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Abstract—Deep neural network (DNN) quantization converting
floating-point (FP) data in the network to integers (INT) is
an effective way to shrink the model size for memory saving
and simplify the operations for compute acceleration. Recently,
researches on DNN quantization develop from inference to train-
ing, laying a foundation for the online training on accelerators.
However, existing schemes leaving batch normalization (BN)
untouched during training are mostly incomplete quantization
that still adopts high precision FP in some parts of the data paths.
Currently, there is no solution that can use only low bit-width INT
data during the whole training process of large-scale DNNs with
acceptable accuracy. In this work, through decomposing all the
computation steps in DNNs and fusing three special quantization
functions to satisfy the different precision requirements, we
propose a unified complete quantization framework termed
as “WAGEUBN” to quantize DNNs involving all data paths
including W (Weights), A (Activation), G (Gradient), E (Error),
U (Update), and BN. Moreover, the Momentum optimizer is also
quantized to realize a completely quantized framework. Exper-
iments on ResNet18/34/50 models demonstrate that WAGEUBN
can achieve competitive accuracy on the ImageNet dataset. For
the first time, the study of quantization in large-scale DNNs is
advanced to the full 8-bit INT level. In this way, all the operations
in the training and inference can be bit-wise operations, pushing
towards faster processing speed, decreased memory cost, and
higher energy efficiency. Our throughout quantization framework
has great potential for future efficient portable devices with online
learning ability.

Keywords: Neural Network Quantization, 8-bit Training,
Full Quantization, Online Learning Device

I. INTRODUCTION
Deep neural networks [1] have achieved state-of-art results

in many fields like image processing [2], object detection [3],
natural language processing [4], and robotics [5] through learn-
ing high-level features from a large amount of input data. How-
ever, due to the existence of a huge number of floating-point
(FP) values and complex FP multiply-accumulate operations
(MACs) in the process of network training and inference, the
intensive memory overhead, large computational complexity,
and high energy consumption impede the wide deployment of
deep learning models. DNN quantization [6] which converts
FP MACs to bit-wise operations is an effective way to reduce
the memory and computation costs and improve the speed of
deep learning accelerators.

With the deepening of research, DNN quantization gradu-
ally transfers from inference quantization (BWN [7], XNOR-
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Net [8], ADMM [9]) to training quantization (DoReFa [10],
GXNOR-Net [11], FP8 [12]). Usually, the inference quan-
tization focuses on the forward pass; while the training
quantization further quantizes the backward pass and weight
updates. Recently, training quantization becomes a hot topic
in the network compression community. Whereas, there are
still two major issues in existing schemes. The first issue lies
in the incomplete quantization, including two aspects: partial
quantization and FP dependency. Partial quantization means
that only parts of dataflows, not all of them, are quantized
(e.g. DoReFa [10], GXNOR-Net [11] and QBP2 [13]); FP
dependency still remains FP values during the training process
(e.g. MP [14] and FP8 [12]). The second issue is that the
quantization of batch normalization (BN) [15] is ignored by
most schemes (e.g. MP-INT [16] and FX Training [17]). BN is
an essential layer for the training of DNNs by addressing the
problem of the internal covariate shift of each layer’s inputs,
especially as the network deepens, allowing a much higher
learning rate and less careful weight initialization.

Compared with all the studies above, WAGE [18] is the
most thorough work of DNNs quantization, which quantizes
the data including W (Weights), A (Activation), G (Gradient),
E (Error), U (Update) and replacing each BN layer with a con-
stant scaling factor. WAGE has achieved competitive results on
LeNet [19], VGG [20], and AlexNet [21], providing a good
inspiration for this work. However, we find that WAGE is
difficult to be applied in large-scale DNNs due to the absence
of BN layers. Besides, it is known that the gradient descent
optimizer such as Momentum [22] or Adam [23] increases
the stability and even helps get rid of the local optimum, thus
the speed and final performance are significantly improved. A
complete quantization should cover the entire training process,
including W, A, G, E, U, BN, and the optimizer. Regretfully,
up to now, there is still no such solution that can achieve this
complete quantization, especially on large-scale DNNs.

To address the issues of incomplete quantization and ig-
nored BN quantization mentioned above and extend quanti-
zation framework to large-scale datasets and networks with
high performance, we propose a unified complete quantization
framework termed “WAGEUBN” to constrain W, A, G, E, U,
BN, and the optimizer in the low-bit integer (INT) space. To
the best of our knowledge, WAGEUBN is the first complete
quantization framework achieving high performance in large-
scale datasets, where all computation steps and operands in
DNNs are decomposed and quantized.

We mainly make the following efforts to create the complete
quantization framework. Firstly, according to the various data
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distributions and the role the quantized data plays in DNN
training, we fuse three quantization functions to satisfy the dif-
ferent precision requirements. Furthermore, we propose a new
storage and computing method by introducing a flag bit to ex-
pand the data coverage and solve the non-convergence problem
caused by insufficient data representation. Last but not least,
we quantize BN and Momentum optimizer for the first time,
converting all FP operations in DNNs to bit-wise operations.
Compared with the full precision DNNs, DNNs under the full
8-bit WAGEUBN framework can achieve about 4× memory
saving. More importantly, the multiplication and accumulation
operations of WAGEUBN, which are the main operations in
DNNs, can perform >3× and 9× faster in speed, 10× and
>30× lower in power, 9× and >30× smaller in circuit area,
respectively. Besides, the efficient INT8 multiplication and
accumulation operations also make WAGEUBN a big step
ahead of most existing quantization schemes in computational
costs, whether it is FP8[12], INT16[16], FP16[14] or INT32.
In addition to the huge advantages in memory cost, comput-
ing speed, energy consumption and circuit area, WAGEUBN
also shows competitive accuracy on large-scale networks
(ResNet18/34/50) and dataset (ImageNet [24]). What’s more,
the hardware design of WAGEUBN is much simpler and
more efficient because of the complete quantization. Due to
the improvement of computing speed and saving in hardware
resources and energy consumption, WAGEUBN provides a
feasible idea for the architecture design of future efficient
online learning chips used in portable devices with limited
computational resources. The contributions of this work are
twofold, which are summarized as follows:
• We address two main issues existing in most quantization

schemes via fully quantizing all the data paths, including
W, A, G, E, U, BN, and the optimizer, greatly reducing
the memory and compute costs. What’s more, we con-
strain the data to INT8 for the first time, pushing the
training quantization to a new bit level compared with
the existing FP16, INT16, and FP8 solutions.

• Our quantization framework is validated in large-scale
DNN models (ResNet18/34/50) over ImageNet dataset
and achieves competitive accuracy with much fewer
overheads, indicating great potential for future portable
devices with online learning ability.

The organization of this paper is as follows: Section II
introduces the related work of DNN quantization; Section
III details the WAGEUBN framework; Section IV presents
the experiment results of WAGEUBN and the corresponding
analyses; Section V summarizes this work and delivers the
conclusion.

II. RELATED WORK

With the wide applications of DNNs, the related compres-
sion technologies have been proposed rapidly, among which
the quantization plays an important role. The development of
DNN quantization can be divided into two stages, inference
quantization and training quantization, according to the differ-
ent quantization objects.

Inference quantization: Inference quantization starts from
constraining W into {−1, 1} (BWN [7]), replacing complex

FP MACs with simple accumulations. BNN [25] and XNOR-
Net [8] further quantize both W and A, making the inference
computation dominated by bit-wise operations. However, ex-
tremely low bit-width quantization usually leads to significant
accuracy loss. For example, when the bit width comes to <4
bits, the accuracy degradation becomes obvious, especially for
large-scale DNNs. Instead, the bit width of W and A for infer-
ence quantization can be reduced to 8 bits with little accuracy
degradation. The study of inference quantization is sufficient
for the deep learning inference accelerators. Whereas, this is
not enough for efficient online learning accelerators because
only the data in the forward pass are considered.

Training quantization: To further extend the quantization
towards the training stage, DoReFa [10] trains DNNs with low
bit-width W, A, and G, while leaving E and BN unprocessed.
MP [14] and MP-INT [16] use FP16 and INT16 values,
respectively, to constrain W, A, and G. Recently, FP8 [12]
further pushes W, A, G, E, and U to 8, 8, 8, 8, and 16-bit FP
values, respectively, still leaving BN untouched. QBP2 [13]
replaces the conventional BN with range BN and constrains
W, A, and E to INT8 values while calculating G with FP
MACS. Recently, WAGE [18] adopts a layer-wise scaling
factor instead of using the BN layer and quantizes W, A, G, E,
and U to 2, 8, 8, 8, and 8 bits, respectively. Despite its thorough
quantization, WAGE is difficult to be applied to large-scale
DNNs due to the absence of powerful BN layers. In summary,
there still lacks a complete INT8 quantization framework for
the training of large-scale DNNs with high accuracy.

III. WAGEUBN FRAMEWORK

The main idea of WAGEUBN is to quantize all the data
in DNN training to INT8 values. In this section, we detail
the WAGEUBN framework implemented in large-scale DNN
models. The organization of this section is as follows: Sub-
section III-A introduces the straight-through estimator (STE)
[26, 27] method which is accepted and used by most re-
searchers to solve the non-differentiable problem of quan-
tization; Subsection III-B and Subsection III-C describe the
notations and quantization functions, respectively; Subsection
III-D explains the specific quantization schemes for W, A,
G, E, U, BN, and the Momentum optimizer, respectively;
Subsection III-E goes through the overall implementation of
WAGEUBN, including in both forward and backward passes;
Subsection III-F summarizes the whole process and shows the
pseudo codes.

A. Straight-through estimator

In the early stage of the study, the non-differentiable prob-
lem in mathematical sense caused by quantization has been
hindering the development of quantization research. However,
since the straight-through estimator (STE) method was used to
estimate the gradient of quantized data in BNN [25], almost
all the works in the field of quantization have adopted this
method to avoid the mathematical non-derivative problem
[10, 28, 29, 30].



The STE method used in WAGEUBN can be illustrated as
the following

Forward : xq = Q(x)

Backward :
∂L

∂x
=

∂L

∂xq

(1)

where x is the data to be quantized, Q(·) is the quantization
function that may be non-differentiable, and L denotes the
objective function.

B. Notations

Before introducing the WAGEUBN quantization framework
formally, we need to define some notations. Considering the
l-th layer of DNNs, we divide the forward pass of DNNs into
four steps as described in Figure 1 (BN is divided into two
steps: Normalization & QBN and Scale & Offset).

Conv
Normalization

       &

Scale 

&Offset

Activation    

~~&BNQ
AQ

0x 1x 2x 3x 4x

Fig. 1: Forward quantization of the l-th layer in DNNs.

Specifically, we have

Input : xl0 = xl−14

Conv : xl1 = W l
qx

l
0

Normalization&QBN : xl2 = QBN (
xl1 − µlq
σlq

)

Scale&Offset : xl3 = γlqx
l
2 + βlq

Activation&QA : xl4 = QA
[
relu(xl3)

]
, (2)

where xl−14 is the output of the (l − 1)-th layer and xl0
is the input of the l-th layer; W l

q is the quantized weight
for convolution; QBN is the quantization function used for
constraining xl2 to low-bit INT values, which will be given
in Equation (13); µlq and σlq are the quantized mean and
standard deviation value of one mini-batch; γlq and βlq are
the quantized scale and bias used in the BN layer of DNNs;
QA is the quantization function for activation which will be
detailed in Equation (14); relu is the activation function which
is commonly used in DNNs. Noting that every step in the
forward pass is quantized, xl0,x

l
1,x

l
2,x

l
3,x

l
4 are all integers.

In order to make the notations used in the paper consistent, we
make the following rules: subscript q denotes the data which
have been quantized to INT values and superscript l denote
the layer index.

Conv
Nomalization

       &

Scale 

&Offset
Activation

2EQ 1EQ
0

l
e

1

l
e3

l
e

2

l
e4

l
e 1

4

l+
e

Fig. 2: Backward quantization of the l-th layer in DNNs.

Different from most existing schemes, we define e and g
respectively, where e represents the gradient of A (activation)
which is used in the error backpropagation and g represents
the gradient of W (weights) which is used in the weight
update. Moreover, we quantize the BN layers, including both

the forward and backward passes, which is not well touched
in most prior work. Similar to the forward pass, we divide the
backward pass of the l-th layer into five steps as shown in
Figure 2. According to the derivative chain rules, we have

QE1 : el0 = QE1(
∂L

∂xl
4

) = QE1(el+1
4 )

Activation : el1 =
∂L

∂xl
3

=
∂L

∂xl
4

� ∂xl
4

∂xl
3

= el0 �
∂xl

4

∂xl
3

Scale&Offset : el2 =
∂L

∂xl
2

=
∂L

∂xl
3

� ∂xl
3

∂xl
2

= el1 � γl
q

Norm&QE2 : el3 = QE2(
∂L

∂xl
1

) = QE2(
∂L

∂xl
2

� ∂xl
2

∂xl
1

)

= QE2(el2 �
∂xl

2

∂xl
1

)

Conv : el4 =
∂L

∂xl
0

=
∂xl

1

∂xl
0

∂L

∂xl
1

= W l
q

T
el3

(3)

where L is the loss function, el+1
4 represents the error from

the (l + 1)-th layer, and � represents the Hadamard prod-
uct. For vectors with the same dimension, such as a =
(a1, a2, · · · , an) and b = (b1, b2, · · · , bn), we have: a � b =
(a1b1, a2b2, · · · , anbn). Two quantization functions are used
here: QE1

is the quantization function detailed as Equation
(15) that converts high bit-width integers to low bit-width
integers; QE2 detailed as Equation (17) is trying to convert FP
values to low bit-width integers. W l

q
T is the transposed matrix

of W l
q , and ∂xl4/∂x

l
3 represents the gradient of activation.

When relu is used as the activation function, ∂xl4/∂x
l
3 is a

tensor containing only 0 and 1 elements.
According to the definitions given above, the gradients of

W, γ, and β can be summarized as follows

glW =
∂L

∂W l
=

∂L

∂xl
1

∂xl
1

∂W l
= el3x

l
0

T

glγ =
∂L

∂γl
=

∂L

∂xl
3

� ∂xl
3

∂γl
= el1 � xl

2

glβ =
∂L

∂βl
=

∂L

∂xl
3

� ∂xl
3

∂βl
= el1.

(4)

To further reduce the bit width of G that will increase greatly
after the multiplication, we have

glWq = QGW
(glW )

glγq = QGγ (glγ)

glβq = QGβ
(glβ)

(5)

where QGW
, QGγ , and QGβ

are quantization functions for the
gradient of W, γ, and β, respectively, which will be shown in
Equation (18).

Some notations to be used below are also explained here.
kW , kA, kGW

, kE (kE1 and kE2 ), and kBN are the bit width
of W, A, G, E, and BN, respectively. kWU , kγU , and kβU
are the bit width of W, γ, and β update, which are also the
bit width of data stored in memory. kγ , kβ, kµ, and kσ are
the bit width of γ, β, µ, and σ, respectively, used in the BN
layer. kGγ and kGβ are the bit width of γ and β gradient,
respectively. kMom and kAcc are the bit width of momentum
coefficient (Mom) and accumulation (Acc), respectively, used
in the Momentum optimizer. At last, klr is the bit width of



the learning rate.

C. Quantization Functions

There are three quantization functions used in WAGEUBN.
The direct-quantization function uses the nearest fixed-point
values to represent the continuous values of W, A, and BN.
The constant-quantization function for G is used to keep the
bit width of U (update) fixed since G is directly related to U.
Because U and the weights stored in memory have the same
bit width, the bit width of weights stored in memory can be
fixed, which is more hardware-friendly. The magnitude of E
is very small, so the shift-quantization function reduces the
bit width of E greatly compared with the direct-quantization
function under the same precision.

(1) Direct-quantization function

The direct-quantization function simply approximates a
continuous value to its nearest discrete state and is defined
as

Q(x, k) =
round(x · 2k−1)

2k−1
(6)

where k is the bit width, and round(·) rounds a number to its
nearest INT value.

(2) Constant-quantization function

The intention of constant-quantization function is to normal-
ize a tensor firstly, then limit it to INT, and finally maintain
its magnitude. It is governed by

R(x) = 2round(log2(max(|x|)))

Sr(x) =

 bxc, Px = dxe − x

dxe, Px = x− bxc
Norm(x) =

x

R(x)

Sd(x) = clip {Sr [dr ·Norm(x)] ,−dr + 1, dr − 1}

CQ(x) =
Sd(x)

2kGC−1 .

(7)

The illustration of constant-quantization function is de-
scribed in Figure 3. Here, R(·) is used to project the maximum
value of x to its nearest fixed-point value, which is prepared
for normalization; Sr(·) is a stochastic rounding function
used for converting a continuous float value to its nearby
INT value in a probabilistic manner and Px is the rounding
probability; Norm(·) denotes normalization and clip(·) is a
saturation function limiting the data range;Sd(·) is to shift the
distribution of x and limit x to INT values between −dr+ 1
and dr − 1. Here dr ∈ [2k−1, 2k−2, ..., 1] limits the data
range after mapping and decreases as the training goes on,
presenting the same effect as reducing the learning rate. For
example, Sd(·) maps G to {-127, -126, · · · , 126, 127} and
{-63, -62, · · · , 62, 63} in the early training stage (k = 8,
dr = 128, epoch in [0, 30]) and later training stage (k = 7,
dr = 64, epoch in [30, 60]), respectively. CQ(·) is utilized
to maintain the magnitude order of data, where 2kGC−1 is a
constant scaling factor and kGC is its bit width.

(3) Shift-quantization function
The shift-quantization function serves for the quantization

of E and is defined as

d(k) =
1

2k−1

SQ(x, k) = R(x) · clip {Q [Norm(x), k] ,−1 + d(k), 1− d(k)}
(8)

where d(·) is the minimum interval for a k-bit INT and Q(·)
is the direct-quantization function defined in Equation (6).

The shift-quantization function normalizes E first, then
converts E to fixed-point values, and finally uses a layer-wise
scaling factor (R(·) defined in Equation (7)) to maintain the
magnitude. The differences between the constant-quantization
function and the shift-quantization function mainly exist in
two points: First, the constant-quantization uses a constant
to keep the magnitude for hardware friendliness while the
shift-quantization uses a lay-wise scaling factor; Second, the
constant-quantization contains a stochastic rounding process
while the shift-quantization function does not.

D. Quantization Schemes in WAGEUBN

After introducing the quantization functions used in our
WAGEUBN framework, we provide detailed quantization
schemes.

(1) Weight Quantization
Since weights are stored and used as fixed-point values,

weights should be also initialized discretely. An initialization
method proposed by MSRA [31] has been evidenced helpful
for faster training. The initialization of weights can be formu-
lated as follows

W
′
∼ N(0,

1√
nin

)

W = clip
[
Q(W

′
, kWU ),−1 + d(kWU ), 1− d(kWU )

] (9)

where nin is the layer’s fan-in number, and kWU is the bit
width of weight update and the memory storage.

Because of the different bit width for weight storage and
computation, it should be quantized from kWU bits to kW (the
bit width of weights used for convolution) bits for convolution.
In addition, we also limit the data range of W. Finally, the
quantization function for W is

QW (x) = clip [Q(x, kW ),−1 + d(kW ), 1− d(kW )] . (10)

(2) Batch Normalization Quantization

As aforementioned, BN plays an important role in training
large-scale DNNs. WAGE [18] has proved that simple scaling
layers are not enough to replace BN layers. Conventional BN
layer can be divided into two steps as

x̂ =
x− µl√
σl

2
+ ε

y =γlx̂+ βl
(11)

where µl and σl are the mean and standard, respectively,
deviation of x over one mini-batch in the l-th layer; ε is a small
positive value added to σ to avoid the case of dividing by zero;
γl and βl are the scale and offset parameters, respectively.



Fig. 3: Illustration of the constant-quantization function during training.

Under the WAGEUBN framework, the BN layer is also
quantized. Through the operations described in Equation (12),
all operands are quantized and all operations are bit-wise.
Specifically, the quantization follows

µlq = Qµ(µl), σlq = Qσ(σl)

x̂ = QBN (
x− µlq
σlq + εq

)

γlq = Qγ(γl), βlq = Qβ(βl)

y = γlqx̂+ βlq

(12)

where Qµ, Qσ, Qγ , Qβ, QBN are the quantization functions
converting the operands to fixed-point values defined as

Qµ(x) =Q(x, kµ), Qσ(x) = Q(x, kσ)

Qγ(x) =Q(x, kγ), Qβ(x) = Q(x, kβ)

QBN (x) = Q(x, kBN ).

(13)

And εq is a small fixed-point value, playing the same role as
ε in Equation (11); kµ, kσ, kγ , kβ, kBN are the bit width of
µ, σ,γ,β and x̂, respectively.

(3) Activation Quantization

After the convolution and BN layers in the forward pass,
the bit width of operands increases due to the multiplication
operation. To reduce the bit width and keep the input bit width
of each layer consistent, we need to quantize the activations.
Here, the quantization function for activations can be described
as

QA(x) = Q(x, kA) (14)

where kA is the bit width of activations.

(4) Error Quantization

In Equation (3), we have given the definition of E and
quantized E. Through investigating the importance of error
propagation in DNN training, we find that the quantization
of E is very essential for the model convergence. If E is
naively quantized using the direct-quantization function, it will
require a large bit width of operands to realize the convergence
of DNNs. Instead, we use the following shift-quantization
function

QE1
(x) = SQ(x, kE1

) (15)

where SQ(·) is the shift-quantization function defined in
Equation (8), and kE1

is the bit width of el0 defined in Equation
(3).

As mentioned above, we use QE1
and QE2

for the error
quantization. However, the precision requirements of QE1

and
QE2 vary a lot. Experiments show that kE1 = 8 affects little
on accuracy while kE2 ≤ 8 will cause the non-convergence
of large-scale DNNs when using SQ(·) as the quantization
function. kE2

= 16 is a proper value for the training of DNNs
with minimum accuracy degradation. More analyses will be
given in Subsection IV-E. Here we will provide two versions of
QE2 , the 16-bit and 8-bit versions. The 16-bit QE2 is defined
as

QE2
(x) = SQ(x, kE2

) (16)

where kE2
is the bit width of el3 defined in Equation (3).

Experiments have proved the data range covered by 8-bit
QE2

(kE2
= 8) is not sufficient to train DNNs. In order



to expand the coverage of quantization function while still
maintaining a low bit width, we introduce a layer-wise scaling
factor Sc and a flag bit. Then, to distinguish it from QE2

defined in Equation (16), we name the quantization function
Flag QE2

and the quantization process is governed by

Sc =
R(x)

2kE2
−1

QE2(x) =


Sc · clip

[
round(

x

Sc
),min,max

]
, | x
Sc
| ≥ 1

Sc ·Q(
x

Sc
, kE2), | x

Sc
| < 1

(17)

where kE2
= 8, min = −2kE2 + 1, and max = 2kE2 − 1.

1 0 0 0 0 0 0 10

Flag bit Sign bit Data bit

(a)

0 1 1 1 1 1 1 11

Flag bit Sign bit Data bit

(b)

Fig. 4: Data format of 9-bit integers.

By introducing a layer-wise scaling factor and a flag bit, we
can expand the data coverage greatly. Details can be found in
Figure 4. The flag bit is used to indicate whether the absolute
value of x stored in memory is less than the layer-wise scaling
factor (e.g., 0 represents |x|<Sc and 1 represents |x| ≥ Sc).
The sign bit is used to denote the positive or negative direction
of the value. The data bit follows the conventional binary
format. According to the definition, the values stored in Figure
4(a) and 4(b) are +Sc/128 and −127 × Sc when kE2

= 8,
respectively. Therefore, the 9-bit data format can cover almost
the same data range as the direct 15-bit quantization described
in Equation (16). Since the flag bit is just used for judgment,
the effective value for computation is still INT8.

(5) Gradient Quantization

The gradient is another important part in DNN training
because it is directly related to the weight update. The rules
for calculating and quantizing the gradients of W, γ, and β are
described as Equation (4) and (5). Since el1, el3, xl0, and xl2 are
all fixed-point values, the conventional FP MACs operations
can be replaced with bit-wise operations during the process
of calculating glW , glγ , and glβ. The quantization functions are
defined to further reduce the bit width of gradients and prepare

for the next step of the optimizer. Specifically, we have

QGW
(x) = CQ(x, kGW

)

QGγ (x) = Q(x, kGγ )

QGβ
(x) = Q(x, kGβ

)

(18)

where CQ(·) is the constant-quantization function defined in
Equation (7); kGW

, kGγ , and kGβ
are the bit width of the

gradient of W, γ, and β, respectively.

(6) Momentum Optimizer Quantization

Momentum optimizer is one of the most common optimizers
used in DNN training, especially for classification tasks.
For the i-th training step of the l-th layer, the conventional
Momentum optimizer works as follows

Accli = Mom ·Accli−1 + gli (19)

where Accli and Accli−1 are the accumulation in the i-th and
(i−1)-th training step, respectively; Mom is a constant value
used as a coefficient; gli is the gradient of W, γ, or β.

Momentum optimizer under the WAGEUBN framework is
trying to constrain all operands to fixed-point values. The
process can be formulated as

Accli = Mom ·Accl(i−1)q + gliq

Accliq = QAcc(Acc
l
i)

(20)

where Accl(i−1)q is the quantized accumulation in the (i− 1)-
th training step; gliq is the quantized gradient of W, γ, or β;
QAcc(·) is the quantization function defined as

QAcc(x) = Q(x, kAcc). (21)

To guarantee the consistency of bit width, we further set

kGγ = kGβ
= kGC = kMom + kAcc − 1. (22)

(7) Update Quantization

The parameter update is the last step in the training of
each mini-batch. Different from conventional DNNs where
the learning rate can take any FP value, the learning rate
under WAGEUBN must also be a fixed-point value and the bit
width of update is directly related to the bit width of learning
rate. The update under quantized Momentum optimizer can be
described as

∆W = lr ·Accli
W l = W l −∆W

(23)

where ∆W is the update of W with kWU bits, and lr is the
fixed-point learning rate with klr bits. The updates of γ and
β are the same as in Equation (23). According to Equation
(20), (22), and (23), we have

kWU = kγU = kβU = kMom + kAcc + klr − 2

= kGC + klr − 1

= kGγ + klr − 1

= kGβ
+ klr − 1.

(24)

Through our evaluations, the precision of the update has the



greatest impact on the accuracy of DNNs because it is the
last step to constrain the parameters. Thus, we need to set a
reasonable bit width for update to balance the model accuracy
and memory cost.

E. Quantization Framework

Given the quantization details of W, A, G, E, U, BN, and
the Momentum optimizer, the overall quantization framework
is depicted in Figure 5. Under this framework, conventional
FP MACs can be replaced with bit-wise operations. Here,
the forward pass of the l-th layer in DNNs is divided into
three parts: Conv (convolution), BN, and activation. xl0, xl1,
xl2, xl3, and xl4 are defined in Equation (2). The weights
(W l) are stored as kWU -bit integers and then QW maps
W l to kW -bit INT values (W l

q) before convolution. After
convolution, MEAN&Qµ and STD&Qσ operations are used
to calculate the mean and standard deviation of xl1 in one mini-
batch and then quantize them to kµ and kσ bits, respectively.
The BW&QBN operation constrains xl2 to kBN bits in
BN. Similar to W, γ and β are stored as kγU and kβU -bit
integers and used in kγ and kβ bits (γlq and βlq) after the
Qγ and Qβ quantization, respectively. After the second step
of BN, activation and quantization are implemented with the
ACT&QA operation, reducing the increased bit width to kA
bits again and preparing inputs for the next layer.

The backward pass of the l-th layer is much more com-
plicated than the forward pass, including error propagation,
gradient of weight, gradient of BN, Momentum optimizer,
and weight update. In the process of error propagation, el0,
el1, el2, el3, and el4 are defined in Equation (3) and there are
two locations needing quantization using QE1

and QE2
. QE1

reduces the bit width of el+1
4 from kE2 + kW − 1 to kE1 .

ACT ′ is the derivative of activation function (relu) and QE2

is used to constrain el3 to kE2
bits. In the phase of calculating

the gradients of weights and BN, QGW
, QGγ , and QGβ

are
leveraged to reduce the increased bit width caused by the
multiplication operations.

All parameters of the Momentum optimizer in the i-th
training step are quantized. Different from the conventional
learning rate with FP value, WAGEUBN requires a discrete
learning rate so that the bit width of weight updates can be
controlled. The updates of γ and β in BN layers are also
similar to the weight update, which are omitted in Figure 5
for simplicity.

F. Overall Algorithm

Given the framework of WAGEUBN, we summarize the
entire quantization process and present the pseudo codes for
both the forward and backward passes as shown in Algorithm
1 and 2, respectively.

IV. RESULTS

A. Experimental Setup

To verify the effectiveness of the proposed quantization
framework, we apply WAGEUBN on ResNet18/34/50 on
ImageNet dataset. We provide two versions of WAGEUBN,

Algorithm 1 Forward pass of l-th layer

Convolution:

xl0 ⇐ xl−14 , W l
q ⇐ QW (W l, kW )

xl1 ⇐W l
qx

l
0

BN:

µlq ⇐ Qµ(µl), σlq ⇐ Qσ(σl)

xl2 ⇐ QBN (
xl1 − µlq
σlq

)

γlq ⇐ Qγ(γl), βlq ⇐ Qβ(βl)

xl3 ⇐ γlqx
l
2 + βlq

Activation:

xl4 ⇐ QA(relu(xl3))

Algorithm 2 Backward pass of l-th layer

Error propagation:

el0 ⇐ QE1
(el+1

4 )

el1 ⇐ el0 �
∂xl4
∂xl3

el2 ⇐ el1 � γlq
el3 ⇐ QE2

(el2 �
∂xl2
∂xl1

)

el4 ⇐W l
q
T
el3

Gradient computation:

glW ⇐ el3x
l
0
T

glWq ⇐ QGW
(glW )

glγ ⇐ el1 � xl2
glγq ⇐ QGγ (glγ)

glβ ⇐ el1

glβq ⇐ QGβ
(glβ)

Momentum optimizer(i-th step):

Accli = Mom ·Accl(i−1)q + gliq(g
l
Wq, g

l
γq, or g

l
βq)

Accliq = QAcc(Acc
l
i)

Weight updates(i-th step):

∆W = lr ·Accli
W l = W l −∆W

one with full 8-bit INT where kW , kA, kGW
, kE1

, kE2
, kγ ,

and kβ are equal to 8. The other version has 16-bit kE2 . The
only difference between the 16-bit E2 version and the full 8-bit
version exists in the quantization function QE2

(see Equation
(16) and (17), respectively). kGγ , kGβ

, and kGC are 15 and we
set kmom, kAcc, klr, and kWU to 3, 13, 10, and 24 respectively
to satisfy Equation (22) and (24). In addition, we set kBN , kµ,
and kσ to 16. Since W, A, G, and E occupy the majority of
memory and compute costs, their bit-width values are reduced
as much as possible. Other parameters occupying much less
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Fig. 5: Overview of the WAGEUBN quantization framework. “BW” denotes bit-wise operations.

resources can increase the bit width to maintain the accuracy,
e.g., µlq , σ

l
q , g

l
γq , and glβq in BN layers.

The first and last layers are believed to differ from the rest
because of their interface with network inputs and outputs. The
quantization of these two layers will cause significant accuracy
degradation compared to hidden layers and they just consume
few overheads due to the small number of neurons. Therefore,
we do not quantize the first and last layers, as previous work
did [32, 33].

For the quantization frameworks, it’s a common issue of
saturated learning and vanishing gradients because the data in
DNNs may be clipped very small after quantization and the
model may be stuck on a local optimum because of the few

updates. And this situation can be more serious when the quan-
tization framework is used in large-scale complex datasets.
WAGEUBN has made many efforts to alleviate this problem.
Firstly, the newly designed shift-quantization function ensures
that the quantized error in WAGEUBN framework is on the
same magnitude as that of a traditional FP network, making the
errors (gradients of activations) not vanishing in the process of
back propagation. Secondly, based on the observation that it
is the orientation rather than the magnitude of gradients (gra-
dients of weights) that guides deep neural networks (DNNs)
to converge, it’s more important to keep the orientation rather
than the magnitude. What’s more, the updates (∆W ) jointly
determined by the learning rate and gradients are the data that



ultimately determines the final changes of the network. The
much bigger learning rate setting in WAGEUBN (minimum
learning rate: WAGEUBN 1.95×10−3 (2−9) VS floating-point
network 5 × 10−6 ) can make up for the problem of update
magnitude caused by the smaller quantized gradients. Through
the technics above, the problems of saturated learning and dead
gradients can be solved. In addition to the above measures
which can help the model get rid of local optimum, the
proposed quantized Momentum optimizer, fixed-point updates
which is precise enough and a proper batch size selection can
also reduce the probability of falling into a local optimum
greatly.

B. Training Curve

(a)

(b)

(c)

Fig. 6: Training curves under the WAGEUBN framework: (a)
ResNet18; (b) ResNet34; (c) ResNet50.

Figure 6 illustrates the accuracy comparison between
vanilla DNNs (FP32), DNNs with the full 8-bit version
of WAGEUBN, and DNNs with the 16-bit E2 version of
WAGEUBN. The initial learning rate and momentum co-
efficient under WAGEUBN and full precision are slightly
different. To ensure the best recognition accuracy, we use the
official parameter settings of TensorFlow [34], where the initial
learning rate and momentum coefficient are set to 0.05 (batch
size is 128) and 0.9 while those of WAGEUBN framework
are set to 0.05078125 (26 × 2−9, 10-bit integer) and 0.75
(3× 2−2, 3-bit integer). And this may cause the phenomenon
that WAGEUBN converges faster at the beginning of training.
During epoch 30 and 60, we have reduced the learning rate,
which is a general practice in training process [35, 36]. The
training curves show that there is little difference between
vanilla DNNs and the ones under the WAGEUBN framework
when the training epoch is less than 60, which reflects the
effectiveness of our approach. As the epoch evolves, the
accuracy gap begins to grow because the learning rate in
vanilla DNNs is much lower than that in WAGEUBN, such
as 5 × 10−6 v.s. 1.95 × 10−3 (klr = 10), thus the update of
vanilla DNNs is more precise than that under the WAGEUBN
framework. We can further improve the accuracy by reducing
the learning rate, while the bit width values of learning rate
and update need to increase accordingly at the expense of more
overheads.

Table I quantitatively presents the accuracy comparison be-
tween vanilla DNNs and WAGEUBN DNNs on the ImageNet
dataset. We have achieved the state-of-the-art accuracy on
large-scale DNNs with full 8-bit INT quantization. The 16-bit
E2 WAGEUBN only loses 3.46% mean accuracy compared
with the vanilla DNNs. Because the bit width of most data
keeps the same between the full 8-bit WAGEUBN and the
16-bit E2 WGAEUBN, the overhead difference between them
is negligible. The DNNs under WAGEUBN framework have
achieved an accuracy that is comparable to FP8 [12] and
QBP2 [13]. And although MP [14] and MP-INT [16] can
achieve the accuracy close to the full precision networks, the
computational cost is much higher than WAGEUBN because
of the floating-point data type and higher bit width, which will
be detailed in Section IV-F. Compared with the vanilla DNNs,
about 4× memory size shrink, much faster processing speed,
and much less energy and circuit area can be achieved under
the proposed WAGEUBN framework.

C. Quantization Strategies for W, A, G, E, and BN

In our WAGEUBN framework, we use different quantization
strategies for W, A, G, E, and BN, i.e. Q(·) for W, A, and
BN; CQ(·) for G, and SQ(·) for E. Different quantization
strategies are based on the data distribution, data sensitivity,
and hardware friendliness. Figure 7 shows the distribution
comparison between W, BN (xl2 defined in Equation (2)), A,
G (weight gradient), and E (el0, el3 defined in Equation (3))
before and after quantization.

According to the definition, the resolution of the direct-
quantization function is 2−7 when the bit width equals 8 and
there is no limitation on the data range. Because W, BN, and



TABLE I: Accuracy of vanilla DNNs and WAGEUBN DNNs on ImageNet dataset.

Network kW kA kGW
kE1

kE2
kWU Accuracy Top-1/Top-5(%)

32 32 32 32 32 32 68.70/88.37
ResNet18 8 8 8 8 16 24 67.40/87.63

8 8 8 8 8 24 64.79/85.81
32 32 32 32 32 32 71.99/90.56

ResNet34 8 8 8 8 16 24 68.50/87.96
8 8 8 8 8 24 67.63/87.70

32 32 32 32 32 32 74.66/92.13
ResNet50 8 8 8 8 16 24 69.07/88.45

8 8 8 8 8 24 67.95/88.01
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Fig. 7: Data distribution comparison between W, BN, A, G, and E before and after quantization.



A in the inference stage directly affect the loss function and
further influence the backpropagation, the quantization of W,
BN, and A should be as precise as possible to avoid the loss
fluctuation. This is guaranteed for the reason that the resolution
of the direct-quantization function is enough for W, BN, and
A, which indicates that the direct-quantization function barely
changes their data distributions.

The constant-quantization function has a resolution of 2−14

and the data range after quantization is about [−2−7, 2−7]
in the case of kGC = 15 and k = 8. k will decrease as
the training epoch goes on, causing the data range reduc-
tion. Figure 7 reveals that the constant-quantization function
changes the data distribution of G greatly while the network
accuracy has not declined much as a result. The reason behind
this phenomenon is that it is the orientation rather than the
magnitude of gradients that guides DNNs to converge. In the
meantime, it is easy to ensure that the bit width of updates can
be fixed when kGC is fixed, which is more hardware-friendly
since the bit width of weights stored in memory can also be
fixed during training.

The shift-quantization retains the magnitude order and omits
the general values whose absolute value is less than 2−7

when k = 8. The 8-bit shift-quantization works well for the
quantization of error after activation (el1 defined in Equation
(3)). However, we find the shift-quantization is not enough for
the quantization of errors between Conv and BN (el3 defined
in Equation (3)). Therefore, the newly designed quantization
function in Equation (17) named 8-bit Flag QE2

is utilized.
Figure 7 shows that the distribution of E (el3) is almost the
same before and after quantization, revealing the validity of
the 8-bit Flag QE2 quantization function.

D. Accuracy Sensitivity Analysis

To compare the influences of W, A, G, E, and BN quanti-
zation individually, we quantize them to 8-bit INT separately
with the FP32 update. Taking kW = 8 as an example, we
quantize only W to 8-bit INT and leaving others (A, BN,
G, E, and U) still kept in FP32. The quantization function
for single data used here is the same as what Section III-D
describes (Equation (17) is used for the error quantization
when kE2

= 8).
The results of ResNet18 under the WAGEUBN framework

with single data quantization is shown in Table II. The accu-
racy of single data quantization reflects the difficulty degree
when quantizing W, A, G, E, and BN, separately. From the
table, we can see that the quantization of E, especially el3
defined in Equation (3), makes the most impacts on accuracy.
In addition, we find that the accuracy heavily fluctuates during
training when el3 is constrained to 8-bit INT, which does not
appear in the quantization of other data. To sum up, the E
data, especially el3, demands the highest precision and is the
most sensitive component under our WAGEUBN framework.

Because the BN process in the forward pass and the average
gradients in the backward pass all involve the batch size,
the sensibility of batch size to network performance under
WAGEUBN is also explored. We have done comparative
experiments and the results are illustrated in Figure 8. When

the batch size changes between 128 and 16, the accuracy
of the full precision DNNs won’t drop significantly, while
that of the full 8-bit WAGEUBN DNNs has a relatively
large decline in accuracy when the batch size equals 16.
One reason for this lies in that there is a momentum used
to update the moving means and standard deviations in a
batch for full precision DNNs while WAGEUBN abandons
this considering the computational cost. Besides, we think it
is normal because quantization will inevitably result in the
loss of some precise information. And the loss of information
will bring a slightly higher batch size sensitivity. However, the
robustness of WAGEUBN is still quite good, because there is
a significant decline in accuracy only when the batch size is
less than a very small number 16.
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Fig. 8: Accuracy sensibility analysis of batch size under
WAGEUBN.

E. Analysis of the Error Quantization between Conv and BN

Error backpropagation is the foundation of DNN training.
If the error of E caused by quantization is too large, the
convergence of DNNs will be degraded. Especially, because
the error quantization between convolution and BN (el3) is
directly related to the weight update of the l-th layer, the
impact of el3 quantization on the model accuracy is critical.

To further analyze the reason why 8-bit QE2
(defined in

Equation (16) where kE2
= 8) causes the non-convergence of

DNNs and compare the distributions of el3 under 8-bit QE2 ,
8-bit Flag QE2 (defined in Equation (17) where kE2 = 8), and
full precision, the data distribution of el3 of the first quantized
layer on ResNet18 is shown in Figure 9. From the figure, we
can see that the e13 distributions under 8-bit QE2

quantization
and full precision differs a lot and those of 8-bit Flag QE2

quantization and full precision are almost the same. The
major difference between the 8-bit QE2

quantization and full
precision lies in the interval of [−2−8R(e13), 2−8R(e13)] (R(·)
is defined in Equation (7)), where the 8-bit QE2

quantization
forces the data in this range to zero.

The only difference between 8-bit QE2
and 8-bit Flag QE2

quantization functions lies in the data range. Theoretically,
the covered data range of 8-bit QE2 and 8-bit Flag QE2

are about [−R(el3),−2−8R(el3)] ∪ {0} ∪ [2−8R(el3), R(el3)]
and [−R(el3),−2−15R(el3)] ∪ {0} ∪ [2−15R(el3), R(el3)],



TABLE II: Accuracy sensitivity under WAGEUBN with single data quantization on ResNet18.
Bit-width kW = 8 kBN = 8 kA = 8 kGW

= 8 kE1
= 8 kE2

= 8
Accuracy Top-1/Top-5 (%) 67.98/88.02 68.01/87.96 67.74/87.89 67.88/87.89 67.88/87.92 67.08/87.44
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Fig. 9: Data distributions of e13: (a) 8-bit QE2 , (b) 8-bit Flag
QE2

, (c) full precision; (d) Data distribution comparison.

respectively. Because the distribution of el3 is not uniform,
the range covered by different quantization methods varies
a lot. The data ratios (Proportion of non-zero values after
quantization.) of 8-bit QE2

and 8-bit Flag QE2
quantization

functions covered by each layer of ResNet18 are illustrated as
Figure 10. Although the larger values take greater impacts on
the model accuracy in the process of error propagation, the
smaller values also contain useful information and occupy the
majority. Compared with 8-bit Flag QE2

, the data ratio 8-bit
QE2

covers is too little because of the smaller data range. That
is to say, although the most important information contained
by the larger values is retained, the information contained by
the smaller values is ignored, resulting in the non-convergence
of DNNs. In addition, there is also a rough trend that the data
ratio decreases as the network becomes shallower, either in
the 8-bit QE2

or 8-bit Flag QE2
quantization.
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Fig. 10: Data ratios of 8-bit QE2
and 8-bit Flag QE2

quanti-
zation methods covered by each layer of ResNet18.

F. Cost Discussion

Although it is recognized that DNN quantization can greatly
reduce memory and compute costs, resulting in lower energy
consumption, quantitative analysis is rarely seen in recent
research. In order to compare the full INT8 quantization with
other precision solutions (FP32, INT32, FP16, INT16, and
FP8) more clearly, we have simulated the processing speed,
power consumption, and circuit area for single multiplication
and accumulation operation on FPGA platform. Figure 11
shows the results. With FP32 as the baseline, taking the
multiplication operation as an example, INT8 can perform
>3× faster in speed, 10× lower in power, and 9× smaller
in circuit area. Similarly, compared with FP32, the speed of
INT8 accumulation is about 9× faster, and the energy con-
sumption and circuit area are reduced by >30×. In addition,
the INT8 multiplication and accumulation operations are more
advantageous than other data type operations, whether it is
FP8[12], INT16[16], FP16[14] or INT32. In conclusion, the
proposed full INT8 quantization has great advantages in hard-
ware overheads, whether in terms of memory cost, processing
speed, power consumption, and circuit area. Given the huge
advantages in hardware resources and computing speed of
quantization, the idea of low-precision computing and the
quantization functions in WAGEUBN can also extend to other
research fields which involve large-scale matrix operations,
such as large-scale control systems [37], weather forecasting
models [38], etc.

V. CONCLUSIONS
We propose a unified framework termed as “WAGEUBN” to

achieve a complete quantization of large-scale DNNs in both
training and inference with competitive accuracy. We are the
first to quantize DNNs over all data paths and promote DNN
quantization to the full INT8 level. In this way, all the oper-
ations can be replaced with bit-wise operations, causing sig-
nificant improvements in memory overhead, processing speed,
circuit area, and energy consumption. Extensive experiments
evidence the effectiveness and efficiency of WAGEUBN. This
work provides a feasible solution for the online training
acceleration of large-scale and high-performance DNNs and
further shows the great potential for the applications in future
efficient portable devices with online learning ability. Although
great progress has been made, WAGEUBN still needs to build
a special hardware architecture design and develop more appli-
cations. Future works could transfer to the design of computing
architecture, memory hierarchy, interconnection infrastructure,
and mapping tool to enable the specialized machine learning
chips and more applications.
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Fig. 11: Comparison of time, power, and area of single
multiplication and accumulation operation under different
quantization precision: (a) multiplication, (b) accumulation.
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