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An extensive experimental survey of regression methods

M. Fernández-Delgado1,∗, M.S. Sirsat1, E. Cernadas1, S. Alawadi1, S.
Barro1, M. Febrero-Bande2

Abstract

Regression is a very relevant problem in machine learning, with many differ-

ent available approaches. The current work presents a comparison of a large

collection composed by 77 popular regression models which belong to 19

families: linear and generalized linear models, generalized additive models,

least squares, projection methods, LASSO and ridge regression, Bayesian

models, Gaussian processes, quantile regression, nearest neighbors, regres-

sion trees and rules, random forests, bagging and boosting, neural networks,

deep learning and support vector regression. These methods are evaluated

using all the regression datasets of the UCI machine learning repository (83

datasets), with some exceptions due to technical reasons. The experimen-

tal work identifies several outstanding regression models: the M5 rule-based

model with corrections based on nearest neighbors (cubist), the gradient
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boosted machine (gbm), the boosting ensemble of regression trees (bstTree)

and the M5 regression tree. Cubist achieves the best squared correlation

(R2) in 15.7% of datasets being very near to it, with difference below 0.2 for

89.1% of datasets, and the median of these differences over the dataset col-

lection is very low (0.0192), compared e.g. to the classical linear regression

(0.150). However, cubist is slow and fails in several large datasets, while

other similar regression models as M5 never fail and its difference to the best

R2 is below 0.2 for 92.8% of datasets. Other well-performing regresors are

the committee of neural networks (avNNet), extremely randomized regression

trees (extraTrees, which achieves the best R2 in 33.7% of datasets), random

forest (rf) and ε-support vector regression (svr), but they are slower and

fail in several datasets. The fastest regression model is least angle regression

lars, which is 70 and 2,115 times faster than M5 and cubist, respectively.

The model which requires least memory is non-negative least squares (nnls),

about 2 GB, similarly to cubist, while M5 requires about 8 GB. For 97.6%

of datasets there is a regression model among the 10 bests which is very

near (difference below 0.1) to the best R2, which increases to 100% allowing

differences of 0.2. Therefore, provided that our dataset and model collection

are representative enough, the main conclusion of this study is that, for a

new regression problem, some model in our top-10 should achieve R2 near to

the best attainable for that problem.

Keywords: Regression, UCI machine learning repository, cubist, M5,

gradient boosted machine, extremely randomized regression tree, support

vector regression penalized linear regression.
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1. Introduction1

The objective of this paper is to provide a “road map” for researchers2

who want to solve regression problems and need to know how well work3

the currently available regression methods. In machine learning, regression4

methods are designed to predict continuous numeric outputs where an order5

relation is defined. Regression has been widely studied from the statistics6

field, which provides different approaches to this problem: linear and gen-7

eralized linear regression, least and partial least squares regression (LS and8

PLS), least absolute shrinkage and selection operator (LASSO) and ridge9

regression, multivariate adaptive regression splines (MARS), least angle re-10

gression (LARS), among others. Furthermore, several methods arising from11

the field of machine learning were designed to be universal function aproxi-12

mators, so they can be applied both for classification and regression: neural13

networks, support vector machines, regression trees and rules, bagging and14

boosting ensembles, random forests and others. The current work develops15

an empirical quantitative comparison of a very large collection of regression16

techniques which is intended to provide the reader: 1) a list of the currently17

available regression models, grouped by families of related methods; 2) a18

brief description and list of references about each approach, alongside with19

technical details about its execution such as software implementation, list of20

tunable hyperparameters and recommended values; 3) a ranking of the avail-21

able models according to its performance and speed, identifying the best22

performing approach and the performance level which can be expected for it;23

and 4) the code to run all the regression models considered in this study for24
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any regression problem3. In this comparison, we use the whole collection of25

regression datasets provided of the UCI machine learning repository (except-26

ing some datasets excluded by technical reasons), which a large collection of27

regression problems, and it should allow to develop a realistic and significant28

evaluation of the regression methods. As we explained in a previous paper29

comparing classifiers [1], provided that the size of the model collection used30

in the current comparison is large enough, we can assume that the best per-31

formance, measured in terms of squared correlation (R2), achieved by some32

regression model for each dataset (denoted as R2
best) is the highest attainable33

performance for that dataset. For a model which achieves a given R2 in that34

dataset, the difference ∆ = R2
best − R2, averaged over the dataset collection,35

can be used as an estimation of the expected ∆ for that model and a new36

dataset D, not included in the collection. For the best model X on the cur-37

rent comparison, it is expected that ∆ & 0, i.e., the R2 achieved by X should38

not be too far from Rbest in average over the data collection. Thus, although39

by the No-Free-Lunch theorem [2] we can not guarantee that X will be the40

best model for D, we can expect that X will achieve R2 > R2
best−∆, so that41

X will not be very far from R2
best for dataset D. Consequently, the current42

paper may be useful for researchers who want to know how far a given model43

(e.g. the best model X) will be from the best available performance (which44

is, of course, unknown) for a new dataset. On the other hand, in general the45

best models in the current comparison achieve the best, or very near to the46

best, performances for most datasets in the collection. Therefore, although47

3https://nextcloud.citius.usc.es/index.php/s/Yb8LZQQFrgckjFk (visited December
14, 2018).
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X will not be the best regression model for a new dataset D, we can expect48

that some of the best models in our comparison will achieve the best R2.49

Thus, the current comparison may be also useful to provide to the reader a50

reduced list (e.g., the 10 best performing models of the collection) which is51

expected to include the one which provides the highest available performance52

for a new dataset D.53

The section 2 describes the materials and methods used for this compar-54

ison, which include the list of datasets and regression methods, grouped by55

families. The description of regression models and issues related to their ex-56

ecution (software implementation, number of tunable hyperparameters and57

their values) are included in Appendix B. The section 3 reports the results58

of the experimental work and discusses them globally, by families of regres-59

sion models and by datasets, best model for each dataset, elapsed time and60

memory. Finally, the section 4 compiles the conclusions of this study.61

2. Materials and methods62

This section describes the scope of the current work, defined by the collec-63

tion of datasets used in this comparison (subsection 2.1) and by the regression64

methods that will be compared (subsection 2.2).65

Original UCI name Datasets #patterns #inputs

3D Road network 3Droad 434,874 4/3

Airfoil self-noise airfoil 1,503 5

Air quality

air-quality-CO, air-quality-NMHC

1,230 8air-quality-NO2, air-quality-NOx

air-quality-O3

Appliances energy prediction appliances-energy 19,735 28/26

Auto MPG auto-MPG 398 8/23

Automobile automobile 205 26/66

Continued on next page.
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Table 2 – Continued from previous page.

Original UCI name Datasets #patterns #inputs

Beijing PM2.5 beijing-pm25 41,758 12

Bike sharing
bike-day 731 13/30

bike-hour 17,379 14/42

Blog feedback blog-feedback 60,021 280/13

Buzz in social media buzz-twitter 583,250 77

Combined cycle power plant combined-cycle 9,568 4

Communities & crime com-crime 1,994 122

Communities & crime unnormalized com-crime-unnorm 2,215 124/126

Computer hardware com-hd 209 7

Concrete compressive strength compress-stren 1,030 8

Concrete slump test
slump

103
9

slump-comp, slump-flow 7

Condition based maintenance of naval

propulsion plants

cond-turbine 11,934 13

Conventional and Social Media Movies

14/15

csm1415 231 12/11

Cuff-less blood pressure estimation cuff-less 61,000 3/2

Daily Demand Forecasting Orders daily-demand 60 13/12

Dynamic features of VirusShare Exe-

cutables

dynamic-features 107,856 482/265

Energy efficiency energy-cool, energy-heat 768 8/7

Facebook comment volume facebook-comment 40,949 54/48

Facebook metrics facebook-metrics 500 19

Forestfires forestfires 517 12/39

Gas sensor array under dynamic gas-dynamic-CO
58 438/57

gas mixtures gas-dynamic-methane

Geographical original of music
geo-lat, geo-long

1,059
116/72

geo-music-lat, geo-music-long 68

GPS trajectories gps-trajectory 163 10

Greenhouse gas observing network greenhouse-net 955,167 15

Housing housing 452 13

Individual household electric power

consumption

household-consume 2,049,280 6/5

Istanbul stock exchange stock-exchange 536 8

KEGG metabolic reaction network

(undirected)

KEGG-reaction 65,554 27/25

KEGG metabolic relation network (di-

rected)

KEGG-relation 54,413 22/17

Online news popularity online-news 39,644 59/55

Online video characteristics and

transcoding time dataset

video-transcode 68,784 20/8

Continued on next page.
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Table 2 – Continued from previous page.

Original UCI name Datasets #patterns #inputs

Parkinson speech dataset with multi-

ple types of sound recordings

park-speech 1,040 26

Parkinson’s telemonitoring park-motor-UPDRS, park-total-

UPDRS

5,875 16

PM2.5 Data 5 Chinese Cities

pm25-beijing-dongsi 24,237

13

pm25-beijing-dongsihuan 20,166

pm25-beijing-nongzhanguan 24,137

pm25-beijing-us-post 49,579

pm25-chengdu-caotangsi 22,997

pm25-chengdu-shahepu 23,142

pm25-chengdu-us-post 27,368

pm25-guangzhou-city-station 32,351

pm25-guangzhou-5th-middle-school 21,095

pm25-guangzhou-us-post 32,351

pm25-shanghai-jingan 22,099

pm25-shanghai-us-post 31,180

pm25-shanghai-xuhui 23,128

pm25-shenyang-taiyuanji 22,992

pm25-shenyang-us-post 20,452

pm25-shenyang-xiaoheyan 23,202

Physicochemical properties of protein

tertiary structure

physico-protein 45,730 9

Relative location of CT slices on axial

axis

CT-slices 53,500 385/355

Servo servo 167 4/15

SML2010 SML2010 4,137 20/18

Stock portfolio
stock-abs, stock-annual, stock-excess

252 6
stock-rel, stock-systematic, stock-total

Student performance
student-mat 395 32/77

student-por 649 32/56

UJIIndoorLoc UJ-lat, UJ-long 21,048 528/373

Yacht hydrodynamics yacht-hydro 308 6

YearPredictionMSD year-prediction 2,000 90

Table 2: Collection of 83 datasets from the UCI repository. Each column reports: original
name in the UCI repository; datasets created from the original one; number of patterns (or
observations) and inputs, before and after preprocessing.

66
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Excluded dataset Reason

Amazon access samples Huge number of inputs (20,000)
Breast cancer Wisconsin (Prognostic) Too few recurrent patterns (47)
Cargo 2000 Freight Tracking and Tracing Less than 10 different output values (3)
Challenger USA space shuttle O-ring Too few patterns (23) and inputs (3)
Condition based maintenance of naval propul-
sion plants (compress output)

Less than 10 different output values (9)

Container crane controller Too few patterns (15)
DrivFace Less than 10 different output values (4 sub-

jects)
Early biomarkers of Parkinsons disease based
on natural connected speech

Data are not available

Educational process mining Inputs and output for regression are not clear
ElectricityLoadDiagrams Huge number of inputs (140,256)
Fertility Less than 10 different output values (2)
Gas sensor array drift dataset at different con-
centrations

Less than 10 different output values (7)

Gas sensor array exposed to turbulent gas mix-
tures

Huge number of inputs (150,000)

Gas sensor array under flow modulation Less than 10 different output values (4)
Geo-Magnetic field and WLAN Data format very complex
Improved spiral test using digitized graphics
tablet for monitoring parkinsons disease

Data are not available

Insurance Company Benchmark (COIL 2000) Less than 10 different output values (3)
KDC-4007 dataset Collection Less than 10 different output values (8)
KDD cup 1998 Format too complex
Las Vegas Strip Less than 10 different output values (5)
News popularity in multiple social media plat-
forms

Data are text instead of numbers

Noisy office Format too complex (PNG images)
Open university learning analytics Format too complex
Paper Reviews Less than 10 different output values (5)
Parkinson disease spiral drawings using digi-
tized graphics tablet

Less than 10 different output values (3)

Skillcraft1 master table Less than 10 different output values (7)
Solar flare Less than 10 different output values
Tamilnadu electricity board hourly readings Less than 10 different output values (2)
Tennis major tournament match statistics Format problems
Twin gas sensor arrays Less than 10 different output values (4)
UJIIndoorLoc-Mag Output almost constant, format very complex
wiki4HE Less than 10 different output values (7)
Wine quality (white/red) Less than 10 different output values (7/6)

Table 1: List of the UCI regression datasets which were excluded from this study with the
reason to be discarded. In datasets with discrete outputs the number of different output
(or response) values is between parentheses.
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2.1. Datasets67

In the current research, we selected 48 of the 82 datasets (81 because the68

Air Quality dataset is repeated) listed as regression problems4 by the UCI69

Machine Learning Repository [3]. The remaining 33 datasets were discarded70

due to the reasons listed in Table 1. The reason which leaded to discard a71

larger amount (17) of datasets was the reduced number of output (usually72

called response in Statistics) values, because the majority of the regression73

models are designed for datasets with continuous outputs and many differ-74

ent values, where an ordering relation has sense. Therefore, we excluded75

17 datasets whose outputs have few values (specifically, less than 10), be-76

cause including them in the dataset collection might favor some regression77

models with respect to others, thus biasing the results of the study. These78

datasets should be considered as ordinal classification instead of pure regres-79

sion problems. Table 2 reports the collection of 83 datasets which we use80

in the current work, with their numbers of patterns (usually named obser-81

vations in Statistics) and inputs (also called features or attributes). Some82

of the 48 original UCI regression datasets selected for this work generated83

several regression problems, one for each data column which can be used84

as output for regression. Thus, some UCI datasets (whose original names85

are listed in the column 1 of the tables) give several datasets in column 286

(e.g., the Air quality dataset gives five datasets named by us air-quality-CO,87

air-quality-NMHC, etc.). There are also discrepancies between data in Table88

2 with respect to the documentation of the UCI ML repository, which are89

described in detail in Appendix A.90

4http://archive.ics.uci.edu/ml/datasets.html?task=reg (visited February 5, 2018).
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Dataset and details Dataset and details

3Droad: 4: altitude geo-long: 118: longitude; same file
airfoil : 6: scaled sound pressure geo-music-lat : 69: latitude; default file
air-quality-CO : 3: PT08.S1; 1,2,7,9,11,12 geo-music-long : 70: longitude; same file
air-quality-NMHC : 7: PT08.S2; 1,2,4,9,11,12 gps-trajectory∗ : 2: speed; 1,9,12,13; tracks file
air-quality-NO2 : 10: PT08.S4; 1,2,4,7,9,12 greenhouse-net: 16: synthetic; pasted all files
air-quality-NOx : 9: PT08.S3; 1,2,4,7,11,12 household-consume∗ : 3: global active power
air-quality-O3 : 11: PT08.S5; 1,2,4,7,9,11 housing: 14: MEDV
appliances-energy : 2: appliances; 1 KEGG-reaction∗ : 29: edgeCount; 1
auto-MPG∗ : 1: mpg KEGG-relation : 24: ClusteringCoefficient; 1
automobile : 26: price : online-news : 60: shares
bike-day : 16: cnf; 1,2; day.csv park-motor-UPDRS : 5: motor UPDRS; 1 2, 3, 4,

6
bike-hour : 17: cnf; 1,2; hour.csv park-speech : 28: UPDRS; train data.txt
blog-feedback : 281: target; pasted all files park-total-UPDRS : 6: total UPDRS; 1, 2, 3, 4, 5
buzz-twitter : 78: discussions : Twitter.data physico-protein : 1: RMSD
combined-cycle : 5: PE; Folds5x2 pp.csv servo : 5: class
com-crime∗ : 128: ViolentCrimesPerPop;1-5 slump : 8: slump
com-crime-unnorm∗ : 146: ViolentCrimesPerPop;
1-5,130-145,147

slump-comp : 10: comp. strength

com-hd : 10: ERP; 1,2 slump-flow : 9: flow
compress-stren : 9: ccs; Concrete data.xls SML2010∗ : 3: dining-room temperature; 1,2,4;

both files
cond-turbine : 18: GT Turbine; 17; data.txt stock-exchange : 10: EM; 1
CT-slices : 386: reference student-mat : 33: G3; G1, G2
cuff-less∗ : 2: ABP student-por : 33: G3; G1, G2
energy-cool : 10: cool UJ-lat : 522: latitude; both files
energy-heat : 9: heat UJ-long : 521: longitude; both files
facebook-comment : 54; Features Variant 1.csv
facebook-metrics : 1
forestfires : 13: area video-transcode : 21: utime; transcod-

ing mesurment.tsv
gas-dynamic-CO : 2: CO conc; 1 yacht-hydro : 7: resistance
gas-dynamic-methane : 2: Methane; 1 year-prediction : 1: year
geo-lat : 117: latitude; chromatic file

Table 3: Information about datasets used in the current work: column number and name
(if exists) used as output; removed columns (e.g., time marks or other outputs) where
corresponds; files used, in datasets where several files are available; ∗: means that dataset
contains missing patterns, which we replaced by the column mean.

Although several datasets in Table 2 contain several ten thousand pat-91

terns, and even half (buzz-twitter), one (greenhouse-net) and two million pat-92

terns (household-consume), the current study is not oriented to large-scale93

datasets because the available implementations of the majority of regression94

models would not work on such large datasets due to memory errors or exces-95
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sive time. Thus, including large-scale datasets on the current study would96

bias the results and conclusions, limiting the comparison to those models97

with implementations that could be run on large data and favoring them98

over the remaining ones. Such a study for large-scale datasets would require99

a separate and completely different work which falls outside the scope of100

the current paper. Even discarding large-scale datasets, some models in our101

study are not able to train and test with some large datasets of our col-102

lection due to the limited RAM memory, although we set a maximum size103

of 128 GB. Besides, some other models spend a long time to finish, so we104

fixed a maximum run-time of 48 hours and labeled any model that could105

not finish within this time lapse as failing for this dataset. As usual, the106

output was pre-processed using the Box-Cox transformation [4] in order to107

make it more similar to a symmetric uni-modal distribution, with the boxcox108

function (MASS package) of the R statistical computing language [5]. In the109

greenhouse-net and com-crime-unnorm datasets, the decimal logarithm of110

the inputs are used, due to the wide range of many inputs. The constant, re-111

peated and collinear inputs5 are removed from all the datasets. Specifically,112

the lm function in the stats R package is used to calculate the coefficients of113

the linear model trained on the whole dataset, and the inputs with NA (not114

available) coefficients in the linear model are removed. This reason leads e.g.115

the Blog feedback dataset to reduce its inputs from 280 to 13. The rationale116

behind this is that constant, repeated or collinear inputs lead many models117

to develop calculations with singular matrices, so it is useful to remove these118

5An input is considered collinear when it can be calculated as a linear combination of
other inputs.
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inputs in order to avoid the subsequent errors. On the other hand, the inputs119

with discrete values are replaced by dummy (also named indicator) inputs.120

For each discrete input (often named nominal variables in Statistics) with n121

values, it is replaced by n − 1 dummy binary inputs. The first value of the122

original discrete input is codified as zero values for the n− 1 dummy inputs;123

the second value is codified as 1 in the first dummy variable and zero in the124

remaining ones, and so on. Therefore, those datasets with discrete inputs125

increase the number of inputs, so that e.g. the student-mat dataset (Table126

2, second column) increases its inputs from 32 to 77 due to the presence of127

discrete inputs. In Table 2 the datasets whose “#inputs” column shows two128

numbers (i.e. 8/23), the first is the number of inputs of the original UCI129

dataset, and the second is the number of inputs used effectively in our exper-130

iments, after removing those inputs which are constant, repeated or collinear,131

and after replacing discrete inputs by their corresponding dummy variables.132

Those datasets with only one number in the #inputs column means that no133

input was removed nor added. Table 3 reports the name and number of the134

attribute used as output for each dataset. It also specifies the numbers of the135

columns that were discarded (if any), due to being useless (e.g., times, dates,136

names, etc.) or because they are alternative outputs (in datasets with several137

outputs to be predicted) which can not be used as inputs (e.g., latitude can138

not be used as input for UJ-long dataset in Table 2). In those datasets with139

more than one file, the table specifies the files used. An asterisk (*) iden-140

tifies datasets with missing values, which are replaced by the mean of the141

non-missing values of that column. Note that applying further sophisticated142

management techniques to inputs with missing values might allow to extract143

12



some information out of them in order to raise the prediction accuracy.144

2.2. Regression models145

We apply a wide collection of 77 models which belong to several families.146

All the files (data, programs and results) are publicly available6. The major-147

ity of them (74 models) are selected from the list of models7 included in the148

Classification and Regression Training (caret) R package [6]. We discarded149

52 caret models listed in Table 4, either because they are equivalent to other150

models already included in our study (which are listed in the “Equivalence”151

columns of the upper part of the table), due to run-time errors or because152

they can not be used for regression (listed in the lower part of the table).153

Instead of using the train function of the caret package, we ran the models154

directly using the corresponding R packages (see the detailed list of mod-155

els below), in order to control the execution of each single model. Besides,156

the direct execution allows us to use the same configuration (e.g., the same157

training and test patterns) as other four popular models, implemented in158

other platforms, that we included in our study although they do not belong159

to the caret model list (see the link in the above footnote). These models160

are the deep learning neural network (named dlkeras in our study), using161

the module Keras, configured for Theano [7], in the Python programming162

language [8]; the ε-support vector regression (named svr), implemented by163

the LibSVM library [9] and accessed via the C++ interface; the generalized re-164

gression neural network and extreme learning machine with Gaussian kernel165

6https://nextcloud.citius.usc.es/index.php/s/Yb8LZQQFrgckjFk (visited December
14, 2018).

7http://topepo.github.io/caret/available-models.html (visited April 27, 2017).
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(named grnn and kelm, respectively) in Matlab [10].166

Equivalence Equivalence Equivalence Equivalence

bagEarthGCV → bagEarth ctree → ctree2 gamLoess, gamSpline → gam enpls → enpls.fs

gcvEarth → earth glm.nb → bayesglm glmnet h2o → glmnet knn → kknn

lars2 → lars lmStepAIC → glmSAIC M5Rules → M5 pls → simpls

nnet,mlpWD, mlpSGD, neuralnet → mlpWDml RRFglobal → RRF rbfDDA → rbf

parRF, ranger, Rborist, rfRules → rf rpart1SE, rpart2 → rpart xyf → bdk

Regression model not used Reason

bam Version of gam for very large datasets

krlsPoly Polynomial kernel is not implemented

ordinalNet It requires a discrete output

blasso, blassoAveraged, bridge Not valid for regression

leapBackward, leapForward, leapSeq Run-time errors

logicBag, logreg Only for logic regression (binary outputs)

svmLinear, svmPoly, rvmLinear, rvmPoly Replaced by their versions with radial kernel

svmBoundrangeString, svmExpoString Only for text classification

ANFIS, DENFIS, FIR.DM, GFS.LT.RS,HYFIS
Run-time errors

GFS.FR.MOGUL, GFS.THRIFT, WM, FS.HGD

Table 4: Upper part: Regression models of the caret model list which are not used
because an equivalent model is already included in our study (mlpWD and mlpWDml refer
to mlpWeightDecay and mlpWeightDecayML, respectively, in the caret model list). Lower
part: models of the caret list excluded from this study due to run-time errors and other
reasons.

The model operation is optimized by tuning the set of hyperparameters167

specified in the caret model list. Almost all the models that we used have168

from one to four tunable hyperparameters. We specify the number of values169

tried for each hyperparameter (defined in the file values.txt, placed in the170

folder programs/R of the file regression.tar.gz), which are listed in the171

model description below. However, the specific hyperparameter values are172

calculated by the getModelInfo function of the caret package, being in some173

cases different for each dataset. Note that for some models (e.g. gprRad)174

and datasets, this function returns a value list with less items than the num-175

ber specified in values.txt, and even sometimes just one value is used. In176
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Family Regression models Family Regression models

Linear regression (LR)
1. lm [11] Least absolute shrinkage

and selection operator
(LASSO)

21. lasso [12]

2. rlm [13] 22. relaxo [14]

Generalized linear
regression (PLM)

3. penalized [15] 23. lars [16]

4. enet [12]

Ridge

24. ridge [12]

5. glmnet [17] 25. spikeslab [18]

6. glmSAIC [19] 26. foba [20]

Additive models (AM)
7. gam [21]

Bayesian models (BYM)
27. bayesglm [22]

8. earth [23] 28. brnn [24]

Least squares (LS)
9. nnls [25] 29. bMachine [26]

10. krlsRadial [27]
Gaussian processes (SGP)

30. gprLin [28]

Projection methods
(PRJ)

11. spls [29] 31. gprRad [28]

12. simpls [30] 32. gprPol [28]

13. kpls [31]

Quantile regression (QTR)

33. rqlasso [32]

14. wkpls [33] 34. rqnc [34]

15. enpls.fs [35] 35. qrnn [36]

16. plsRglm [37] Nearest neighbors (NN) 36. kknn [38]

17. ppr [39]

Regression trees (RGT)

37. rpart [40]

18. pcr [41] 38. nodeHarvest [42]

19. icr [43] 39. ctree2 [44]

20. superpc [45]
40. partDSA [46]

41. evtree [47]

Table 5: List of regression models and references grouped by families (see Appendix B
for a brief description of each model).

these cases, although the caret model list specifies that hyperparameter as177

tunable, in the practice only one value is used. The list of hyperparameter178

values which are used in our experiments for a model and dataset is included179

in the file results model dataset.dat, where model and dataset stand for180

the names of the regression model and dataset, respectively, which is placed181

in the directory results/dataset/model implem, where implem may be R,182

C, Python or Matlab. For some models (ridge, rlm, mlpWD, mlpWDml, dnn,183

krlsRad and icr), the value list provided by the getModelInfo function was184

not valid due to several reasons, so we directly specify the hyperparameter185

values used for tuning in the file programs/R/initialize.R. The models186

in Matlab, C++ and Python use pre-specified values, listed in the script187
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Family Regression models Family Regression models

Regression rules
(RGR)

42. M5 [48]

Boosting (BST)
(continued)

60. gbm [49]

43. cubist [50] 61. blackboost [51]

44. SBC [52] 62. xgbTree [53]

Random forests (RF)

45. rf [54] 63. xgbLinear [53]

46. Boruta [55]

Neural networks
(NET)

64. mlWD [56]

47. RRF [57] 65. mlWDml [56]

48. cforest [58] 66. avNNet [6]

49. qrf [59] 67. rbf [56]

50. extraTrees [60] 68. grnn [61]

Bagging (BAG)

51. bag [62] 69. elm [63]

52. bagEarth [6] 70. kelm [63]

53. treebag [64] 71. pcaNNet [6]

Boosting (BST)

54. rndGLM [65] 72. bdk [66]

55. BstLm [53]
Deep learning (DL)

73. dlkeras [67]

56. bstSm [53] 74. dnn [68]

57. bstTree [53]
Support vector
regression (SVR)

75. svr [9]

58. glmboost [69] 76. svmRad [70]

59. gamboost [69] 77. rvmRad [71]

Table 6: Continuation of Table 5.

run model dataset.sh, which are the same for all datasets. Tables 5 and188

6 list the the collection of 77 regression models used in this work, grouped189

by families, which are described in Appendix B, specifying the software im-190

plementation (R package or other platforms), their tunable hyperparameters191

and the values used.192

3. Results and discussion193

The experimental work [72] uses the following methodology: for each194

dataset with less than 10,000 patterns, N = 500 random partitions are gen-195

erated, using the 50% of the patterns for training, 25% for validation (in196

hyperparameter tuning) and 25% for test. For each dataset with more than197

10,000 patterns, a 10-fold cross validation is developed, so there are N = 10198

training, validation and test percentages. The rationale is to limit the compu-199
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tational overhead of 500 trials to smaller datasets, using a lighter methodol-200

ogy (10-fold), although statistically less significant, for larger datasets. Each201

regression model is trained on the training partitions for each combination202

of its hyperparameter values, and it is tested on its corresponding validation203

partition. The performance measures used are the root mean square error204

(RMSE), the squared correlation (R2) and the mean absolute error (MAE).205

We use these three different measures in order to give more significance to206

the results, which in this way can be observed from three different points of207

view, and also in order to evaluate whether they are coherent suggesting sim-208

ilar conclusions. For each combination of hyperparameter values, the average209

RMSE over the validation partitions is calculated, and the combination with210

the lowest average RMSE is selected for testing (quantile regression models211

as rqlasso, rqnc and qrnn are designed to optimize the quantile error, which212

is used instead of RMSE). Finally, the model is trained on the training parti-213

tions using the selected combination of its hyperparameter value and tested214

on the test partitions. The performance measurements are the RMSE, R2
215

and MAE between the true and predicted output values concatenated for the216

N test sets. Note that the R2 is calculated using the predicted and true out-217

puts for the test patterns, while it is often used to measure the percentage of218

variance explained by the model on the training patterns. Those regression219

models which lack tunable hyperparameters are trained on the training parti-220

tions and tested on the corresponding test partitions, and the average RMSE,221

R2 and MAE over the test partitions are the quality measurements. Some222

models which are specially sensitive to collinear inputs are trained, for each223

partition, using only those inputs which are not collinear. Although collinear224
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inputs have been removed from the dataset in the initial preprocessing, for225

certain partitions some inputs in the training set may be collinear despite of226

being not collinear considering the whole dataset. To avoid the subsequent227

errors, these inputs are discarded for these models. All the continuous inputs228

and the output are standardized to have zero mean and standard deviation229

one, using the mean and deviation calculated in each training partition.230

We run this collection of 77 regression models over 83 datasets, developing231

a total of 6,391 experiments, which were developed on a cluster whose nodes232

are equipped with 64 Intel Xeon E5-2650L processors and 4 GB of RAM233

memory each processor, although those regression models which required234

more memory with large data sets were run using several processors and up235

to 128 GB of RAM memory. Since certain models failed for some datasets,236

we developed a preliminar study to evaluate the datasets according to their237

size, given by its population, and “difficulty”, estimated by the R2 achieved238

by the linear regression model (lm). We selected lm because it is a classical239

approach which can be considered as a baseline reference for other models and240

it does not require large time nor memory, so it does not fail in any dataset.241

Figure 1 plots R2
lm for all the datasets vs. their populations Np. According242

to this plot, we divided the datasets into four groups: group SD includes243

20 datasets with Np < 5, 000 and R2
lm < 0.6, i.e., small-difficult datasets;244

group SE includes 23 datasets with R2
lm ≥ 0.6 and Np < 5, 000 (small-easy245

datasets); group LD with 33 datasets where R2
lm < 0.6 and Np ≥ 5, 000246

(large-difficult datasets); and group LE with 7 datasets where R2
lm ≥ 0.6 and247

Np ≥ 5, 000 (large-easy datasets). Table 7 lists the datasets of each group.248

In order to compare the R2 values achieved by the regression models over249
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Figure 1: Values of R2 achieved by lm for all the datasets plotted against their populations
(in logarithmic scale), dividing datasets in groups small-difficult (SD, lower left quarter
of the figure), small-easy (SE, upper left), large-difficult (LD, lower right) and large-easy
(LE, upper right).

all the datasets, averaging would weight more those datasets with high R2,250

favoring models which perform well in easy datasets and biasing the results.251

In order to do a neutral comparison, the solution is to average over all the252

datasets the model positions in a ranking sorted by decreasing R2, instead of253

directly averaging R2 values, because the model positions belong to the same254

range for all the datasets. This is done using the Friedman ranking [73] of255

the R2 coefficient, which evaluates the position where each regression model256

is placed, in average over all the datasets, when R2 is sorted by decreasing257

values. The R2 Friedman ranking of the M = 77 models over the D = 83258

datasets can be calculated as follows. For each dataset d = 1, . . . , D, the R2
259

values of all the models are sorted decreasingly. For each modelm = 1, . . . ,M260

let pmd be its position in dataset d. The Friedman rank Fm of model m is261

defined as Fm = 1
D

∑D

d=1 pmd, i.e., the average position of model m over all262
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the sortings of R2 for the different datasets. For example, a model with rank263

5 achieves the 5th highest R2 coefficient in average over all the datasets.264

A number of run-time errors happened for certain models and datasets.265

There are more errors in large datasets, because some model implementations266

may not be designed to process large amounts of data. When a model fails267

for a dataset (because it overcomes the maximum allowed time of 48 hours,268

because it requires more than 128 GB of RAM, or due to other reasons), and269

in order to calculate the Friedman ranking, its R2 is intended to be zero,270

while its RMSE and MAE are assigned as:271

RMSE = max







max
m∈R

[RMSEm] ,

√

√

√

√

1

N

N
∑

i=1

(ti − t̄i)2







(1)

MAE = max

{

max
m∈R

[MAEm] ,
1

N

N
∑

i=1

|ti − t̄|

}

(2)

where R is the set of models which did not fail in that dataset, ti is the272

true output for test pattern i and N is the number of test patterns. Besides,273

denoting by k the test partition to which pattern i belongs, t̄i is the mean of274

the true output values over the patterns in the k-th training partition. The275

rationale behind this is that a regression model which fails behaves as if it276

would predict the mean of the true output values for all the test patterns, so it277

should be the last of the list. For some models, the errors happen only during278

tuning for some partitions, which are not considered to calculate the average279

RMSE corresponding to that combination of hyper-parameter values. When280

a model fails for a given combination of hyper-parameter values and all the281
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partitions, that combination is not selected for testing. When a model fails282

for all the combinations of hyper-parameter values, or when it fails for some283

test partition, the model is considered that fails for that dataset. Overall,284

the number of experiments where the model failed is 1,205 and represents285

18.85% of the 6,391 experiments.286

Group (#datasets) Datasets

SD (20): small-difficult airfoil com-crime-unnorm csm1415 forestfires geo-lat geo-long geo-music-
lat geo-music-long gps-trajectory park-speech slump slump-flow stock-abs
stock-annual stock-excess stock-rel stock-systematic stock-total student-mat
student-por

SE (23): small-easy air-quality-CO air-quality-NMHC air-quality-NO2 air-quality-NOx air-
quality-O3 automobile auto-mpg bike-day com-crime com-hd compress-stren
daily-demand energy-cool energy-heat facebook-metrics gas-dynamic-CO gas-
dynamic-methane housing servo slump-comp SML2010 stock-exchange yacht-
hydro

LD (33): large-difficult 3Droad appliances-energy beijing-pm25 blog-feedback buzz-twitter cuff-less
dynamic-features facebook-comment greenhouse-net household-consume
KEGG-relation online-news park-motor-UPDRS park-total-UPDRS
physico-protein pm25-beijing-dongsi pm25-beijing-dongsihuan pm25-
beijing-nongzhanguan pm25-beijing-us-post pm25-chengdu-caotangsi pm25-
chengdu-shahepu pm25-chengdu-us-post pm25-guangzhou-5th-middle-school
pm25-guangzhou-city-station pm25-guangzhou-us-post pm25-shanghai-
jingan pm25-shanghai-us-post pm25-shanghai-xuhui pm25-shenyang-
taiyuanji pm25-shenyang-us-post pm25-shenyang-xiaoheyan video-transcode
year-prediction

LE (7): large-easy bike-hour combined-cycle cond-turbine CT-slices KEGG-reaction UJ-lat UJ-
long

Table 7: Groups of datasets according to its size (small/large) and complexity
(easy/difficult).

3.1. Discussion by dataset group287

Table 8 reports the 20 best regression models according to the Friedman288

ranking of R2, RMSE and MAE for the datasets of group SD, which in-289

cludes 20 small-difficult datasets. For each model in the R2 ranking, the290

percentage of datasets where it failed is also reported (column %Error). The291

last two columns report the models which achieved the best R2 for some292

dataset and the percentage of datasets where this happened. First of all,293
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penalized achieves the first positions in the three rankings, being the best294

R2 for 25% of datasets. ExtraTrees, rf and kelm are the following in the295

R2 ranking, although the former achieves much lower positions in RMSE and296

MAE rankings. Specifically, extraTrees achieves the best R2 in 40% of the297

datasets, although it fails in 5% of them, so it can be considered less regu-298

lar as penalized. Other good positions in the R2 ranking are for qrf and299

bstTree, followed by avNNet, svr and svmRad, Gaussian process (gprRad300

and gprPol), bagEarth and cubist, which achieves the best R2 for 10% of301

datasets.302

R2 RMSE MAE Best R2

Pos. Model Rank %Error Model Rank Model Rank Model %Best

1 penalized 8.45 0.0 penalized 9.65 penalized 13.40 extraTrees 40.0
2 extraTrees 13.05 5.0 kelm 13.15 svmRad 13.90 penalized 25.0
3 rf 15.35 5.0 gprPol 14.45 svr 15.70 cubist 10.0
4 kelm 19.15 5.0 bagEarth 17.55 kelm 16.25 brnn 10.0
5 qrf 20.75 0.0 svmRad 18.00 bstTree 19.15 rbf 5.0
6 bstTree 21.00 0.0 cforest 18.65 gprPol 19.25 qrf 5.0
7 avNNet 21.25 5.0 bstTree 19.10 cubist 19.65 bagEarth 5.0
8 svr 22.20 10.0 svr 19.35 bagEarth 19.75 — —
9 svmRad 23.15 5.0 enet 21.50 cforest 21.45 — —
10 gprRad 23.20 0.0 BstLm 22.75 qrf 23.35 — —
11 RRF 24.10 20.0 glmboost 23.80 avNNet 23.85 — —
12 bagEarth 24.10 0.0 gbm 24.20 gbm 24.35 — —
13 gprPol 24.35 0.0 foba 24.70 grnn 27.00 — —
14 gbm 24.60 0.0 bMachine 25.30 gprRad 28.35 — —
15 cubist 26.20 5.0 grnn 26.25 extraTrees 29.05 — —
16 ridge 27.85 0.0 spls 27.25 rf 29.15 — —
17 treebag 29.45 0.0 spikeslab 27.25 BstLm 29.45 — —
18 foba 29.55 0.0 rf 27.90 treebag 29.50 — —
19 spls 29.85 0.0 lars 28.35 rqlasso 29.75 — —
20 lars 30.25 0.0 avNNet 28.90 glmboost 29.95 — —

Table 8: List of the 20 best regression models according to the Friedman rank of R2,
RMSE and MAE for dataset group SD, with 20 small-difficult datasets. The last two
columns list the models which achieve the best R2 for some dataset, sorted by decreasing
number of datasets.

Since this group includes only small datasets, most models exhibit low303

error percentages (i.e., most models never or rarely fail on datasets of this304
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group), although some models with errors achieve good positions, e.g. svr305

(10% of errors), RRF (20%), extraTrees and cubist (5% each one). Besides,306

qrnn and nodeHarvest are very slow and they were shutdown after 48 h. for307

the 20 datasets of this group. Considering memory errors, rndGLM is the308

model which requires more memory, overcoming the memory and time limits309

in 1 and 5 datasets of this group, respectively.310

R2 RMSE MAE Best R2

Pos. Model Rank %Error Model Rank Model Rank Model %Best

1 cubist 6.48 0.0 cubist 6.26 cubist 5.65 cubist 21.7
2 avNNet 10.13 4.3 avNNet 10.04 avNNet 10.96 avNNet 13.0
3 bstTree 12.57 0.0 bstTree 12.39 bstTree 13.70 extraTrees 13.0
4 gbm 12.87 0.0 gbm 12.74 ppr 13.91 gbm 8.7
5 bagEarth 14.57 0.0 bagEarth 14.30 gbm 13.96 penalized 8.7
6 ppr 14.65 0.0 ppr 14.52 bagEarth 15.96 bMachine 8.7
7 bMachine 14.96 4.3 bMachine 15.22 bMachine 16.70 kelm 4.3
8 extraTrees 17.13 8.7 earth 18.35 M5 16.83 M5 4.3
9 earth 18.57 0.0 kelm 18.65 qrf 17.43 rf 4.3
10 kelm 18.70 17.4 extraTrees 18.87 extraTrees 18.00 brnn 4.3
11 rf 19.26 4.3 rf 19.65 kelm 18.74 bagEarth 4.3
12 M5 20.30 0.0 M5 19.87 rf 19.70 bstTree 4.3
13 RRF 22.43 8.7 RRF 22.61 earth 21.00 — —
14 qrf 22.48 0.0 qrf 23.43 brnn 22.48 — —
15 brnn 23.65 21.7 brnn 23.61 RRF 22.83 — —
16 gprPol 24.00 4.3 gprPol 24.22 pcaNNet 24.17 — —
17 pcaNNet 25.04 0.0 pcaNNet 25.09 gprPol 25.78 — —
18 dlkeras 27.35 0.0 dlkeras 27.61 rqlasso 26.52 — —
19 Boruta 27.43 17.4 Boruta 27.78 cforest 27.13 — —
20 enet 28.52 0.0 enet 28.09 Boruta 27.70 — —

Table 9: List of the 20 best regression models according to the Friedman rank of R2,
RMSE and MAE over 23 datasets of group SE (small-easy).

Considering small-easy datasets (group SE, 23 datasets, table 9), the311

three rankings are even more coherent than for group SD, sharing the first312

three positions: cubist, which achieves the best R2 for 21.7% of datasets,313

avNNet (the best R2 for 13% of datasets) and bstTree. Penalized is not314

present in this list (although it is the best in 8.7% of datasets), but gbm315

and bMachine (which are the bests in 8.7% of datasets), bagEarth, ppr,316
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extraTrees (the best in 13% of datasets), earth and kelm are in positions 4-317

10. Other models with good results are rf, M5 (the best for 4.3% of datasets),318

RRF and qrf.319

R2 RMSE MAE Best R2

Pos. Model Rank %Error Model Rank Model Rank Model %Best

1 M5 9.48 0.0 M5 9.39 M5 9.55 extraTrees 48.5
2 cubist 12.39 15.2 gbm 12.61 kknn 12.55 bstTree 12.1
3 gbm 12.48 3.0 cubist 12.70 cubist 12.61 cubist 9.1
4 xgbTree 14.24 6.1 xgbTree 14.15 gbm 13.42 dlkeras 6.1
5 kknn 14.48 12.1 kknn 14.48 xgbTree 14.82 xgbTree 6.1
6 bstTree 15.12 12.1 bstTree 15.27 bstTree 16.00 ppr 3.0
7 blackboost 16.79 0.0 blackboost 17.27 grnn 17.33 kknn 3.0
8 dlkeras 18.36 15.2 pcaNNet 18.33 blackboost 17.70 M5 3.0
9 svr 18.58 27.3 svr 18.45 svr 18.76 rf 3.0
10 pcaNNet 18.76 0.0 dlkeras 18.67 pcaNNet 18.82 qrf 3.0
11 grnn 19.70 18.2 ppr 19.48 dlkeras 19.18 bMachine 3.0
12 ppr 19.73 3.0 grnn 19.52 ppr 19.58 — —
13 qrf 21.33 27.3 qrf 21.27 qrf 20.30 — —
14 svmRad 21.88 24.2 svmRad 21.79 svmRad 20.58 — —
15 earth 22.52 0.0 earth 22.21 extraTrees 22.33 — —
16 extraTrees 23.03 27.3 bag 22.91 bag 22.61 — —
17 bag 23.03 15.2 avNNet 23.42 earth 22.88 — —
18 avNNet 23.52 21.2 extraTrees 23.91 avNNet 23.64 — —
19 bMachine 24.76 24.2 bMachine 24.64 bMachine 25.24 — —
20 cforest 25.79 27.3 cforest 25.91 rpart 26.00 — —

Table 10: List of the 20 best regression models according to the Friedman rank of R2,
RMSE and MAE for the 33 datasets of group LD (large-difficult).

In large-difficult datasets (group LD, 33 datasets, table 10), the M5320

achieves the first positions in the three rankings (although it achieves the best321

R2 only in 3% of datasets), followed by cubist (which achieves the best R2
322

and errors in 9.1% and 15.2% of datasets, respectively) and gbm. Other mod-323

els with good performance are xgbTree, knn, bstTree, blackboost, dlkeras324

(15.2% of errors), svr (with errors in 27.3% of datasets) and pcaNNet. The325

high error frequency of several models (either by overcoming limits on mem-326

ory or time) is due to the large size of datasets in this group. ExtraTrees also327

overcomes the maximum time in 27.3% of datasets and, as in groups SD and328
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SE, it achieves the best R2 for more datasets (48.5%). Specifically, it achieves329

the highest R2 for 13 of the 16 datasets created from the original PM2.5 Data330

5 Chinese Cities dataset in the UCI repository. In these datasets svr and331

kelm were run with a lower number of hyperparameter values ({ 0.125, 0.5, 1,332

4, 16 } and { 0.00391 0.01562 0.125 1 4 } for C and γ, respectively), in order333

to avoid overcoming the maximum run time. The models wkpls, gprPol,334

krlsRad, rvmRad, SBC and qrnn failed for the 33 datasets of this group.335

Pos. Model Rank Pos. Model Rank Pos. Model Rank Pos. Model Rank

1 M5 8.1 6 pcaNNet 15.4 11 rpart 23.5 16 avNNet 26.6
2 gbm 9.8 7 earth 18.6 12 treebag 24.1 17 svmRad 26.8
3 blackboost 10.9 8 kknn 19.4 13 ctree2 25.1 18 enet 26.8
4 xgbTree 14.6 9 bstTree 19.8 14 elm 26.2 19 bag 26.9
5 ppr 14.8 10 cubist 20.4 15 svr 26.2 20 dlkeras 27.9

Table 11: Friedman rank of R2 (first 20 models) of group LD (large-difficult datasets)
discarding PM2.5 Data Chinese Cities datasets.

The PM2.5 Data 5 Chinese Cities datasets represent almost the half of the336

33 datasets in this group. Since this fact might bias the results, we calculated337

the R2 Friedman rank discarding these 16 datasets (Table 11). In this case,338

the best model is M5 again, cubist descends to the 10th position, replaced339

by gbm and followed by blackboost, xgbTree and ppr, while extraTrees340

leaves the top-20.341

The rankings of group LE (large-easy, Table 12) is very similar to group342

LD: the M5 achieves again the best position in the rankings of R2, RMSE and343

MAE, followed by the same models as the previous group: cubist (which344

achieves the best R2 in 42.9%, and errors in 14.3%, of the datasets), gbm, bag,345

bstTree, blackboost and pcaNNet. In this group, extraTrees only achieves346

the best R2 in 1 dataset, which represents 14.3%, and achieves errors in 57.1%347
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R2 RMSE MAE Best R2

Pos. Model Rank %Error Model Rank Model Rank Model %Best

1 M5 6.57 0.0 M5 6.57 M5 5.14 cubist 42.9
2 cubist 10.43 14.3 cubist 10.43 cubist 10.29 extraTrees 14.3
3 gbm 11.43 0.0 gbm 11.43 gbm 12.43 rf 14.3
4 bag 14.57 0.0 bag 14.57 bag 13.43 brnn 14.3
5 bstTree 15.29 14.3 bstTree 15.29 blackboost 15.86 dlkeras 14.3
6 blackboost 15.43 0.0 blackboost 15.43 pcaNNet 17.00 — —
7 pcaNNet 16.00 0.0 pcaNNet 15.71 bstTree 17.29 — —
8 xgbTree 19.57 14.3 xgbTree 19.43 rlm 20.00 — —
9 lm 21.43 0.0 earth 21.29 xgbTree 21.00 — —
10 earth 21.86 0.0 kknn 22.14 kknn 21.57 — —
11 bayesglm 21.86 0.0 lm 22.57 dlkeras 22.14 — —
12 kknn 22.14 14.3 bayesglm 22.57 earth 23.00 — —
13 avNNet 23.14 42.9 avNNet 23.14 avNNet 23.43 — —
14 dlkeras 23.43 14.3 dlkeras 23.71 lm 23.71 — —
15 svr 24.43 42.9 lasso 24.43 svr 25.29 — —
16 lasso 24.71 0.0 svr 24.71 gam 25.43 — —
17 spikeslab 25.29 0.0 enet 25.00 bayesglm 25.43 — —
18 bagEarth 25.57 14.3 spikeslab 25.29 spikeslab 25.43 — —
19 enet 26.14 14.3 bagEarth 25.43 lasso 25.71 — —
20 gam 26.14 0.0 gam 25.86 lars 26.14 — —

Table 12: List of the 20 best regression models according to the Friedman rank of R2,
RMSE and MAE for the 7 large-easy datasets (group LE).

of datasets. Since the datasets are easy, the lm also achieves a good position348

(9th). The models which fail in the 7 datasets of this group are kelm, wkpls,349

gprPol, krlsRad, rvmRadial, SBC, nodeHarvest and qrnn.350

3.2. Global discussion351

We also developed an analysis considering all the datasets together. Ta-352

ble 13 reports the 20 best models according to the Friedman rankings for353

R2, RMSE and MAE over all the datasets, alongside with the percentage of354

datasets with errors for the 20 best models according to R2 (column %Er-355

ror) and the percentage of datasets where each model achieves the best R2
356

(column %Best). The global results confirm the conclusions over the four357

dataset groups: cubist is globally the best regression model on the three358

rankings (although it achieves errors for 8.4% of datasets), followed by gbm359
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R2 RMSE MAE Best R2

Pos. Model Rank %Error Model Rank Model Rank Model %Best

1 cubist 13.92 8.4 cubist 14.96 cubist 12.18 extraTrees 33.7
2 gbm 15.42 1.2 gbm 15.34 gbm 16.12 cubist 15.7
3 bstTree 15.84 6.0 bstTree 15.40 bstTree 16.23 penalized 8.4
4 M5 18.20 0.0 M5 17.20 M5 16.36 bstTree 6.0
5 avNNet 19.23 14.5 avNNet 21.01 avNNet 20.16 brnn 4.8
6 extraTrees 19.61 19.3 bagEarth 22.46 qrf 21.11 avNNet 3.6
7 qrf 22.41 14.5 bMachine 22.48 svr 23.08 rf 3.6
8 pcaNNet 23.49 0.0 svr 23.54 extraTrees 23.41 bMachine 3.6
9 rf 23.82 24.1 earth 23.99 bagEarth 23.57 dlkeras 3.6
10 bMachine 23.83 15.7 blackboost 24.39 pcaNNet 24.29 gbm 2.4
11 bagEarth 24.14 7.2 extraTrees 24.71 bMachine 24.45 M5 2.4
12 svr 24.17 27.7 pcaNNet 24.83 ppr 24.76 qrf 2.4
13 ppr 24.57 4.8 ppr 26.06 kknn 25.07 bagEarth 2.4
14 earth 25.52 0.0 kknn 26.46 earth 25.40 xgbTree 2.4
15 blackboost 25.69 0.0 qrf 26.84 grnn 25.92 kelm 1.2
16 kknn 26.24 6.0 rf 27.01 svmRad 26.28 ppr 1.2
17 penalized 27.70 12.0 grnn 27.37 blackboost 26.92 kknn 1.2
18 dlkeras 28.07 7.2 enet 27.41 bag 27.27 rbf 1.2
19 svmRad 29.14 28.9 cforest 27.53 cforest 27.28 — —
20 grnn 29.61 9.6 bag 27.64 rf 27.57 — —

Table 13: List of the 20 best models according to the Friedman rank of R2, RMSE and
MAE over all the datasets.

and bstTree. The difference is higher in terms of MAE (ranks 12.18 and360

16.12 for cubist and gbm, respectively) than in terms of R2 or RMSE. Cubist361

is also the second model which achieves more often the best R2 (in 15.7% of362

datasets) after extraTrees (33.7%), whose position is however much lower363

(6, 11 and 8 in the R2, RMSE and MAE rankings, respectively), achieving364

errors for 19.3% of datasets. The M5 achieves position 4 in the three rankings,365

but it never fails, so its difference with cubist is caused by lower performance366

in datasets where cubist does not fail. Globally, the best neural network367

is avNNet (position 5). Other models in the top-10 of some rankings are368

qrf, pcaNNet, rf (with 24.1% of errors), bMachine, bagEarth, svr (27.7%369

of errors), earth and blackboost. Penalized, which is the best model for370

8.4% of datasets, achieves position 17 in the R2 ranking, with 12% of errors.371
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The lm falls outside this table (positions 33–34).372

Pos. Model Rank Pos. Model Rank Pos. Model Rank Pos. Model Rank

1 cubist 11.1 6 ppr 19.5 11 qrf 22.1 16 kknn 24.8
2 gbm 12.6 7 pcaNNet 20.4 12 bMachine 23.0 17 rf 26.0
3 M5 13.5 8 earth 20.6 13 bagEarth 23.6 18 bag 26.7
4 bstTree 14.1 9 blackboost 21.0 14 dlkeras 23.9 19 grnn 28.0
5 avNNet 18.8 10 extraTrees 21.1 15 svr 24.6 20 cforest 29.0

Table 14: List of the 20 best regression models according to the Friedman rank of R2 over
all the datasets excepting PM2.5 Data 5 Chinese Cities.

Despite its high number of errors, extraTrees achieves a good position373

because it achieves the best R2 for the majority of the thirteen PM2.5 Data 5374

Chinese Cities datasets. In order to confirm that this fact does not bias the375

global results, we created an alternative ranking discarding these datasets376

(see Table 14). This alternative rank is rather similar to the previous one,377

being cubist, gbm, M5 and bstTree the first models, but extraTrees and378

rf move from positions 6 and 9 to 10 and 17, respectively.379

We evaluated the statistical significance of the differences in R2 among380

models with several tests. A Friedman test [74], implemented using the stats381

package, comparing all the models gives a p-value of 1.8·10−45 < 0.05, which382

means that the difference among them is statistically significant. Table 15383

reports the results of several statistical tests [75] developed to compare the384

globally best model (cubist) and the remaining 19 best models in terms385

of R2. We used: 1) the paired-sample T-test, with the Matlab ttest(x,y)386

function: according to [75], since the number of datasets (83) is higher than387

30, the requirement of normal distributions for the R2 values is not necessary;388

2) the Dunnett’s test [76] of multiple comparison, using the dunnett8 Matlab389

8https://es.mathworks.com/matlabcentral/fileexchange/38157-dunnett-m
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Pos. Model Paired T Dunnett 2-Sample T Wilcoxon Sign Post-Hoc

2 gbm 0.825 1.000 0.921 0.593 0.001∗ 0.160

3 bstTree 0.215 1.000 0.789 0.409 0.000∗ 0.974

4 M5 0.781 1.000 0.902 0.658 0.000∗ 0.007∗

5 avNNet 0.000∗ 0.451 0.068 0.075 0.000∗ 0.001∗

6 extraTrees 0.001∗ 0.474 0.083 0.124 0.909 0.671

7 qrf 0.034∗ 0.995 0.383 0.285 0.006∗ 0.000∗

8 pcaNNet 0.034∗ 0.984 0.294 0.273 0.000∗ 0.042∗

9 rf 0.001∗ 0.375 0.064 0.048∗ 0.002∗ 0.000∗

10 bMachine 0.000∗ 0.624 0.109 0.051 0.000∗ 0.000∗

11 bagEarth 0.000∗ 0.518 0.074 0.086 0.000∗ 0.000∗

12 svr 0.000∗ 0.031∗ 0.005∗ 0.002∗ 0.000∗ 0.116

13 ppr 0.004∗ 0.737 0.125 0.143 0.000∗ 0.000∗

14 earth 0.013∗ 0.919 0.204 0.188 0.000∗ 0.000∗

15 blackboost 0.045∗ 0.988 0.303 0.194 0.000∗ 0.000∗

16 kknn 0.003∗ 1.000 0.452 0.097 0.000∗ 0.000∗

17 penalized 0.000∗ 0.006∗ 0.000∗ 0.001∗ 0.000∗ 0.000∗

18 dlkeras 0.019∗ 0.992 0.343 0.133 0.000∗ 0.000∗

19 svmRad 0.000∗ 0.001∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗

20 grnn 0.000∗ 0.897 0.196 0.037∗ 0.000∗ 0.000∗

Table 15: p-values achieved by the paired-sample T-test, Dunnett test, two-sample T-test,
Wilcoxon ranksum test, sign test and Post-Hoc Friedman-Nemenyi test comparing the R2

of the globally best model (cubist) and the remaining models in the top-20. The asterisks
label models where the comparison is statistically significant (p <0.05).

function; 3) the two-sample T-test, with the Matlab ttest2 function; 4) the390

Wilcoxon rank sum test [77], with the Matlab ranksum function; 5) the sign391

test, using the Matlab signtest function [77]; and 6) the Post-Hoc Friedman-392

Nemenyi test (PMCMR [78] R package). The paired T-test gives significant393

differences, labeled as an asterisk (*), except for the first three models, while394

the Dunnett, two-sample T and Wilcoxon tests only label few models as395

statistically different, including svr, penalized and svmRad (the Wilcoxon396

test also labels rf and grnn as different). The sign test, which counts the397

number of datasets where each regresor achieves the best R2, labels all the398

models as statistically different to cubist excepting extraTrees. Finally, the399
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Post-Hoc Friedman-Nemenyi test, which develops a comparison of multiple400

models, identifies as statistically significant the differences with all the models401

excepting gbm, bstTree extraTrees and svr.402
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Figure 2: Value of R2

best against R
2 for all the datasets.

Figures 2a and 2b plot R2
best against R2

cubist and R2
M5, respectively, for403

all the datasets (M5 is the first regression model in the ranking which never404

fails). Cubist is near the best R2 for all the points above 0.6, but its R2 is405

almost zero for more than 10 points, due mainly to errors, which are on the406

vertical axis. However, all the points are near the red line for M5, which never407

fails, whose R2 is near zero only for those datasets whose best R2 is already408

almost zero, so the probability that M5 achieves R2 near R2
best is much higher.409

Left panel of Figure 3 plots the percentage of datasets where the difference410

∆ = R2
best − R2 overcomes a threshold θ, where R2 is the value achieved by411

the first 4 models in Table 13: cubist, gbm, bstTree and M5. The model is412

better when the line is lower, because the percentage of datasets where ∆ > θ413

is lower. For low θ values, the lines follow the order cubist < bstTree <414

gbm < M5, but the high error frequency of cubist and bstTree (7 and 5,415
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Figure 3: Left panel: percentage of datasets where the difference ∆ = R2

best−R2, with R2

achieved by cubist, gbm, bstTree and M5, overcomes a given threshold θ. Right panel:
boxplots of the differences R2

best −R2 for the 10 best regressors.

respectively) causes that blue and black lines fall to zero for θ > 0.4 (outside416

the plot), while green and red lines (gbm and M5, respectively) fall to zero417

at 0.322 and 0.338. Note that gbm fails (achieving R2 = 0) only for dataset418

year-prediction, for which by chance R2
best is low (0.338), so ∆ = 0.338 for419

this dataset and the green curve falls to zero at θ = 0.338. If the R2
best were420

higher, the green line would continue to the right without falling to zero,421

similarly to blue and black lines. The right panel of Figure 3 shows the422

boxplots of the differences R2
best − R2 for the first 10 models in the global423

ranking. The blue boxes report the 25% and 75% quantiles, while the red424

line inside the box is the median, and the blue points outside the box are the425

outliers. Although cubist, gbm, bstTree, extraTrees and rf exhibit low426

medians, all the models have several outliers (caused by datasets where they427

fail) with high ∆ values, excepting M5, the only one which guarantees low ∆428

values (below 0.322) for all the datasets.429

Figure 4 (left panel) plots R2
best and the R2 achieved by M5 and gbm. M5 is430
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Figure 4: Left panel: R2

gbm (blue), R2

M5
(red) and R2

best (green) for each dataset, sorted by

decreasing values of R2

gbm values. Right panel: histogram of the difference R2

M5
−R2

gbm.

near R2
best more often than gbm, and in several cases gbm is clearly below M5,431

but the former rarely outperforms the latter, and in these cases with lower432

difference. The right panel shows the histogram of the difference R2
M5−R2

gbm:433

its values are positive (i.e., M5 outperforms gbm) for 52.4% of the datasets,434

and when they are positive, they are higher (in absolute value) than when435

they are negative, so the sum of positive ∆ values (2.3) outperforms the436

sum of negative values (-1.3). This shows that overall M5 outperforms gbm,437

although the latter is higher in the global ranking (Table 13). Remember438

that cubist, gbm and bstTree fail for some datasets, while M5 never fails.439

In the left panel of Figure 4, the maximum difference R2
best−R2

M5 is 0.322440

in dataset student-mat, whose output is discrete with more than 10 values441

(see the left panel of Figure 5), so the dataset was not excluded. The low442

R2
best = 0.3673 for this dataset means that no model, and not only M5, fits443

accurately the true output, and both blue and green points fit equally bad the444

red line. The right panel of the same figure plots the difference R2
best − R2

M5445

against R2
best. This difference is low for all the datasets (note that the vertical446
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Figure 5: Left panel: true against predicted output for M5 (blue points) and the best
regression model (penalized) for dataset student-mat. Right panel: difference R2

best−R2

M5

against R2

best for all the datasets.

scale is 0–0.4), being below 0.2 (resp. 0.1) for 92.8% (resp. 60.2%) of the447

datasets.448
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The left panel of Figure 6 compares R2
lm, R

2
rlm and R2

best in all datasets.449

Since both models only differ in the robustness against outliners, the dif-450

ference between them identifies those datasets with outliers. This difference451

overcomes 0.05 only in 6 datasets and its highest value is 0.31, so that dataset452
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outliers are few and not very relevant. In order to study the behavior of M5453

with the dataset complexity, the right panel shows R2
best and R2

M5 against454

1−R2
lm, which measures the difficulty of the regression problem. The differ-455

ence R2
best−R2

M5, instead of raising with 1−R2
lm, achieves the highest values456

for 0.65 < 1 − R2
lm < 0.9. However, in the most difficult datasets, where457

1− R2
lm > 0.9, the R2

M5 follows very well R2
best, so M5 performs well even for458

hard datasets.459
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Figure 7: Left: values of R2 achieved by dlkeras, M5 and cubist (datasets sorted by
decreasing R2

max). Right: boxplots of R
2

best and R2 achieved by cubist, M5 and dlkeras

over all the datasets.

Figure 7 (left panel) compares dlkeras to M5 and cubist over all the460

datasets (points withR2 = 0 correspond to datasets where cubist or dlkeras461

fail). The cubist model (green line) achieves almost always the highest per-462

formance (in 61 of 83 datasets), while M5 overcomes cubist and dlkeras463

in 18 datasets, and dlkeras only in 4 datasets. In fact, cubist outper-464

forms dlkeras in 71 datasets, while dlkeras outperforms cubist only in 8465

datasets. The difference between dlkeras and M5 is lower (44 and 39 datasets466

favoring M5 and dlkeras, respectively. The right panel of Figure 7 shows the467
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boxplots of R2
best and R2 of cubist, M5 and dlkeras: this last box is clearly468

below cubist and M5, but its median is similar to M5 and lower than cubist.469

The upper box ends of cubist and M5 are near to R2
best, and the median470

of cubist is also very near to R2
best, but the lower box ends of cubist and471

dlkeras are much below R2
best and M5 due to errors. Analyzing the param-472

eter tuning of dlkeras, the largest available size (753 = 421, 875 neurons in473

three hidden layers) was selected only in 17 of 83 datasets. Therefore, in the474

remaining 66 datasets R2 did not increase with larger networks, so they are475

not expected to provide better performances. However, they would spend476

higher computation times, overcoming the maximum allowed time (48 h.)477

more frequently, so dlkeras would achieve more errors than cubist and M5,478

which never fails.479

Small-difficult Small-easy Large-difficult Large-easy

Family-model Pos. Family-model Pos. Family-model Pos. Family-model Pos.

PLM-penalized 1 RGR-cubist 1 RGR-M5 1 RGR-M5 1

RF-extraTrees 2 NET-avNNet 2 BST-gbm 3 BST-gbm 3

NET-kelm 4 BST-bstTree 3 NN-kknn 5 BAG-bag 4

BST-bstTree 6 BAG-bagEarth 5 DL-dlkeras 8 NET-pcaNNet 7

SVR-svr 8 PRJ-ppr 6 SVR-svr 9 LR-lm 9

SGP-gprRad 10 BYM-bMachine 7 NET-pcaNNet 10 AM-earth 10

RF-extraTrees 8

AM-earth 9

Table 16: Best model of each family within the 10 best positions in the R2 Friedman
ranking for each dataset group.

3.3. Discussion by family of regression model480

It is interesting to analyze the behavior of the best model of each family.481

Table 16 reports the families with models in the top-10 of the R2 ranking for482

each dataset group. The boosting family (BST, with models bstTree and483
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gbm) and neural networks (NET, models kelm, avNNet and pcaNNet) families,484

are present in all the groups, while regression rules (RGR), with models485

cubist and M5, achieves the first position in three of four groups (small-easy,486

large-difficult, large-easy), and penalized linear regression (PLM) achieves487

the first position (penalized) in small-difficult datasets. Bagging (BAG,488

with models bag and bagEarth) and support vector regression (SVR, svr)489

are present in two groups, while RF (extraTrees), projection methods (PRJ,490

ppr), Gaussian processes (SGP, gprRad), nearest neighbors (NN, kknn), deep491

learning (DL, dlkeras) and linear regression (LR, lm and rlm) are only492

present in just one group.493

Family Best Pos. Family Best Pos.

Regression rules cubist 1 Nearest neighbors kknn 16

Boosting gbm 2 Penalized linear models penalized 17

Neural networks avNNet 5 Deep learning dlkeras 18

Random forests extraTrees 6 Ridge foba 27

Bayesian models bMachine 10 Lasso lars 28

Bagging bagEarth 11 Linear regression lm 33

Support vector regression svr 12 Regression trees ctree2 37

Projection methods ppr 13 Gaussian processes gprPol 50

Generalized additive models earth 14 Quantile regression rqlasso 56

Table 17: Best regression model of each family and position in the global ranking.

Considering the global ranking, Table 17 reports the families, sorted by494

the position of their best models in Table 13. Only regression rules, boost-495

ing and neural networks are in the top-5, followed by random forests and496

Bayesian models with positions below 10. Most of the remaining families497

have best models which outperform lm (position 33), while regression trees,498

Gaussian processes and quantile regression achieve positions even higher.499

36



                    
0

0.2

0.4

0.6

0.8

1

R
2

 

 

airfo
il

gps−tra
jectory

slump−flow

com−crim
e−unnorm

slump

student−por

geo−lat

student−mat

geo−long

geo−music−lat

geo−music−long

park−speech

stock−annual

csm1415

stock−excess

stock−rel

stock−total

forestfire
s

stock−systematic

stock−abs

Best

penalized
lm

(a) Small-difficult (SD).

                       
0

0.2

0.4

0.6

0.8

1

R
2

 

 

bike−day

air−
quality

−NMHC

yacht−hydro

com−hd

energy−heat

SML2010

slump−comp

energy−cool

facebook−metric
s

daily−demand

air−
quality

−NO2

air−
quality

−CO

air−
quality

−O3

compress−stre
n

air−
quality

−NOx

automobile

auto−mpg
servo

housing

stock−exchange

gas−dynamic−methane

gas−dynamic−CO

com−crim
e

Best

cubist
lm

(b) Small-easy (SE).

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data set

R
2

 

 

Best

M5
lm

(c) Large-difficult (LD).

       
0

0.2

0.4

0.6

0.8

1

R
2

 

 

bike−hour

cond−turbine

UJ−long

CT−slices
UJ−lat

KEGG−reaction

combined−cycle

Best

M5
lm

(d) Large-easy (LE).

Figure 8: Best R2 (in green), R2 achieved by the model with the best R2 Friedman rank
(in blue), and R2 achieved by lm (in red) for each group.
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3.4. Best result for each dataset500

The green line of Figure 4 shows R2
best for the 83 datasets. For 41 of501

them (which represents 49.39%) the R2
best > 0.8, so that at least one model502

was able to predict the output with an acceptable accuracy (alternatively,503

these datasets might be considered as “easy” to learn). Besides, for other504

20 datasets (24.09% of the total) the R2
best is between 0.6 and 0.8, which505

is still an acceptable accuracy (datasets with middle difficulty). However,506

R2
best is between 0.2 and 0.6 for 13 datasets, which represents 15.66% (hard507

datasets), while R2
best < 0.2 for 9 datasets (10.84%), where the models could508

not learn the regression problem at all. Some datasets are really hard, e.g.509

stock-abs, where R2
best = 0.059. Figure 8 plots the best R2, alongside with510

R2 achieved by the best model and by lm for each dataset group. In group511

SD (Figure 8a), the best model (penalized) is near to the best R2 except512

for datasets airfoil, gps-trajectory, slump-flow and slump. Since this group513

includes small-difficult datasets, the R2 of lm is always below 0.6, but for the514

first five datasets some model achieves higher R2 values. The penalized is515

also better than lm for all datasets, although the difference is low for datasets516

after geo-music-long. For group small-easy (SE, Figure 8b), the R2 values of517

lm are higher, but the best model (cubist) is always very near to the best518

R2 with some difference with respect to lm. In the large-difficult group (LD,519

Figure 8c), the lm values are very low and the best model (M5) is far from520

lm, following the best R2 very closely for 12 of 33 datasets with a margin521

of 0.2-0.4 for the remaining 21 datasets. Finally, in group LE (large-easy522

datasets, Figure 8d) the lm is already near the best R2, although the best523

model (M5 again) always achieves the best R2.524
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3.5. Discussion by elapsed times and memory consumption525

We studied the memory and time required by each regression model over526

all the datasets. Table 18 reports the information of the 20 best models ac-527

cording to the R2 Friedman rank in each column: %Best reports the percent-528

age of datasets where they achieve the best R2; %Error reports the percentage529

of datasets where they failed; %ME reports the percentage of memory errors530

caused by overcoming the largest allowed memory (128 GB); Datasets/mem531

reports the number of datasets run on the memory queues with {2i}6i=1 GB.532

In order to measure the time required by each model, the time spent in533

hyper-parameter tuning is discarded to avoid biasing caused by differences534

among models in the number of hyper-parameters and hyper-parameter val-535

ues. The column %TE reports the percentage of time errors, i.e., datasets536

where the model overcomes the maximum allowed time (48 h.). Although it537

may surprise that some models are not able to finish within 48 h., we must538

consider the size of some datasets (more than 2 millions of patterns, up to539

640 inputs) and the high number of trials (500) for some datasets. Gen-540

erally, high values in the %TE column happen with slow models, specially541

for large datasets. Since some models fail but do not overcome the allowed542

memory nor time, the sum of columns %ME and %TE is not always equal543

to column %Error, e.g. nnls has no memory nor time errors, but %Error544

is 4.8%. The column Time reports the time (in sec.) spent by the model545

for a training+testing trial on dataset compress-stren, whose size might be546

considered “standard”: 1,030 patterns and 8 inputs. The time is set to the547

maximum allowed time for models with errors in this dataset.548

Comparing cubist, gbm, bstTree and M5 in terms of column %Best,549
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#Datasets/mem(GB)

Pos. Model Rank %Best %Error %ME 2-4-8-16-32-64-128 %TE Time

1 cubist 13.92 15.7 8.4 68-6-8-1-0-0-0 8.4 2.47

2 gbm 15.42 2.4 1.2 78-3-2-0-0-0-0 1.2 1.46

3 bstTree 15.84 6.0 6.0 74-5-3-1-0-0-0 6.0 3.84

4 M5 18.20 2.4 0-36-29-18-0-0-0 1.32

5 avNNet 19.23 3.6 14.5 77-3-2-0-0-1-0 14.5 3.20

6 extraTrees 19.61 33.7 19.3 72-9-2-0-0-0-0 20.5 3.62

7 qrf 22.41 2.4 14.5 62-12-4-1-3-1-0 14.5 3.99

8 pcaNNet 23.49 77-3-3-0-0-0-0 1.36

9 rf 23.82 3.6 24.1 69-6-2-0-5-1-0 24.1 3.05

10 bMachine 23.83 3.6 15.7 54-27-2-0-0-0-0 16.8 12.10

11 bagEarth 24.14 2.4 7.2 76-1-4-1-1-0-0 7.2 2.21

12 svr 24.17 27.7 78-5-0-0-0-0-0 27.7 172800

13 ppr 24.57 1.2 4.8 78-3-2-0-0-0-0 4.8 1.24

14 earth 25.52 77-4-2-0-0-0-0 1.46

15 blackboost 25.69 75-1-3-0-3-0-1 1.48

16 kknn 26.24 1.2 6.0 80-2-1-0-0-0-0 6.0 2.41

17 penalized 27.70 8.4 12.0 77-4-2-0-0-0-0 12.0 1.54

18 dlkeras 28.07 3.6 7.2 83-0-0-0-0-0-0 7.2 6.17

19 svmRad 29.14 28.9 77-2-3-0-0-1-0 28.9 172800

20 grnn 29.61 9.6 6.0 47-13-6-5-5-1-1 3.6 0.22

28 lars 33.16 79-2-2-0-0-0-0 0.03

77 qrnn 77.00 100.0 77-4-2-0-0-0-0 100.0 172800

63 rndGLM 51.80 51.8 44.6 0-0-0-12-22-10-2 7.2 2.54

Table 18: List of the 20 first regression models sorted by increasing R2 Friedman rank,
with the percentage of datasets where each model achieves the best R2 (column %Best),
percentage datasets with errors (column %Error), percentage of memory errors (column
%ME), number of datasets for each memory size (column #Datasets/mem), percentage
of time errors (%TE) and training+test time (in sec.) spent for dataset compress-stren

(column Time). Empty cells correspond to zero values.

cubist achieves often the best R2 (15.7% of datasets) followed by bstTree550

(6%) while gbm and M5 tie (2.4%). Cubist and bstTree fail in 8.4% and 6%551

of datasets, respectively, while gbm fails less (the three overcome the allowed552

time) and M5 never fails. None of them overcomes the memory limits, but M5553

requires more memory (4-16 GB), while the others require 2-8 GB. Finally,554

M5 and gbm are faster (1.32 and 1.46 s./trial, respectively), while bstTree555
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and cubist spend about 2-4 s. The avNNet and extraTrees spend about 3-4556

s. but the former requires less memory (2 GB for 77 of 83 datasets)9. Among557

the remaining models, pcaNNet never fails, is very fast (1.36 s.) and requires558

few memory (2 GB for 77 datasets), while bMachine is slower (12.1 s.) and559

requires more memory (4 GB for 27 datasets). The rf is faster (3.05 s.) with560

memory very variable with the dataset size (69 datasets with 2 GB but 1561

with 64 GB). On the other hand, svr and svmRad are are very slow with time562

errors in 28.9% of datasets, while grnn, ppr, earth and blackboost are fast563

(between 0.22 to 1.48 s.). However, grnn has time errors in 3.6% of datasets,564

requiring memory from 2 to 64 GB depending on the dataset with memory565

errors in 6% of datasets. Most models in positions 10–20 require few memory,566

and dlkeras requires the lowest memory (2 GB for all datasets), similar to567

kknn, although with time errors in 7.2% and 6% of datasets. To have time568

and memory references, the last three lines report the fastest and slowest569

models (lars and qrnn, respectively) in the compress-stren dataset, and the570

model which requires the largest memory (rndGLM). Considering times, lars571

spends 0.03 s. being 26 times faster than M5 (the fastest model in the top-5),572

while qrnn is shutdown after 48 h. in all the datasets, being 130,910 times573

slower than M5. With respect to memory, gbm and bstTree require only574

slightly more memory than dlkeras (2 GB for more than 74 datasets), while575

rndGLM always requires more than 16 GB with memory errors in 45.8% of576

the datasets.577

Figure 9 (left panel) plots, in logarithmic scale, the times spent for each578

9Both extraTrees and bartMachine use Java and by technical reasons their memory
was limited to 8 GB.
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Figure 9: Left: times (in sec.) per trial spent by the best-performing (cubist and M5)
and by the fastest and slowest regression models (lars and bstSm, respectively). Right:
memory (in GB) required by cubist and M5, and by the models with least and most mem-
ory requirements (dlkeras and rndGLM, respectively). Both plotted against the product
#patterns·#inputs.

dataset by cubist and M5, alongside with lars and bstSm, which are fastest579

and slowest models, respectively, for comparative purposes (qrnn is even580

slower than bstSm, but the former overcomes the allowed time in all the581

datasets so it is replaced by bstSm). The times are plotted against the582

product #patterns·#inputs of the dataset, which measures its size. Lars583

is one order of magnitude below M5 and cubist, which are similar for small584

datasets, but the difference grows with the dataset size. In largest datasets,585

cubist is almost two orders of magnitude slower than M5, overcoming the586

allowed time (48 h. or 172,800 s. ∼ 2 · 105 s.). Finally, bstSm is 2-3 orders587

slower than lars for small datasets, but it already overcomes the time limit588

for some small, most medium and all large datasets (overall, for the 78.5%589

of datasets). Other slow models are xgbTree and xgbLinear, nodeHarvest,590

krlsRad and SBC, with average times between 20,000 and 300,000 s. and591

time errors for 50-85% of datasets.592
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Considering memory, the right panel of Figure 9 plots cubist and M5,593

with dlkeras and rndGLM, which exhibit the lowest and highest memory re-594

quirements, against the product #patterns·#inputs. The dlkeras spends 2595

GB for all the datasets, while cubist uses 2 GB excepting some medium and596

the 9 largest datasets. However, M5 requires more memory: 4, 8 and 16 GB597

for 36, 29 and 18 datasets, respectively. Comparatively, rndGLM requires 16,598

32, 64 and 128 GB in 12, 22, 10 and 1 datasets, respectively, overcoming 128599

GB in 39 datasets (45.8%). Other models with high memory requirements600

are gprLin, gprPol and gprRad, rvmRad, krlsRad, wkpls, kelm and grnn,601

with memory errors in 6-10% of datasets.602
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Figure 10: Friedman rank of the time (vertical axis) against the Friedman rank of R2

(horizontal axis) for the 20 best models in Table 18.

Figure 10 plots the Friedman ranks of R2 and time (horizontal and vertical603

axis, respectively) for the best 20 models. Cubist and pcaNNet achieve the604

lowest R2 and time ranks, respectively, but the best trade-off between R2
605

and time is achieved by gbm and M5. In fact, cubist is only slightly better606
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than gbm according to R2, but it is much slower. Other models with good R2
607

are bstTree (R2 similar to gbm, but much slower), avNNet and extraTrees,608

but they are also slow. The following models according to R2 rank are rf,609

qrf, bMachine and bagEarth, whose R2 rank is comparable to pcaNNet but610

they are much slower. According to time, the models after pcaNNet are grnn611

and earth, almost so fast as gbm but with much lower R2.612

4. Conclusion613

The current work develops an exhaustive comparison of 77 regression614

methods, 73 implemented in R and other 4 in C++, Matlab and Python,615

over the whole collection of 83 regression datasets of the UCI machine learn-616

ing repository, including large datasets up to 2 millions of patterns and 640617

inputs. The collection of regression models, that belong to 19 different fami-618

lies, aims to be a representative sample of the most popular and well-known619

methods currently available for regression tasks. The results have been evalu-620

ated in terms of R2, RMSE and MAE, being similar with the three measure-621

ments, and depending on the dataset properties (size and difficulty, mea-622

sured by the performance achieved by the classical linear regression). For623

small-difficult datasets, the penalized linear regression achieves the best re-624

sults, followed by random forest (rf) and extremely randomized regression625

trees (extraTrees). For small-easy datasets, the M5 rule-based model with626

corrections based on nearest neighbors (cubist) achieves the best results,627

followed by the committee of back-propagation neural networks (avNNet)628

and the boosting ensemble of regression trees (bstTree). Finally, for both629

large-difficult and large-easy datasets the M5 regression tree is the best, fol-630
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lowed the gradient boosted machine (gbm) and cubist. Considering globally631

all the datasets, cubist, gbm, bstTree and M5 achieve the best positions,632

and the differences between them are related mainly with: 1) the number of633

cases where they overcome the memory and time limits (128 GB and 48 h.,634

respectively): cubist and bstTree fail in 8% and 6% of datasets, respec-635

tively, gbm only for 1% and M5 never fails; and 2) the speed (gbm, M5 and636

bstTree are 70, 30 and 10 times faster than cubist). In terms of R2, gbm637

and M5 never decrease more than 0.35 below the best R2 for any dataset, and638

R2
best−R2

M5 > 0.25 only in 2.4% of datasets. Other models with good results639

are extremely randomized regression trees (extraTrees), which achieves the640

best R2 in 33.7% of datasets, support vector regression (svr) and random for-641

est (rf), but they are very slow, overcoming the maximum allowed time (48642

h.) for more than 20% of the datasets. A post-hoc Friedman-Nemenyi test643

comparing cubist and the remaining models gives p <0.05 (i.e., difference644

statistically significant) excepting gbm, bstTree and extraTrees.645

According to the position of their best regression models in the R2 rank-646

ing, the best families are regression rules (whose best models are cubist647

and M5), boosting ensembles (gbm and bstTree), neural networks (avNNet),648

random forests (extraTrees and rf), projection methods (projection pur-649

suit, ppr) and support vector regression (svr). Other families with models650

included in the top-20 are bagging ensembles (bagging ensemble of MARS651

models, bagEarth), generalized additive models (MARS, earth), nearest652

neighbors (kknn), generalized linear models (penalized) and deep learning653

(dlkeras). The remaining families exhibit poorer performances: ridge and654

LASSO, Bayesian models, linear regression, regression trees, Gaussian pro-655
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cesses and quantile regression. The R2
best overcomes 0.5625, considered the656

threshold for very good to excellent R2 according to the Colton scale [79],657

for 76.2% of the datasets. Considering the elapsed time, the fastest model658

is least angle regression (lars), while M5 and cubist are 30 and 2,000 times659

slower, respectively. With respect to memory, the non-negative least squares660

regression (nnls) never requires more than 2 GB, while cubist and M5 re-661

quire in average about 3 and 8 GB, respectively, and the boosting ensemble662

of generalized linear models (rndGLM) requires about 78 GB, overcoming 128663

GB in about half datasets. The future work includes to study the relations664

between the regression problem and the best models in order to predict the665

best model and its performance for a given dataset.666
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Appendix A. Dataset discrepancies with the UCI repository675

There are some discrepancies in Table 2 with respect to the original doc-676

umentation of the UCI ML repository. Specifically, the beijing-pm25 dataset677
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has 41,757 patterns, despite its description in the UCI documentation spec-678

ifies 43,824 because 2067 patterns whose output is missing, so it can not679

be predicted, were removed. The cuff-less dataset has 73,200,000 patterns,680

while its description specifies 12,000. Instead of discarding it, we used the681

first 61,000 patterns. The greenhouse-net dataset has 2,921 files with 327682

patterns per file, which gives 955,167 patterns instead of 2,921 in the dataset683

description. The household-consume dataset has 2,049,280 patterns instead684

of 2,075,259 as listed in the UCI documentation, because 25,979 original pat-685

terns have missing values (labeled as ‘?’) for all the inputs and the output.686

The online-news dataset has 39,644 patterns instead of 39,797 as listed in687

the UCI documentation. For the UJIIndoorLoc datasets, output floor was688

discarded and did not give a separate regression dataset because it has only689

three different values.690

Appendix B. Listing of regression methods691

This appendix describes the regression model used in the current work,692

grouped by families, alongside with their software implementations and val-693

ues of their tunable hyper-parameters. Default values are assumed for all the694

model parameters not cited explicitly.695

I. Linear regression (LR)696

1. lm is the linear regression model implemented by the stats package697

[11]. Collinear inputs exhibit undefined coefficients in the linear regres-698

sion model returned by lm, being discarded by it and by other models699

in the list, as we told above.700
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2. rlm implements the robust linear model (MASS package), fitted using701

iteratively re-weighted least squares with maximum likelihood type es-702

timation, which is robust to outliers in the output although not in703

inputs [13]. The only hyperparameter is the Ψ function, which can be704

huber (Huber function, which leads to a convex optimization problem),705

hampel and Tukey bisquare, both with local minima. In our experi-706

ments, these functions are selected as the best Ψ for 16%, 82% and 2%,707

respectively, of the datasets.708

II. Penalized linear regression (PLM)709

3. penalized is the penalized linear regression (penalized package), which710

fits generalized linear models with a combination of L1 and L2 penal-711

ties. The L1 penalty, also named LASSO, penalizes the sum of absolute712

values of the coefficients, thus reducing the coefficients of inputs which713

are not relevant, similarly to input selection. The L2 penalty (also714

named ridge) penalizes the sum of squared coefficients, reducing the715

effects of input collinearity. The regression is regularized by weighting716

both penalties [15], whose weights are given by hyperparameters λ1,717

tuned with values 1, 2, 4, 8 and 16, and λ2, with values 1, 2, 4 and 8.718

In our experiments, λ1 = λ2 = 1 in the 87.9% of the datasets, and only719

in 10 of 83 datasets λ1 6= 1 or λ2 6= 1.720

4. enet is the elastic-net regression model (elasticnet package), com-721

puted using the least angle regression - elasticnet (LARS-EN) algorithm722

[12]. Elastic-net provides a model for regularization and input selec-723

tion, grouping together the inputs which are strongly correlated. This724

model is specially useful when the number of inputs is higher than725
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the number of patterns, as opposed to LASSO models. There are two726

hyperparameters (5 values each one): the quadratic penalty, or regular-727

ization, hyperparameter (λ, with values 0, {10−i}31) and the fraction s728

of the L1 norm of the coefficient vector relative to the norm at the full729

least squares solution (the fraction mode is used in the predict.enet730

function, with values 0.05, 0.28, 0.52, 0.76, 1).731

5. glmnet is the LASSO and elastic-net regularization for generalized732

linear models (GLM) implemented in the glmnet package [17]. The733

glmnet model uses penalized maximum likelihood to fit a GLM for the734

LASSO and elastic-net non-convex penalties. The mixing percentage735

α is tuned with 5 values from 0.1 to 1: the value α=1 (resp. < 1) cor-736

responds to the LASSO (resp. elastic-net) penalty. The selected value737

for α during hyperparameter tuning was 0.1 in 41.7% of the datasets.738

The regularization hyperparameter λ is also tuned with values 0.00092,739

0.0092 and 0.092.740

6. glmSAIC is the generalized linear model with stepwise feature se-741

lection [19] using the Akaike information criterion and the stepAIC742

function in the MASS package (model glmStepAIC in the caret model743

list).744

III. Additive models (AM)745

7. gam is the generalized additive model (GAM) using splines (mgcv pack-746

age). This model [21] is a GLM whose linear predictor is a sum of747

smooth functions (penalized regression splines) of the covariates. The748

estimation of the spline parameters uses the generalized cross valida-749

tion criterion. The only hyperparameter is select, a boolean flag that750
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adds an extra penalty term to each function penalizing its wiggliness751

(waving).752

8. earth is the multivariate adaptive regression spline (MARS) in the753

earth package. This method [23] is a hybrid of GAM and regression754

trees (see family XII) which uses an expansion of product spline func-755

tions to model non-linear data and interactions among inputs. The756

spline number and parameters are automatically determined from the757

data using recursive partitioning, and distinguishing between additive758

contributions of each input and interactions among them. The func-759

tions are added iteratively to reduce maximally the residual, until its760

change is too small or a number of iterations is reached. The maximum761

number of terms in the model (nprune) is tuned with 15 values (less762

for some datasets) between 2 and 24.763

IV. Least squares (LS)764

9. nnls is the non-negative least squares regression (nnls package), which765

uses the Lawson-Hanson NNLS method [25] to solve for x the optimiza-766

tion problem min
x
|Ax− b| subject to x ≥ 0, whereA is the input data767

matrix, b is the true output and x is the linear predictor.768

10. krlsRad is the radial basis function kernel regularized least squares769

regression (KRLS package), which uses Gaussian radial basis functions770

to learn the best fitting function which minimizes the squared loss of a771

Tikhonov regularization problem [27]. The KRLS method, which cor-772

responds to the krlsRadial in the caret model list, learns a closed773

form function which is so interpretable as ordinary regression models.774

The only hyperparameter is the kernel spread (σ), with 10 values in the775
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set {10i}2−7. By default, this method determines the trade-off between776

model fit and complexity, which is defined by the λ parameter, by min-777

imizing the sum of squared leave-one-out errors. The getModelInfo778

function only lists one value for λ, despite being listed as a tunable779

hyperparameter in the caret model list.780

V. Projection methods (PRJ)781

11. spls is the sparse partial least squares regression (spls package). This782

method [29] uses sparse linear combinations of the inputs in the dimen-783

sionality reduction of PLS in order to avoid lack of consistency of PLS784

with high dimensional patterns. The hyperparameters are the number785

of latent components (K), with values 1, 2 and 3, and the threshold (η),786

with 7 values from 0.1 to 0.9.787

12. simpls fits a PLS regression model with the simpls method [30], imple-788

mented by the plsr function in the pls package, with method=simpls.789

The PLS method projects the inputs and the output to a new space and790

it searches the direction in the input space which explains the maxi-791

mum output variance. Simpls is particularly useful when there are792

more inputs than patterns and inputs are collinear. It directly calcu-793

lates the PLS factors as linear combinations of the inputs maximizing a794

covariance criterion with orthogonality and normalization constraints.795

The only hyperparameter is the number of components (ncomp) used796

by the simpls model, with values from 1 to min(10,#inputs-1).797

13. kpls is the PLS regression with method=kernelpls [31] in the same798

function and package as simpls, using the same hyperparameter setting799

as simpls with 6 values. This is the model named kernelpls in the800
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caret model list.801

14. wkpls uses method=widekernelpls [33] for PLS, tuning the number of802

components (ncomp) as simpls also with 10 values (model widekernelpls803

in the caret model list).804

15. enpls.fs is an ensemble of sparse partial least squares (spls, see model805

#12) regression models implemented by the enpls package [35]. The806

getModelInfo function lists only one value for the number of com-807

ponents (maxcomp), while the threshold argument, specified as a hy-808

perparameter by the caret model list, is missing in the enpls.fit809

function.810

16. plsRglm is the partial least squares generalized linear model (plsRglm811

package) with modele=pls-glm-gaussian [37]. The hyperparameters812

are the number of extracted components (nt), tuned with values 1, 2,813

3 and 4, and the input significance level (alpha.pvals.expli), with814

values in the set {10i}2−2.815

17. ppr performs the projection pursuit regression (stats package), which816

models the output as a sum of averaging functions (mean, median,817

etc.) of linear combinations of the inputs [39]. The coefficients are818

iteratively calculated to minimize a projection pursuit (fitting criterion,819

given by the fraction of unexplained variance which is explained by each820

function) until it falls below a predefined threshold. The only tunable821

hyperparameter is the number of terms of the final model (nterms),822

with values from 1 to 10.823

18. pcr develops principal component regression (pls package), which mod-824

els the output using classical linear regression with coefficients esti-825
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mated with principal component analysis (PCA), i.e., using the prin-826

cipal components as inputs [41]. It works in three stages: 1) performs827

PCA and selects a subset of the principal components; 2) uses ordinary828

least squares to model the output vector using linear regression on the829

selected components; 3) uses the eigenvectors corresponding to the se-830

lected components in order to calculate the final pcr estimator trans-831

forming the modeled output vector to the original space, and estimates832

the regression coefficients for the original outputs. The number of com-833

ponents (ncomp) is tuned with values from 1 to min(10,#inputs-1).834

19. icr is the independent component regression (caret package). The835

icr fits a linear regression model using independent component analy-836

sis (ICA), implemented by the fastICA package, instead of the original837

inputs [43]. The input data are considered a linear combination of a838

number of independent and non-Gaussian components (sources), so the839

training set matrix is written as the product of the source matrix and a840

linear mixed matrix, which contains the coefficients of the linear com-841

bination. The ICA estimates a “separating” matrix, which multiplied842

by the original data, provides the sources. This matrix must maxi-843

mize the non-Gaussianity of the sources, measured by the neg-entropy.844

The only hyperparameter is the number of independent components845

n.comp, with values from 1 to min(10,#inputs-1).846

20. superpc is the supervised PCA (superpc package). This method [45]847

retains only a subset of the principal components which are correlated848

to the output. The tunable hyperparameters are the number of princi-849

pal components (n.components), tuned with values 1, 2 and 3 (in all850
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the datasets the value 1 is selected), and the threshold for retaining851

the input scores, with values 0.1 and 0.9.852

VI. Least absolute shrinkage and selection operator (LASSO)10853

21. lasso performs LASSO regression, using the enet function in the elas-854

ticnet package with λ = 0 to obtain the LASSO solution.855

22. relaxo develops relaxed LASSO (relaxo package), which generalizes856

the LASSO shrinkage method for linear regression [14]. This method857

is designed to overcome the trade-off between speed and convergence858

in the L2-loss function of the regular LASSO, specially for sparse high-859

dimensional patterns. It provides solutions sparser than LASSO with860

better prediction error. The relaxation hyperparameter (φ) is tuned861

with 7 values from 0.1 to 0.9, while the penalty hyperparameter (λ) is862

tuned with 3 data-dependent values.863

23. lars is the least angle regression (lars package), a model selection864

method [16] which is less greedy than the typical forward selection865

methods. It starts with zero coefficients for all the inputs and finds866

the input i most correlated with the output, increasing step-by-step its867

coefficient until another input j has high correlation with the current868

residual (i.e., the error, or difference between the true and predicted869

outputs). The coefficients of inputs i and j are increased in the equi-870

angular direction between inputs i and j until some other input k is so871

correlated with the residual as input j. Then, it proceeds in the equi-872

angular direction among i, j and k, which is the “least angle direction”,873

10Due to the high number of models, LASSO models are included in a specific family
and not in the penalized linear regression family.
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and so on until all the coefficients are non-zero (i.e., all the inputs are in874

the model). The lasso and fraction options are specified for training875

and prediction respectively, and the fraction hyperparameter (ratio876

between the L1 norm of the coefficient vector and the norm at the full877

LS solution) is tuned with 10 values between 0.05 and 1 (for 46.7% of878

datasets the selected value of fraction was 1).879

VII. Ridge regression (RIDGE)11880

24. ridge develops ridge regression (elasticnet package), which intro-881

duces a regularization term, alongside with the squared difference be-882

tween the desired and true outputs, in the function to optimize. This883

term, which evaluates the model complexity (e.g., the matrix norm for884

linear models), is weighted by the penalty or regularization hyperpa-885

rameter (λ). We use the enet function in the elasticnet package,886

already used for model enet, tuning λ with 5 values between 0.01 and887

0.1 (these two values are selected for 50% and 30% of the datasets,888

respectively).889

25. spikeslab implements the spike and slab regression (spikeslab pack-890

age), which computes weighted generalized ridge regression estimators891

using Bayesian spike and lab models [18]. The spikeslab method892

combines filtering for dimensionality reduction, model averaging using893

Bayesian model averaging, and variable selection using the gnet estima-894

tor. The only tunable hyperparameter is the number of selected inputs895

(vars), with the two values listed by the getModelInfo function: 2896

11Similarly to LASSO, ridge regression models are grouped in a separate family instead
of the penalized linear regression family.
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and the number of inputs (both selected with similar frequencies).897

26. foba is the ridge regression with forward, backward and sparse input898

selection [20], implemented in the foba package. We use the adap-899

tive forward-backward greedy version of the method (with the default900

value foba for the type argument of the foba function), which does a901

backward step when the ridge penalized risk increases in less than the902

parameter ν (with value 0.5 by default) multiplied by the ridge penal-903

ized risk reduction in the previous forward step. The hyperparameters904

are regularization for ridge regression (λ), with 10 values between 10−5
905

and 0.1, and the number of selected inputs or sparsity (k) for the pre-906

diction, with two values: 2 and the number of inputs.907

VIII. Bayesian models (BYM)908

27. bayesglm is the Bayesian GLM, implemented by the arm package. It909

uses expectation maximization to update the β coefficients of the GLM910

at each iteration, using an augmented regression to represent the prior911

information [22]. The coefficients are calculated using a Student-t prior912

distribution.913

28. brnn is the Bayesian regularized neural network (brnn package), a net-914

work with one hidden layer trained using Gauss–Newton optimization.915

The training minimizes a combination of squared error and a regular-916

ization term which uses the squared network weights [24]. The Bayesian917

regularization [80] determines the weights of both terms based on infer-918

ence techniques. This requires an iterative computation of the Hessian919

matrix (or its Gauss–Newton approximation) of the performance with920

respect to the weights and biases until a goal is met or a maximum921

56



number of iterations is reached. The weights are not normalized, and922

the number of hidden neurons (neurons) is a hyperparameter tuned923

with values between 1 and 15, selecting neurons=1 in 31.6% of the924

datasets.925

29. bMachine is the Bayesian additive regression tree (bartMachine pack-926

age), which consists of a sum of regression trees and a regularization927

process developed on the parameters of the tree set [26]. It corresponds928

to bartMachine in the caret model list. We use the default number929

of trees (num trees=50, the unique value listed by the getModelInfo930

function), and the tunable hyperparameters are the prior boundary (k),931

with values 2, 3 and 4, and α (base value in tree prior to decide if a932

node is terminal or not), with 3 values between 0.9 and 0.99.933

IX. Space Gaussian processes (SGP, also known as kriging)934

30. gprLin implements Gaussian process regression (gaussprLinear in935

the caret model list), which interpolates values for the output using a936

sum of Gaussians, each specified by a mean and a covariance (or kernel)937

function that measures the similarity between inputs. This model uses938

linear (vanilladot) kernel in the gausspr function of the kernlab939

package.940

31. gprRad (named gaussprRadial in the caretmodel list) uses the same941

function with Gaussian (rbfdot) kernel and automatically calculated942

kernel spread (default option kpar=1).943

32. gprPol is the same method with polynomial (polydot) kernel (gausspr944

Poly in the caretmodel list), tuning the kernel hyperparameters degree,945

with values 1, 2 and 3, and scale, with values {10−i}31.946
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X. Quantile regression (QTR)947

33. rqlasso develops quantile regression with LASSO penalty, using the948

rq.lasso.fit function in the rqPen package. The quantile regression949

models optimize the so-called quantile regression error, which uses the950

tilted absolute value instead of the root mean squared error. This951

tilted function applies asymmetric weights to positive/negative errors,952

computing conditional quantiles of the predictive distribution. This953

method fits a quantile regression model with the LASSO penalty [32],954

tuning the regularization hyperparameter λ, with 10 values between 0.1955

and 10−4 (for 76.7% of datasets the selected value was less than 0.01).956

34. rqnc performs non-convex penalized quantile regression, with the rq.957

nc.fit function in the rqPen package. This model performs penalized958

quantile regression using local linear approximation [34] to maximize959

the penalized likelihood for non-convex penalties. The two hyperpa-960

rameters are λ, with the same values as rqlasso, and penalty, which961

can be MCP (minimax concave penalty) or SCAD (smoothly clipped ab-962

solute deviation).963

35. qrnn is the quantile regression neural network (qrnn package), a neu-964

ral network which uses ramp transfer and quantile regression error965

functions [36]. The hyperparameters are number of hidden neurons966

(n.hidden), with 7 values from 1 to 13, and the penalty for weight967

decay regularization, with values 0, 0.1 and 0.0001.968

XI. Nearest neighbors (NN)969

36. kknn performs weighted k-nearest neighbors regression [38], imple-970

mented by the kknn package. The neighbors are weighted using a971
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kernel function according to their distances to the test pattern. The972

only hyperparameter is the number of neighbors (kmax, with 10 odd973

values between 5 and 23).974

XII. Regression trees (RGT)975

37. rpart is the classical regression tree trained using the recursive parti-976

tioning algorithm [40], implemented in the rpart package. Only the977

complexity hyperparameter (cp) is tuned (10 values).978

38. nodeHarvest is a simple interpretable tree-based ensemble for high-979

dimensional regression with sparse results [42] implemented in the node-980

Harvest package. A starting tree of few thousand nodes is randomly981

generated. For a test pattern assigned to a node, the output is the982

mean of its training outputs; when the test pattern is assigned to several983

nodes, the output is the weighted average of their means. The selection984

of the nodes and their weights requires to solve a quadratic program-985

ming problem with linear inequality constraints. Only few nodes with986

non-zero weights are selected, so the solution is sparse. The hyperpa-987

rameters are the maximal interaction depth (maxinter, with 10 values988

between 1 and 10, the most selected were 6-8) and the mode (2 values),989

which can be mean (weighted group means) or outbag (zero values in990

the smoothing matrix diagonal). This model is very slow, requiring991

huge times (more than 6 days) for high maxinter values and some992

datasets.993

39. ctree2 is the conditional inference tree (party package), which esti-994

mates the output using inference after a recursive partitioning of the995

input space [44]. The method tests the null hypothesis of statistical996
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independence between any input and the output, and it stops when997

the hypothesis can not be rejected. Otherwise, it selects the input998

most related to the output, measured by the p-value of the partial test999

of independence between the output and that input. Then, it does a1000

binary splitting of the selected input, and the two previous steps are1001

recursively repeated. The hyperparameters are the threshold for 1− p1002

in order to do a split (mincriterion), with 4 linearly spaced values1003

between 0.01 and 0.99, and the maximum tree depth (maxdepth), with1004

integer values from 1 to 5, selecting maxdepth=5 for 68.3% of datasets.1005

40. partDSA develops partitioning using deletion, substitution, and ad-1006

dition, implemented in the partDSA package [46]. This method recur-1007

sively partitions the space considering that multiple inputs jointly in-1008

fluence the output, predicting a piecewise constant estimation through1009

a parsimonious model of AND/OR conjunctions. The only hyperparam-1010

eter is the maximum number of terminal partitions (cut.off.grow),1011

tuned with integer values between 1 and 10, although the value 1 is1012

selected for all the datasets. The parameter vfold is set to 1 in order1013

to reduce the computational cost for large datasets.1014

41. evtree is the tree model from genetic algorithms [47] which uses evo-1015

lutionary algorithms to learn globally optimal regression trees (evtree1016

package). It chooses splits for the recursive partitioning in the forward1017

stepwise search in order to optimize a global cost function. The only1018

hyperparameter is the complexity (α) of the cost function, tuned with1019

10 linearly spaced values between 1 and 3, which weights negatively1020

large tree sizes.1021
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XIII. Regression rules (RGR)1022

42. M5 is the model tree/rules [48] implemented in the RWeka package,1023

tuning the flags pruned and smoothed (values yes/no each one), and1024

rules/trees (to create a tree or a rule set) of the Weka M5 implemen-1025

tation.1026

43. cubist learns a M5 rule-based model with corrections based on nearest1027

neighbors in the training set [50], implemented by the Cubist package.1028

A tree structure is created and translated to a collection of rules, which1029

are pruned and combined, and each rule gives a regression model, ap-1030

plied to the patterns which accomplish that rule. Cubist extends M51031

with boosting when the hyperparameter committees > 1, and using1032

nearest neighbor based to correct the rule-based prediction. The tun-1033

able hyperparameters are the number of training committees (with 31034

data-dependent odd values) and the number of neighbors (with values1035

0, 5 and 9) for prediction.1036

44. SBC is the subtractive clustering and fuzzy C-means rules (frbs pack-1037

age), which uses substractive clustering to get the cluster centers of a1038

fuzzy rule-based system for classification or regression [52]. Initially,1039

each training pattern is weighted by a potential function which de-1040

creases with its distances to the remaining centers, and then it opti-1041

mizes the centers using fuzzy C-means. The center with the highest1042

potential is selected as a cluster center, and the potential of the remain-1043

ing centers is updated. The only hyperparameter is the neighborhood1044

radius (r.a), tuned with 7 linearly spaced values between 0 and 1 (this1045

value is selected for nearly 50% of the 31 datasets where SBC does1046

61



not fail). The selection of new cluster centers and potential updating1047

is repeated until the potentials of the remaining patterns are below a1048

pre-specified fraction of the potential of the first cluster center. Once1049

all the centers are selected, they are optimized using fuzzy C-means.1050

As we report in last rows of Table 4, we also tried the remaining 81051

regression methods implemented in the frbs package and included in1052

the caret model list (ANFIS, DENFIS, FIR.DM, GFS.FR.MOGUL,1053

GFS.LT.RS, GFS.THRIFT, HYFIS andWM), but run-time errors hap-1054

pened for most or all the datasets.1055

XIV. Random forests (RF)1056

45. rf is the random forest ensemble of random regression trees imple-1057

mented by the randomForest package [54]. The outputs of the base1058

regression models are averaged to get the model output. Its only hy-1059

perparameter is the number of randomly selected inputs (mtry) with1060

10 linearly spaced values from 2 until the number of inputs, or less than1061

10 values when the number of dataset inputs is less than 11 (the lowest1062

value mtry=2 was selected in 18% of the 64 datasets where rf does not1063

fail).1064

46. Boruta combines RF with feature selection (Boruta package). An1065

input is removed when a statistical test proves that it is less relevant1066

than a shadow random input, created by shuffling the original ones [55].1067

Conversely, inputs that are significantly better than shadowed ones are1068

confirmed. The iterative search stops when only confirmed inputs are1069

retained, or after a maximum number of iterations (maxRuns=100 by1070

default), in which case non-confirmed inputs remain unless the iter-1071
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ations or the test p-value (0.01 by default) are increased. The only1072

hyperparameter is mtry, tuned as in rf.1073

47. RRF is the regularized random forest (RRF package), which uses reg-1074

ularization for input selection in rf, penalizing the selection of a new1075

input for splitting when its Gini information gain is similar to the in-1076

puts included in the previous splits [57]. The hyperparameters are1077

mtry, with 3 linearly spaced values between 2 and the number of in-1078

puts, and the regularization coefficient (coefReg), with values 0.01 and1079

1, both selected with similar frequencies.1080

48. cforest is a forest ensemble of conditional inference trees [54], each one1081

fitting one bootstrap sample (party package [58]). The only hyperpa-1082

rameter is the number of selected inputs (mtry, with values 2 and the1083

number of inputs) of the conditional trees.1084

49. qrf is the quantile regression forest (quantregForest package [59]),1085

a tree-based ensemble which generalizes RF in order to estimate con-1086

ditional quantile functions. This regression model grows several RFs,1087

storing all the training patterns associated to each node in each tree.1088

For each test pattern, the weight of each training pattern is the average1089

of the weights of all the training patterns in the leaves activated by that1090

pattern in the different trees of the forest. Using these weights, the dis-1091

tribution function of each output value, and the conditional quantiles,1092

are estimated. The only hyperparameter is mtry (tuned with 2 values1093

as cforest). The quantile prediction threshold (argument what in the1094

predict.quantregForest function) is set to 0.5.1095

50. extraTrees is the ensemble of extremely randomized regression trees1096

63



[60] implemented by the extraTrees package. It randomizes the input1097

and cut-point of each split (or node in the tree), using a parameter1098

which tunes the randomization strength. The full training set is used1099

instead of a bootstrap replica. It is expected that explicit randomiza-1100

tion of input and cut-point splittings combined with ensemble averaging1101

should reduce the variance more than other methods. Its hyperparam-1102

eters are the number of inputs randomly selected at each node (mtry,1103

tuned with 2 values as cforest) and the minimum sample size to split1104

a node (numRandomCuts), tuned with integer values from 1 to 10 (the1105

selected value was 1 for 48.3% of the datasets).1106

XV. Bagging ensembles (BAG)1107

51. bag [62] is the bagging ensemble of conditional inference regression1108

trees (see model #39) implemented by the caret package. The output1109

for a test pattern is the average of the outputs over the base regression1110

trees.1111

52. bagEarth is the bagged MARS (caret package), a bagging ensemble1112

of MARS base regression models implemented in the earth package1113

(see model #9), which learns a MARS model with degree=1 for each1114

bootstrap sample. The only hyperparameter is the maximum number1115

of terms (nprune) in the pruned regression model (10 values).1116

53. treebag is the bagged CART, a bagging ensemble of rpart regression1117

base trees (see model #37), implemented by the ipredbagg function1118

in the ipred package [64].1119

XVI. Boosting ensembles (BST)1120

54. rndGLM is a boosting ensemble of GLMs [65] implemented by the1121
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randomGLM package (also named randomGLM in the caret model list).1122

It uses several bootstrap samples (nBags=100 by default) of the train-1123

ing set, randomly selecting inputs and interaction terms among them1124

depending on the maxInteractionOrder hyperparameter, tuned with1125

values 1, 2 and 3 (selected with frequencies 53.3%, 40% and 6.7%, re-1126

spectively). For each sample, inputs are ranked by its correlation with1127

the output, and a predefined number of them are selected, using forward1128

selection, to create a multivariate GLM. For a test pattern, the pre-1129

dicted value is the average of the GLM outputs. This regression model1130

has very high memory requirements, overcoming the largest available1131

memory (128GB) in 38 datasets, and requiring 128, 64, 32 and 16GB1132

in 2, 10, 22 and 12 datasets, respectively.1133

55. BstLm is the gradient boosting machine with linear base models, im-1134

plemented in the bst package. Gradient boosting optimizes arbitrary1135

differentiable loss functions defining the fitting criteria [53]. Boosting1136

combines weak base regression models into a strong ensemble by it-1137

eratively adding base models, and in each iteration the new model is1138

trained to fit the error (residual) of the previous ensemble. Since the er-1139

ror can be viewed as the negative gradient of the squared error loss func-1140

tion, boosting can be considered a gradient descent method. BstLm1141

uses the bst function with linear base models (argument learner=lm)1142

and Gaussian family, since squared error loss is used. The only hyper-1143

parameter is the number of boosting iterations (mstop), with 10 values1144

from 50 to 500.1145

56. bstSm is the gradient boosting with smoothing spline base regression1146
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models (learner=sm in the bst function of the same package). The1147

number of boosting iterations (mstop) is tuned with 10 values as BstLm.1148

57. bstTree is the gradient boosting with regression base trees (learner=1149

tree, same function and package as BstLm). The hyperparameters are1150

the number of boosting iterations (mstop, 4 values from 40 to 200) and1151

the maximum depth of nodes in the final tree (maxdepth item in the list1152

of the control.tree argument of the bst function), with integer values1153

between 1 and 5 (this last value is selected in 55% of the datasets).1154

58. glmboost is the gradient boosting ensemble with GLM base regression1155

models (glmboost function in the mboost package), tuning the number1156

of boosting iterations (mstop, 10 values).1157

59. gamboost is the boosted generalized additive model (mboost package),1158

a gradient boosting ensemble of GAM base regression models [69]. The1159

ensemble minimizes a weighted sum of the loss function evaluated at1160

the training patterns by computing its negative gradient. The base re-1161

gression models are component-wise models (P-splines with a B-spline1162

base, by default). The only hyperparameter is the number of initial1163

boosting iterations (mstop), with 10 values from 50 to 500, selecting1164

500 as the best value for 56.7% of the datasets.1165

60. gbm is the generalized boosting regression model (gbm package [49]),1166

named stochastic gradient boosting in the caretmodel list. The hyper-1167

parameters are the maximum depth of input interactions (interaction.1168

depth), with integer values from 1 to 5 (the last value was selected in1169

48.3% of the datasets), and number of trees for prediction (n.trees),1170

with values from 50 to 250 with step 50 (the value 250 was selected in1171
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45% of the datasets). We use a Gaussian distribution and shrinkage=1172

0.1 (default values).1173

61. blackboost is the gradient boosting (blackboost function in the mboost1174

package) with conditional inference regression base trees (ctree in the1175

party package, see model #40) and arbitrary loss functions [51]. The1176

only hyperparameter is the maximum tree depth (maxdepth argument1177

in the party::ctree control function, used as tree controls argu-1178

ment of the blackboost function), with integer values from 1 to 5,1179

value selected in 79% of the datasets.1180

62. xgbTree is the extreme gradient boosting [53], using the xgb.train1181

function in the xgboost package with booster=gbtree, root mean1182

squared error as evaluation metric and linear regression as objective1183

function. The hyperparameters are the maximum tree depth (max depth),1184

with values 1, 2 and 3 (max depth=3 for 53.3% of the datasets); maxi-1185

mum number of boosting iterations (nrounds), with values 50, 100 and1186

150; and learning rate (η), with values 0.3 and 0.4.1187

63. xgbLinear is the extreme gradient boosting with booster=gblinear1188

and linear regression as objective function (xgboost package). Its hy-1189

perparameters are the L2 (square loss) regularization term on weights1190

(λ, with values 0, 0.1 and 0.0001), bias (α, with values 0 and 0.1), and1191

number of boosting iterations (nrounds, tuned as xgbTree).1192

XVII. Neural networks (NET)1193

64. mlpWD is the classical multi-layer perceptron with one hidden layer1194

and weight decay (named mlpWeightDecay in the caret model list).1195

It uses the mlp function in the RSNNS package, with learnFunc =1196
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BackpropWeightDecay. The tunable hyperparameters are the size1197

of the hidden layers (5 odd values between 1 and 5) and the weight1198

decay (values 0, 0.1, 0.042, 0.01778 and 0.007498).1199

65. mlpWDml is the same network with three hidden layers (RSNNS pack-1200

age, named mlpWeightDecayML in the caret model list), tuning four1201

hyperparameters: the sizes of the three hidden layers (layer1, layer21202

and layer3, tuned with values 1, 3 and 5 each one) and the weight1203

decay (same values as mlpWD).1204

66. avNNet is the model averaged neural network (caret package). A1205

committee of 5 (argument repeats) multi-layer perceptron neural net-1206

works of the same size trained using different random seeds, being av-1207

eraged to give an output [81]. The boolean argument linout is set to1208

have linear output neurons for regression, and MaxNWts is adjusted to1209

allow the number of weights required by the dataset inputs. The hy-1210

perparameters are the network size, tuned with 7 odd values between1211

1 and 13, and the weight decay (with values 0, 0.1 and 0.0001).1212

67. rbf is the radial basis function network (RSNNS package) which does1213

a linear combination of basis functions, each centered around a pro-1214

totype [56]. The information is locally codified (opposed to globally1215

in the MLP), the training should be faster and the network is more1216

interpretable, although the output might be undefined if a test pattern1217

does not activate any prototype. The only hyperparameter is the size1218

of the hidden layer (10 odd values from 1 to 19).1219

68. grnn is the generalized regression neural network [61], a special type1220

of RBF network implemented by the Matlab neural network toolbox.1221
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After a clustering of the training set, the nodes of the hidden layer store1222

the cluster centers, although the Matlab implementation uses so many1223

clusters as training patterns. The output for a test pattern is a weighted1224

sum of the Gaussian functions centered in the cluster centers, scaled1225

by the cluster populations. During training, whenever a pattern is1226

assigned to a cluster, the weight of the Gaussian function corresponding1227

to that cluster is updated using the desired output. The Gaussian1228

spread is the only hyperparameter (13 values between 0.01 and 2):1229

large (resp. small) values lead to smooth (resp. close) approximations.1230

69. elm is the extreme learning machine [63] implemented by the elmNN1231

package. The only hyperparameters are the number of hidden neurons1232

(nhid), with 40 odd values between 1 and 79 (the last value was se-1233

lected in 11.7% of the datasets), and the activation function (actfun),1234

with 4 values: sin, radbas, purelin and tansig, selected with similar1235

frequencies.1236

70. kelm is the ELM neural network with Gaussian kernel [63] using the1237

publicly available Matlab code12. The hyperparameters are regulariza-1238

tion C and kernel spread σ, tuned with values {2i}14−5 and {2i}8−16, with1239

20 and 25 values, respectively.1240

71. pcaNNet is a multi-layer perceptron neural network with one hidden1241

layer trained on the PCA-mapped training patterns, implemented by1242

the caret and nnet packages. The principal components which account1243

for more than 95% of the data variance are used for training. Each test1244

pattern is mapped to the principal component space and the trained1245

12http://www.ntu.edu.sg/home/egbhuang/elm kernel.html (visited March 29, 2017).
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pcaNNet model gives an output. The tunable hyperparameters are the1246

size of the hidden layer, with 7 values between 1 and 13, and the1247

weight decay of the network, with values 0, 0.1 and 0.0001.1248

72. bdk is the supervised bi-directional Kohonen network, implemented1249

in the kohonen package [66]. The bdk combines Kohonen maps and1250

counterpropagation networks using two maps, for inputs and output1251

respectively. In each iteration, the direct (resp. inverse) pass updates1252

only the weights of the input (resp. output) map, using a weighted sim-1253

ilarity measurement (Euclidean distance for regression) which involves1254

both maps, leading to a bi-directional updating. The test output is the1255

weight of the winner node of the output map. The hyperparameters1256

are the sizes of both maps (xdim and ydim, with 3 values from 3 to1257

17) and the initial weight (xweight) given to the input map during the1258

distance calculation for the output map, and to the output map for1259

updating the input map, tuned with values 0.5, 0.75 and 0.9).1260

XVIII. Deep learning (DL)1261

73. dlkeras is the deep learning neural network implemented by the Keras1262

module [67] of the Python programming language, with three hidden1263

layers tuned with 50 and 75 neurons for each layer (nh1, nh2 and nh3,1264

with 8 combinations). The deep learning methods [82, 83] are very1265

popular, specially for image classification, and they are included in this1266

comparison for regression tasks.1267

74. dnn is the deep belief network implemented in R by the DeepNet pack-1268

age [68]. It uses three hidden layers, tuning their number of neurons1269

using 3 values for each layer (27 combinations). The weights are ini-1270
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tialized using stacked autoencoder (SAE), which in our experiments1271

gave better results than deep belief network (DBN). Hidden and out-1272

put neurons have hyperbolic tangent and linear activation functions,1273

respectively.1274

XIX. Support vector regression (SVR)1275

75. svr is the ε-support vector regression with Gaussian, accessed via the1276

C++ interface of the LibSVM library [9]. We tuned the regularization1277

hyperparameter C and the kernel spread γ with values {2i}14−5 and1278

{2i}8−16, with 20 and 25 values, respectively.1279

76. svmRad is another implementation of SVR (named svmRadial in the1280

caret model list) with Gaussian kernel, which uses the (ksvm function1281

in the kernlab package [70] for regression (argument type=eps-svr).1282

This implementation also uses LibSVM, and it tunes the regularization1283

hyperparameter C, with 20 values in the set {2i}15−4, and the kernel1284

spread σ. Although we specify 25 values for σ, the getModelInfo1285

function only lists 6 values in the set {2−i}75.1286

77. rvmRad is the relevance vector machine [71] with Gaussian kernel1287

(kernlab package), named rvmRadial in the caret model list. The1288

RVM has the same functional form as the SVM, but it uses a Bayesian1289

learning framework which reduces the number of basis functions, com-1290

pared to the SVM, while keeping an accurate prediction. This regres-1291

sion model avoids the tunable regularization hyperparameter (C) of1292

the SVM, but it uses a method similar to expectation-maximization1293

which, unlike SMO, may fall in local minima. The value of the Gaus-1294

sian spread σ is estimated by the getModelInfo function, which only1295
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lists one value.1296
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