
Operation-aware Neural Networks for User Response
Prediction

Yi Yanga, Baile Xua, Furao Shena,∗, Jian Zhaob,∗

aState Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology,

Collaborative Innovation Center of Novel Software Technology and Industrialization,
Nanjing University, China

bState Key Laboratory for Novel Software Technology,
School of Electronic Science and Engineering, Nanjing University, China

Abstract

User response prediction makes a crucial contribution to the rapid development of
online advertising system and recommendation system. The importance of learn-
ing feature interactions has been emphasized by many works. Many deep models
are proposed to automatically learn high-order feature interactions. Since most
features in advertising system and recommendation system are high-dimensional
sparse features, deep models usually learn a low-dimensional distributed repre-
sentation for each feature in the bottom layer. Besides traditional fully-connected
architectures, some new operations, such as convolutional operations and product
operations, are proposed to learn feature interactions better. In these models, the
representation is shared among different operations. However, the best represen-
tation for different operations may be different. In this paper, we propose a new
neural model named Operation-aware Neural Networks (ONN) which learns dif-
ferent representations for different operations. Our experimental results on two
large-scale real-world ad click/conversion datasets demonstrate that ONN consis-
tently outperforms the state-of-the-art models in both offline-training environment
and online-training environment.

Keywords: Neural Networks, Click-Through Rate Prediction, Factorization
Machines

∗Corresponding authors
Email addresses: frshen@nju.edu.cn (Furao Shen), jianzhao@nju.edu.cn (Jian

Zhao)

Preprint submitted to ** April 30, 2019

ar
X

iv
:1

90
4.

12
57

9v
1

 [
cs

.I
R

]
 2

 A
pr

 2
01

9

1. Introduction

In recent years, online advertising develops rapidly among social medias such
as Facebook and Wechat. As a critical role of online advertising, user response
prediction makes a crucial contribution, where the task is to estimate the probabil-
ity of a user will click on an ad (click-through rate, CTR) or take a desired action
after clicking the ad (conversion rate, CVR).

In CTR/CVR prediction tasks, the importance of learning feature interactions
has been emphasized by many works in related literature [1, 2]. For instance,
users of different ages have different preferences for different types of ads, which
suggests that the interaction between User Age and Ad Type is a strong signal for
CTR/CVR prediction. Traditional linear models with manual feature engineering
have shown decent results, but manual feature engineering is very labor-intensive
and time-consuming. At the same time, it is very difficult for human experts to
discover high-order interactions between features.

Deep neural networks (DNN) show very promising results at automatically
learning feature representations and dependencies. Driven by the success of DNN,
several neural architectures are proposed for CTR/CVR prediction in recent years.
Most of these architectures can be concluded into 3 steps:

i) An embedding layer is used to map high-dimensional sparse features into
low-dimensional distributed representations. The output of the step is e = [V 0x0, V

1x1, · · · , V mxm],
where V i is the embedding matrix of the ith feature and xi is the one-hot repre-
sentation of the ith feature.

ii) step2) Several operations are applied on the embedding vectors to get the
medial features. The output of this step is f = [o1(e), o2(e), · · · , ol(e)] where
oi is the ith operation. In most architectures, the operation is just a copy of the
embedding vectors.

iii) A multi-layer perceptron (MLP) is applied on f to learn nonlinear relations
among features. The output of this step is ŷ = σ(Φ(f)) where σ is the sigmoid
function and Φ is the multi-layer non-linear transformation. Some architectures
also have some other components. In these models, the output is ŷ = σ(Φ(f)+∆)
where ∆ denotes the specific components.

Some recent works focus on introducing new operations to learn the feature
interactions better, such as convolutional operations [3] and “inner-product/outer-
product” operations [4]. Different operations play different roles in deep models.
For instance, each “copy” operation reserves the original embedded representa-

2

tion for one feature. Each “inner-product” operation or “outer-product” operation
learns a local dependency between two features. The operations on embedding
vectors can be regarded as an incipient feature engineering before applying MLP.

On the other hand, the feature representation is very important to the model be-
cause a better representation makes learning feature interactions easier. However,
few works focus on improving the feature representation learned by the embed-
ding layer. Existing models usually share the same feature representation among
different operations. However, the best feature representations for different op-
erations are not always the same. It has been experimentally proven in previous
works [5, 2] that structures explicitly using different embeddings among differ-
ent operations perform better than structures sharing one embedding among all
operations in many tasks.

Inspired by this idea, we propose a new embedding method named operation-
aware embedding in this paper, which learns different representations for each
feature when performing different operations. Models with operation-aware em-
bedding layer are named as Operation-aware Neural Networks (ONN). The operation-
aware embedding makes ONN more flexible than exsiting models. Compared
with state-of-the-art models, ONN shows superior performances in many CTR/CVR
tasks. Furthermore, experimental results show that ONN is especially suitable for
online-training environments. We have used ONN to win the first prize of Tencent
Social Advertising College Algorithm Competition among about 1000 teams1.

The rest of the paper is organized as follows. Related works are introduced in
section II. The model details are described in Section III. We discuss feature em-
bedding and the relationships of ONN with related models in Section IV. Section
V exhibits experiments analysis. Finally, we conclude the paper in Section VI.

2. Related Works

The CTR/CVR tasks, which can be formalized as a classic binary classification
problem, have been intensely studied in the literature. Logistic Regression with
FTRL optimizer [6] has been widely used in real world applications. However,
the linear model needs a lot of artificial feature engineering to generate the feature
interactions. In order to solve this problem, Factorization Machines (FM) [1] are
proposed to learn the feature interactions automatically.

With the rapid development of deep learning, many deep methods are also
proposed to solve the CTR/CVR tasks. Factorization-machine supported Neural

1http://algo.tpai.qq.com/home/home/index.html

3

Network (FNN) is the first deep model for CTR/CVR tasks, which uses a MLP to
learn high-order feature dependencies on the hidden vectors of FM. Without FM
initialization, FNN is equivalent to a standard MLP above an embedding layer.
For the purpose of learning better feature interactions, Convolutional Click Pre-
diction Model (CCPM) [3], DeepCross [7] and Product-based Neural Network
(PNN) [4] introduce some new operations to be performed on the embedded fea-
tures before applying MLP. Some researchers think that the shallow component
can be a supplement to the deep models. For instance, the Wide & Deep model
of Google [8] uses a linear component as the supplement to the deep component.
Similarly, deepFM [9] is proposed by training a FM component and a deep com-
ponent at the same time. Besides, there are also some researches which focus
on improving the model performance by mining the important features. For in-
stance, Deep Interest Network (DIN) [10] proposes using attention mechanism to
adaptively learn the representation of user interests from historical behaviors. The
attention mechanism is also used in [11], but it is used to learn the weights of
feature interactions.

To the extent of our knowledge, few works focus on improving the embed-
ding layer. In following parts of the paper, we demonstrate the operation-aware
embedding can improve the model performance by learning better feature repre-
sentations.

3. Operation-aware Neural Networks

In an advertising system, each datum consists of many features including user
information (Age, Education, etc.), ad information (Publish Company, Ad Type,
etc.), context information (Connection Type, Siteset ID , etc.). We only consider
the case of categorical features here because most features in ad systems are either
categorical or can be made categorical through discretization. Each feature is
represented as a vector of one-hot encoding after data preprocessing. Suppose
each datum have m features, then each training sample can be represented as
(x, y) where x = [x1, x2, ..., xm] with xi standing for the one-hot vector of the ith
feature and y ∈ {0, 1} records whether the user performed a positive action. The
objective of a user response prediction system is learning a function f : x → ŷ
that maps the input features x to the estimated probability of positive response
ŷ ∈ [0, 1].

4

Figure 1: The architecture of the ONN model. From the bottom-up perspective, the model
first uses an operation-aware embedding layer to map high-dimensional sparse features
into low-dimension representations. After that, “copy” operations and “inner-product”
operations are performed on corresponding features respectively. Finally, an MLP learns
high-order feature interactions and produce the output.

3.1. Model Architecture Design
The architecture of the ONN model is illustrated in Figure 1. From the bottom-

up perspective, the model can be divided into 3 components:

3.1.1. Operation-aware Embedding
The one-hot encoding is inefficient and can not represent correlations among

features. In addition, many operations are meaningless with one-hot encoding,
such as the “inner-product” operation. In order to solve this, we use an embedding
layer to map the high-dimensional one-hot vectors into low-dimensional vectors.
Compared with one-hot encoding, embedded representation is more efficient, in-
formative, and learnable.

Existing models usually learn one representation for each feature and use the
same representation among all operations. However, the best representation may
be different among different operations. Why can one feature have just one repre-
sentation? If we use one representation for all operations, the representation needs
to compromise among all operations. On the bright side, this compromise might
have the effect of regularization sometimes, especially when the training data are
not sufficient. But in CTR/CVR tasks where training data are easy to obtain, the
compromise tends to limit the expression ability of the model.

To learn different representations for different operations, we propose the
operation-aware embedding method. For each feature, an embedding vector is
learned for each operation performed on it. Note that operations of the same type

5

Figure 2: The structures of the normal embedding layer and the operation-aware embed-
ding layer.

performed on different features are also regarded as different operations. For in-
stance, for feature i, the “inner-product” with feature j and the “inner-product”
with feature p are regarded as different operations. The similar idea is also used in
Pairwise Interaction Tensor Factorization (PITF) [5] and Field-aware Factoriza-
tion Machine (FFM) [2].

Figure 2 illustrates the difference between the normal embedding layer and
the operation-aware embedding layer. In the normal embedding layer, the embed-
ded representation for all operations of the ith feature is ei = V ixi where V i is
embedding matrix of the ith feature. However, in the operation-aware embedding
layer, each feature has several embedded representations. Suppose there are l op-
erations performed on the ith feature, we use [V i,1, V i,2, · · · , V i,l] to denote the
embedding matrices of the ith feature. Then the embedded representations of the
ith feature are [e1

i , e
2
i , · · · , eli] = [V i,1xi, V

i,2xi, · · · , V i,lxi]. When performing
the kth operation on the ith feature, eki is used as the representation to perform the
computation.

In order to use operation-aware representation for each operation, we need
to construct a mapping Γ which maps an operation and a feature index to the
operation index of the feature. Specifically speaking, Γ(o, i) = k means that the
operation o is the kth operation to be done on the ith feature.

3.1.2. Incipient Feature Extraction Layer
Besides the embedded representations for the raw features, we also hope that

the bottom layer can provide representations for the feature interactions because
the feature interactions are very important in CTR/CVR tasks. Intuitively, we
can use the one-hot encoding to encode the interaction of the two features and
then embed it into a low-dimensional vector. However, the direct interaction of
two features usually leads to a very sparse feature whose representation can not

6

obtain adequate training. Factorization Machines (FM) solves the problem by
factorizing the effect of feature interactions into a product of two latent vectors.
In the PNN model, [4] solves the problem in the same way. They use the “inner-
product” operation and the “outer-product” operation of the embedding vectors to
represent the feature interactions. These works suggest that “product” operations
are effective in learning feature interactions.

We use the same idea in the ONN model. Because the experimental results
in [4] demonstrate that the “inner-product” operation performs better than the
“outer-product” operation most of time, we use the “inner-product” operation as
the default operation to learn the feature interactions. We only consider 2-order in-
teractions because higher-order interactions are too complicated. We use o(c, i) to
denote the “copy” operation of the ith feature, and o(p, i, j) to denote the “inner-
product” operation between the ith feature and the jth feature. The output of this
layer can be split into the embedded features ef and the interaction features if .
Suppose we have m features, ef can be constructed as follow:

ef = [e
Γ(o(c,1),1)
1 , e

Γ(o(c,2),2)
2 , · · · , eΓ(o(c,m),m)

m]. (1)

recall that Γ is the mapping from operation to index. if can be constructed as
follow:

if = [p1,2, p1,3, · · · , pm−1,m] (2)

where pi,j is the value of the “inner-product” operation between the ith feature
and the jth feature:

pi,j =< e
Γ(o(p,i,j),i)
i , e

Γ(o(p,i,j),j)
j > . (3)

Concatenating ef and if constructs the output of this layer f = [ef , if].

3.1.3. Multiple Nonlinear Layers
Lastly, a multi-layer perceptron (MLP) is applied on the medial features f to

mining the sophisticated patterns among data and generate the model output. For
each layer of the MLP, we add a batch normalization (BN)[12] layer to accelerate
the training. We have conducted a large number of experiments and find that
BN can not only greatly speed up the training, but also improve the prediction
accuracy. For the definition of BN, please refer to [12].

We explain how to generate the output with an architecture consist of 2 hidden
layers as an example. Firstly we should do batch normalization on f . Denote the
result as f̂ = BN(f), then the output of the first hidden layer is:

l1 = BN(relu(W1f̂ + b1)) (4)

7

where W1 and b1 are the model weights and bias of the first hidden layer, relu is
the rectified linear unit [13], defined as relu(x) = max(0, x). Hence the output
of the second hidden layer is:

l2 = BN(relu(W2l1 + b2)). (5)

Then the output of the model is:

ŷ = σ(W3l2 + b3) (6)

where σ is the sigmoid function, defined as σ(x) = 1
1+exp(−x)

. After that, we
minimize the log loss to train the model. The loss function is defined as:

L(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ). (7)

4. Discussions

4.1. Feature Embedding
In natural language processing (NLP), a word may have various meanings in

different contexts. Multi-sense embeddings [14, 15] are proposed to solve the
problem of one word having multiple meanings. Similarly, each feature is faced
with different contexts when performing different operations in CTR/CVR tasks.
The operation-aware embedding learns representations for each feature in dif-
ferent contexts. The context adaptive representations are more informative then
single representation, thus provide an improvement to the model performance.

Although we just use the “copy” operation and the “inner-product” operation
in this paper, the ONN model can be generalized to more operations, such as the
“outer-product” operation mentioned in [4]. In fact, we have tried to use a sub-
network as an operation type in our experiments and have also achieved pretty
good results, but the time complexity is relatively higher.

The embedding layer in the ONN model is more flexible than that in the other
models [4, 9, 16], which share the same embedding among all operations and
hence reduce their flexibility. For example, the embedding dimensionality of User
ID should be larger than that of User Education because the possible values of
User ID are far more than that of User Education. But if we share the same
embedding between “copy” operations and “product” operations, the embedding
dimension of User ID and User Education should be the same because “product”
operations need the 2 vectors to have the same length. In contrast, we can use
different embedding dimensionalities for different features in the ONN model. For

8

each feature, when performing product operations with different features, we can
also use different embedding dimensionalities. By artificially designing different
embedding dimensionalities for each feature and each operation, we can minimize
the computation complexity during training and testing.

4.2. Relationships with Related Models
In this subsection, we discuss the relationships of the ONN model and several

related models. Firstly, we give the neural architectures of FM and FFM. If we
only consider category features, the FM of degree 2 is defined as:

φfm(w, x) = Σm
i=1Σm

j=i+1 < vi, vj > (8)

where vi is the latent vector of the ith feature. Figure 3 illustrates the structure of
FM. The bottom layer is a normal embedding layer, where each embedding vector
corresponds to the latent vector of one feature in FM. The embedding vectors are
connected with the inner product units. Each inner product unit corresponds to an
inner product of 2 latent vectors in FM. Finally, the product units are summed up
to generate the output. FFM is an optimized version of FM. But when performing
the product operation with different features, FFM uses field-aware vector for each
feature. The FFM model is defined as:

φffm(w, x) = Σm
i=0Σm

j=i+1 < vi,j, vj,i > . (9)

Actually, “field-aware” is a special case of “operation-aware” when there is only
the “inner-product” operation. Figure 4 illustrates the structure of FFM. It can be
seen that FM uses the normal embedding layer, but FFM uses the operation-aware
embedding. Thus, we say that FFM makes FM operation-aware.

However, FM and FFM lack the ability of mining deep feature dependencies
while deep models are good at that. Via comparing the architectures of FFM
and ONN, we observe that the bottom layers of ONN and FFM are the same,
but ONN uses several non-linear layers on top of the embedded representations
and the product units to mine deep feature dependencies, while FFM directly uses
the product units to generate the output. Thus we say that ONN deepens FFM.
Figure 5 illustrates the architecture of PNN proposed in [4]. Via comparing the
architecture of PNN and FM, it is observable that PNN also deepens FM.

Lastly, via comparing figure 1 and figure 5, we observe that the ONN uses the
operation-aware embedding, but PNN uses the normal embedding. Thus ONN
makes PNN operation-aware.

9

Figure 3: The architecture of the FM model. The embedding vectors correspond to the
latent vectors in FM. The sum of the inner product units is fed into the output unit.

Figure 4: The architecture of the FFM model. The structure is the same as FM, except
that the embedding layer is operation-aware in FFM.

Compared with shallow models, deep models can automatically learn sophis-
ticated feature dependencies. Compared with the normal embedding layer, the
operation-aware embedding layer learns better feature representations for differ-
ent operations. Thus, ONN is more effective than traditional shallow models and
PNN.

5. Experiments

In this section, we present our experiments in detail, including datasets, data
processing, experimental setups, model comparisons in offline-training setting
and online-training setting, and the analyses of different operations. In our experi-
ments, the ONN model outperforms major state-of-the-art models in the CTR esti-
mation task on two real-world datasets in both offline-training and online-training
settings.

10

Figure 5: The architecture of the PNN model. The structure of PNN is the same as ONN,
except that ONN uses operation-aware embedding layer.

5.1. Data
Criteo. Criteo dataset[17] includes 45 million users’ click records. There are 13
continuous features and 26 categorical ones. We use the last 5 million records for
testing and the other records for training. The continuous features are discretized
by the function discrete(x) = b2 ∗ log(x)c, where b·c is the floor function.

Tencent Ad. The Tencent Ad dataset[18] is used in the Tencent Social Advertising
College Algorithm Competition. The data contains 14 days app ad conversion
data, user information, ad information and the records of installed apps. We use 39
categorical features which we used in the competition to perform the experiments.
Because the data in the last 2 days is noisy, we use the first 11 days for training,
and the 12th day for testing. After the split, there are about 22 million train data
and 2 million test data.

5.2. Model Comparison
We compare ONN with 5 models in our experiments, which are implemented

with TensorFlow and trained with the Adam optimization algorithm [19].

FM: FM learns feature interactions by factorizing it into the inner product of 2
vectors. FM has many successful applications in many CTR/CVR tasks [1].

FFM: FFM is an optimized version of FM. FFM uses field-aware vectors to per-
form product operation.

DNN: A simple deep model without product operations. The embedded features
are directly fed into an MLP to learn high-order feature interactions and
generate output.

11

PNN: PNN is proposed in [4]. PNN introduces the “inner-product” operation
and the “outer-product” operation into deep model. In our experiments, the
PNN is implemented with “inner-product” operation, since ONN uses the
“inner-product” operation by default.

DeepFM: DeepFM trains a deep component and an FM component at the same
time [9]. DeepFM can automatically learn low-order feature interactions
and high-order feature interactions at the same time.

ONN: ONN is the proposed model of this paper.

For fairness, we add Batch Normalization(BN) layers to all deep models. The
non-linear activation function is set to relu.

5.3. Evaluation Metrics
We use four evaluation metrics in our experiments: Area Under ROC(AUC),

Cross Entropy(Logloss), Pearson’s Correlation Coefficient(Pearson’s R) and Root
Mean Squared Error (RMSE).

5.4. Offline-Training Performance Comparison
We present the performances of models in offline-training environment. In this

setting, the data can be trained several epoches. Since many hyper-parameters,
such as the number of hidden layers, the hidden sizes and embedding dimension-
ality, have been discussed enough in [4] and [9], we just follow most parameter
settings from their works. The embedding dimensionality is set to 10 for all mod-
els. Although ONN can use flexible embedding dimensionalities, we just use the
same embedding dimensionality with other models for fairness. The number of
non-linear hidden layers is set to 3. For the Criteo dataset, the hidden sizes are set
to [400, 400, 400]. For the Tencent Ad dataset, the hidden sizes are set to [200,
200, 200]. Besides, the learning rate of Adam is set by grid search from [0.0001,
0.00025, 0.0005, 0.00075, 0.001] using cross validation. The training batch size
is set to 2500.

Table 1 and tabel 2 show the overall performance in offline-training setting.
The results show that ONN outperforms all the other model on all metrics. Be-
sides, the results are consistent with the relationships among FM, FFM, PNN and
ONN. We observe that PNN performs better than FM, and ONN performs better
than FFM. These observations suggest that deep models are more effective than
shallow models. Similarly, we observe that FFM performs better than FM, and

12

Table 1: Overall Performance on the Criteo dataset in Offline-Training Setting

Model
Criteo
Logloss AUC Pearson’s R RMSE

FM 0.44233 0.80464 0.48873 0.37805
FFM 0.43846 0.80920 0.49612 0.37627
DNN 0.43700 0.81059 0.49924 0.37557
PNN 0.43636 0.81134 0.50014 0.37529
DeepFM 0.43671 0.81150 0.49954 0.37541
ONN 0.43577 0.8123 0.50139 0.37495

Table 2: Overall Performance on the Tencent Ad dataset in Offline-Training Setting

Model
Tencent Ad
Logloss AUC Pearson’s R RMSE

FM 0.10684 0.82376 0.26644 0.15772
FFM 0.10639 0.82667 0.26753 0.15767
DNN 0.10581 0.82810 0.27261 0.15755
PNN 0.10550 0.82725 0.27429 0.15734
DeepFM 0.10595 0.82586 0.26731 0.15768
ONN 0.10504 0.82993 0.27481 0.15735

ONN performs better than PNN, these observations suggest that the operation-
aware embedding is more effective than the normal embedding. Besides, all of
PNN, DeepFM and ONN outperform DNN, suggesting that the “product” opera-
tion is useful in automatically learning feature interactions.

We find that dropout [20] does not improve the performance for all deep mod-
els after adding BN layer. In order to make a choice between the two techniques,
we compare models with BN layer and models with 0.3 dropout rate on network
hidden layers. Figure 6 illustrates the results. We observe that BN outperforms
dropout for all deep models. The results suggest that BN is more useful than
dropout in deep models for user response prediction tasks.

5.5. Online-Training Performance Comparison
In real world online advertising systems, training data are generated in a stream.

Online training is more suitable for this environment than offline training. In or-
der to validate the effectiveness of deep neural networks in online environment,
we compare the performance of different models in online training settings. In

13

Figure 6: Performance Comparison between BN and Dropout.

this setting, the data should be trained in a stream. Mini-batch training is allowed,
but the order of data sequence should be kept and each mini-batch can only be
learned once in each experiment. The network parameters are consistent with
the offline-training experiments. But the learning rate is searched again by cross
validation.

Table 3: Overall Performance on the Criteo dataset in Online-Training Setting

Model
Criteo
Logloss AUC Pearson’s R RMSE

FM 0.44348 0.80346 0.48695 0.37849
FFM 0.44083 0.80643 0.49255 0.37731
DNN 0.44132 0.80579 0.49049 0.37763
PNN 0.44156 0.80584 0.49005 0.37772
DeepFM 0.44275 0.80459 0.49033 0.37768
ONN 0.43751 0.81016 0.49813 0.37578

Table 3 and table 4 show the overall performance in online-training setting.
The results show that ONN outperforms all the other model on all metrics. Figure
7 illustrates the convergence curves of all models on the Criteo dataset. From the
figure, we observe that the convergence curve of ONN is always at the bottom
among all models, which suggests that ONN converges fastest among all models.

In online-training setting, each sample can only be trained one time. In FM,
PNN and DeepFM, each feature representation needs to compromise among dif-
ferent operations, therefore it is hard for these models to learn a good representa-
tion within one epoch. However, in FFM and ONN which use the operation-aware
embedding, each operation has its own representation, thus it is easier for these
models to learn feature representations. Besides, we also observe that DNN out-

14

Table 4: Overall Performance on the Tencent Ad dataset in Online-Training Setting

Model
Tencent Ad
Logloss AUC Pearson’s R RMSE

FM 0.10721 0.81955 0.25699 0.15817
FFM 0.10656 0.82518 0.26572 0.15776
DNN 0.10643 0.82584 0.26744 0.15769
PNN 0.10698 0.82257 0.26563 0.15776
DeepFM 0.10653 0.82518 0.26743 0.15775
ONN 0.10591 0.82812 0.27012 0.15762

performs PNN and DeepFM in online-training environment. We think that is be-
cause there is only one “copy” operation to be done on each feature in DNN, and
thus it is easier for DNN to learn feature representations compared with PNN and
DeepFM. After that, ONN outperforms DNN because the “product” operations
make ONN more effective than DNN to learn feature interactions. In conclusion,
multiple operations are useful for deep models, and the operation-aware embed-
ding enables models with multiple operations to learn good feature representations
efficiently in online-training environment.

Figure 7: Model convergence curves on the Criteo dataset. The horizontal axis is the
number of training steps in thousands. The vertical axis is the logloss on the testing
dateset.

5.6. Analysis of Different Operations
By default, we only use the “inner-product” operation to learn the feature inter-

actions. In fact, other operations can also be used in ONN. In this section, we com-

15

pare the performance of different ONNs by replacing the default “inner-product”
operation with “outer-product” and “sub-network” operations. The “sub-network”
operations use a network with a hidden layer to learn the feature interactions be-
tween two features.

Besides, we also consider the combination of the “inner-product” operation
and the “outer-product” operation. We do not consider the combinations of the
“sub-network” operation with other operations because the space and time com-
plexity of the “sub-network” operation is too high, which makes it unsuitable to
be used in the real world systems.

Table 5: Performance comparison for different operations on the Criteo dataset

Model
Criteo
Logloss AUC Pearson’s R RMSE

sub-network 0.43597 0.81178 0.50081 0.37514
outer-product 0.43673 0.81089 0.49941 0.37547
inner-product 0.43571 0.81016 0.50188 0.37482
inner+outer-product 0.43541 0.81236 0.50165 0.37489

Table 6: Performance comparison for different operations on the Tencent Ad dataset

Model
Tencent Ad
Logloss AUC Pearson’s R RMSE

sub-network 0.10560 0.82612 0.27129 0.15753
outer-product 0.10516 0.82886 0.27328 0.15740
inner-product 0.10504 0.82993 0.27309 0.15744
inner+outer-product 0.10502 0.83028 0.27429 0.15735

Table 5 and table 6 show the experimental results of ONN with different oper-
ations. We can see that the “inner-product” operation performs best on the whole
among the three single operations. Besides, we can see that the “sub-network” op-
eration also provides competitive performances. For instance, the “sub-network”
operation performs best on the AUC metric on the Criteo dataset. The perfor-
mances of the“sub-network” operation indicate that there are more choices other
than the “product” operations, which can also be used to learn feature interactions
in the deep architectures, and we will explore more on that in out future works. Af-
ter that, the combination of the “inner-product” operation and the “outer-product”

16

operation achieves obvious improvement, and performs best among most metrics
on the two experimental datasets.

In conclusion, we adopt the “inner-product” as the default operation because
it performs very competitive and has the lowest space and time complexity. The
“outer-product” operation can be used in addition if better performance needs to
be achieved at the cost of storage space and computation time. In fact, the “outer-
product” operation is much slower than the “inner-product” operation. For the
detailed complexity analysis, please refer to [4].

6. Conclusion

In this paper, we propose a new embedding method named operation-aware
embedding for learning feature representations in user prediction systems, and
construct a new deep neural network named Operation-aware Neural Networks
(ONN). Compared with the traditional feature embedding method which learns
one representation for all operations, operation-aware embedding can learn vari-
ous representations for different operations. Experimental results show that ONN
outperforms several state-of-art models on 2 datasets in both offline-training and
on-line training environment. Besides, ONN converges faster than other models
and outperforms state-of-art models by a large margin in online-training environ-
ment, which suggests that ONN is very suitable for online system. ONN inherits
the main network structure of PNN in this paper, but the operation-aware embed-
ding layer can be applied to any neural architectures actually.

In future, we will explore the use of the operation-aware embedding layer on
other applications like NLP. Besides, we are interested in how to automatically
determine the embedding dimensionalities for different operations and different
features. Another question is whether some operations can share one represen-
tation. We will also study on splitting the features and operations into different
groups, where the embedded representations are shared in the same group, but not
shared among different groups.

Acknowledgment

This work is supported in part by the National Science Foundation of China
under Grant Nos. (61876076), and Jiangsu NSF grant (BK20141319).

17

References

[1] S. Rendle, Factorization machines, in: Data Mining (ICDM), 2010 IEEE
10th International Conference on, IEEE, pp. 995–1000.

[2] Y. Juan, Y. Zhuang, W.-S. Chin, C.-J. Lin, Field-aware factorization ma-
chines for ctr prediction, in: Proceedings of the 10th ACM Conference on
Recommender Systems, ACM, pp. 43–50.

[3] Q. Liu, F. Yu, S. Wu, L. Wang, A convolutional click prediction model, in:
Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, ACM, pp. 1743–1746.

[4] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, J. Wang, Product-based
neural networks for user response prediction, in: Data Mining (ICDM), 2016
IEEE 16th International Conference on, IEEE, pp. 1149–1154.

[5] S. Rendle, L. Schmidt-Thieme, Pairwise interaction tensor factorization for
personalized tag recommendation, in: Proceedings of the third ACM inter-
national conference on Web search and data mining, ACM, pp. 81–90.

[6] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie,
T. Phillips, E. Davydov, D. Golovin, et al., Ad click prediction: a view
from the trenches, in: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp. 1222–1230.

[7] R. Wang, B. Fu, G. Fu, M. Wang, Deep & cross network for ad click predic-
tions (2017) 1–7.

[8] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. An-
derson, G. Corrado, W. Chai, M. Ispir, et al., Wide & deep learning for rec-
ommender systems, in: Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, ACM, pp. 7–10.

[9] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: A factorization-machine
based neural network for ctr prediction, arXiv preprint arXiv:1703.04247
(2017).

[10] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
K. Gai, Deep interest network for click-through rate prediction, in: Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, ACM, pp. 1059–1068.

18

[11] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, T.-S. Chua, Attentional factorization
machines: Learning the weight of feature interactions via attention networks,
arXiv preprint arXiv:1708.04617 (2017).

[12] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, in: International Conference on
Machine Learning, pp. 448–456.

[13] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann
machines, in: Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 807–814.

[14] I. Iacobacci, M. T. Pilehvar, R. Navigli, Sensembed: Learning sense embed-
dings for word and relational similarity., in: ACL (1), pp. 95–105.

[15] J. Li, D. Jurafsky, Do multi-sense embeddings improve natural language
understanding?, arXiv preprint arXiv:1506.01070 (2015).

[16] W. Zhang, T. Du, J. Wang, Deep learning over multi-field categorical data,
in: European conference on information retrieval, Springer, pp. 45–57.

[17] Criteo, Kaggle display advertising challenge
dataset, http://labs.criteo.com/2014/02/
kaggle-display-advertising-challenge-dataset/, 2014.

[18] Tencent, Tencent ads algorithm competition, https://algo.qq.com/
home/home/index.html, 2018.

[19] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[20] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting., Journal
of machine learning research 15 (2014) 1929–1958.

19

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://algo.qq.com/home/home/index.html
https://algo.qq.com/home/home/index.html

	1 Introduction
	2 Related Works
	3 Operation-aware Neural Networks
	3.1 Model Architecture Design
	3.1.1 Operation-aware Embedding
	3.1.2 Incipient Feature Extraction Layer
	3.1.3 Multiple Nonlinear Layers

	4 Discussions
	4.1 Feature Embedding
	4.2 Relationships with Related Models

	5 Experiments
	5.1 Data
	5.2 Model Comparison
	5.3 Evaluation Metrics
	5.4 Offline-Training Performance Comparison
	5.5 Online-Training Performance Comparison
	5.6 Analysis of Different Operations

	6 Conclusion

