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ABSTRACT

Feature maps, that preserve the global topology of arbitrary datasets, can be formed by self-organizing
competing agents. So far, it has been presumed that global interaction of agents is necessary for this
process. We establish that this is not the case, and that global topology can be uncovered through
strictly local interactions. Enforcing uniformity of map quality across all agents, results in an algo-
rithm that is able to consistently uncover the global topology of diversely challenging datasets.The
applicability and scalability of this approach is further tested on a large point cloud dataset, revealing
a linear relation between map training time and size. The presented work not only reduces algorithmic
complexity but also constitutes first step towards a distributed self organizing map.

1. Introduction
The Self Organizing Map (SOM) is a competitive, un-

supervised learning algorithm capable of creating a low di-
mensional and discrete representation of high dimensional
data.

Since its initial conception, SOM has found broad appli-
cation in data analytics, mainly for data clustering, function
approximation, and dimensionality reduction (see [5, 8] for
examples of applications).

A SOM consists of a population of adaptive, interacting
agents dubbed units. Each unit is represented in the sam-
ple space by vector (called weight) and it influences set of
other units (neighbors). For each sample, the unit with the
most similar weight is found (called the best matching unit -
BMU), and its similarity to the sample is increased by alter-
ing its weight. Subsequently, the neighbors of the BMU are
also influenced by increasing their similarity to the sample -
albeit to a lesser extend.

Given enough data, the units’ weight may converge to a
low dimensional discrete representation of the data - called
a feature map. Additionally, the units’ weight will be placed
meaningfully: neighboring units should contain similar fea-
tures, since neighborhoodsmove enmasse, a property known
as topological preservation. It is possible however for this
process to go awry; for example, limiting the influence of
a unit over its neighbors may compromise the topological
preservation[5, 4]. For reference, we dub this phenomenon
topological deformation.

Topological deformation in SOM is typically dealt with
by using larger neighborhood size - an empirically estab-
lished treatment as stated in [5]. However, larger neigh-
borhoods also increase the algorithm’s computational com-
plexity in proportion to their size, thus requiring significant
computational resources and restricting the scalability. At
the best of the authors’ knowledge, alternative methods for
resolving topological frustration have not been investigated
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and the large neighborhoods are always used - in spite of
their cost. Furthermore, so far no study has systematically
focused on the phenomenology of the SOM in the limit of
very small neighborhoods. With little to no understanding
of the specific problems that stem from very small neigh-
borhoods, it is arguably impossible to investigate solutions.

To address these gaps, we i) investigate the pathology of
SOM in the limit of small neighborhoods, and ii) propose
an alternative treatment, with drastically smaller computa-
tional complexity than larger neighborhoods. The treatment
utilizes localized feedback loop to enforce uniformity in the
map errors. The efficacy of the approach is tested empir-
ically on synthetic data. Finally, the applicability and the
scalability are investigated empirically in a SOM applica-
tion: point cloud estimation[9, 11, 3].

With the current workwe illustrate a promising paradigm
for SOM: harnessing the dynamics of locally interacting adap-
tive systems in order to replace large neighborhoods by com-
putationally efficient alternatives.

Doing so will not only reduce computational complex-
ity, but will also result in looser coupling, which is a first
step towards a fully distributed version of SOM. Such im-
provements enable new applications where performance is
paramount such as on-line learning over big data streams or
data discovery using very large maps[6].

2. Background
Training an SOMconsists of two separate processes: find-

ing the best matching unit and adjusting the map. The map
units are arranged as a lattice graph G, which is a square
lattice in the presented work.

Best Matching Unit (BMU):Given the ith training sam-
ple si, the BMU is found by comparing the si distance from
all the units positionwj(i) , as shown in eq. (1). Usually, the
Euclidean distance is used to find the BMU.

bi = argmin1≤j≤n‖wj(i) − si‖ (1)

Where n is number of units in the map, and bi is the index
of the best matching unit of the ith sample. Whereas,wj(i) is
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Locally interacting SOM

a vector denoting the jth unit’s position in the sample space
on the si.

In our analysis, we will also make use of the second
BMU, which is denoted by b̂i, and found by solving:

b̂i = argminj∈{1,...,n}⧵{bi}‖wj(i) − si‖ (2)

Map Adjustment: The heart of the SOM is the adjust-
ment of the BMU and its neighbors according to a training
sample. The strength of the adjustment decays with respect
to the time (i.e., in terms of number of samples processed)
and the distance (between a unit and the BMU). This dis-
tance is typically measured by the number of hops needed
to move from a unit j to the BMU over the graph G. We
refer to this distance as Dj,bi . The adjustment rate of unit j
at sample i is rj(i), and can be given by any function that is
strictly decreasing with respect to both i and Dj,bi .

The adjustment of unit j due to sample i is given by:

Δwj(i) = rj
(

i
)(

si −wj(i)
)

(3)

Quality Metrics: Map coverage is quantified by the quan-
tization error[7] metric. The quantization error of the ith
sample is given by:

q(i) = ||wbi (i) − si|| (4)

Topological deformation is quantified using the alfa er-
ror[12] metric. The alfa error is defined for square lattice
SOMs, and relies on the concept of diagonal neighbors: the
units in the Moore neighborhood but not in Von Neumann
neighborhood of unit j. The alfa error of the ith sample is
calculated by comparing the positions of the two first BMUs
(bi, b̂i) as defined below:

�(i) =

⎧

⎪

⎨

⎪

⎩

0, if b̂i adjacent to bi
p, if b̂i diagonal neighbor of bi
1, otherwise

(5)

Where p ∈ [0, 1] is a user defined parameter, quantifying
the alfa error in the case of the two BMUs being diagonal
neighbors. For the current study the p is set to 0.5.

Local Map Quality: For our analysis, it is needed to
quantify the quality of the SOM on two separate scales: lo-
cal, and global. To measure the map quality on a local scale,
we take the running means of the error values for each unit
j:

q̄j(i) =

{

�q̄j(i − 1) + q(i), if bi = j
q̄j(i − 1), otherwise

(6a)

�̄j(i) =

{

��̄j(i − 1) + �(i), if bi = j
�̄j(i − 1), otherwise

(6b)

Where q̄j(i), �̄j(i) are the running means at sample i. We
initialize with q̄j(0) = �̄j(0) = 0, ∀j. The user defined pa-
rameter � ∈ (1, 0] controls the temporal decay of the running
means, and it is set to 0.75 throughout this work.

Global Map QualityTomeasure global map quality, we
average over the unit errors given in (5) (4). For practical
reasons, we measure training time not in number of samples
but in iterations, where one iteration is defined as 10 ⋅n sam-
ples. The linear map size dependence in the definition of one
iteration allows us to compare the temporal evolution of the
error metrics between maps of different sizes. Specifically,
for the tth iteration we have:

Qt =
1
n

n
∑

j=1
q̄j(�)

|

|

|

|

|

|�=n10t

(7a)

At =
1
n

n
∑

j=1
�̄j(�)

|

|

|

|

|

|�=n10t

(7b)

At is the average of all �̄j(i) at iteration t
Qt is the average of all q̄j(i) at iteration t

3. Locally Interacting SOMs
In classical SOM, the neighborhood attraction decreases

with respect to time which effectively reduces the neigh-
borhood size. The initial large (entire map - global) neigh-
borhood size ensures global ordering whereas the eventual
smaller (local) neighborhood size at the end of training phase
ensures local order and stability of the map.

Reducing the neighborhood size to local for the entire
training process will reduce computational complexity, but
it is known to compromise global topological preservation
as observed in [5, 4].

4. Constant Learning Rate(s)
To capture the topological deformation resulting from

small neighborhoods, we experiment with locally interact-
ing SOMs. Specifically, a neighborhood is constrained to a
unit’s immediate neighbors on graphG, see equation (8), and
learning rate is kept to user-defined constant l� . We refer to
this SOM variant as Nearest Neighbors SOM (NNSOM).

rj
(

i
)

=

{

l�e
−Dj,bi if Dj,bi ≤ 1

0 otherwise
(8)

We apply multiple individual NNSOMs over a dataset
where points are uniformly scattered at randomwithin a square.
To illustrate the effect of the map size on the algorithm per-
formance, we use two map sizes (400, 900). The maps are
trained for 3k iterations where each iteration consists of n⋅10
samples as defined in section 2. The learning rate is constant
in time, and takes 10 geometrically spaced values in (0, 1].
Constant learning rate is typically not used in SOM since
there is no guarantee of convergence [1] without temporally
decaying learning rate. However, fixing the learning rate to a
constant is particularly instructive when investigating the al-
gorithm’s potential in terms of topological preservation [4],
as it allows isolating the effects of other parameters on the
algorithm.
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Figure 1: depicts different steady states of the NNSOM al-
gorithm. The dots represent the map units, positioned in the
sample space, after the maps reach a stationary state. Panels
A and B depict maps with defective global topology unlike the
maps in panel C. However, the map in C2 is of inferior local
topological quality to C1. Note that the maps in panel B have
twisted defects, while the defects in panel A are more complex.

Finally, two initializations are considered: curated sym-
metrical (all unit weights placed at the origin) and random
(unit weights sprinkled uniformly at random over the dataset
domain). For the sake of brevity, we use the acronyms SIC
and RIC to refer to Symmetric Initial Conditions and Ran-
dom Initial Conditions respectively. Comparing the two cases
allows us to quantify the sensitivity of the algorithm with re-
spect to initial conditions.

Each of the aforementioned configurations was run 20
times with random data points and in the case of RIC also
with different initial conditions.

We assess the performance of NNSOM by observing the
map alfa error and unit positions at iteration 3k. Remarkably,
all observed maps fall into few classes of macroscopic be-
haviors, in spite of the large number of configurations tested
in this experiment. Furthermore, these behaviors are associ-
ated with different map alfa errors.

Robust Topological Defects: We have identified an ad-
hoc typology of macroscopic behaviors of NNSOM. Specif-
ically, we assign each of the maps to one of three qualita-
tively distinct classes, and propose a name for each class -
as depicted in the three panels of figure 1. Panels A and
B depict the maps with incorrect global topology. Panel C
shows the topologically preserved maps albeit with varying
levels of noise. Due to the tangled appearance of the maps
in the panels A and B, these configurations are referred to
as tangles. The maps in panel A are twisted and folded onto
themselves and therefore dubbed complex tangles, while the
maps in the panel B are labeled twist tangles. Tangles were
found to persist for thousand of iterations after their appear-
ance and thus constitute robust topological defects. The map
alfa error between tangled and untangled maps was found to
differ up to a factor of 20.

The experiment reveals that both initial conditions and

Figure 2: illustrates the map alfa error (eq.(7b)) at stationar-
ity (iteration 3000). We show results for two map sizes, 10
learning rates, two initial conditions (random and curated).
Each resulting combination is run 100 times over a square 2D
dataset. For curated initial conditions, the values of map alfa
error at iteration 3000 are tightly clustered around the same
level. In contrast, for random initial conditions we observe
number of points lying above the aforementioned locus. We
manually observed that these points correspond to topologi-
cally defective maps. In the bottom right graph, we outline
the identified map defects according to figure 1.

sizes have strong effect on the map alfa error as depicted in
figure 2. The typology introduced in figure 1 allows a more
intuitive interpretation of the algorithm’s performance.

Specifically:

1. For SIC, the values of A3000 are tightly clustered to-
gether for each l� . However, l� affects the level around
which A3000 values are clustered.
Manually inspecting the unit positions in the sample
space reveals that all maps with SIC are untangled,
and that the variance ofA3000 originates from varying
levels of noise in the unit mesh (as shown in the right
panel of figure 1).

2. Using RIC, we obtain a cloud of points in addition to
the locus encountered for SIC. This cloud lies above
the aforementioned locus. Manual inspection reveals
that all the points in the cloud are tangled maps - re-
vealing that the NNSOM is unable to resolve topolog-
ical deformation of RIC consistently. Furthermore,
while in SIC lower l� resulted in better map quality
this is not the case in RIC: lowering l� moves more
points in the cloud of failed maps. In fact, manual in-
spection revealed that fold tangles only appeared for
sufficiently low l� values. To aid interpretation, the
A3000 values that correspond to different map classes
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have been delineated in the bottom right panel of the
figure 2 with green solid lines.

3. For SIC, increasing the size of the map from 100 to
400 does not change the resulting locus ofA3000 points,
and thus does not have significant impact on the topo-
logical preservation. This is in contrast with RIC,where
the larger map size not only increased the number of
tangled maps, but also resulted in tangled maps even
in the case of l� = 1.

In summary, while the NNSOM performs adequately well
over a uniform square dataset for SIC, it may fail to resolve
the topological frustration for RIC. This shortcoming is ex-
acerbated for increasing system size, and persists for any
learning rate - and even after many iterations. Applications
of SOM generally involve more challenging problems than
RIC over uniform square data, and therefore the NNSOM
will not be applicable in such cases. However, having identi-
fied the origin of NNSOMs shortcomings (formation of tan-
gles), we will now consider a treatment.

5. Feedback based Nearest Neighbors SOM
Topological deformation results when a unit’s neighbors

are farther away than its non-neighbors. This issue can be
observed in the center of symmetry of the twisted tangles
maps (see figure 1). At first glance, to resolve this problem
one might think to increase the attraction between BMU and
its neighbors. However, this approach will not work for sym-
metry reasons. Inspecting the tangledmaps from experiment
1, in figure 2, reveals that they all share a common attribute
of having non-uniform errors values across their units.

Therefore, we propose a feedback mechanism that only
allows for maps with a uniform level of quality to remain
stationary. We achieve this by coupling the neighborhood
attraction of a BMU to its quantization and alfa errors. By
doing so, defective segments of themap increase their attrac-
tion, resulting in the flow of units towards them to prevent
stationarity. Defining what constitute a defective segment
requires meaningful aggregation of different errors (quan-
tization, alfa). We refer to this SOM variant as Feedback
NNSOM (FNNSOM).

This feedbackmechanism can be implemented by a func-
tion which increases the neighborhood attraction of units
which suffer either from high quantization or alpha error.
This requires that the learning rate is a strictly increasing
function of alfa and quantization error. Defining such a func-
tion requires aggregating map alfa and quantization errors.
However, this is problematic since alfa error is bounded be-
tween 0 and 1, while quantization error depends on the data
and is unbounded. Therefore, to compare the two errors
rates, quantization error needs to be mapped to the same in-
terval. The requirements described above are satisfied by the
following equations:

fj
(

i
)

= 1 − exp

(

−
cq q̄bi (i)
q̄j(i)

)

(9a)

Fj
(

i
)

= �̄bi (i) + fj(i) − �̄bifj(i) (9b)

rj
(

i
)

=

⎧

⎪

⎨

⎪

⎩

� if j is bi
Fj
(

i
)

if j is a neighbor of bi
0 otherwise

(9c)

� is a user defined constant for the BMU learning rate
cq is a user-configured parameter that tunes contribution
of quatization error at the unit’s learning rate

Equation (9a) is a strictly increasing function of the quan-
tization error of the BMU bounded between 0 and 1. We
normalize the BMU quantization error by expressing it as a
fraction of the quantization error of the unit j. The sensi-
tivity of the function to the normalized quantization error is
controlled by the user defined parameter cq . Equation (9b)
is a strictly increasing function of both alfa and quantization
errors 1 of the BMU. Additionally, equation (9b) is bounded
between 0 and 1 so that it can act as a learning rate, and ei-
ther error can independently result in a maximum value of
1. Equation (9c) states 3 cases for the learning rate: a user-
defined constant � for the BMU, feedback determined for its
neighbors, and 0 otherwise. For this work, � is set to 0.01,
however, other parameterizations are not ruled out.

The efficacy of the suggested algorithm (FNNSOM) is
assessed empirically over synthetic datasets. We picked four
diverse datasets, see table 1, to investigate whether FNN-
SOM suffers from robust topological defects. We are also in-
terested in how the algorithm performs with increasing sys-
tem size. We consider three individual maps sizes (100, 400,
900) where the cq parameter is sampled geometrically at 19
points between 0 and 1.

Each combination of the parameters above is simulated
100 times, for 3000 iterations, and with random initial con-
ditions (RIC). Observing the values of A3000 reveals that the
performance of FNNSOM strongly depends on the dataset,
as illustrated in figure 3 . Specifically:

1. For all datasets, except Clusters 2D, the values ofA3000
are all clustered around the same level, with very few
exceptions residing in the cloud of tangledmaps. Man-
ual inspection of the trained maps reveals that they
all have a correct global topology. The lowest value
of A3000 is encountered for cq approximately around
0.15, as indicated in figure 3. We therefore conclude
that for the considered datasets, and for a band of cq
values, the FNNSOM is highly resistant to tangling,
and a significant improvement over the NNSOM

2. The Clusters 2D dataset is an exception to the previous
point. Specifically, we observed that A3000 values are
not tightly clustered, instead they are dispersed across
multiple levels. On manual inspection, we found that
higherA3000 values indeed correspond to the topolog-
ically deformedmaps. This behavior exacerbatedwith
increasing system size, as seen in the figure 3 where
more points can be found at higher A3000 as system
size increases.

1please note that the quantization error dependence is through fj (i)
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Figure 3: illustrates the map alfa error at iteration 3000 of FNNSOM. We consider four datasets (Square, Clusters 2D, Spherical
shell and Dispersion 3D) with random initial conditions, over a range of 19 cq values (see eq. (9a)), for increasing map sizes from
top to bottom (100, 400, 900). Each combination is run 100 times. Note that only dataset with inconsistent map alfa error is
Clusters 2D.

Square si sampled at random from [0, 1]2

Clusters 2D
si sampled at random from five identical
2D normal multivariate distributions at
(0, 0), (0, 5), (5, 0), (5, 5), (2.5, 2.5)

Spherical Shell
si sampled uniformly at random on the
surface of a sphere

Dispersion
si sampled from a 3D normal, multinomial
distribution

Table 1
Description of the datasets used to assess FNNSOM in sec. 5

3. Increasing map size has a detrimental effect in all data
sets but the Square and Spherical shell datasets. As
figure 3 shows that for Square and Spherical shell, in-
creasing system size decreases A3000 for all cq values.
The opposite is seen for the remaining datasets.

In conclusion, the suggested feedback parameterization is
very effective in treating tangles in all considered datasets

except Clusters 2D. The performance of FNNSOM was ob-
served to be optimal over a range of values of cq , which from
a practical standpoint means that the algorithm does not re-
quire precise tuning. Additionally, the effect of increasing
system size on the eventual A3000 is either detrimental or
positive - depending on the dataset type.

The inability of FNNSOM to consistently resolve Clus-
ters 2D can be intuitively understood with a simple thought
experiment. Consider 2 clusters of data, separated by a large
gap in which no sample ever arrives. The map units will split
between the two data clusters, and thus some units will be in-
evitably placed over the gap. These units residing over the
gap will not be receiving samples, and will therefore never
attract their neighbors. Consequently, these units are unable
to relay any attraction across the two unit populations resid-
ing in each data cluster. Therefore, these two unit popula-
tions are effectively acting independently and thus unable to
collaborate to resolve global topological deformation.

Thus, the FNNSOM seem to be particularly well suited
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Figure 4: depicts behavior of FNNSOM over a spherical shell,
for 900 map size and for three different cq values. We illustrate
the evolution of the map alfa error throughout the training
process for the 3 cq values as listed in the legend. For the
highest cq, the map reaches stationarity at high error, whereas
lowering cq to an intermediate range (e.g., 0.133) results in a
significantly lower error value. For the lowest cq, the variability
of error increases drastically, demonstrating that the map never
reaches a fixed steady state.

for datasets over 2D manifolds. In fact, the performance of
FNNSOM over such datasets scales along with system size.

6. Applicability Analysis
To establish the practicality of the algorithm, we investi-

gate whether FNNSOM can reach a stable stationarity state
for some cq values. Additionally, we test for scalability using
a dataset from an industrial application.

Stationarity: We investigate the influence of cq over the
behavior of the map by observing At for varying cq values
and for 3000 iterations, as depicted in figure 4. We apply the
algorithm over the Spherical shell dataset, with the map size
fixed at 900. The cq parameter is sampled in {0.025, 0.133,
0.645} which correspond to the local extrema of A3000, as
identified from figure 3 (bottom row, third column).

The results reveal that cq affects both map stability and
topological preservation. As depicted in figure 4, for cq =
0.025, At varies wildly in time - indicating that the map is
unable to reach a stable state. This persistent variability of
At for low cq values is consistent with the widely dispersed
A3000 for cq = 0.025 in the previous experiments as seen in
figure 3 (third column). In contrast the two higher cq values
reach a near constant level of At within the first few hundred
iterations. There is however significant difference between
the two levels, with cq = 0.133 having approximately one
fourth of the At at cq = 0.645. The higher At at cq = 0.645
results from a noisy map (shown in figure 1, C2). These
observations imply that the identified range of near optimal
cq (shown in figure 4) tunes the map between instability and
topological deformation.

Scalability: We test the applicability and scalability of
the algorithmwith the commonly used [10, 2] dataset ofMax
Planck’s head 2. The dataset is a point could of 200k points.

2http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=

As a point cloud dataset, it represents a 3D object as num-
ber of points residing over a 2D manifold, and FNNSOM is
therefore well suited for this problem. In addition, we can
visually inspect the quality of the resulting map by plotting
it as a mesh. Finally, the large number of data points allows
us to test scalability.

We use maps of sizes (1.6k, 2.5k4.9k, 10k), for 3000 it-
erations, and for cq = 0.133. In figure 5, top row, we depict
the meshes of the trainedmaps. We observe no tangles in the
meshes, as it is corroborated by the respective U-Matrices in
the second row.

The scalability is observed by increasing resolution of
themeshes aswell as increasing uniformity of theU-Matrices.
Additionally, in the bottom row of the figure 5, we observe
that the map converges to the same eventual errors, at ap-
proximately the same rate - regardless of size. This implies
a linear relationship between the number of training samples
needed and the size of the map.

7. Discussion
The challenge in locally interacting units is uncovering

the global topology of the data, as confirmed by the experi-
ment in section 4. Our results verify that locally interacting
self organizing maps (SOM)s suffer from tangles: robust,
global topological defects, where the map units are charac-
terized by inhomogeneous error values.

We have demonstrated that imposing a homogeneous er-
ror value throughout themap is possible using localized feed-
backs. Specifically, our results show that such a feedback
allows the map to resolve tangles in three, diverse synthetic,
datasets while it is unable to consistently treat topological
deformation for sparse datasets. Additionally, we establish
the applicability of the algorithm by deriving a range for
the hyperparameter used in the feedback function, and by
demonstrating its scalability on an industrial application.

The suggested algorithm allows locally interacting SOMs
to discover global topology. This approach drastically re-
duces computational complexity by minimizing neighbor-
hood size. Additionally, small neighborhoods are a first step
towards a truly decentralized implementation of SOM,where
the algorithm is executed simultaneously over multiple ma-
chines with embarrassingly parallel simplicity. Finally, the
algorithm decouples the neighborhood attraction from time
(number of samples processed).

Future work could focus on a more formal description of
the abrupt loss of stability of the map for low cq values, as
well as on resolving tangles in the case of sparse data. Addi-
tionally, modifications that would enable an embarrassingly
parallel SOM could be investigated, most likely focusing on
finding an alternative for the best matching unit search. Fi-
nally, different initialization strategies suited to locally inter-
acting SOMs could be investigated.

77-Max-Planck_bust
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Locally interacting SOM

Figure 5: depicts the scalability of the FNNSOM algorithm by training maps of increasing size over a standard dataset of 200k
data-points (point-cloud of Max Planck’s head) for cq = 0.133 Top row: We visualize the maps at iteration 3000 using 3d
polygons. Vertices are positioned at the map unit locations, and triangles are shapes between neighboring units. Sizes of the map
increase from left to right (1.6k, 2.5k4.9k, 10k). Note that the resultant resolution increases along with the map size. Second row:
We show u-matrices for the corresponding maps sizes. Distances between neighboring units decrease uniformly with increasing
map sizes and no topological defects appear. Bottom row: We visualize the average alpha (At) and quantization (Qt) errors
for each iteration of the maps above. Qt is normalized by multiplying with square root of the map size (

√

N). All maps follow
similar trajectory regardless of their sizes. This shows that the number of required samples scales linearly with the maps size.
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