameter 𝑆in reveals 

inverse bell-shaped profiles for both avalanche size and duration (Fig. 8A and 8B, left). As 

expected, our model displays critical avalanche dynamics only at an intermediate level of input 

heterogeneity for both Gaussian and uniform in-degree distributions (Fig. 8A and 8B, shaded 
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regions). Compared with the case of uniform in-degree distribution, we find that networks with 

exponential and Gaussian in-degree distributions have relatively wider and right-shifted criticality 

regions. For a fixed network density, this difference might be because the true level of input 

heterogeneity is not only determined by the parameter 𝑆in, but also impacted by the type of in-

degree distribution itself. 

Moreover, best-fitting the power-law distributions versus the parameter 𝑆in suggests that 

the exponent for avalanche size is modulated by the input heterogeneity as well (Fig 8A and 8B, 

middle). In the criticality region, the slope 𝛼 decreases with increasing input heterogeneity for 

networks with Gaussian and uniform in-degree distributions. Replotting the distance 

measurements as a function of the coherence index shows that neuronal avalanches emerge in 

moderately synchronous firing states (Fig 8A and 8B, right). Obviously, this implies again that 

our model may generate the co-emergence of multi-scale activities in the criticality region. In 

addition, we observe that strengthening the input heterogeneity in our model can decrease the 

peak power of neuronal oscillations with a slightly enhanced dominant frequency (Fig 9, red lines). 

For networks with Gaussian and uniform out-degree distributions, the peak power of the neuronal 

oscillations exhibits a similar reducing trend with the growth of output heterogeneity, but the 

corresponding peak frequency shows insensitivity to output heterogeneity (Fig 9, blue lines). 

Note that these findings are in agreement with our above observations for exponential in- 

and out-degree distributions. We thus postulate that the structural heterogeneity of input 

connectivity may be a generalized factor in the brain that plays a functional role in evoking and 

regulating neuronal avalanches. 

4. Discussion 

Avalanches of neuronal activity have been widely observed in electrophysiological 

recordings at different signal levels and brain spatial scales, but their dynamical mechanisms 

remain controversial (Beggs & Plenz, 2003; Bellay, et al., 2015; Ribeiro, et al., 2010; Yu, et al., 

2011). Using a proof-of-principle neural circuit model that incorporates different types of in- and 

out-degree distributions, we proposed here a very simple, yet effective, mechanism to control the 

critical dynamics in local neural systems. In particular, we showed that heterogeneous input 
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connectivity modulates the collective firing of neurons in a wide dynamic range (Landau, et al., 

2016; Litwin-Kumar, et al., 2017), and that introducing an appropriate level of input heterogeneity 

into the model can suppress synchronous firing of neurons and trigger spike-based neuronal 

avalanches. Moreover, we demonstrated that tuning the level of input heterogeneity in the 

criticality region can not only vary the exponent of the power-law distributions for avalanche size, 

but also regulate the peak frequency and power of neuronal oscillations. These results highlight 

the functional importance of heterogeneity in synaptic inputs in evoking and tempering critical 

neurodynamics. 

In contrast, we found that heterogeneous output connectivity might modulate collective 

neuronal firing only within a narrow dynamic range. In such a neuronal network with stubborn 

dynamics, it seems to be impossible to evoke neuronal avalanches by solely strengthening the 

output heterogeneity, possibly because our model operates at the oscillatory state, which is away 

from a bifurcation. In this case, tuning the level of output heterogeneity does not considerably 

affect the homogeneity of in-degrees in the network, and therefore will not introduce sufficient 

additional variability in synaptic currents to change the dynamical state. These results are in 

agreement with former computational observations, showing that broadening the out-degree 

distribution does not affect the dynamical state of a neuronal network operating away from a 

bifurcation (Roxin, 2011). However, if our model is poised near a non-equilibrium critical point, 

broadening the out-degree distribution might result in qualitative changes in the dynamical state 

of the network (Roxin, 2011). Under this condition, we infer that changing the level of output 

heterogeneity may also regulate the avalanches of neuronal activity in a relatively strong manner. 

This hypothesis deserves further examination in our further modelling studies. 

Neural computations in the brain require fast and energy-efficient information processing 

capabilities. Our results confirmed that spike-based neuronal avalanches are likely to appear at a 

moderately synchronized firing state and can coexist with both irregular firing and stochastic 

oscillations. These observations might provide important biological implications, because the 

similar co-emergence of multi-scale cortical activities has been observed in both experimental 

and computational recordings (Gireesh & Plenz, 2008; S.-J. Wang, et al., 2016; Yang, et al., 2017; 

Yu, et al., 2011). Remarkably, recent theoretical analysis on these multi-scale cortical activities 

have shown that the simultaneous appearance of these cortical activities may provide a dynamical 
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substrate for efficient neuronal information processing with high flexibility and capacity (S.-J. 

Wang, et al., 2016). In addition, previous studies using information-based measurements have 

also suggested that the neural system may exhibit the optimal signal processing capability when 

it works in the criticality region (Beggs & Plenz, 2003, 2004; Kinouchi & Copelli, 2006; Shew, 

et al., 2009; Shew, et al., 2011). We thus postulate that real neural circuits must maintain a certain 

level of input heterogeneity, providing a plausible underlying biological mechanism for the 

energy-efficient information processing capacity of the brain. 

There are two testable predictions that emerge from our current results. First, previous 

studies have demonstrated that subsampling may prevent the observation of characteristic power-

law statistics, but the effect of oversampling on neuronal avalanche distributions is still poorly 

understood (Hahn, et al., 2010; Petermann, et al., 2009; Priesemann, et al., 2009). By altering the 

number of sampled excitatory neurons, our oversampling analysis suggests that excessive 

oversampling may also mask the power-law distributions of avalanche events. In principle, this 

hypothesis can be examined in future experiments using high-density electrode arrays. Second, it 

has been reported that the exponents of the power-law distributions for both avalanche size and 

duration are close to -1.5, but their values might vary slightly with different experimental settings 

and recorded data (Beggs & Plenz, 2003; Gireesh & Plenz, 2008; Hahn, et al., 2010; Palva, et al., 

2013; Yu, et al., 2014). Our current results predict that the observations of these two exponents 

might be modulated by both the sampling size and the level of input heterogeneity, a prediction 

that can be further tested experimentally. 

The model we established in this study assumes an inhomogeneous connectivity structure. 

In fact, the inhomogeneous connectivity structure is an intrinsic property of the brain, an idea 

supported by sufficient experimental data. For instance, it has been well established that the wiring 

diagrams among neurons are highly nonrandom, and several significantly recurring nontrivial 

patterns of interconnections, termed “motifs”, are contained in neural circuits (Song, et al., 2005). 

Recent studies have also uncovered that cortical neurons have remarkable heterogeneity in their 

input connectivity and input synaptic currents (Okun, et al., 2015; Xue, et al., 2014). Moreover, 

analyzing the functional organization of population neurons has shown that both the in- and out-

degree of synaptic connectivity are broadly distributed with heavy tails (Bonifazi, et al., 2009; Ito, 

et al., 2014; Shimono & Beggs, 2014; Timme, et al., 2016). Together, these investigations imply 
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that structural heterogeneity is ubiquitous in the brain and can coexist in both synaptic inputs and 

outputs, thus providing the structural basis for our observations. By further performing 

reproducibility analyses, we have demonstrated that our key findings can be observed in networks 

with different in- and out-degree distributions. These findings indicate that our presented results 

are independent of the specific type of inhomogeneous connectivity structure. Consequently, we 

propose that both the emergence and regulation of neuronal avalanches caused by heterogeneous 

input connectivity might be a generalized mechanism in the brain. 

However, it is worth noting that a neuronal network with heterogeneous input connectivity 

allows neurons to exhibit significant heterogeneity in their total synaptic current, which might be 

a true underlying factor that evokes and regulates neuronal avalanches. An interesting question is 

whether the heterogeneity in the total synaptic current can also be induced by other biological 

mechanisms. There are several underlying biological mechanisms that can achieve this function, 

and one of them is discussed below. Previous experimental data have revealed that synaptic 

strengths recorded in vitro are not homogeneous but broadly distributed in a lognormal 

distribution (Song, et al., 2005). By introducing such lognormal distributed synaptic strengths into 

a neuronal network, remarkable heterogeneity in the total synaptic current can be easily induced 

even for a homogeneous connectivity structure. Therefore, the highly inhomogeneous distribution 

of synaptic strengths might be an alternative regulator of critical neurodynamics. In principle, 

these two underlying regulators might cooperate together in our brain and offer a stable circuitry 

basis in support of neuronal avalanches. 

Though our model predicts that heterogeneous output connectivity does not play a pivotal 

role in tampering avalanche dynamics, we cannot rule out other underlying functional roles of the 

heterogeneity of synaptic outputs in the brain. Indeed, recent studies have confirmed that 

heterogeneous output connectivity may be critical for neural computations in feedforward 

networks, and neurons that compute the most information tend to receive inputs from high-degree 

neurons (Timme, et al., 2016). It has also been reported that broadening the out-degree may 

increase the amplitude of the cross-correlation of synaptic currents in recurrent networks (Roxin, 

2011). In the real brain, different types of structural heterogeneity may perform complementary 

roles and provide a hybrid mechanism to ensure optimal neural computations. After a long 

duration of evolution, it is reasonable to suppose that our brain might have the ability to use this 
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type of hybrid mechanism to achieve complicated functions. 

Our model is parsimonious, designed to capture the fundamental biophysical mechanisms of 

neuronal avalanches contributed by structural heterogeneity. The limitations of this model and 

several possible extensions are discussed below. First, we did not introduce any plasticity 

mechanisms in our model. Indeed, synaptic strength can be largely mediated by both pre- and 

postsynaptic firing activities, with a temporal span ranging from milliseconds to several days 

(Gerstner & Kistler, 2002). In particular, previous studies based on homogeneous connectivity 

structures have shown that short-term plasticity may significantly influence self-organized 

criticality in neural systems (Levina, et al., 2007). It is necessary to further probe whether the 

avalanche dynamics generated in inhomogeneous networks can also be modulated by short-term 

plasticity. Second, we consider only the structural heterogeneity of synaptic inputs and outputs 

independently in our current model. However, as mentioned above, both heterogeneous input and 

output connectivity should coexist in cortical circuits (Chen, et al., 2013; Okun, et al., 2015). In 

future studies, we should explore the possible combined roles of these two types of structural 

heterogeneity in the regulation of neuronal avalanches. Finally, our current results are based on 

spike data generated in local neural circuits, but neuronal avalanches have also been observed at 

relatively large spatial scales (Beggs & Plenz, 2003, 2004; Hahn, et al., 2010). By integrating 

multimodal neuroimaging data, recent developed computational modeling techniques allow us to 

establish a large-scale brain model with the neural-field theory (Deco & Jirsa, 2012; Deco, et al., 

2013). Using such a large-scale brain model, it is possible to further examine the roles of different 

types of structural heterogeneity in the regulation of neuronal avalanches even at the whole-brain 

level. 

In conclusion, we have performed mechanistic studies to investigate the roles of different 

types of structural heterogeneity in the control of neuronal avalanches. Our results emphasize the 

functional significance of heterogeneous input connectivity in mediating neurodynamics, and 

provide the first computational evidence that avalanches of neuronal activity can be evoked and 

regulated by the level of input heterogeneity. We hope that these findings might not only deepen 

our current understanding on the biophysical mechanisms of neuronal avalanches, but also inspire 

testable hypotheses for future experimental studies. 
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Table legend 

Table 1 Default values of model parameters used in numerical simulations. 

Symbol Description Value 

𝑁  Total number of neurons 2000 

𝑁E Total number of excitatory neurons 1600 

𝑁I Total number of inhibitory neurons 400 

𝑁S Sampling size 400 

𝐾in Mean of in-degrees 400 

𝐾out  Mean of out-degrees 400 

𝜌 Network density 0.2 

𝑆in Standard deviation of in-degrees 0-380 

𝑆out  Standard deviation of out-degrees 0-380 

𝑊EE Synaptic strength of E→E coupling 0.06 nS 

𝑊IE Synaptic strength of E→I coupling 0.03 nS 

𝑊EI Synaptic strength of I→E coupling 0.3 nS 

𝑊II Synaptic strength of I→I coupling 0.07 Ns 

𝐶m Membrane capacitance 0.5 nF (E), 0.2 nF (I)

𝐶L Leak conductance 25 nS (E), 20 nS (I) 

𝑉L Resting potential -70 mV 

𝑉rest  Reset potential -55 mV 

𝑉th Spike threshold -50 mV 

𝑉E Reversal potential of excitatory synapses 0 mV 

𝑉I Reversal potential of inhibitory synapses -70 mV 

𝜏ref  Refractory period 2 ms (E), 1 ms (I) 

𝜏E Excitatory synaptic time constants 5 ms 

𝜏I Inhibitory synaptic time constants 10 ms 

𝜏d Delay of synaptic transmission 1 ms 

𝐼0 Bias current 0.5 nA (E), 0.3 nA (I)

𝜎 Fluctuation intensity of the background current 0.1 nA 
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Figure legends 

Figure 1: Schematic presentation of the neural circuit model. A: The neuronal network 

comprises 𝑁E excitatory and 𝑁I inhibitory neurons. Neurons in the network are coupled via 

excitatory (blue) and inhibitory (red) synapses governed by different coupling strengths. Each 

neuron also receives an external stimulus to maintain the network activity. B: Either the input 

heterogeneity (top) or output heterogeneity (bottom) is introduced into the network. In 

simulations, these two types of structural heterogeneity are controlled by the parameters (𝐾in, 𝑆in) 

and (𝐾out , 𝑆out), respectively. C: As examples, three typical in-degree distributions (Exponential, 

Gaussian and Uniform) are plotted, with the mean in-degree 𝐾in = 400. A large value of 𝑆in 

indicates a strong level of structural heterogeneity. 

 

Figure 2: Multi-scale dynamics of neuronal networks at different levels of structural 

heterogeneity. A: Dynamical performance for a network with heterogeneous input connectivity. 

Top panel: The input heterogeneity level over a simulated time of 1500 ms. Middle panel: Spike 

raster for a sample of 400 excitatory neurons (blue) and 100 inhibitory neurons (red). Bottom 

panel: Synaptic currents of a randomly chosen excitatory neuron. Here different colors represent 

different types of synaptic currents: excitatory (blue), inhibitory (red), and the total of excitatory 

and inhibitory (black). The dark shaded region surrounding the black curve denotes the error 

bounds (standard deviation) of the total excitatory and inhibitory current over all excitatory 

neurons. The collective firing of neurons exhibits distinct population synchrony degrees at 

different levels of input heterogeneity. The light shaded regions in (A) denote the state transitions. 

B: The corresponding dynamical performance for a network with heterogeneous output 

connectivity is plotted, in which the collective neuronal firing displays high synchrony at different 

levels of output heterogeneity. In simulations, three different levels of structural heterogeneity are 

considered: 𝑆in (or 𝑆out = 0), 𝑆in (or 𝑆out = 220), and 𝑆in (or 𝑆out = 380), respectively. 

 

Figure 3: Dynamical performance of neuronal networks at different levels of structural 

heterogeneity. Typical neuronal measurements are plotted as a function of the level of structural 

heterogeneity. Here four measurements are considered: the average standard deviation of the total 
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synaptic currents per time instant (A), the coherence index (B), the mean CVISI  (C) and the 

average firing rate (D). All data are plotted as the mean ± SD (standard deviation). In (A)-(D), 

the red color represents the network with input heterogeneity (𝑆in) and the blue color denotes the 

network with output heterogeneity (𝑆out).  

 

Figure 4: Identification of neuronal avalanches evoked by heterogeneity in synaptic inputs. 

A: Mapping spikes from 𝑁S randomly sampled excitatory neurons into time bins (∆𝑡=0.5 ms). 

Here an avalanche event is defined as a sequence of time bins in which at least one spike is emitted, 

ending with a silent time bin. As an example, the 𝑖-th avalanche event with a size of 40 spikes 

and duration of 7.5 ms is illustrated in (A). B: Typical distributions of avalanche size (top) and 

avalanche duration (bottom) for networks with heterogeneous input connectivity (𝑁S = 400). At 

different levels of input heterogeneity, the model may present subcritical (red, 𝑆in = 0), critical 

(black, 𝑆in = 240 ), and supercritical (blue, 𝑆in = 380 ) avalanche dynamics. Insert: at the 

intermediate level of input heterogeneity (𝑆in = 240), the average size 〈𝑆〉(𝑇 ) conditioned on a 

given duration 𝑇   shows power-law increases corresponding to 〈𝑆〉(𝑇 )~𝑇 𝜋  . C: The 

corresponding distributions of avalanche events for networks with heterogeneous output 

connectivity. Similarly, three levels of output heterogeneity are considered: 𝑆out = 0  (red), 

𝑆out = 240  (black),  𝑆out = 380  (blue). The model exhibits only supercritical avalanche 

dynamics due to high synchrony among neurons.  

 

Figure 5: Neuronal avalanches are regulated by input heterogeneity. A: Distance between real 

and best-fitted power-law distributions for avalanche size (blue) and duration (red) versus the 

level of input heterogeneity. The model exhibits subcritical (left region), critical (middle shaded 

region), and supercritical (right region) avalanche dynamics for different values of 𝑆in. B: Best-

fitted slopes for power-law distributions of avalanche size (𝛼, blue) and duration (𝛽, red) versus 

the level of input heterogeneity. C: Distances in (A) are replotted as a function of the coherence 

index. D: Examples of the population firing rate and time-frequency wavelet spectrogram (left) 

and the average power spectrogram over time (right). The two levels of input heterogeneity 

considered here are 𝑆in = 200 (top) and 𝑆in = 240 (bottom). E: The peak frequency (top) and 
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peak power (bottom) are computed at different levels of input heterogeneity. 

 

Figure 6: Effects of sampling size on the observation of neuronal avalanches. A: Recalculated 

distributions of avalanche size at different sampling sizes. B: Corresponding distributions of 

avalanche duration at different sampling sizes. In (A) and (B), we use the spike data generated in 

the same experiment (Fig. 4b, 𝑆in = 240 ). The five sampling size considered here are 𝑁S =

200, 300, 400, 600, and 800. C: Distance between real and best-fitted power-law distributions for 

avalanche size (blue) and duration (red) as a function of sampling size. The model exhibits the 

critical (shaded region) avalanche dynamics for an intermediate sampling size. D: Best-fitted 

slopes for power-law distributions of avalanche size (𝛼 , blue) and duration (𝛽 , red) versus 

sampling size. 

 

Figure 7: Neuronal avalanches can be evoked in networks with both Gaussian and uniform 

in-degree distributions. A: Typical distributions of avalanche size (left) and avalanche duration 

(right) for networks with Gaussian in-degree distributions. At different levels of input 

heterogeneity, the model displays subcritical (red, 𝑆in = 0 ), critical (black, 𝑆in = 200 ), and 

supercritical (blue, 𝑆in = 380 ) avalanche dynamics. Insert: at an intermediate level of input 

heterogeneity (𝑆in = 200), the average size 〈𝑆〉(𝑇 ) conditioned on a given duration 𝑇  shows 

power-law increases corresponding to 〈𝑆〉(𝑇 )~𝑇 𝜋 . B: The corresponding distributions of 

avalanche events for networks with uniform in-degree distributions. Similarly, the model exhibits 

different types of dynamical behaviors at different levels of input heterogeneity. In simulations, 

we set the sampling size at 𝑁S = 400. 

 

Figure 8: Regulations of neuronal avalanches by input heterogeneity in networks with 

Gaussian and uniform in-degree distributions. A: For the Gaussian in-degree distributions, we 

plot the distance measurements between real and best-fitted power-law distributions (left) and the 

best-fitted slopes (middle) as a function of the level of input heterogeneity. In addition, the 

distance measurements for avalanche size and duration are replotted versus the coherence index 
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(right). In (A), the blue lines denote the measurements for avalanche size, and the red lines 

represent the measurements for avalanche duration. B: The corresponding plots for networks with 

uniform in-degree distribution. In comparison with the model with uniform in-degree distribution, 

it is obvious that the model with the Gaussian in-degree distribution displays a relatively wider 

and right-shifted criticality region. 

 

Figure 9: Neuronal oscillations are modulated by structural heterogeneity. A: For networks 

with Gaussian in- and out-degree distributions, both the dominant (peak) frequency (left) and the 

corresponding peak power (right) are plotted as a function of the level of structural heterogeneity. 

B: The corresponding results for networks with uniform in- and out-degree distributions. The red 

color represents the network with input heterogeneity (𝑆in) and the blue color denotes the network 

with output heterogeneity (𝑆out). 
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