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Integrating Joint Feature Selection into Subspace
Learning: A Formulation of 2DPCA for Outliers

Robust Feature Selection
Imran Razzak, Raghib Abu Saris, Michael Blumenstein, Guandong Xu

Abstract—Since the principal component analysis and its vari-
ants are sensitive to outliers that affect their performance and
applicability in real world, several variants have been proposed
to improve the robustness. However, most of the existing methods
are still sensitive to outliers and are unable to select useful
features. To overcome the issue of sensitivity of PCA against
outliers, in this paper, we introduce two-dimensional outliers-
robust principal component analysis (ORPCA) by imposing the
joint constraints on the objective function. ORPCA relaxes the
orthogonal constraints and penalizes the regression coefficient,
thus, it selects important features and ignores the same features
that exist in other principal components. It is commonly known
that square Frobenius norm is sensitive to outliers. To overcome
this issue, we have devised an alternative way to derive objective
function. Experimental results on four publicly available bench-
mark datasets show the effectiveness of joint feature selection
and provide better performance as compared to state-of-the-art
dimensionality-reduction methods.

Keywords—PCA, 2DPCA, Outliers, Dimensionality Reduction,
Principal Component Analysis

I. INTRODUCTION

With the recent advancement in data acquisition devices,
acquiring data at faster rates and increased resolution has
improved substantially over recent years. The data interpre-
tation process, however, is facing several challenges due to
high dimensionality. Not only for the classification, dimen-
sionality reduction is also a serious challenge for several other
domains such as data visualization, data compression, pattern
recognition, and computer vision. The aim of dimensionality
reduction is to transform the high-dimensional data into low-
dimensional representation by preserving the quality of the
data so that it could be classified efficiently. To deal with
this issue, several vector-based methods are in use during
the last two decades such as Principal Component Analysis
(PCA) [22], Linear Discriminant Analysis (LDA) [1], [33],
[15], LPP [4], SPP [13], SPPE [39], Isomap[35] and NPE [4].
Principal Component Analysis is one of the extensively used
unsupervised dimensionality reduction method that projects
high-dimensional representation into linear orthogonal space.
However, one of the major drawbacks is that PCA is linear
combination and loading are non-zero. This makes PCA data
interpretation difficult, and it is still sensitive to outliers (as its
covariance matrix is derived from `2-norm that affects its per-
formance. Thus, it fails to deal with outliers that often appears
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in real-world data. Moreover, before applying PCA and LDA,
there is need to convert the image into one-dimensional vector,
thus it may not exploit image’s spatial structural information
very well [22], [30], [42], [3], [12], [34], [23], [4] which is
very important for image representation. To overcome these
issues, several variants of PCA have been proposed to improve
the effectiveness of dimensionality reduction and robustness
against outliers.

Matrix-based subspace learning methods have been widely
applied for dimensionality reduction [31], [32], [7], [21],
[6]. Results showed that 2DPCA [31], 2DLDA [32], multi-
linear PCA [8], and JGSPCA [5] are far more efficient as
compared to one-dimensional subspace learning, due to its
direct formulation based on two-dimensional images. Two-
dimensional subspace learning methods directly calculate the
class scatter metrics from images, hence can reveal the spatial
structural information of image that is quite important for
image classification task. To select important features, several
efforts have been made such as robust 2DPCA, utilization
of nuclear norm, `1, `2,1, and Frobenius-norm that showed
considerable improvement against outliers and able to select
discriminant patterns.

Recently `1-norm-based subspace learning methods have
shown great performance against outliers for tensor data
classification [25], [24]. Ke and Kanade presented matrix
factorization as an `1-norm minimization problem that is able
to handle missing data straightforwardly. Wang et al. presented
robust 2DPCA with non-greedy `1-norm maximization in
which all projection directions are optimized simultaneously
[27]. Luo et al. extended it by learning the optimization matrix
by maximizing the sum of the projected difference between
each pair of instances, rather than the difference between each
instance and the mean of the data [9]. Although, `1-based
methods provided great performance, these methods do not
relate to covariance matrix which characterizes the geometric
structure of the data, where as F-norm can exploit efficiently
the spatial structure that is embedded in the data. Several
efforts have been made to utilize F-norm as subspace learning
such as 2DPCA [31], [32], 2D-PCA [21], F-norm 2DPCA [6],
NM-2DPCA [2], [28], N-2DNPP [37]. However, either these
methods still suffer from the effect of outliers or not able to
select important features. Furthermore, sensitivity of F-norm
is another challenge. Wang et al. presented non-squared F-
norm minimization to overcome this challenge [28]. However,
it affects the selection of important features.

To overcome the aforementioned issue of robust feature
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selection and sensitivity of Frobenius norm, in this paper,
we present a novel formulation for PCA that combines the
subspace learning and feature selection together in order to
exclude the effect of redundant patterns and joint feature
selection. We employed Frobenius norm as distance metric
learning and seek the projection matrix by joint minimization
of regularizer and penalty terms. We relax the orthogonality
constraints of transformation matrix and introduce another
transformation that helps to jointly select important features
and enhances the robustness against outliers. To overcome the
sensitivity issue due to squared Frobenius norm, we devised
an efficient way to compute F-Norm. As result, the proposed
objective function not only weakens the effect of large distance
but also has rotational invariance property. We can describe
the theoretical and empirical key contributions of this work
as follows:
• We present outliers robust two-dimensional principal

component analysis by efficiently integrating the robust-
ness of traditional 2DPCA and the regularization term
‖Q‖2F that relaxes the orthogonal constraint.

• The regularization term ‖Q‖2F reduces the constraints
and enables the objective function to select features
jointly. Furthermore, the regularization parameter ‖Q‖2F
is convex and can be easily optimized.

• To overcome the sensitivity issue of F-Norm against
outliers, we efficiently derived the objective function.

• Penalty term penalizes all regression coefficients cor-
responding to single feature as a whole to make PCA
possible to select features jointly. Hence, ORPCA ap-
proximates high-dimensional representation in flexible
manner. As such, ORPCA has more freedom to select
low-dimensional features efficiently.

• The one major drawback of F-norm is its sensitivity
against outliers as outlying measurement arbitrarily skew
the solution from desired due to squared objective
function. As a result, F-norm is not able to utilize the
underlying geometric structure in a real sense. To cope
the sensitivity due to squared F-norm, recently, non-
square F-norm have been used.

• The latter method is evaluated empirically on
four benchmark datasets. Experimental evaluation
(discriminant features, computationally and convergence
analysis) shows the considerable improvement in most
cases, while time complexity remains very attractive.

The rest of the paper is organized as follows. In section II,
we present basic notations and related work. In section III,
we present the motivation followed by the proposed objective
function and its optimization. In section V, we provide de-
tailed experimental evaluations. Finally, conclusion is drawn
in section VI.

II. RELATED WORK

Recently, subspace-learning techniques have shown their
great performance and have been widely applied for high-
dimensional data representation and classification. In the recent
few years, researchers proposed number of methods to reduce

the effect of outliers, and several variants have been presented
in literature. PCA is one of the most widely used dimension-
reduction approach. Unlike traditional PCA, two-dimensional
PCA is based on two-dimensional image matrices rather than
one dimensional vectors. As as result, input image does
not need to be converted into one-dimensional vector before
feature extraction process. In the following discussion, we first
give the basic notations, short description of 2DPCA, followed
by review of several variants of 2DPCA.

Assume that A1, A2..., AN are a set of training images
(mean centered) with size m × n, where N is the num-
ber of images in the dataset. V = [v1, v2, ...vd] ∈ Rn×d

is the projection matrix, where v1 is the first basis vec-
tor of two-dimensional PCA that maximizes the `1-norm-
based dispersion of projected samples. In this paper, we
denote ||X||F =

√∑p
i=1

∑q
j=1 |Xi,j |2 =

√
Tr(XXH)

and ||X||2,1 =
∑q
j=1 ||xj ||2 =

∑q
j=

√∑p
i=1 |xi,j |2. The

problem of linear dimensionality reduction is to project high-
dimensional data to low dimensional space. The target is to
find transformation matrix V with much lower dimensionality
(d << m).

V ∗ = argminV TV=Id

N∑
i=1

||Ai −AiV V T ||2F

Where ‖ · ‖F denotes the Forbenius norm of matrix and is
the sum of square of `2-norm of row/column vector of matrix.
The above objective function is equivalent to the following
objective function based on the fact

∑N
n=1 ||Ai−AiV V T ||2F+∑N

n=1 ||AiV ||2F =
∑N
n=1 ||Ai||2F

V ∗ = argmaxV TV=Id

N∑
n=1

||AiV ||2F

where tr(·) is the trace function of matrix.
As V ∗ = argmaxV TV=Id

∑N
n=1 ||AiV ||2F =

argmaxV TV=Id
tr(
∑N
n=1 V

TATi AiV ); if we let
St =

∑N
n=1A

T
i Ai) denotes the covariance matrix, finding

the orthogonal eigenvector of St corresponds to the first d
largest eigenvalues. 2DPCA is sensitive to noise and outliers
as optimal projection matrix of objective function mentioned
above is not roubut in the sense that outlying measurement
can skew the solution. To overcome this issue, 2DPCA-L1
was proposed which finds the basis vectors that maximizes
the dispersion of the projected image in term of `1 norm.

V ∗ = argmaxV TV=Id

N∑
n=1

||AiV ||`1

subject to ‖V ‖`2 = 1 where ‖ · ‖`1 denotes the `1 norm
and ‖ · ‖`2 denotes the `2 norm of matrix. ‖D‖`2 =√∑m

i=1

∑n
j=1 |D(i, j)|2. D(i, j) denotes the i, j-th entry of

matrix D, whereas Ai(j, :) denotes the j-th row of Ai.
2DPCA based on `1 − norm is robust to outliers than

2DPCA. Computation of V is implemented by iterative method
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as: Basis vector V (t+1) at the (t+1)th-step is updated based
on the following

V (t+ 1) =

∑n
i=1

∑q
j=1 Sji(t)aji

‖
∑n
i=1

∑q
j=1 Sji(t)aji‖`2

where Sji is defined as sign(V T (t)aji) and Ai =


aT1,i
aT2,i

...
aTn,i


Since outlier does not have a precise mathematical meaning,

the problem of robust PCA is still not well- defined. Sev-
eral classical heuristics have been proposed to improve the
robustness against outliers. Compared to the traditional PCA,
`1 and `2,1 based on matrix recovery based methods effectively
improve the robustness of algorithms [29], [23], [38], [26].
Some work suggest that means, in the least squared sense, is
not optimal of distance metrics such as `1, `2,1 and nuclear
norm [24], [27], [4], [36]. To improve their performance,
simultaneously optimizing mean and projection matrix, the
criterion function has been introduced [28]. Later, Song et
al. presented robust PCA by simultaneously optimizing global
mean and projection matrix [20]. Recently, a novel robust
PCA (RPCA-AOM) is presented by by maximizing the sum
of projected differences between each pair of data based on
the `1-norm distance by avoiding the mean computation in
solving the projection matrix [9]. However, RPCA-AOM does
not well characterize the geometric structure of data and it is
computationally expensive as well as difficult to solve the local
optimal solution of RPCA-AOM.

Combination of nuclear norm with other (`1, `2,1 ) has
shown great performance by providing sparse but also low-
rank solution. Zhang combined nuclear norm and `2,1-norm
to extract neighborhood preserving features by minimizing
reconstruction error due to Frobenius norm that is very sen-
sitive to outliers [37], [36]. `2,1 ensures the projection to be
sparse in rows so that discriminative features are learned in the
latent subspace whereas the nuclear-norm ensures the low-rank
property by projecting data into their respective subspaces.
The addition of nuclear norm with `2,1-norm results not only
sparse but also low-rank feature representation. Zhao et al.
presented Local and global information (LLGDI) for effective
semi-supervised dimensionality reduction [40]. LLGDI adopts
a set of local classification functions in order to preserve local
geometrical as well as discriminative information. Moreover,
it also adopts global classification function that preserve the
global discriminative information by solving the regression and
dimensionality reduction simultaneously.

2DPCA and its variations cannot reveal the spatial struc-
tural information which is one of the core components in
image representation [28], [16]. Moreover, features in low-
dimensional subspace are linear combination of all features in
high-dimensional space, thus, it usually consists of redundant
features that affect the classification performance. However, it
is quite difficult to interpret new feature set whereas it is quite
important to extract new features especially when they have
spatial meaning [14].

III. MOTIVATION

As the aforementioned analysis in section I and section
II, for the classification of high-dimensional noisy data, it
is always important to find salient features that belong to
specific part of image. Since the outlier does not have a
precise mathematical meaning, thus the problem of RPCA
problem is not well defined yet. Selection of important infor-
mation by ignoring the redundant could help to improve the
feature selection. However, most of the PCA-based methods
are sensitive to outliers and select redundant features, thus
are unable to select optimal feature set due to redundancy.
Ignoring the features that already selected in other PCAs can
help to encode further information that cannot be due to data
redundancy. Furthermore, integrating feature selection into
subspace learning could help to encode semantic information
that helps to approximates high-dimensional data in a flexible
way. Based on these above hypotheses, we have imposed the
joint constraint on the objective and added a penalty term
which helps to avoid redundant feature selection by avoiding
selection of same features in different principal components,
thus resulting partially sparse solution.

Sensitivity of F-norm is another challenge as the outlying
measurement arbitrarily skew the solution from desired due to
squared objective function. To overcome this issue, we have
devised an alternative approach to derive objective function.
Compared with traditional PCA-based on Frobenius norm,
ORPCA not only selects featured jointly, but also weakens the
effect of large distance and has rotational invariance properties.

IV. OUTLIERS ROBUST 2DPCA
In this section, we present outliers robust dimensionality

reduction approach (ORPCA) in detail. As described in earlier
sections, the projection procedure consists of all the original
features, thus, it may also have irrelevant and redundant fea-
tures which could influence the performance of dimensionality
reduction, in result affecting the classification performance.
Furthermore, outliers strongly affect the feature selection
which depresses the classification performance. In this work,
we present a novel formulation for PCA that combines the
subspace learning and feature selection together in order to
exclude the effect of redundant patterns and joint feature
selection. We employed Frobenius norm as distance metric
learning and seeks the projection matrix by joint minimization
of regularizer and penalty terms. We relax the orthogonal
constraints of transformation matrix and introduce another
transformation that helps to jointly select important features
and discard the features that are already selected in other
principal components. To overcome the sensitivity issue due to
squared Frobenius norm, we devised an efficient way to com-
pute F-Norm, as a result, ORPCA has more freedom to select
robust features jointly for low dimensional representation that
helps to minimizes the affect of outliers as well as redundancy.
However, it does not guarantee fully sparse solution but it
(joint feature selection and alternative derivation of objective
function) make the objective function robust against outliers.

Considering the appearance of outliers in the input data, we
propose the following objective function
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min
P,Q

J(P,Q) = min
P,Q

N∑
j=1

∥∥Aj −AjQPT∥∥2F + λ‖Q‖2F (1)

where P,Q ∈ Rn×d. Matrix Q is used to transform
each sub-image into low-dimensional subspace and ma-
trix P is used to recover the matrix A such that A =
[A1, ..., AN ] ,where Aj ∈ Rm×n. Furthermore, while we
require the matrix P to be orthogonal (PTP = Id), we do
not require the orthogonality of the matrix Q, thus ORPCA
has more freedom to learn low-dimensional space. In addition,
the regularization parameter ‖Q‖2F reduces the constraints
and enables the ORPCA to select important features jointly.
The penalty term penalizes the regression coefficient to make
PCA possible to select features jointly and discard those
features that have already been selected in other principal
components. Moreover, regularization term ‖Q‖2F is convex
that can be easily optimized. The parameter λ ≥ 0 balances
the loss and regularization terms. In short, we relaxed the
orthogonal constraint of transformation matrix Q, introduce
another transformation matrix P , and added an additional
regularization term ‖Q‖2F to make the objective function robust
and able to select features jointly.

A. Optimization

Squared F-norm is not robust in the sense that outlying
measurements can arbitrarily skew the solution from the
desired. We devised an efficient way to compute F-Norm to
overcome its sensitivity challenge. Although the objective
function is shown in Eq 1 is based on square F-norm,
however, computation of P and Q are not squared. Compared
with squared F-norm, the proposed derivation can weaken
the effect of large distance but also has rotational invariance.
ORPCA sees the projection matrix that makes the value of
objective function small. The objective function has two main
unknown terms P and Q. The following two theorems play
a key role in determining the minimizers of the optimization
problem 1.

Theorem 1: The minimizers of the objective function given
in the Equation 1 satisfy the following equation

Q =

 N∑
j=1

(
λIn +ATj Aj

)−1  N∑
j=1

ATj Aj

P (2)

Proof: According to the definition of Frobenius norm,
the linearity and cyclic properties of trace function, and
orthogonality of matrix P , the above objective function can
be written in a more computationally traceable way as

J(P,Q) =

N∑
j=1

∥∥Aj −AjQPT∥∥2F + λ‖Q‖2F (3)

=

N∑
j=1

tr
[(
ATj − PQTATj

) (
Aj −AjQPT

)]
+

λtr
(
QTQ

)
(4)

=

N∑
j=1

tr
(
ATj Aj −ATj AjQPT − PQTATj Aj+

PQTATj AjQP
T + λtr

(
QTQ

)
(5)

=

N∑
j=1

tr
(
ATj Aj − 2ATj AjQP

T +ATj AjQQ
T
)
+

λtr
(
QTQ

)
(6)

Now, differentiation Eq (6),

∂J

∂Q
=

N∑
j=1

(
−2ATj AjP + 2ATj AjQ

)
+ 2λQ. (7)

Therefore,

∂J

∂Q
= 0⇒

N∑
j=1

(
−2ATj AjP + 2ATj AjQ

)
+ 2λQ = 0 (8)

Simplifying the above equation, we get
N∑
j=1

(ATj AjP ) =

N∑
j=1

(ATj AjQ) + λQ (9)

The above equation can be rewritten as N∑
j=1

ATj Aj

P =

 N∑
j=1

(λIn +ATj Aj)

Q (10)

Hence, we can write

P =

 N∑
j=1

(λIn +ATj Aj)

Q

 N∑
j=1

ATj Aj

−1 (11)

Once matrix Q is known, we can optimize matrix P with
respect to matirx Q.

Theorem 2: If UDV T is the singular value decomposition
(SVD) of

∑N
j=1A

T
j AjQ, then

P = UIn×dV
T (12)

is orthogonal and minimizes the Eq. (6) for a given matrix Q.
Proof: As we know that the matrices V and U are

orthogonal matrices of sizes d × d and n × n , respectively.
As such,

PTP = V ITn×dU
TUIn×dV

T = Id



JOURNAL OF LATEX CLASS FILES 5

The orthogonal constraint on matrix P reduces the feature re-
dundancy and forces the objective function to be small. Below
in table I, we describe an iterative algorithm of ORPCA for
training samples A1, ..., An of size m× n, and regularization
parameter λ.

B. Convergence Analysis
First, we provide to the following lemma
Lemma 3: For any nonzero matrix P,Q ∈ Rn×d, the

following results hold:

‖P‖F −
‖P‖2F
2‖Q‖F

≤ ‖Q‖F −
‖Q‖2F
2‖Q‖F

(13)

Proof: We start with an obvious inequality (
√
S −√

St)
2 ≥ 0, we have

(
√
S −

√
St)

2 ≥ 0

⇒ S − 2
√
SSt + St ≥ 0

⇒
√
S − S

2
√
St
≤ 1

2
St

⇒
√
S − S

2
√
St
≤
√
St −

St

2
√
St

Now substituting S and St by ||P ||F and ||Q||F respectively,
we arrive at Eq. 13.

Based on the above lemma 3, we provide the following
convergence theorem.

Theorem 4: Given all the variables in objective function
equation 1, the iterative scheme of proposed ORPCA described
in table 1 shows that objective function value is monotonically
decreasing thus converges to local optima.

Proof: For given initial value of matrix P , say P0, we can
compute the matrix Q0 by minimizing the objective function
J(P0, Q). Consequently,

J(P0, Q0) ≤ J(P0, Q)

We can calculate matrix P1 by minimizing the objective
function J(P,Q0). Hence,

J(P1, Q0) ≤ J(P0, Q0)

Since the matrix Q1 minimizes the objective function
J(P1, Q), we have

J(P1, Q1) ≤ J(P1, Q0) ≤ J(P0, Q0).

That is

N∑
j=1

∥∥Aj −AjQ1P
T
1

∥∥2
F
+ λ‖Q1‖2F

≤
N∑
j=1

∥∥Aj −AjQ0P
T
1

∥∥2
F
+ λ‖Q0‖2F

≤
N∑
j=1

∥∥Aj −AjQ0P
T
0

∥∥2
F
+ λ‖Q0‖2F

Iteratively, we obtain

J(Pt+1, Qt+1) ≤ J(Pt, Qt) for t = 0, 1, 2, .......

Since the singular value decomposition (SVD) provides
optimal Pt which decreases the value of objective function
further. In other-words, the algorithms attains the optimal
solution of the objective function in each iteration. Once, we
compute the optimal value of matrix Q and P , in the following
iteration, the matrix Pt converges to local optima. Moreover,
the objective function is convex. The sequence J(Pt, Qt) is
monotonically decreasing in each iteration. Thus, by the Mono-
tonic Convergence Theorem, the objective function J(Pt, Qt)
converges to a local optimal value.
N∑
j=1

tr
[(
ATj − P∞QT∞ATj

) (
Aj −AjQ∞PT∞

)]
+λtr

(
QT∞Q∞

)

C. Numerical Algorithm
Below in table I, we describe an iterative algorithm of

ORPCA for training samples A1, ..., An of size m × n, and
regularization parameter λ.

TABLE I. ALGORITHMIC PROCEDURE OF ORPCA

Input: Aj ∈ Rm×n for j = 1, ..., N where A is centralized, and parameter
λ.
Output: Matrix P and Matrix Q
Step-I: Randomly initialize the matrix P

While do not converge do
Step-II: Minimize the objective function with respect to matrix Q by finding

the matrix Q using Eq.(2)

Step-III: Compute the Singular Value Decomposition of
∑N

j=1 A
T
j AjQ

Step-IV: Update the matrix P using Eq.(12) to minimize the objective function
with respect to matrix P
end while

D. Connections to Other PCA algorithm
In the following discussion, we analyze the relations be-

tween our model and PCA based on `2,1 norm to show its
elegant properties (joint feature selection) over other methods.
We further show that the traditional 2DPCA is a special case
of ORPCA.

As discussed in earlier section, square Frobenius norm
is not robust as outlying measurements can arbitrary skew
the solution from desired solution. We devised an alternative
approach to solve the objective function, thus outliers have less
importance than the squared residual. Furthermore, objective
function has a rotational invariance property while the `1-
norm loss function does not have such desirable property.
The challenges Frobenius norm has are no feature selection
capability and sensitivity against outliers due to square and
non-sparse output. We have solved these issues through joint
feature selection and additional regularization term.

Below, theorem 5 validates our claim that proposed objective
function provides robust and stable solution as compared to
PCA-based methods based on `2,1 norm.
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Theorem 5: If A is an m×n matrix, then ‖A‖F ≤ ‖A‖2,1.
Proof: Recall that

‖A‖F =
√

tr (ATA) =

√√√√ m∑
i=1

n∑
j=1

a2ij

‖A‖2,1 =

n∑
j=1

‖aj‖2 =

n∑
j=1

√√√√ m∑
i=1

a2i,j

where aj is the jth column of A. With that in mind,

‖A‖22,1 =

n∑
j=1

‖aj‖22 + 2

n∑
r=1

n∑
s=1,s6=r

‖ar‖2 ‖as‖2︸ ︷︷ ︸
nonegative term

≥
n∑
j=1

m∑
i=1

a2i,j = ‖A‖2F

From Theorem 5, we can deduce that

argmin
Q,P
‖X − PQTX‖2,1 + λ‖Q‖2,1 ≥ argmin

Q,P
‖X−

PQTX‖F + λ‖Q‖F (14)

The above Eq. 14 shows that the objective function is
robust and provide stable solution as compared to `2,1. In
other words, `1 and `2,1 and square Frobenius norm penalizes
the coefficients more than non squared Frobenius norm.

The additional penalty term, introduced in the objective
function, excludes redundant features and provides robustness
against outliers, i.e., the regularization parameter ‖Q‖2F re-
duces the constraints and enables our method to jointly select
features. The following remark 1 shows that objective function
penalizes all regression coefficients corresponding to single
feature as a whole making it possible to discard the redundant
features.

Remark 1: Notice that, if regression coefficient λ = 0 ,
then Q = P . N∑

j=1

ATj Aj

P =

 N∑
j=1

ATj Aj

Q

Q =

 N∑
j=1

ATj Aj

−1  N∑
j=1

ATj Aj

P = P.

Moreover, the equation 11 simplifies to

J(Q,P ) =

N∑
j=1

∥∥Aj −AjPPT∥∥2F
Hence, we can say that the proposed objection function degen-
erates to traditional 2DPCA. As such, the proposed objective
function generalizes the 2DPCA. In this case, the optimal
solution in Eq. 1 aim to find robust feature matrix.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
ORPCA, in this section, we have discussed and compared
the performance of proposed ORPCA on four commonly
used image datasets including AR [11], Yale B [18] , ORL
and CMU PIE. We have used k-nearest neighbour (where
k = 1) for classification. The main contribution of this work
is introducing joint feature selection in order to select useful
features by effectively combining the robustness of traditional
two-dimensional principal component analysis and the lasso
regularization. Furthermore, we have introduced a penalty
term in the objective function to exclude redundant features
and provide robustness against outliers. Thus, to validate the
our claims against outliers, we have corrupted each dataset
with outliers to visualize the robustness of proposed approach
in the presence of outliers. In addition, since 2D-RPCA
is unsupervised method, we only compare its performance
with unsupervised methods including PCA, 2DPCA, PCA`1,
2DPCA-`1, OMF-2DPCA, and F-2DPCA on contaminated and
non-contaminated benchmark datasets.

To validate the performance of of dimensionality reduction
both persuasively and objectively, we have conducted several
experiments on both original (non-contaminated) dataset and
contaminated datasets. We have performed several of ORPCA
at different λ value (0 < λ < 1 to find optimal λ. Once we
have optimal value of λ, we have performed 10-fold validation.

A. Datasets
AR face dataset consists of 120 individual, 26 images per

individual taken in two session, with total images 3120 [10].
The dataset was captured in two different session at different
lightning condition and variable expressions. Face portion
is cropped from their main images and then normalized to
32x32. Moreover, AR dataset consists of few images that
are occluded with sunglasses, scarf or towels as shown in
figure 1. In this experiment, we have considered face images
with occlusion considered as noise images. Yale dataset
consists of 64 images(except few 11-17,59-63), per subject
with in total 2414 images under different lightning conditions
from 38 individuals whereas half the dataset is corrupted
by reflection or shadow. Figure 1 shows some reference of
of Yale B dataset [41]. The database contains 5850 single
light source images of 10 subjects (9 poses x 64 illumination
conditions). For every subject in a particular pose, an image
with ambient (background) illumination was also captured.
ORL is face datset of 40 individuals with 10 images of
each individual [17]. It consists of frontal views of faces
with different expression and lightning conditions. CMU PIE
dataset consists of 2856 frontal face images of 68 individual,
42 image per individual ( with variation in lighting condition.
We have selected 26 images randomly for training that consist
of 7 noisy images [19].

We have resized the images in each dataset to 32 × 32
pixel. For training and evaluation purpose on non-contaminated
datasets, we have divided 70%/30% and 80%/20% into train-
ing/testing. In order to validate the robustness of proposed
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Fig. 1. Sample images of CMU PIE, Yale and ORL. First two rows real dataset, Row 3 contaminated with block and Row 4 is contaminated with salt and
paper noise 15%

TABLE II. DATASET DESCRIPTION

Database Image Size Subject Image per Subject Number of Images Detail of Face Images
[0.5ex] AR 576 × 768 126 26 3276 All frontal views of: neutral expression, smile, anger, scream, left light

on, right light on, all sides lights on, wearing sun glasses, wearing
sun glassses and left light on, wearing sun glasses and right light on,
wearing scarf, wearing scarf and left light on, wearing scarf and right
light on; second sessions repeated same conditions.

CMU PIE 640 × 486 337 750,000 15 view points and 19 illumination conditions while displaying a range
of facial expressions.

Yale 640 × 480 28 576 16128 9 poses and 64 illumination conditions.
ORL 92 × 112 40 10 400 All frontal and slight tilt of the head

method against outliers, 20% images have been selected ran-
domly and various types of noise (i.e. block occlusions, salt
and peeper etc). We have added random noise (salt and peeper)
with intensity of 10%, 15% on randomly selected images in
each dataset as shown in figure 1. Similarly, we have added
block occlusion of variable sizes at random locations with
variable size (5 × 5, 10 × 10, 10 × 15) as shown in figure
1. In order to evaluate performance of the proposed ORPCA
on corrupted datasets, we have randomly selected 60% and
70% and 80% samples for each subject form each dataset as
training set.

B. Parameter Selection
The objective function in equation 1 has only one parameter

λ required to be optimal. λ controls the regression coefficient.
The greater value of λ could result in heavy penalty on re-
gression coefficient that could affect the structural information,
similarly smaller value of λ leads to 2DPCA. In order to find
optimal range of regression coefficient λ, we have performed
several experiments on each dataset. Initially, we have selected
λ value 0 ≤ λ ≤ 4 and then narrow down its range after
few experiments based on its convergence and better accuracy.
We have noticed that λ provided better performance between
0.15 to 0.25 for original datasets and between 0.1 to 0.3
for corrupted datasets. ORPCA achieved better performance
over reasonable range of λ. The value of λ marginally varies
for different datasets, however, it provided best accuracy on
interval [0.1,0.3], ideally when λ is close to 0.2. We have also
noticed that accuracy was reduced when λ = 0 or λ → 0
which validates our claim made in earlier section, 2DPCA is

a special case of ORPCA. Results showed that accuracy of
ORPCA is exactly the same as 2DPCA when λ = 0. Thus,
we can conclude that the optimal value of λ is very crucial
to achieve better robustness. Table 2 and Table 3 show that
ORPCA achieved better accuracy over reasonable range of λ
and robust to different setting of λ as long as it is in the
range mentioned above. After selection of range of optimal λ
generically, we performed experiment for each dataset to find
optimal λ explicitly for that dataset.

The objective function in equation 1 has only one parameter
λ required to be optimal. λ controls the regression coefficient.
The greater value of λ could result in heavy penalty on regres-
sion coefficient that could affect the structural information,
similarly smaller value of λ leads to 2DPCA. In order to
find optimal λ, we have performed several experiments with
different λ value with 0 ≤ λ ≤ 4 and narrow down its range
after few experiments based on its convergence and better
accuracy. Firstly, we evaluated on difference of 0.5 to find
optimal interval where it provided better result followed by
several experiments in selected interval. We have noticed that
λ provided good accuracy between 0.15 to 0.25 for original
datasets whereas it provided good accuracy between 0.1 to 0.3
for corrupted datasets. ORPCA achieved better performance
over reasonable range of λ. The value of λ marginally varies
for different datasets, however, it provided best accuracy on
interval [0.1,0.3], ideally when λ is close to 0.2. We have
also noticed that accuracy was reduced when λ=0 or λ → 0.
Furthermore, as claimed in earlier section, ORPCA is a special
case of 2DPCA, accuracy of ORPCA is same as 2DPCA
when λ = 0 which validates the claim ”ORPCA is a special
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Fig. 2. Classification performance at different value of λ for real (left) and contaminated (right) datasets

TABLE III. AVERAGE CLASSIFICATION ACCURACY (ACCURACY ±CORRESPONDING STANDARD DEVIATION) ON REAL DATASET AT OPTIMAL RESULT
OF ORPCA

Dataset PCA RPCA 2DPCA PCA2D`1 OMF-2DPCA F-2DPCA ORPCA [Proposed]

AR 0.6832 ± 0.005 0.6459 ± 0.008 0.7589 ± 0.0071 0.8477 ± 0.0023 0.8577 ± 0.0011 0.8782 ± 0.021 0.8932 ± 0.003
ORL 0.7891 ± 0.0028 0.8009 ± 0.0091 0.8843 ± 0.0411 0.8637 ± 0.0071 0.8623± 0.019 0.8754± 0.023 0.9254 ± 0.0091

Yale B 0.6886 ± 0.0031 0.5976 ± 0.0061 0.7911 ± 0.0091 0.7305 ± 0.0071 0.6743 ± 0.021 0.6643 ± 0.019 0.6934 ± 0.0131
CMU PIE 0.7445 ± 0.0091 0.7666 ± 0.0027 0.8987 ± 0.0026 0.8607 ± 0.0015 0.8608 ± 0.018 0.8522 ± 0.025 0.8947 ± 0.0041

TABLE IV. COMPARATIVE EVALUATION BASED ON AVERAGE CLASSIFICATION ACCURACY ((ACCURACY ±CORRESPONDING STANDARD DEVIATION))
ON CONTAMINATED DATASETS AT OPTIMAL RESULT OF ORPCA

Dataset PCA RPCA 2DPCA PCA2D`1 OMF-2DPCA F-2DPCA ORPCA

AR 0.5741 ± 0.0023 0.5387 ± 0.0022 0.6576 ± 0.0049 0.6277 ± 0.0053 0.781 ± 0.019 0.773 ± 0.021 0.8121 ± 0.014
ORL 0.6385 ± 0.0012 0.7411 ± 0.00321 0.8161 ± 0.0094 0.838 ± 0.0021 0.832 ± 0.016 0.856 ± 0.019 0.8892 ± 0.013

Yale B 0.5153 ± 0.0034 0.4865 ± 0.0083 0.5983 ± 0.0043 0.621 ± 0.0091 0.8109± 0.0031 0.80 ± 0.0017 0.82892 ± 0.0071
CMU PIE 0.577 ± 0.0032 0.5981 ± 0.0007 0.7181 ± 0.0091 0.6886 ± 0.0083 0.836± 0.021 0.8221± 0.012 0.8513 ± 0.008

case of 2DPCA, it degenerates to 2DPCA when λ = 0”.
Moreover, it indicates that λ is very important to achieve
better robustness. Table 2 and Table 3 show that ORPCA
achieved better accuracy over reasonable range of λ and robust
to different setting of λ as long as it is in the range mentioned
above. After selection of range of optimal λ generically,
we performed experiment for each dataset to find optimal λ
explicitly for that datasets.

C. Evaluation on Original Dataset
In order to compare the performance of proposed objective

function both persuasively and objectively, the classification is
performed based on nearest neighbour. We have performed
10 fold validation on each dataset. We performed several
experiments with variable sample size per individual i.e 60%
and 70% and 80% samples for each individual subject and
rest of samples are used for validation. The classification
performance with different subspace dimensionality at optimal
value of λ = 0.18 is shown in Table 2. Notice that, due
to the dataset complexity (variations, pose, illumination and
occlusions), getting high accuracy is quite challenging. Table
2 shows that proposed ORPCA achieved better classification

in comparison to state-of-the-art methods as shown in table
III, IV. Furthermore, we have notice that ORPCA selected
important features that plays important role in classification.

D. Evaluation on Corrupted Dataset
In order to validate the robustness of proposed ORPCA

against outliers and joint selection of features, we corrupted
the dataset with outliers. In this experiment, we have randomly
selected 70% of images for corrupted datasets as a training set
and consider rest of the images as a validation datasets. We
have performed several experiments with different subspace
dimensionality. Experimental results showed that the proposed
ORPCA achieved much better performance as compared to
state-of-the-art methods in the presence of outliers that validate
the robustness of proposed approach against outliers. Notice
that ORPCA performed well for corrupted data however, it
partially sufer from random corruption due to its joint feature
selection ability.

E. Computational Complexity
Computation complexity of ORPCA has 3 steps in

each iteration. First step is to compute Q using equation
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Fig. 3. Comparative evaluation on real dataset (AR, Yale, ORL, and CMUIPIE

Q =
[∑N

j=1

(
λIn +ATj Aj

)]−1 [∑N
j=1A

T
j Aj

]
P . Computa-

tional complexity of Q is O(n3) as ATj Aj is the core step
in computation of matrix Q. The second step is to compute
the SVD of

∑N
j=1A

T
j AjQ; its computational complexity is

also O(n3). Third step is to computation P = UIn×dV
T .

Computation complexity of P is also O(n3). Thus, computa-
tional complexity of one iteration is O(n3). If the algorithm
need t iteration to converge, it computation complexity will be
O(tn3).

F. Convergence Verification
To verify the convergence of algorithm I, we tested different

variations of parameters on all four datasets. The convergence
of proposed ORPCA is shown in figure 5. It shows the
convergence of objective function 1 along with each iteration.
It can be found that objective function is non-decreasing

functions of iterations. As theorem 4 proves that ORPCA
converges to local optima so does the case in figure 5 that
shows that algorithm converges to local optima.

VI. DISCUSSION

We notice that methods based on matrix perform better as
compared to vector-based methods. Results show that pro-
posed ORPCA finds the representative features from high-
dimensional space that are used for classification. Unlike
2DPCA based on `1-norm, ORPCA has rotational invariance
property and has the freedom to jointly select the important
and contributive features such as nose, eyes, lips in case of
face image, while contours of different objects in non-facial
datasets. Traditional methods are not able to interpret new
features whereas it is quite important to interpret new features
especially when they have spatial meaning. Results showed
that ORPCA outperforms other PCA-based methods especially
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Fig. 4. Comparative evaluation on corrupted dataset (AR, Yale, ORL, and CMUIPIE)

in the presence of outliers. This shows that proposed approach
suppress the role of outliers. The proposed approach reveals
the geometric structure due to the fact that it select the features
by maintaining the spatial structural information of the image.
It is due to the fact, that the solution of ORPCA relates to
the weighted image covariance matrix which characterizes
the spatial structure. We notice that the performance drop
significantly with the increase in projection vectors. Table VI
shows the comparative analysis of reconstruction error on four
detest. Notice that ORPCA has marginally poor reconstruction
error as compared to others. This is due to the joint feature
selection and ignoring the features that exist in other principal
components.

Comparing with aforementioned experimental evaluation,
we have the following interesting observations.

(I) The Objective function of the ORPCA degenerates
into 2DPCA in case of P is equal to Q and λ = 0.

Thus, optimal Q in this case is the transformation
matrix to accommodate the robustness against out-
liers in 2DPCA.

(II) Penalty term introduced in the objective function
excludes redundant features and provides robustness
against outliers, i.e., the regularization term ‖Q‖2F
reduces the constraints and enables our method to
jointly select features. In other-words, penalty term
penalizes all regression coefficients corresponding
to single feature as a whole to make PCA possible
to select discriminant features jointly.

(III) Theoretical analysis shown in theorem 4 indicates
that ORPCA is convergent to local optima as shown
in figure 5.

(IV) We have noticed that discrimianant features selected
by ORPCA are those important and contributive
features such as nose, eyes, lips in case of face
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Fig. 5. Convergence curve of ORPCA on four datasets

image, while contours of different objects in non-
facial datasets.

VII. CONCLUSION

In this paper, we presented a robust dimensionality reduction
method that by relaxing the orthogonal constraints of the
transformation matrix and imposing a penalty function on
regularization term. In contrast to previous work on robustness
in PCA, we jointly select the important features. Introduction
of penalty function results in the robustness against outliers
by reducing their impact in projection matrix. Compared with
state-of-the-art methods, our evaluation results show the im-
provement in effectiveness of ORPCA for image reconstruction
and classification. In conclusion, the numerical results suggest
that our method is superior to previous approaches. However,
this calls for further analysis and variations of the ORPCA.
For example, having more than one P and one Q, offers more
flexibility in accommodating the discriminant features.
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