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Abstract— This paper proposes a new personalised prognostic/diagnostic system that supports 

classification, prediction and pattern recognition when both static and dynamic/spatiotemporal features 

are presented in a dataset. The system is based on a proposed clustering method (named d2WKNN) for 

optimal selection of neighbouring samples to an individual with respect to the integration of both static 

(vector-based) and temporal individual data.  The most relevant samples to an individual are selected 

to train a Personalised Spiking Neural Network (PSNN) that learns from sets of streaming data to 

capture the space and time association patterns. The generated time-dependant patterns resulted in a 

higher accuracy of classification/prediction (80% to 93%) when compared with global modelling and 

conventional methods. In addition, the PSNN models can support interpretability by creating 

personalised profiling of an individual. This contributes to a better understanding of the interactions 

between features. Therefore, an end-user can comprehend what interactions in the model have led to a 

certain decision (outcome). The proposed PSNN model is an analytical tool, applicable to several real-
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life health applications, where different data domains describe a person’s health condition. The system 

was applied to two case studies: (1) classification of spatiotemporal neuroimaging data for the 

investigation of individual response to treatment and (2) prediction of risk of stroke with respect to 

temporal environmental data. For both datasets, besides the temporal data, static health data were also 

available. The hyper-parameters of the proposed system, including the PSNN models and the d2WKNN 

clustering parameters, are optimised for each individual. 

 
 
Keywords— Integrated data domains, prediction, classification, personalised modelling, spiking neural networks, 

pattern recognition, environmental conditions, EEG data, Stroke.  

1. Introduction 

An individual patient may have specific clinical, psychological, or behavioural factors which differ from 

other patients in the same category of diagnosis. These define the personal characteristics of each person 

that need to be considered for the tailoring of medical decisions, treatments, and practices toward precision 

medicine [1]. To this aim, scientists have recently suggested personalised treatments to sidestep undesirable 

influences of conventional treatments on the patient’s current medical conditions (e.g., diabetes, heart 

disease, mellitus, and so forth). 

In health and wellbeing studies, several researchers have contributed to improving decision making for a 

medical diagnosis for an individual. Literature has shown that personalisation is an effective technique to 

improve the performance of classification/prediction of previously unseen samples as reported in [2], [3]. 

In [4] a spiking neural network (SNN) architecture NeuCube for modelling brain data was proposed with 

the potential to be used for personalised modelling.  Research [5] reported 83% accuracy of classifying 

patients with mild cognitive impairment (MCI) and those MCI patients with Alzheimer’s disease (AD) 

using Magnetic Resonance Imaging (MRI) scans with respect to brain-age-related changes of an individual 

patient. In research [6], Quantum Associative Memories (QAM) was used for the diagnosis of tropical 

diseases (malaria symptoms versus different types of fevers) to improve the personal diagnostic process. 

Research [7] has developed a mechanical-left-ventricle model (MV) to build computational cardiac 
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modelling of 27 healthy controls and 11 patients with post-myocardial infarction (MI). The results 

suggested that myofibril active tension is greater in patients with MI than healthy individuals. This research 

was further developed towards personalised determining patients’ sudden cardiac death after an acute MI 

[8].  

The above computational modelling approaches performed successfully in a specific domain of data to 

build a personalised model for an individual. However, construction of a precise model for a person can be 

a challenging task when a massive amount of static vector-based, temporal or spatiotemporal (dynamic) 

datasets are available across many individuals. 

Different multidimensional data domains are surrounding an individual and their interactions severely 

affect the personal risk and outcome. Understanding of these multimodal interactions requires an integration 

of several data sources to discover the “unknown” informative association patterns. Numerous personal 

events for an individual patient can be accurately classified/predicted if different sources of information 

can be integrated into a resultant unifying computational model that learns the complex patterns “hidden 

deep” in multivariate data. 

Besides the accuracy of the decision making in machine learning, the model interpretability is also a crucial 

of importance in wellbeing study. This refers to understanding the relationships between the model’s 

features and the predicted outputs, which has not been investigated in depth. The higher the interpretability 

of a model, the easier it is for an end-user to comprehend why certain decisions (output predictions) were 

made. This allows for knowledge discovery in the models and contributes to understand what interactions 

in the model have caused an event to occur. Nevertheless, the existing analytical methods often develop 

models on data without investigating the model learning patterns itself. Hence, they act as a “black-box” 

information processing system that solve a problem without discovering the causal relationships that have 

triggered the output. In personalised modelling method and system were proposed that include an integrated 

optimisation of personalised features, a cluster of neighbouring data from a database and the parameters of 
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a classification/prediction model. The proposed system uses vector-based, static personalised data. In [9] 

this approach was extended with the use of a spiking neural network (SNN) NeuCube [4] to model 

personalised spatiotemporal data after the static data are used to capture the cluster of neighbouring data.  

The selection of a cluster of neighbouring data and parameter optimisation of a personalised SNN model 

are crucial for obtaining optimal personalised output results.  To address these challenges and inspired by 

the importance of improved personalised treatment, this paper proposes a new personalised modelling 

approach that aims to develop a computational prognostic and diagnostic system that can integrate, in a 

novel way, both static and temporal/spatiotemporal data to improve decision making for an individual. This 

is based on the proposed here new integrated clustering method for the selection of neighbouring individuals 

to a person 𝑥 using integrated static and temporal data for the individual. Then, selected temporal data are 

used as the training set for building an optimised SNN personalised model of this person. 

Using SNN that represent information as action potentials (spikes) at a given time, offers some advantages 

when dealing with temporal data [9, 10, 11, 12]. An action potential occurs when the membrane potential 

of a specific axon location rapidly rises or falls in precise timing, called spikes1. A sequence of spikes 

represents the times in which a neuron emitted action potentials.  

Some of the SNN’s characteristic features are: combined representation of temporal and spatial components 

of data; fast data learning as data is represented by binary events (spikes); time-based and frequency-based 

information representation. For these reasons, SNN can be considered as suitable techniques for 

spatiotemporal/temporal data modelling and analysis. Thus far, SNNs have been used for extracting patterns 

in different types of spatiotemporal data, such as functional MRI [10] and Electroencephalogram (EEG) 

[11].  

                                                      
1 Spike is a binary value (-1 or 1) at time t, which represents a certain upward or downward change in the signal. 
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In this paper, the proposed personalised modelling system is based on a new clustering method and SNN 

architecture that contributes to the recognising of vital individual features, to the creation of personalised 

profiling, and the improvement of classification/prediction accuracy of output as compared to global 

modelling and conventional classifiers. 

The proposed approach allows to:  

- Select the most relevant neighbouring data to a new person’s data. 

- Build an optimised personalised model based on integrated static and dynamic data using 

contemporary neural network techniques –SNN that can incorporate both space and time information 

into one unifying model. 

- Improve the model interpretability to perform as a decision support system.  

- Evaluate how a personalised model can enhance the accuracy of outcome classification/prediction 

for a person.  

The feasibility analysis of the proposed personalised modelling system is validated using two case study 

applications (Section 3.1 and 3.2). 

2. A Predictive Personalised SNN Architecture for Learning Static and 

Temporal/Spatiotemporal (Dynamic) Data 

In contrast to the global modelling, which uses all the samples in a dataset to build a model for a person x, 

the proposed personalised modelling system uses only a subset of samples which belongs to the relevant 

individuals to person 𝑥. The subset of samples is selected with respect to a new clustering method for 

integrated static and dynamic data. This subset data is utilised for the training process in an SNN model. 

SNN models have shown their potential to achieve incredibly high power efficiency as presented in several 

studies, such as pattern classification [12], [13], object recognition [14] and information encoding [15]. 
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Therefore, we use here SNN because of their ability to learn changes in temporal data, represented as spikes 

and the interaction between these changes across many variables [9].  

Our proposed personalised modelling system is designed according to the following phases:   

1. Clustering of static and dynamic data by means of a new algorithm, named d2WKNN (dynamic 

Double Weighted-Distance K-Nearest Neighbours). For a new individual sample 𝑥, represented by 

both static and dynamic data, the involvement of each of the k neighbouring samples is ranked 

according to their integrated static and dynamic distances to 𝑥, giving higher ranks to the closer 

neighbours. This method results in extracting the relevant subset of samples for personalised 

modelling.  

2. The selected samples are utilised to develop a Personalised Spiking Neural Network (PSNN) model.  

3. The PSNN model is used to create an analytical profile for an individual and to achieve the best 

possible accuracy of prediction/classification of outputs for this individual. The personalised profile 

also enhances the interpretability of the model. 

In the following sections, the above steps are explained in detail. 

2.1. The Proposed Dynamic Double Weighted-Distance K-Nearest Neighbour Clustering Method 

For a new person 𝑥, for whom both static and dynamic (temporal or spatiotemporal) data are available, an 

integrated static and dynamic data clustering procedure is accomplished through the following three parts: 

A. Forming a cluster (denoted by 𝐶𝑆) in a static data space 𝑆𝑁×𝑉, as nearest neighbouring samples to 

the sample 𝑥. There are 𝑁 vector-based samples and 𝑉 variables.  

B. Forming a cluster (denoted by 𝐶𝑇) in a spatiotemporal/temporal data space 𝑇𝑡×𝑓 , as nearest 

neighbouring temporal samples to the sample 𝑥. Each sample is presented by a 2-dimensional matrix, 

where 𝑡 time points are on the rows, and 𝑓 variables are on the columns.  
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C. In order to take into account the relationship between temporal samples in cluster 𝐶𝑇, the selected 

temporal samples are subsampled again to obtain the most relevant samples to 𝑥. The subsampling 

procedure is explained later in this paper. 

At step A, standardisation was used to transfer the static data, which might be recorded from different 

sources, into a consistent format. In the proposed d2WKNN method, the first W is defined by the normalised 

Euclidean distance between a sample vector 𝑥 and other samples in the static data space. In the WWKNN 

method, which was earlier proposed in [9], one more ranking (weight) was introduced to include the 

variables’ importance in the computation. When calculating the Euclidean distance in a 𝑉-dimensional 

space of input variables, it is typically supposed that all variables enumerate the same influence on the 

output. However, variables can be ranked by their discriminative power across samples belonging to 

different classes. This ranking can be used as the second weight (W) in our proposed method. This is 

computed here using the Signal-to-Noise Ratio (SNR) [16] which assesses how important a variable is to 

separate samples from different classes, one class named as ‘signal’ and the rest as ‘noise’. In a C-class 

problem, where 𝐶 = {1,2,… , 𝑛}, for each variable 𝑣 the SNR is defined as follows: 

𝑅𝑣 =
∑

𝑎𝑏𝑠(µ𝑖𝑣−µ{𝐶\𝑖}𝑣)

𝜎𝑖𝑣+𝜎{𝐶\𝑖}𝑣

𝑛
𝑖=1

𝑛
, 𝑣 = 1,… , 𝑉                                                      (1) 

where 𝑖 shows which class is named as a signal, while {𝐶\𝑖} is a set difference in ‘set theory’ which 

represents the rest of the classes as noise. Therefore, 𝜎𝑖𝑣 and µ𝑖𝑣 are correspondingly the standard deviation 

and the mean value of the variable 𝑣 among all the samples in class 𝑖. Then 𝑅𝑣 vector is used to weigh the 

normalised Euclidean distance 𝐷𝑥,𝑦 between a sample vector 𝑥  and another sample vector 𝑦 as follows: 

𝐷𝑥,𝑦 =
√∑  𝑅𝑣(𝑥𝑣−𝑦𝑣)

2𝑉
𝑣=1

∑𝑅𝑣
                                                                       (2) 

For a new sample x, we selected a subset of k samples to form a cluster 𝐶𝑠, so that each computed distance 

to x ( 𝐷𝑥,𝑦 , where 𝑦 = {1,…𝑁 − 1},N = number of samples) is less than an adaptive distance 
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threshold 𝛼. The threshold 𝛼 is initially set to the mean value of the distance (μ𝐷𝑥,𝑦) and then modified 

through optimisation. The distance 𝐷𝑥,𝑦 in relation (2) is computed based on the static data. However, as 

the dataset contains both static and temporal data, a new distance needs to be computed in respect to the 

temporal data space. 

At step B, we considered only those temporal data samples (named cluster 𝐶𝑇) that belong to the 

individuals in the cluster 𝐶𝑠. The class information is also assigned to each sample in 𝐶𝑇 .  In order to 

compute the distance between these temporal samples, a time-alignment distance measurement, called 

Dynamic Time Warping (𝐷𝑇𝑊) [17], is used. In contrast to the Euclidean distance, which computes a 

point-to-point distance, the DTW method allows for many-to-one point comparisons to find a global 

optimal alignment between time series. The 𝐷𝑇𝑊 method allows to compute an optimal match between 

the two time-series as follows: 

For time series 𝐴 = {𝑎1, … , 𝑎𝑛} and 𝐵 = {𝑏1, … , 𝑏𝑚} with lengths of 𝑛 and 𝑚 correspondingly, an 

alignment by 𝐷𝑇𝑊(𝐴, 𝐵) represents a time-warping matrix 𝑀𝑛×𝑚 which contains the distances between 

the  𝑖𝑡ℎ point of 𝐴 to the  𝑗𝑡ℎ point of 𝐵, where 1 < 𝑖 < 𝑛 and 1 < 𝑗 < 𝑚, as shown in Fig. 1. 

 

Fig. 1. A time-warping matrix that illustrates an optimal similarity path (shown in red) between the two time-series A 

and B. 
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Each distance 𝑑(𝑎𝑖 , 𝑏𝑗) in the matrix 𝑀 is computed as follows: 

𝑀(𝑖, 𝑗) = 𝑑(𝑎𝑖, 𝑏𝑗) = ‖𝑎𝑖 − 𝑏𝑗‖ +  min {

‖𝑎𝑖 − 𝑏𝑗−1‖

‖𝑎𝑖−1 − 𝑏𝑗‖

‖𝑎𝑖−1 − 𝑏𝑗−1‖

                                         (3)  

where ‖𝑎𝑖 − 𝑏𝑗‖ denotes to (𝑎𝑖 − 𝑏𝑗)
2 as shown in the cell(𝑖, 𝑗) of the warping matrix 𝑀. The objective in 

𝐷𝑇𝑊(𝐴, 𝐵) is to obtain the optimal path 𝑊 = {𝑤1, …𝑤𝑘} in the 𝑀 matrix through minimising the function 

below which identifies the shortest path in W:  

𝐷𝑇𝑊(𝐴, 𝐵) = (∑ 𝑤𝑘
𝐾
𝑘=1 );       𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑊                          (4) 

The 𝐷𝑇𝑊(𝐴, 𝐵) distance shows the degree to which the two time-series 𝐴 and 𝐵 are similar. Using the 

DTW distance, we can rank the temporal samples with respect to their time-dependent distance to the new 

sample 𝑥, where the higher the rank indicates the greater the distance between the time series. Once the 

DTW distances between the temporal samples are computed, the 𝐶𝑇 will be subsampled using the 

Silhouette coefficient [18] which validates the homogeneity within a class of samples by measuring how 

similar a sample is to its own class (cohesion) compared to other classes (separation). This is performed as 

follows: 

1. Class label information is assigned to the temporal samples in cluster 𝐶𝑇. 

2. The Silhouette value is computed for each sample as follows: 

For each sample 𝑖 which belongs to a class 𝑐, the 𝑥(𝑖) is the average cohesion of  𝑖 to all other samples in 

the same class as follows: 

𝑥(𝑖) = ∑ 𝐷𝑇𝑊(𝑗, 𝑖)                                                                                     𝑛
𝑗=1 (5) 

𝐷𝑇𝑊(𝑗, 𝑖) computes the distance between temporal sample 𝑖  to other 𝑛 temporal samples in the same class. 

It shows how well sample i fits into its own class so that a smaller distance value refers to a better 
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assignment. In contrast, 𝑦(𝑖) denotes to the separation between sample 𝑖 from the current class and samples 

in another class.  The Silhouette value for sample i is presented here as follows:   

𝑠(𝑖) =

{
 
 

 
 1 −

𝑦(𝑖)

𝑥(𝑖)
,         𝑖𝑓 𝑥(𝑖) > 𝑦(𝑖)

0,                        𝑖𝑓 𝑥(𝑖) = 𝑦(𝑖)
𝑥(𝑖)

𝑦(𝑖)
− 1,           𝑖𝑓 𝑥(𝑖) < 𝑦(𝑖)

                                                      (6) 

The silhouette value is in the range of  −1 ≤ 𝑠(𝑖) ≤ 1, where a value closer to 1 represents that the sample 

is well matched to its own class. 

At that point in order to subsample the  𝐶𝑇 cluster, in each class we extract samples with high Silhouette 

values (larger than an adaptive threshold 𝑠𝜃 that can be modified by optimisation). Through this, several 

samples are selected. Then the Silhouette distance between the selected samples and the rest of the samples 

are measured. After that, every selected sample forms a cluster of samples around itself if the absolute 

values of Silhouette distances between them are less than a radius  𝛽 = 0.4. Finally, a cluster with greatest 

number of samples is selected as it has the highest density. The density is defined with respect to the number 

of samples within the radius 𝛽. This set of samples are considered as the most relevant neighbouring 

samples to person 𝑥, extracted with respect to both static and dynamic data. A block diagram of the 

proposed personalised modelling framework is presented in Fig. 2. 

Fig. 2(a) shows that for an individual 𝑖, a cluster of samples with similar static data to 𝑖 is selected. Then 

with respect to these selected samples, relevant temporal samples are extracted, as shown in Fig. 2(b). It 

can be seen from Fig. 2(b1) that the selected temporal samples may have an overlapping distribution across 

different classes (in this example a two-class problem A and B). In order to select the most relevant temporal 

samples, we computed a silhouette value for each sample, by measuring the separation and cohesion as 

shown in Fig. 2(b2-b4). As a final point, Fig. 2(b4) illustrates the sub-clusters of samples which have high 

silhouette values (greater than a silhouette threshold) and have the largest number of neighbouring samples 

(when a cohesion threshold is applied). These samples are then passed into a 3-dimensional PSNN model 
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for unsupervised learning. The trained model will be tested for prediction/classification using the temporal 

samples of individual 𝑖, which were excluded from training. For an individual, the selected group of samples 

(number of training samples) can be different with respect to the parameter setting in the proposed 

d2WKNN algorithm. If we set the parameters to the optimised values, then the same samples will be 

selected for training anytime we run the experiment. This aims at achieving stability.   
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Fig. 2. The general schema of the proposed personalised modelling system for learning and modelling of integrated 

static and temporal data. (a) For individual 𝑖, a cluster of samples with similar static information to 𝑖 is selected; (b1) 

An example of overlapping clusters of samples’ distribution in two-class problem— A and B; (b2) An example of 

computing the cohesion values between one selected sample and other samples; (b3) An example of computing the 

separation values between one selected sample from class A to all the samples in class B (and the opposite way as 

well); (b4) The high-density sub-clusters of samples are selected; (c) The final selected temporal samples are passed 

into a 3-dimensional PSNN model to map the spatial information and learn the temporal patterns. The trained model 

will be tested for prediction/classification using the unseen temporal samples of individual 𝑖 (were excluded from 

training). 

 

Clustering 

based on the 

Static Data 

vectors

 Class A

Class N

Personalised SNN Model  and 

Unsupervised Learning

Classification/

Prediction

Temporal Data (TD)

Static Data Vector

New person data

Available Static and Temporal Data from Population

n Temporal Samples

Cluster Cs

Extract Temporal Data samples 

belonging to members in Cs to form 

cluster CT 

Input i

Subsampling 

CT  temporal 

samples  

(a)

Training data: 

Temporal data of the 

selected samples

Encoding

t 

Spike trains

Recall the unknown testing sample i 

Testing data: Temporal 

data of sample i

Output

(c) Create a 3-D Personalised SNN model 

Class A

Class B

Temporal Samples belonging to two classes (b1)

𝑥(𝑖) : distance between sample 𝑖   to all the other samples in class A

𝑥(𝑖) : distance between sample 𝑖   to all the other samples in class B

, denoted by (b2)

𝑦(𝑖) : distance between sample 𝑖   in class A to all samples from class B

  ternal separation in each class of samples, denoted by 𝑦(𝑠𝑎𝑚𝑝𝑙𝑒)   𝑠𝑠

𝑦(𝑖) : distance between sample 𝑖   in class B to all samples from class A

(b3)

High 𝑠 𝑖  and 

densest cluster 

High 𝑠 𝑖  and 

densest cluster 

Subsampling to extract  samples with high cohesion and separation values(b4)

(b)                                The procedure of subsampling the temporal samples in cluster CT

New Input i  Cluster centre



                                          13 

 

2.2. Predictive Personalised Spiking Neural Network (PSNN) Model  

The selected nearest neighbouring samples to an individual 𝑖 are used to build a PSNN model through the 

following steps using the NeuCube SNN architecture [5]: 

1. Encoding the input spatiotemporal/temporal samples into spike trains, which encodes certain 

changes in the data over time. 

2. Create a recurrent PSNN architecture for spatial mapping of the variables. This preserves the spatial 

relationship between data variables. 

3. Deep-in-time unsupervised leaning in the PSNN model to capture the spatiotemporal relationships 

between variables while streaming the input data. 

4. Supervised learning in an output layer classifier to learn the association between the input data and 

the class label information.  

5. Recall the spatiotemporal/temporal samples of individual 𝑖 (were excluded from training) to cross-

validate the model for classification or early prediction of outcomes. For the prediction task, a 

smaller length of the testing data is used to identify how early the best prediction can be achieved. 

For the classification task, the whole length of the testing data is used.  

6. The above steps are embedded in an optimisation process.  

The organisation of the training and testing data is shown in Fig. 3. When the SNN model is trained with 

related samples to an individual 𝑖, then the model will be tested using samples from individual 𝑖 which were 

excluded from the training phase. This is like leave-one-out cross-validation, but instead of training the 

model with 𝑁 − 1 samples (𝑁 is the number of samples), we train the model using the most related samples 

to 𝑥.   



                                          14 

 
Fig. 3. The scheme of the selection of training and testing datasets for early prediction of an event.  The green bar 

represents the time-window for training samples with a length of 𝑡𝑛 , while the grey bars represent the different lengths 

of the testing sample that start from 𝑡𝑛 and step down until the best early prognostication time point is detected.   

2.2.1. Computational Model of Spiking Neuron in a PSNN 

In a biological neuron structure, when the overall power of input signals goes beyond a threshold, an action-

potential is produced and sent to other neurons connected to it. Therefore, neurons receive, process and 

transmit input information by means of electrical signals exchanged via synapses. Artificial spiking neurons 

can computationally simulate this procedure as information-processing units that accomplish non-linear 

processing [19], [20], [21], [22], [23]. A collection of interconnected spiking neurons creates an SNN, 

where their spiking activities influence neighbouring neurons. Resembling a biological neuron, in SNN 

architecture, incoming spikes make changes in a neuron’s potential, and once this surpasses the neuron 

potential (a threshold value), the neuron emits an output spike. Similar to the axons, artificial neurons are 

interconnected through simulated paths, which are initially established with random weights. Then the 

neuron’s synaptic strengths are adapted through spike communications across synapses. Fig. 4 illustrates a 

biological neuron and a simulated artificial spiking neuron which resembles the behaviour of a biological 

neuron’s cell. 

When an SNN is used for learning temporal data, such data first needs to be encoded into sequences of 

spikes which are then transferred into the SNN via input neurons. Throughout the learning procedure, the 
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synaptic weights in the SNN are adjusted with respect to continues incoming spikes, which are 

incrementally processed at each neuron. 

2.2.2. Input Data Encoding. 

Spike-time encoding is inspired by the neural encoding processes in neurobiology that transfer neural 

signals into electrical pulses, so-called spikes or action potentials. Different spike encoding algorithms have 

been proposed, some popular ones are: temporal encoding [24], [25], [26], [27], Ben’s Spikes Algorithm 

(BSA) [28] and Population Rank Coding [29]. 

For the encoding procedure here, a threshold-based encoding technique is used to produce excitatory 

(positive) and inhibitory (negative) spikes, so that the dynamics of the data are preserved. In our paper, for 

a signal of length 𝑇 = {𝑡1, … , 𝑡𝑛}, if the upward change in the signal exceeds an encoding threshold ß at 

time 𝑡, then a positive spike is generated and positioned at the corresponding time point 𝑡. In contrast, if the 

downward changes surpass the ß value, then negative spikes are generated. 

 

Fig. 4 (a) Structure of a biological neuron which receives input information across axon terminals, (modified from 

[30]); (b) Artificial spiking neuron which receives input spike trains, processes them and produces output spikes with 

respect to the leaky integrate-and-fire model of a neuron [31]. 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 
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2.2.3. Spatial Mapping of Input Variables into a PSNN Model 

A PSNN model has a 3-Dimensional structure of a suitable size that preserves the spatial information of 

data if such information exists, or alternatively preserves it with respect to the temporal similarity between 

input temporal features. If the spatial information of temporal data variables is given, we can spatially map 

these variables into their exact 3D positions in a pre-designed PSNN model. For instance, in the case of 

spatiotemporal brain data such as EEG, the PSNN model spatially maps a brain template such as Talairach 

[32]. Then the EEG channels are positioned in the PSNN model as input neurons using the same coordinates 

as in the brain template. If such spatial information is not available for some datasets, then temporal 

variables can be efficiently mapped to a PSNN model with respect to their temporal correlation. For 

mapping of such input temporal variables to the PSNN model, we used a Graph Matching Optimization 

(GMO) algorithm [33] in which the highly correlated variables are assigned to topologically close input 

neurons in the PSNN model. The correlation is computed with respect to the encoded spike trains and a 

high positive correlation represents that the variables are well time dependent.  

2.2.4. Initialisation of a PSNN Model  

A PSNN model is initialised using the small-world (SW) connectivity [34], rule (as can be seen in [35] [4], 

[36]), that is inspired by biological systems [37], [38]. The SW generates random connections from a neuron 

𝑛𝑖 to nearby neurons within a neighbourhood radius. The connection 𝑤𝑖,𝑗 from neuron 𝑛𝑖 to 𝑛𝑗  is initially 

weighted as follow: 

𝑤𝑖,𝑗 =
𝑟𝑖,𝑗

𝑑𝑖,𝑗
; 𝑟 ∈  ℝ[−1,1]                                                                               (7) 

where 𝑑𝑖,𝑗 is the distance between two neurons 𝑛𝑖 and 𝑛𝑗.  

Spiking neurons in the PSNN can be implemented using different computation models such as Lapicque 

[39], Integrated-and-Fire Model [40], [14], Izhikevich Model [41]. In this paper, we use Leaky integrate-

and-fire model (LIFM) of a neuron [31]. Like a biological neuron, in LIFM when a neuron emits a spike, it 



                                          17 

does not produce a new spike within a refractory period and its membrane potential 𝑣(𝑡) leaks by a 

parameter τ. The neuron action-potential is defined in relation (8), where 𝜏𝑚 denotes to the membrane time 

constant,  𝑣𝑟𝑒𝑠𝑡  defines the resting potential, and R and I are respectively the resistance and the input current. 

𝜏𝑚
𝑑𝑣

𝑑𝑡
= 𝑣𝑟𝑒𝑠𝑡 − 𝑣(𝑡) + 𝑅𝐼(𝑡)                                                             (8) 

2.2.5. Deep-in-time Unsupervised Learning in a PSNN Model 

When a PSNN model is spatially mapped and initialised, the connection weights need to be modified while 

it is learning from input spike trains which are streaming to the model over time. At this phase of the 

learning, the desired outputs (class labels) are not provided and the training process is performed with 

unlabelled input data patterns. Hitherto, several unsupervised learning algorithms have been developed in 

SNN models, the majority of them are constructed to adapt the synaptic weights according to temporal 

relation between pre- and postsynaptic2 action potentials as similarly implemented in Hebbian learning [42], 

[43]. One of the most popular examples of Hebbian learning is Spike-Time Dependent Plasticity (STDP) 

learning rule, which depends on the relative timing of pre and postsynaptic action potentials [42]. The STDP 

learning rule is defined using the following relation (9). 

𝐹(∆𝑡) = {
  𝐴+e p (∆𝑡/𝜏+)                   𝑖𝑓 ∆𝑡 < 0 
−𝐴−e p (−∆𝑡/𝜏− )             𝑖𝑓 ∆𝑡 ≥ 0

                                                       (9) 

𝐹(∆𝑡) represents the connection weight modification caused by a pair of pre to postsynaptic spikes, 

separated by a time interval ∆𝑡. The parameters A+ and A- refer to the maximum values for the synaptic 

modification, which transpire when ∆𝑡 ≈0. The parameters 𝜏+ and 𝜏− control refer to the ranges of pre-to-

postsynaptic inter-spike intervals over which the synaptic strengthening and weakening occur. In the 

proposed PSNN model, the connections are adapted over time that represent patterns of connected clusters 

of neurons, similar to deep neural networks [44]. However, the adapted spatiotemporal connections here 

                                                      
2 Presynaptic neuron is delivering the “message” across the synapse to the postsynaptic neuron. The postsynaptic 

neuron is the “receiver” of the neurotransmitter “message” from the presynaptic neuron. 



                                          18 

are not being constant as a fixed structure (fixed number of neurons and layer) as Convolutional Neural 

Networks (CNN) [45]. It means that in SNNs, during the learning procedure different connections are 

modified differently with respect to the time that spike transformation occurs. In contract to the typical 

multi-layer perceptron networks, neurons in the SNN do not fire at each propagation cycle. They fire only 

when their membrane potentials – as intrinsic quality of the neuron related to its membrane electrical charge 

– reach a specific value. In the trained SNN model, neurons that were not involved in the information 

transformation and the connections with weak values can be removed from the reservoir. Therefore, the 

SNN model will have as many neurons and connections as needed for processing a specific task. Therefore, 

STDP evolves the neuronal connection weights reflecting the dynamics of the brain data that relate directly 

to the brain process. 

2.2.6. Supervised Learning in a PSNN Model using Dynamic Evolving SNN 

During the unsupervised learning with temporal pattern of the input spike trains, connection weights are 

learnt in the PSNN model, that represent spatiotemporal interaction between temporal variables over time. 

Afterwards, a supervised learning is performed to learn the associations between the captured patterns in 

the PSNN model and the training samples’ class label information. For this purpose, the same training 

samples are propagated to the trained PSNN model again, and the spiking activity of the PSNN model is 

utilised for the training of an output classifier. For each sample in the training dataset, one output neuron is 

created and fully connected to neurons in the already trained PSNN model. We used dynamic evolving 

SNN (deSNN [46]) for the output classifier. The connection weights from neurons in the PSNN model to 

an output neuron 𝑗 are first set to zero and later initialised using Rank-Order rule (RO) [47] wherein the 

first incoming spike from a neuron 𝑖 in the PSNN model to an output neuron 𝑗 has the highest value of the 

corresponding connection 𝑤𝑖,𝑗 as follow: 

𝑤𝑖,𝑗 = ơ𝑀𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖,𝑗)                                                                   (10) 
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where the learning parameter is denoted by ơ, and Mod represents the modulation parameter which 

identifies the importance (rank) of the incoming spike with respect to the order in which a spike is entered 

to the output neuron (𝑜𝑟𝑑𝑒𝑟(𝑖, 𝑗)) among all the other arriving spikes. This allows the first spike to have 

the highest influence in increasing the value of 𝑊𝑖𝑗. Then, 𝑊𝑖𝑗 will be further modified using a small 

parameter drift that considers the following spikes to neuron j at time t. While streaming the input training 

samples over time, the postsynaptic membrane potential (𝑃𝑆𝑃𝑗𝑡) of the output neurons 𝑗 at time 𝑡 increases 

until it surpasses a firing threshold as follows: 

𝑃𝑆𝑃𝑗𝑡 = ∑𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖) 𝑊𝑖𝑗                                                      (11) 

After the supervised learning is completed, at the recall phase, if a new spike train of an individual 𝑥 enters 

to the trained PSNN model, a neuron 𝑖 in the PSNN model emits an output spike if the 𝑃𝑆𝑃𝑖𝑡 exceeds the 

firing threshold. This output spike is then transmitted to the output neurons positioned on the deSNN layer. 

This spike transmission modifies the corresponding connection weights 𝑤𝑖,𝑗, where 𝑗 =

{1,… , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠}, and the output neuron’s 𝑃𝑆𝑃𝑗𝑡 at the deSNN layer. When the 

𝑃𝑆𝑃𝑗𝑡 on the output layer exceeds the firing threshold, the neuron 𝑗 produces an output spike at time t. To 

classify a testing sample 𝑥, a KNN method is used to vote to the class label of the top K output neurons 

from the classifier which fired earlier in time. In addition to detecting the class label (𝑐 = {1,… , 𝐶} ) of the 

testing sample, the results can be interpreted as a probability 𝑝𝑥  that shows how fit the sample 𝑥 is to the 

detected class label compared to the other classes as follows: 

𝑝𝑥 =
∑𝐾𝑁𝑁𝑐

𝐾
                                                                        (12) 

where ∑𝐾𝑁𝑁  represents the number of voting to class c within the K neighbouring output neurons. 

2.2.7. Parameter Optimisation of the PSNN 

When building a PSNN model for an individual, the model is optimised using an exhaustive grid-search 

optimisation algorithm with an objective function of minimising the prediction/classification error through 
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optimal tuning of the model’s parameters. We optimised two main parameters from the d2WKNN 

clustering procedure, and one hyper-parameter from the STDP learning procedure in the PSNN model as 

follows: 

- Distance Threshold 𝛼 in the clustering of static data: a radius parameter in which the nearest 

neighbouring samples are positioned. 

- Silhouette threshold 𝑠𝜃  in the temporal data clustering: this identifies the temporal samples with 

small internal DTW distance to other samples in their own class while having large DTW distances 

to samples from other classes. 

-  Learning rate ∝: this is a parameter in the unsupervised STDP learning procedure in the PSNN 

model.   

To obtain the best accuracy of classification/prediction, these three parameters 𝛼, 𝑠𝜃 , and ∝ were optimised, 

so that for every individual the procedure of learning and testing was repeated 45 times as there were three 

values for  𝛼, three values for  𝑠𝜃 and five values for ∝ as follows: 

{
 
 

 
 
𝛼 ϵ [μ𝐷𝑥,𝑦 − 𝜎𝐷𝑥,𝑦 ;   μ𝐷𝑥,𝑦 ;  μ𝐷𝑥,𝑦 + 𝜎𝐷𝑥,𝑦]        

𝑠𝜃 ϵ [μ𝑠𝜃 − 𝜎𝑠𝜃 ;  μ𝑠𝜃 ;  μ𝑠𝜃 + 𝜎𝑠𝜃]                         

∝  ϵ [ȴ𝑚𝑖𝑛, (
ȴ𝑚𝑎𝑥−ȴ𝑚𝑖𝑛

𝑠𝑡𝑝
+ (ȴ𝑚𝑖𝑛 × 𝑖)) , … , ȴ𝑚 𝑥]

 𝑖 = 1,… , 𝑠𝑡𝑝

                                      (13) 

where: 𝑦 refers to each of the samples in the dataset (except x); μ𝐷𝑥,𝑦 is the mean value of the normalised 

Euclidean distance between x and other samples; 𝜎𝐷𝑥,𝑦 is the standard deviation of the distances; μ𝑠𝜃 is the 

mean value of  the Silhouette values in a class; 𝜎𝑠𝜃 is the standard deviation of the Silhouette values in a 

class; ȴ𝑚𝑖𝑛 and ȴ𝑚 𝑥 are the minimum and maximum values for ∝; and 𝑠𝑡𝑝 defines how many steps were 

chosen within the interval of ȴ𝑚 𝑥 − ȴ𝑚𝑖𝑛.   
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3. Case Studies of Personalised Modelling using the Proposed PSNN Model 

The feasibility analysis of this approach is tested using two case study problems that represent the 

methodology as a generic one, applicable to different data domains. The first experiment is a classification 

of spatiotemporal EEG data across individuals belonging to different health categories (Sec. 3.1) to 

investigate the individual response to treatment. The second experiment relates to the early prediction of 

individual stroke occurrence in relation to temporal environmental data (Sec.3.2). For the case studies, both 

static vector-based and dynamic, temporal data are available per individual (Sec. 3.2). 

3.1 Case Study 1: Classification Based on Static Clinical Data and Spatiotemporal EEG Data Related 

to Individual Response to Treatment 

In this section, the proposed personalised modelling system is applied for determining individual response 

to a certain treatment with respect to integrated data sources. We used data [48], [49], [50] which were 

recorded under an ethical approval granted by the Northern Regional X Ethics Committee of New Zealand. 

The data were recorded at the School of Pharmacy, University of Auckland. All participants signed 

informed consent to certify their voluntary participation. The dataset contains both static and spatiotemporal 

data collected from each participant. 

The spatiotemporal EEG data in this paper are from 67 participants (samples), in which 21 samples are 

categorised as a healthy control group (class 1—H), 29 samples are categorised as patients undertaking 

Methadone maintenance treatment (class 2—M), and 17 samples are labelled as opiate addict patients (class 

3—P). The EEG signals were measured using 26 channels based on the “10-20” International System while 

participants were performing a psychological test which involved several brain functions and areas. 

Throughout the test, the word ‘PRESS’ was frequently shown (every 500 ms) on the screen in either green 

or red colours. Before the test began, participants were trained to react to the world appearing in green by 

pressing a button and not reacting to the ‘PRESS’ that presented in red. This kind of cognitive test is usually 

used to measure an individual’s ability for response control and sustained attention. 
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Along with the spatiotemporal EEG data, static vector-based data were also measured for each individual 

such as age, gender and drug consumption. In total, there were 20 variables for measuring the static 

information from each subject. Fig. 5(a) presents only 15 vectors of static data, randomly selected from 

these 67 individuals. The SNR values for these 20 variables of static data (67 instances) are computed and 

reported in Fig. 5(b). It represents that variable 2 (gender) has the highest importance in static data for 

discriminating the individuals into different health categories: healthy (H), under-treatment (M), and patient 

(P).  

       
Fig. 5 (a) Five static data instances are randomly selected from each group of subjects (in total 15 instances are shown 

here). The static variables are V1: age; V2: gender (0 is male and 1 is female); V3: level of education; V4: life-time 

nicotine consumption; V5: illness; V6: history of overdose; V7: times of hospitalised; V8: Legal charge; V9: days 

being in jail; V10: Methadone dose; V11: alcohol consumption in last 30 days; V12: sedative consumption in last 30 

days; V13:level of anger; V14:cannabis consumption; V15: hallucinogens consumption; V16: taking ecstasy; 

V17:amphetamine consumption; V18: barbiturate consumption; V19: heroin; and V20: level of fear. Class labels of 

subject groups are: 1 is healthy, 2 is treatment, and 3 is patient. (b) The SNR values for the variables in static data. 

 
 

Fig. 6 illustrates the in-house developed user-interface of the personalised modelling system to classify 

individual health outcome with respect to the integrated static clinical data (from Fig. 5) and the 

spatiotemporal EEG data. The number of the selected nearest samples for each individual here (𝐾) is not 

only varied person to person, but also varied for a particular person respecting different model’s parameters 

such as distance threshold α and Silhouette threshold 𝑠𝜃, which are correspondingly the neighbourhood 

radius in the static and spatiotemporal data spaces. 

4 
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When the EEG data of the most relevant samples to an individual are extracted, they are first encoded into 

sequences of spikes which are used for training a PSNN model through unsupervised STDP. Before 

applying unsupervised learning, the SNN model needs to be initialised. In this experiment, we used the 

same mapped SNN model with a Talairach brain template and the same initial connections for all the 

individuals. Then, the connections were modified through the STDP learning with different sets of training 

samples for different individuals.  

 

The trained model is later tested using the EEG samples of the individual 𝑥 which was excluded from the 

training phase. For the classification experiment, we built 67 models of PSNN, each of which was trained 

by different nearest neighbouring EEG samples to each individual. For instance, the PSNN models of six 

randomly selected individuals (2 samples per class) are visualised in Fig. 7. In the graphs shown in Fig. 7, 

the amount of spike communication between clusters of neurons, centred by input variables, is captured as 

the thickness of lines. The thicker the line, the more interactions between variables were measured during 

STDP learning in the PSNN model. The trained PSNN models can be used for classification of testing EEG 

samples belonging to the three classes: C1 (healthy group H), C2 (treatment group M), and C3 (patient 

group P). The spatiotemporal connectivity in each of the trained PSNN model is supported by quantitative 

information. We computed the average of connection weights in each PSNN (from classes H, MMT, OP) 

and performed a t-test as reported in Table 1.  
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Table 1. Average connection weights of 67 PSNN models (denoted by PSNN (avg-CW), each was trained with 

different sets of nearest neighbouring samples to an individual from three classes: C1 (healthy group H), C2 (treatment 

group M), and C3 (patient group P). The 𝑝-value represents that the trained PSNN models of different groups of 

individuals were statistically significant with a high confidence, greater than 99%. 

 

 

C1     C2      C3

id PSNN(avg-CW) id PSNN(avg-CW) id PSNN(avg-CW)

1 0.06 1 0.1 1 0.08

2 0.08 2 0.19 2 0.07

3 0.07 3 0.19 3 0.12

4 0.01 4 0.12 4 0.07

5 0.09 5 0.18 5 0.15

6 0.07 6 0.1 6 0.08

7 0.08 7 0.19 7 0.1

8 0.06 8 0.18 8 0.09

9 0.08 9 0.19 9 0.09

10 0.07 10 0.19 10 0.12

11 0.08 11 0.107 11 0.1

12 0.07 12 0.1 12 0.07

13 0.08 13 0.18 13 0.06

14 0.09 14 0.1 14 0.09

15 0.08 15 0.1 15 0.07

16 0.06 16 0.18 16 0.05

17 0.06 17 0.19 17 0.05

18 0.06 18 0.1

19 0.06 19 0.1

20 0.09 20 0.19 t-test results:

21 0.08 21 0.17 t-test(C1, C2)=1E-13<0.05

22 0.19 t-test(C1, C3)=0.04<0.05

23 0.18 t-test(C2, C3)=3E-09<0.05

24 0.18

25 0.17

26 0.19

27 0.19

28 0.19

29 0.15
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Fig. 6. The user interface of the in-house developed PSNN system, where the static and dynamic datasets are loaded 

(in this example the static clinical information and spatiotemporal EEG data of 67 individuals from class1: healthy 

subjects, class 2: patients undertaking treatments, and class 3: opiate addict patients). For an individual (e.g. subject 

id: 1), all samples in each class are ranked with respect to their similarity to id: 1. The top similar samples are 

highlighted in green (greater than a distance threshold α). The EEG data of the green coloured samples are selected, 

and then their pairwise DTW distances are computed in each class. The DTW distances are used to compute their 

Silhouette coefficient as new ranking measures for the samples. Samples with Silhouette value higher than a threshold 

𝑠𝜃  and a high-density in neighbourhood are selected as the final cluster to train a PSNN model.  
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Fig. 7. PSNN models were created for six persons’ data from class1 (healthy control group in (a) and (b)), class 2 

(Methadone treatment group in (c) and (d)), and class 3 (opiate addict group in (e) and (f)). Each PSNN model was 

trained on the temporal EEG data of the 𝐾 nearest samples to the corresponding person using STDP unsupervised 

learning so that the spatiotemporal connectivity was adapted. Blue lines represent excitatory synapses (positive 

connections), whereas red lines refer to inhibitory synapses (negative connections). The spatiotemporal interactions 

between EEG channels are captured in a graph, where each node is a cluster of neurons around the corresponding 

EEG channel and each line between two clusters represents the amount of spike exchanged between these clusters.

(a)                                                         (b)                                                      (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d)                                                        (e)                                                        (f) 

 

 

Average of connection 0.98             Average of connection 1.22            Average of connection 1.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average of connection 0.92               Average of connection 1.02          Average of connection   0.91 

Subject id 6, class 1, k=28 Subject id 15, class 1, k=33 Subject id 23, class 2, k=30 

Subject id 31, class 2, k=37 Subject id 51, class 3, k=27 Subject id 61, class 3, k=21 
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The d2WKNN procedure was performed for all the 67 individuals to build 67 PSNN models for 

classification task and the overall accuracy of testing was reported in Table 2. The PSNN models were 

optimised using a grid-search method to achieve the best accuracy of classification. The optimised 

parameters were distance threshold 𝛼, Silhouette  𝑠𝜃 and the STDP learning rate ∝. The average parameters 

across all the 67 PSNN models are reported in Table 2. 

Every PSNN model was trained using a different number of 𝐾 nearest samples, selected with respect to the 

density of samples that are positioned inside the neighbourhood radius (thresholds 𝛼 and 𝑠𝜃). Therefore, In 

Table 2, we have reported the average 𝐾 across all the PSNN models 67 individuals. 

The PSNN was compared with a global SNN model in which all the individuals’ data were used to build a 

model regardless of differences in individuals’ personal information. The classification accuracy was also 

compared with traditional methods: Multiple Linear Regression (MLR), Support Vector Machine (SVM), 

Multi-Layer Perceptron (MLP) and Evolving Clustering Method (ECM) [51] as shown in Table 2. The 

SVM optimal parameters that resulted in the best classification accuracy were found after performing the 

experiments several times with different parameter setting (polynomial degree within [2, 5] and (RBF) 

kernel degree within [0.2, 1]). As shown in Table 2, when we used SVM for classification, the best accuracy 

was obtained using Kernel polynomial degree: 2. The MLP optimal parameters were also found after 

performing the experiments several times using different parameter settings (learning rate (LR) = [0.01, 

0.5], momentum (M) = [0.1, 0.9], training iteration (TI) = [500, 1500], and number of hidden layer (HL) = 

[2, 6]). 

In Table 3, the proposed d2WKNN clustering approach was replaced by different clustering methods 

(WWKNN [9], WKNN, and KNN) towards building PSNN models for classification. In all of these 

comparisons, the proposed PSNN models using W2WKNN method have achieved a higher classification 

accuracy of 83% with F-score=82%.  
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Table 2. Classification accuracy using the PSNN (based on d2WKNN) versus using a global SNN. C1 is a healthy 

control group, C2 is the treatment group and C3 is the patient group. Optimised parameters are distance threshold 𝛼, 

Silhouette threshold  𝑠𝜃  and the STDP learning rate ∝. The rest of the parameters were fixed as follows: spike-

encoding threshold= 0.5; small-world connectivity radius= 2.5; neuron firing threshold= 0.5; LIF parameters 

(refractory time= 6 and potential leak rate=0.002); deSNN parameters (mod=0.4 and drift=0.25). 

Personalised modelling of 67 trained PSNN models for each individual’s data 

 Correctly 

classified 

Accuracy in % F-score Parameters, averaged 

across all the 67 

PSNN models 

𝐾 nearest samples, 

averaged across all the 67 

PSNN models 

C1 17 out of 21 81%  

82% 
𝛼=0.67  

33.5 C2 25 out of 29 86% 𝑠𝜃=0.74 

C3 14 out of 17 82% ∝=0.01 

Overall accuracy                         83% 

A global SNN of all individuals’ data tested via leave-one-out cross-validation method 

 C1 C2 C3 Accuracy in % F-score 𝛼= – Leave-one-out cross- 

validation: training with 

66 samples and tested 

with one holdout sample 

(repeated 67 times) 

C1 16 3 2 76%  

67% C2 4 19 6 65% 𝑠𝜃= – 

C3 2 6 11 65% ∝=0.008 

Overall accuracy                   68% 

 

Classification accuracy using conventional methods 

Methods SVM MLR MLP ECM 

Accuracy % 61% 60% 63% 63% 

F-score 58% 60% 58% 61% 

Optimised parameters  Kernel 

polynomial 

degree: 2 

Learning-

rate=0.01 

Hidden layers = 4 

Learning-rate=0.03 

Momentum=0.4 

Training-iteration=1000 

Hidden layers = 4 

Radius 

value=0.2 

Table 3. Classification accuracy obtained using PSNN models with different clustering approaches (d2WKNN, 

WWKNN, WKNN, and KNN) for selecting the nearest neighbouring samples to an individual. Optimised parameters 

are distance threshold 𝛼, Silhouette threshold  𝑠𝜃  and the STDP learning rate ∝. The rest of the parameters were fixed 

as follows: spike-encoding threshold= 0.5; small-world connectivity radius= 2.5; neuron firing threshold= 0.5; LIF 

parameters (refractory time= 6 and potential leak rate=0.002); deSNN parameters (mod=0.4 and drift=0.25). 

Method Proposed d2WKNN WWKNN [9] WKNN KNN 

Accuracy 83% 75% 71% 69% 

F-score 82% 75% 70% 65% 

Parameters 𝛼=0.67 

𝑠𝜃=0.74 

∝=0.01 

𝛼=0.61 

𝑠𝜃= — 

∝=0.008 

𝛼=0.6 

𝑠𝜃= — 

∝=0.006 

𝛼=0.67 

𝑠𝜃= — 

∝=0.008 

K (on average) 33.5 49.4 48.9 48.5 

 
 

Our findings show that the trained PSNN models (based on the integration of different data domains by 

d2WWKNN clustering approach) not only can distinguish samples with respect to their class labels with a 

higher classification accuracy, but also they can be used for a better understanding of interactions between 

spatiotemporal variables in each person’s data (shown in the graphs in Fig. 7). 
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Fig. 7 illustrates that for one individual, one profile is created that assists an end-user (e.g., medical 

practitioner) with a personal interpretation of the interactions between features (in this case, different brain 

cortical areas measured by EEG). These personalised profiles support the model’s interpretability and can 

explain what interactions between the cortical areas in the brain have led the PSNN model to categorise a 

person to a certain outcome (e.g. opiate addict). It can be seen from Fig 7(e) and (f) that although these two 

PSNN models belong to the same group of individuals (both from opiate addict group), their trained 

individualised models captured different relationships between the EEG variables. For example, Fig. 7(e) 

shows greater spike interactions between C3, T3 and P3 channels than other channels when compared with 

Fig. 7(f). This finding suggests great spatiotemporal interactions between the corresponding cortical areas 

(central, temporal and parietal areas) for this person in P group. On the other hand, the PSNN model of 

another opiate addict person, shown in Fig. 7(f), represents different levels of indications between these 

EEG channels. This personal interpretation represents that the PSNN models here are not acting as “black-

box” information processing systems, but rather they are capable of revealing the personal “hidden” leaning 

patterns (adaptation of spatiotemporal connections) in the SNN models, which were not so far investigated 

in depth. 

3.2 Case Study 2: Personalised Modelling for Prediction of an Individual’s Risk of Stroke Occurrence 

in Relation to Environmental Conditions  

At this section, the proposed personalised modelling system was applied to a case study of stroke data for 

early prediction of risk of stroke occurrence with respect to both static clinical information of patients and 

the temporal environmental data around them. Here, we present that the proposed PSNN models resulted 

in a higher accuracy of risk prediction when we integrated the static health data with some external risk 

factors (environmental changes). 

The environmental data were recorded by Auckland Council from 12 variables positioned in Auckland over 

one year from 1st January 2002 to 31st December 2002. The environmental variables are: (1): wind-velocity 
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[knots], where Knots is a unit of velocity and is equivalent of 1.852 Kilometres per hour; (2): wind-direction 

average [Degrees]; (3): dry-bulb temperature [°C]3; (4): wet-bulb temperature [°C]; (5): barometric pressure 

[hPa]; (6): minimum-temperature; (7): maximum-temperature; (8): relative humidity [%], that is ratio of 

total moisture content of air to the maximum moisture the air can hold at a specific temperature; (9): solar 

irradiance [MJ/m²]4; (10): Nitrogen Dioxide (NO2) is a prominent air pollution that in presence of water 

can form nitric acid and nitrous acid; (11): Ozone (O3) gas is an allotrope of oxygen that absorbs most of 

the UV radiation from the Sun; and (12): Sulphur dioxide (SO2) is a toxic gas that is a by-product of 

combusting fossil fuels contaminated with sulphur. In presence of water and oxygen, sulphuric acid can be 

produced. This data was previously used in other publications [52], [9]. In total, 365 daily basis samples 

were recorded during this one year from all these 12 variables. 

The static vector-based dataset of stroke consists of 1,207 individuals (all had stroke occurrence in the past) 

recorded from the 1st March 2002 to 31 December 2002. Each individual’s sample is defined by four 

features: age, gender, stroke history, and current smoking statues.   

For every patient 𝑥 in this dataset, a cluster of 𝐾 nearest individuals to 𝑥 is selected with respect to the 

distance measurement between static data of 𝑥 to the rest of 1,206 individuals (after applying equations (2) 

and (3) from Section 2.1). Then, for every selected individual in this cluster, two periods of the 

environmental data are extracted, one corresponds to a 30-day interval before the stroke (called high-risk 

environmental sample) and the other one relates to a 30-day interval from one month before the stroke 

(called low-risk environmental sample). Therefore, for every individual, two temporal environmental 

samples are extracted. It means that for 𝑘 selected individuals, there are 2𝑘 environmental samples, each 

represents the environmental changes over a 30-day period. 

                                                      
3 Celsius is the unit of temperature. 
4 Megajoules per square meter is the amount of energy solar radiation received by one meter square during the day. 
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Fig. 8 shows an example of two-time intervals of environmental data that belong to “high-risk” versus “low-

risk” temporal samples, categorised with respect to their time-distance from the unset of stroke for an 

individual who had stroke on 2nd June 2002. Afterwards, the environmental samples are subsampled again 

by computing the Silhouette coefficient with respect to the DTW distance as explained in Section 2.1, 

equations (5) and (6). The final selected environmental samples are then encoded into spikes and used for 

building a 3D PSNN model for this person. The model is trained using the whole spike trains of the training 

data and tested using a smaller length of the temporal samples of individual 𝑥 (excluded from training) for 

early prediction of the likelihood of stroke occurrence.  

Fig. 9 shows the in-house developed user interface of the proposed personalised predictive system, where 

1,207 individuals’ static vector-based data are loaded along with 365 daily measurements of temporal 

environmental data. In this example, the person id: 361 is randomly selected, and a 3D PSNN model is 

created using the most relevant neighbouring samples to id: 361. The PSNN model spatially maps the highly 

correlated environmental variables to nearby input neurons. When the unsupervised STDP learning is 

performed, the spatiotemporal connectivity in the PSNN model is adapted with respect to input spike 

sequences of the environmental samples.  
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Fig. 8. An example of two temporal samples (belong to patient id: 361) of class high-risk and low-risk, each has a 

length of 30-day environmental measurement. For this patient, the interaction between temporal variables (e.g., O3, 

NO2, T-min, and T-max) will be learnt in a PSNN model to predict the risk of stroke earlier. Here, only four variables 

are visualised, but we used all the 12 variables in the prediction experiment.  
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Fig. 9. The user interface of the proposed personalised predictive system for prediction of risk of stroke. A PSNN 

model is created to spatially map the environmental variables, where the most correlated variables are mapped to 

closer input neurons. Then the PSNN model was trained on the temporal spike sequences using STDP unsupervised 

learning to adapt the model connections. Blue lines represent excitatory synapses (positive connections), whereas red 

lines refer to inhibitory synapses (negative connections). In the graph, the amount of spike communication between 

clusters of neurons, centred by input variables, is captured as the thickness of lines. The thicker the line, the more 

interactions between variables during STDP learning. 

The temporal interaction between environmental variables is shown in a graph, where the vertexes represent 

the variables and arcs are weighed by the amount of the spike communications between the variables during 

the learning process.  

Fig. 10(a) illustrates the accuracy of personalised prediction of risk of stroke for patient id: 361, where the 

high-risk and low-risk environmental samples were perfectly predicted around 10 days pre-stroke. It can be 

seen here that the trained PSNN model was tested by different lengths of the testing samples to identify the 

earlier time point for the best possible prediction. It means that for every person, one PSNN model was 
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created and trained, then it was tested 26 times with testing samples of different lengths (30 days, 29 days, 

and stepdown to 5 days of environmental data). This procedure was repeated 45 times in a grid-search 

optimisation algorithm with different combinations of parameters 𝛼, 𝑠𝜃  and ∝ as shown in relation (13). 

The personalised models were created for all 1,207 individuals. Then we selected a subset of individuals 

who their testing samples were correctly predicted in at least 15 out of 26 validation rounds. We found that 

personalised modelling was successfully performed for 655 patients, suggesting that the external 

environmental data were considered as external risk factors to increase the risk of stroke for this subset of 

population. Fig. 10(b) illustrates a high average accuracy of prediction (from 80% to 93%) around 15 days 

pre-stroke for only these 655 individuals. For the rest of the individuals, the PSNN models did not capture 

any meaningful relationships between the temporal environmental changes and the static health information 

that could increase the risk of stroke. This new finding sounds rational as the environmental changes are 

not the only risk factors to trigger a stroke occurrence, but they were discovered here as additional 

influential factors that affected only a subset of individuals who were sensitive to environmental 

circumstances. 

In Table 4, the proposed d2WKNN clustering approach was replaced by different clustering methods 

(WWKNN, WKNN, and KNN) for building PSNN models. The PSNN models using W2WKNN method 

have achieved a higher prediction accuracy of 86.5% which is the average of the accuracy in 15 days before 

stroke (80%) and the accuracy of one day before stroke (93%) with F-score=80%. The optimised parameters 

were distance threshold 𝛼 and Silhouette threshold  𝑠𝜃 in the d2WKNN method and the STDP learning 

rate ∝ as reported in Table 4. 

In addition to achieving a higher accuracy when compared with conventional methods, our findings suggest 

that personalised modelling based on the integration of static health data and temporal environmental data 

was promising to discover the hidden association patterns between these two data domains and risk factors.  
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It can be seen from Fig. 9 that the personalised profile of an individual (in this example patient id: 361) 

enhanced the model interpretability and allowed to understand what changes in the environmental data have 

led to increasing the risk of stroke for this patient. For instance, Fig. 9 illustrates that NO2 and wet-bulb 

temperature variables have shown great interactions with other variables during the 7-day period prior to 

stroke, meaning that they have highly influenced many of the other environmental variables to change over 

time. The relationships between environmental variables are complex as any variable can influence the 

other ones, either directly or indirectly. Here, the proposed personalised modelling created an interpretable 

model of environmental interactions that contributed to detecting the effects of external factors that 

potentially increased the risk of stroke for an individual (in this example for id: 361). 

From thermodynamics perspective, the detected interaction between the variables in the trained PSNN 

model is expressive as it shows the effects of NO2 and SO2 on the temperature (wet and dry bulb 

temperatures) during the 7-day period. This can be explained by the fact that these gases are categorised as 

indirect greenhouse gases [53]. This means, although NO2 and SO2 are not directly affecting the local 

temperature, they would react with other gases to form direct greenhouse gases that are contributing in 

temperature variation [53], [54], [55], [56]. These interactions were clearly captured during the learning 

process in the PSNN model with 7-day environmental data prior to stroke, as shown in Fig. 9.  
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Fig. 10. (a) Example of personalised prediction of risk of stroke occurrence for one randomly selected person (id: 

361). The PSNN is trained on the whole length of training samples and tested on different lengths of the testing 

samples; (b) the average prediction accuracy of 655 individuals’ PSNN models. It shows that the longer past data is 

used, the more accurate the individual prediction is, with a small improvement after 14 days. 

Table 4. Comparative analysis of the average prediction accuracy obtained using PSNN models with different 

clustering approaches (d2WKNN, WWKNN [9], WKNN and KNN) for selecting the nearest neighbouring samples 

to an individual. The accuracy is an average of the accuracy in 15 days before stroke and the accuracy of one day 

before stroke. Optimised parameters are distance threshold 𝛼, Silhouette threshold  𝑠𝜃 and the STDP learning rate ∝. 

The rest of the parameters were fixed as follows: spike-encoding threshold= 0.5; small-world connectivity radius= 

2.5; neuron firing threshold= 0.5; LIF parameters (refractory time= 6 and potential leak rate=0.002); deSNN 

parameters (mod=0.4 and drift=0.25). 

Method Proposed    d2WKNN WWKNN [9] WKNN KNN 

Accuracy 86.50 78.00 73.00 70.00 

F-score 85.00 75.00 70.00 70.00 

Optimised 

parameters 

𝛼= 0.73 

 𝑠𝜃=0.54 

∝=0.006 

𝛼=0.77 

 𝑠𝜃= – 

∝=0.001 

𝛼=0.69 

 𝑠𝜃= – 

∝=0.01 

𝛼= 0.75 

 𝑠𝜃= – 

∝=0.01 

𝑲 (on average) 378.4 459.6 558.4 573.9 
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4. Discussions and Future Directions 

The feasibility analysis of the proposed approach was validated here using two different case studies, but 

further studies are required to determine generalisability to other populations with different types of data 

and a greater number of samples. The future implementation pathway is e-Health application development 

in medical practice for the prediction of risk factors along with the detection of causal and temporal 

interactions between factors, expressed as data variables. In this direction, we aim to develop methods for 

extracting deep spatiotemporal knowledge from trained personalised models that can be used for a 

personalised health risk profiling and a better understanding of personal and group health factors [57]. 

Also, it should be mentioned that the optimisation method used in this paper was a grid-search on 

combination of parameters. Each parameter was searched within a specified range. In this paper, the 

parameters of d2WKNN (𝑠𝜃 and 𝛼 ) as well as the STDP learning rate parameter ∝ were optimised. The 

rest of the parameters in SNN were fixed with respect to previous experiments as follows: spike-encoding 

threshold= 0.5; small-world connectivity radius= 2.5; neuron firing threshold= 0.5; LIF parameters 

(refractory time= 6 and potential leak rate=0.002); deSNN parameters (mod=0.4 and drift=0.25). To 

improve the system’s performance, the optimisation procedure needs to be further improved to consider all 

the possible ranges of the SNN parameters and the d2WKNN method. 

5. Conclusion 

This research introduced a novel personalised modelling system based on a new clustering approach, named 

d2WKNN, which extracts a subset of nearest neighbouring samples to an individual with respect to the 

integration of static (vector-based) and temporal/spatiotemporal data domains. The learning process in the 

proposed personalised modelling is performed in an SNN architecture, which captures both spatial and 

temporal information in a unifying model.  
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The system was applied to two case studies: (1) classification of spatiotemporal neuroimaging data for the 

investigation of response to treatment and (2) prediction of risk of stroke with respect to temporal 

environmental data. 

The personalised SNN models based on the d2WKNN method have improved the accuracy and the 

interpretability of the models. The system also supported personalised profiling for every person’s data that 

allowed for a better understanding of the relationships between the model’s features and the predicted 

outcomes.  

The proposed PSNN model based on d2WKNN resulted in a higher prediction/classification accuracy of 

80% to 93% with F-score=80% when compared to the models generated based on WWKNN [9], WKNN, 

and KNN clustering methods. It also performed superior when compared with conventional classification 

methods, such as SVM and MLP. The hyper-parameters of the proposed system, including the PSNN 

models and the clustering parameters, were optimised for each individual. 

This personalised modelling system can facilitate knowledge discovery by capturing patterns of 

spatiotemporal/temporal interactions between the variables in a 3-dimensional personalised SNN 

architecture by extracting deep spatiotemporal rules. Therefore, unlike the conventional machine learning 

and statistical analysis methods, which receive input data, process them and produce outputs, performing 

like a “black-box”, the PSNN system supports the outcome prediction/classification results with an 

interpretation of the interactions between features in the model. It can be used as a decision support system 

to help specialists (e.g. medical practitioner) to justify certain medical decisions for an individual. 
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