
Fast Haar Transforms for Graph Neural NetworksI

Ming Lia,c, Zheng Mab, Yu Guang Wangc, Xiaosheng Zhuangd

aDepartment of Educational Technology, Zhejiang Normal University, Jinhua, China
bDepartment of Physics, Princeton University, New Jersey, USA

cSchool of Mathematics and Statistics, The University of New South Wales, Sydney, Australia
dDepartment of Mathematics, City University of Hong Kong, Hong Kong

Abstract

Graph Neural Networks (GNNs) have become a topic of intense research recently due to their

powerful capability in high-dimensional classification and regression tasks for graph-structured

data. However, as GNNs typically define the graph convolution by the orthonormal basis for

the graph Laplacian, they suffer from high computational cost when the graph size is large.

This paper introduces Haar basis which is a sparse and localized orthonormal system for a

coarse-grained chain on graph. The graph convolution under Haar basis, called Haar convolution,

can be defined accordingly for GNNs. The sparsity and locality of the Haar basis allow Fast Haar

Transforms (FHTs) on graph, by which a fast evaluation of Haar convolution between graph data

and filters can be achieved. We conduct experiments on GNNs equipped with Haar convolution,

which demonstrates state-of-the-art results on graph-based regression and node classification

tasks.

Keywords: Graph Neural Networks, Haar Basis, Graph Convolution, Fast Haar Transforms,

Geometric Deep Learning

1. Introduction

Convolutional neural networks (CNNs) have been a very successful machinery in many

high-dimensional regression and classification tasks on Euclidean domains [36, 37]. Recently, its

generalization to non-Euclidean domains, known as geometric deep learning, has attracted growing

attention, due to its great potential in pattern recognition and regression for graph-structured

data, see [8].

Graph neural networks (GNNs) are a typical model in geometric deep learning, which replaces

the partial derivatives in CNNs by the Laplacian operator [9, 32]. The Laplacian, which carries

the structural features of the data, is a second-order isotropic differential operator that admits a

natural generalization to graphs and manifolds. In GNNs, input data are convoluted with filters

under an orthonormal system for the Laplacian. However, as the algebraic properties of regular

Euclidean grids are lost in general manifolds and graphs, FFTs (fast Fourier transforms) for

IOctober 31, 2019
Email addresses: ming.li.ltu@gmail.com (Ming Li), zhengm@princeton.edu (Zheng Ma),

yuguang.wang@unsw.edu.au (Yu Guang Wang), xzhuang7@cityu.edu.hk (Xiaosheng Zhuang)

ar
X

iv
:1

90
7.

04
78

6v
3 

 [
cs

.L
G

] 
 3

0 
O

ct
 2

01
9



the Laplacian are not available. This leads to the issue that the computation of convolution for

graph data is not always efficient, especially when the graph dataset is large.

In this paper, we introduce an alternative orthonormal system on graph, the Haar basis. It

then defines a new graph convolution for GNNs — Haar convolution. Due to the sparsity and

locality of the Haar basis, fast Haar transforms (FHTs) can be achieved on graph-structured

data. This significantly improves the computational efficiency of GNNs as the Haar convolution

guarantees the linear computational complexity. We apply Haar convolution to GNNs and give a

novel type of deep convolutional neural networks on graph — HANet. Numerical tests on real

graph datasets show that HANet achieves good performance and computational efficiency in

classification and regression tasks. To the best of our knowledge, our method is the first fast

algorithm for spectral graph convolution by appropriately selecting orthogonal basis on graph,

which is of great importance in the line of building spectral-based GNN models. Overall, the

major contributions of the paper are summarized as three-fold.

• The Haar basis is introduced for graphs. Both theoretical analysis and real examples of

the sparsity and locality are given. With these properties, the fast algorithms for Haar

transforms (FHTs) are developed and their complexity analysis is studied.

• The Haar convolution under Haar basis is developed. By virtue of FHTs, the computational

cost for Haar convolution is proportional to the size of graph, which is more efficient than

Laplacian-based spectral graph convolution. Other technical components, including weight

sharing and detaching, chain and pooling, are also presented in details.

• GNN with Haar convolution (named HANet) is proposed. The experiments illustrate that

HANet with high efficiency achieves good performance on a broad range of high-dimensional

regression and classification problems on graphs.

The paper is organized as follows. In Section 2, we review recent advances on GNNs. In

Section 3, we construct the Haar orthonormal basis using a chain on the graph. The Haar basis

will be used to define a new graph convolution, called Haar convolution. In Section 4, we develop

fast algorithms for Haar transforms and the fast Haar transforms allows fast computation of Haar

convolution. In Section 5, we use the Haar convolution as the graph convolution in graph neural

networks. Section 6 shows the experimental results of GNNs with Haar convolution (HANet) on

tasks of graph-based regression and node classification.

2. Related Work

Developing deep neural networks for graph-structured data has received extensive attention

in recent years [51, 39, 20, 46, 4, 69, 62, 68, 45, 24, 27, 10, 30, 17, 50, 57]. Bruna et al. [9] first

propose graph convolution, which is defined by graph Fourier transforms under the orthogonal

basis from the graph Laplacian. The graph convolution uses Laplacian eigendecomposition

which is computationally expensive. Defferrard et al. [19] approximate smooth filters in the

2



spectral domain by Chebyshev polynomials. Kipf and Welling [35] simplify the convolutional

layer by exploiting first-order Chebyshev polynomial for filters. Following this line, several

acceleration methods for graph convolutional networks are proposed [12, 11]. Graph wavelet

neural networks [64] replace graph Fourier transform by graph wavelet transform in the graph

convolution, where Chebyshev polynomials are used to approximate the graph wavelet basis

[28]. Although GWNN circumvents the Laplacian eigendecomposition, the matrix inner-product

operations are nevertheless not avoidable in wavelet transforms for convolution computation.

Graph convolutional networks with attention mechanisms [55, 56] can effectively learn the

importance between nodes and their neighbors, which is more suitable for node classification task

(than graph-based regression). But much computational and memory cost is required to perform

the attention mechanism in the convolutional layers. Yang et al. [66] propose Shortest Path

Graph Attention Network (SPAGAN) by using path-based attention mechanism in node-level

aggregation, which leads to superior results than GAT [56] concerning neighbor-based attention.

Some GNN models [40, 61, 1] use multi-scale information and higher order adjacency matrix

to define graph convolution. To increase the scalability of the model for large-scale graph,

Hamilton et al. [26] propose the framework Graph-SAGE with sampling and a neural network

based aggregator over a fixed size node neighbor. Artwood and Twosley develope diffusion

convolutional neural networks [3] by using diffusion operator for graph convolution. MoNet [44]

introduces a general methodology to define spatial-based graph convolution by the weighted

average of multiple weighting functions on neighborhood. Gilmer et al. [22] provide a unified

framework, the Message Passing Neural Networks (MPNNs), by which some existing GNN

models are incorporated. Xu et al. [65] present a theoretical analysis for the expressive power of

GNNs and propose a simple but powerful variation of GNN, the graph isomorphism network.

By generalizing the graph Laplacian to maximal entropy transition matrix derived from a path

integral, [43] proposes a new framework called PAN that involves every path linking the message

sender and receiver with learnable weights depending on the path length.

3. Graph convolution with Haar basis

3.1. Graph Fourier Transform

Bruna et al. [9] first defined the graph convolution based on spectral graph theory [15] and

the graph Laplacian. An un-directed weighted graph G = (V,E,w) is a triplet with vertices

V , edges E and weights w : E → R. Denote by N := |V | the number of vertices of the graph.

Let l2(G) := {f : V → R | ∑v∈V |f(v)|2 <∞} the real-valued l2 space on the graph with inner

product f · g :=
∑

v∈V f(v)g(v). A basis for l2(G) is a set of vectors {u`}N`=1 on G which are

linearly independent and orthogonal (i.e. u` · u`′ = 0 if ` 6= `′). The (normalized) eigenvectors

{u`}|V |`=1 of the graph Laplacian L forms an orthonormal basis for l2(G). We call the matrix

U := (u1, . . . , uN ) the (graph Fourier) base matrix, whose columns form the graph Fourier basis

for l2(G). The graph convolution can then be defined by

g ? f = U
(
(UT g)� (UT f)

)
, (3.1)

3



where UT f is regarded as the adjoint discrete graph Fourier transform of f , Uc is the forward

discrete graph Fourier transform of c on G and � is the element-wise Hadamard product.

While graph convolution defined in (3.1) is conceptually important, it has some limitations in

practice. First, the base matrix U is obtained by using eigendecomposition of the graph Laplacian

in the sense that L = UΛUT , where Λ is the diagonal matrix of corresponding eigenvalues. The

computational complexity is proportional to O(N3), which is impractical when the number of

vertices of the graph is quite large. Second, the computation of the forward and inverse graph

Fourier transforms (i.e. UT f and Uc) have O(N2) computational cost due to the multiplication

by (dense) matrices U and UT . In general, there is no fast algorithms for the graph Fourier

transforms as the graph nodes are not regular and the matrix U is not sparse. Third, filters

in the spectral domain cannot guarantee the localization in the spatial (vertex) domain, and

O(Ndm) parameters need to be tuned in the convolutional layer with m filters (hidden nodes)

and d features for each vertex.

To alleviate the cost of computing the graph Fourier transform, Chebyshev polynomials [19]

are used to construct localized polynomial filters for graph convolution, where the resulting

graph neural network is called ChebNet. Kipf and Welling [35] simplify ChebNet to obtain graph

convolutional networks (GCNs). However, such a polynomial-based approximation strategy may

lose information in the spectral graph convolutional layer, and matrix multiplication is still

not avoidable as FFTs are not available for graph convolution. Thus, the graph convolution

in this scenario is also computationally expensive, especially for dense graph of large size. We

propose an alternative orthonormal basis that allows fast computation for the corresponding

graph convolution, which then improves the scalability and efficiency of existing graph models.

The basis we use is the Haar basis on a graph. The Haar basis replaces the matrix of eigenvectors

U in (3.1) and forms a highly sparse matrix, which reflects the clustering information of the

graph. The sparsity of the Haar transform matrix allows fast computation (in nearly linear

computational complexity) of the corresponding graph convolution.

3.2. Haar Basis

Haar basis rooted in the theory of Haar wavelet basis as first introduced by Haar [25], is a

special case of Daubechies wavelets [18], and later developed onto graph by Belkin et al. [5],

see also [13]. The construction of the Haar basis exploits a chain of the graph. For a graph

G = (V,E,w), a graph Gcg := (V cg, Ecg, wcg) is called a coarse-grained graph of G if |V cg| ≤ |V |
and each vertex of G associates with exactly one (parent) vertex in Gcg. Each vertex of Gcg is

called a cluster of G. Let J0, J be two integers such that J > J0. A coarse-grained chain for

G is a set of graphs GJ→J0 := (GJ ,GJ−1, . . . ,GJ0) such that GJ = G and Gj is a coarse-grained

graph of Gj+1 for j = J0, J0 + 1, . . . , J − 1. GJ0 is the top level or the coarsest level graph while

GJ is the bottom level or the finest level graph. If the top level GJ0 of the chain has only one

node, GJ→J0 becomes a tree. The chain GJ→J0 gives a hierarchical partition for the graph G. For

details about graphs and chains, see examples in [15, 29, 13, 14, 58, 59].

4



Construction of Haar basis. With a chain of the graph, one can generate a Haar basis

for l2(G) following [13], see also [21]. We show the construction of Haar basis on G, as follows.

Step 1. Let Gcg = (V cg, Ecg, wcg) be a coarse-grained graph of G = (V,E,w) with N cg :=

|V cg|. Each vertex vcg ∈ V cg is a cluster vcg = {v ∈ V | v has parent vcg} of G. Order V cg, e.g.,

by degrees of vertices or weights of vertices, as V cg = {vcg
1 , . . . , v

cg
Ncg}. We define N cg vectors φcg

`

on Gcg by

φcg
1 (vcg) :=

1√
N cg

, vcg ∈ V cg, (3.2)

and for ` = 2, . . . , N cg,

φcg
` :=

√
N cg − `+ 1

N cg − `+ 2

(
χcg
`−1 −

∑Ncg

j=` χ
cg
j

N cg − `+ 1

)
, (3.3)

where χcg
j is the indicator function for the jth vertex vcg

j ∈ V cg on G given by

χcg
j (vcg) :=

1, vcg = vcg
j ,

0, vcg ∈ V cg\{vcg
j }.

Then, the set of functions {φcg
` }N

cg

`=1 forms an orthonormal basis for l2(Gcg).

Note that each v ∈ V belongs to exactly one cluster vcg ∈ V cg. In view of this, for each

` = 1, . . . , N cg, we extend the vector φcg
` on Gcg to a vector φ`,1 on G by

φ`,1(v) :=
φcg
` (vcg)√
|vcg|

, v ∈ vcg,

here |vcg| := k` is the size of the cluster vcg, i.e., the number of vertices in G whose common

parent is vcg. We order the cluster vcg
` , e.g., by degrees of vertices, as

vcg
` = {v`,1, . . . , v`,k`} ⊆ V.

For k = 2, . . . , k`, similar to (3.3), define

φ`,k =

√
k` − k + 1

k` − k + 2

(
χ`,k−1 −

∑k`
j=k χ`,j

k` − k + 1

)
.

where for j = 1, . . . , k`, χ`,j is given by

χ`,j(v) :=

1, v = v`,j ,

0, v ∈ V \{v`,j}.

One can verify that the resulting {φ`,k : ` = 1, . . . , N cg, k = 1, . . . , k`} is an orthonormal basis

for l2(G).

Step 2. Let GJ→J0 be a coarse-grained chain for the graph G. An orthonormal basis {φ(0)
` }N0

`=1

for l2(GJ0) is generated using (3.2) and (3.3). We then repeatedly use Step 1: for j = J0 +1, . . . , J ,

we generate an orthonormal basis {φ(j)
` }

Nj

`=1 for l2(Gj) from the orthonormal basis {φ(j−1)
` }Nj−1

`=1

5



-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Haar transform matrix

g1

g1 g1

g1 g1 g1 g1

g2

g2 g2

g2 g2 g2 g2

f1 f2 f3 f4 f5 f6 f7 f8

�
Adjoint

Adjoint

g ? f
Forward

(b) Haar convolution

Figure 1: (a) The 8 × 8 matrix Φ of the Haar Basis for a graph G with 8 nodes. The green entries

are zero and the matrix Φ is sparse. The Haar basis is created based on the coarse-grained chain

G2→0 := (G2,G1,G0), where G2,G1,G0 are graphs with 8, 4, 2 nodes. For j = 1, 2, each node of Gj−1 is

a cluster of nodes in Gj . Each column of Φ is a member of the Haar basis. The first two columns can

be compressed as an orthonormal basis of G0 and the first to fourth columns can be reduced to the

orthonormal basis for G1. (b) Haar Convolution g ? f using the Haar basis of (a), where the weight

sharing for filter vector g is defined by the chain G2→0 and the g ? f is the forward Haar transform of

the point-wise product of the adjoint Haar transforms of g and f , where the Haar transforms have a fast

algorithmic implementation.

for the coarse-grained graph Gj−1 that was derived in the previous steps. We call the sequence

{φ` := φ
(J)
` }N`=1 of vectors at the finest level, the Haar global orthonormal basis or simply the

Haar basis for G associated with the chain GJ→J0 . The orthonormal basis {φ(j)
` }

Nj

`=1 for l2(Gj),
j = J − 1, J − 2, . . . , J0 is called the associated (orthonormal) basis for the Haar basis {φ`}N`=1.

Proposition 3.1. For each level j = J0, . . . , J , the sequence {φ(j)
` }

Nj

`=1 is an orthonormal basis

for l2(Gj), and in particular, {φ`}N`=1 is an orthonormal basis for l2(G); each basis {φ(j)
` }

Nj

`=1 is

the Haar basis for the chain Gj→J0.

Proposition 3.2. Let GJ→J0 be a coarse-grained chain for G. If each parent of level Gj, j =

J − 1, J − 2, . . . , J0, contains at least two children, the number of different values of the Haar

basis φ`, ` = 1, . . . , N , is bounded by a constant.

The Haar basis depends on the chain for the graph. If the topology of the graph is well

reflected by the clustering of the chain, the Haar basis then contains the crucial geometric

information of the graph. For example, by using k-means clustering algorithm [41] or METIS

algorithm [34] one can generate a chain that reveals desired geometric properties of the graph.

Figure 1b shows a chain G2→0 with 3 levels of a graph G. Here, for each level, the vertices

6



are given by

V (2) = V = {v1, . . . , v8},
V (1) = {v(1)

1 , v
(1)
2 , v

(1)
3 , v

(1)
4 }

= {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}},
V (0) = {v(0)

1 , v
(0)
2 } = {{v(1)

1 , v
(1)
2 }, {v

(1)
3 , v

(1)
4 }}.

Figure 1a shows the Haar basis for the chain G2→0. There are in total 8 vectors of the Haar

basis for G. From construction, the Haar basis φ` and the associated basis φ
(j)
` , j = 1, 2 are

closely connected: the φ1, φ2 can be reduced to φ
(0)
1 , φ

(0)
2 and the φ1, φ2, φ3, φ4 can be reduced to

φ
(1)
1 , φ

(1)
2 , φ

(1)
3 , φ

(1)
4 . This connection would allow fast algorithms for Haar transforms as given

in Algorithms 1 and 2. In Figure 1, the matrix ΦT of the 8 Haar basis vectors φ` on G has

good sparsity. With the increase of the graph size, the sparsity of the Haar transform matrix Φ

becomes more prominent, which we will demonstrate in the experiments in Section 6.3.

3.3. Haar Convolution

With the Haar basis constructed in Section 3.2, we can define Haar convolution as an

alternative form of spectral graph convolution in (3.1). Let {φ`}N`=1 be the Haar basis associated

with a chain GJ→J0 of a graph G. Denoted by Φ = (φ1, . . . , φN ) ∈ RN×N the Haar transform

matrix. We define by

ΦT f =

(∑
v∈V

φ1(v)f(v), . . . ,
∑
v∈V

φN (v)f(v)

)
∈ RN (3.4)

the adjoint Haar transform for graph data f on G, and by

(Φc)(v) =
N∑
`=1

φ`(v)c`, v ∈ V, (3.5)

the forward Haar transform for (coefficients) vector c := (c1, . . . , cN ) ∈ RN . We call the matrix

Φ Haar transform matrix.

Definition 3.3. The Haar convolution for filter g and graph data f on G can be defined as

g ? f = Φ((ΦT g)� (ΦT f)). (3.6)

Computationally, (3.6) is obtained by performing forward Haar transform of the element-wise

Hadamard product between adjoint Haar transform of g and f . Compared with the Laplacian

based spectral graph convolution given in (3.1), the Haar convolution has the following features.

(i) the Haar transform matrix Φ is sparse and the computation of ΦT f or Φc is more efficient

than UT f or Uc; (ii) as the Haar basis is constructed based on the chain of the graph which

reflects the clustering property for vertices, the Haar convolution can extract abstract features

for input graph data, that is, it provides a learning representation for graph-structured data;

7



(iii) by means of the sparsity of Haar basis, the adjoint and forward Haar transforms can be

implemented by fast algorithms, which have nearly linear computational complexity (with respect

to the size of the input graph).

We can presume the filter in the “frequency domain” and skip adjoint Haar transform of

filter g (i.e. ΦT g), and then write Haar convolution as g ? f = Φ(g � (ΦT f)).

3.4. Fast Algorithms for Haar Transforms and Haar Convolution

The computation of Haar transforms can also be accelerated by using sparse matrix mul-

tiplications due to the sparsity of the Haar transform matrix. This would allow the linear

computational complexity O(εN) with sparsity 1− ε of the Haar transform matrix. Moreover,

a similar computational strategy to the sparse Fourier transforms [31, 33] can be applied so

that the Haar transforms achieve faster implementation with time complexity O(k logN) for

graph with N nodes and the Haar transform matrix with k non-zero elements. By the sparsity of

Haar transform matrix, fast Haar transforms (FHTs) which includes adjoint Haar transform and

forward Haar transform can be developed to speed up the implementation of Haar convolution.

Theorems 4.1 and 4.2 in the following section show that the computational cost of adjoint and

forward Haar transform can reach O(N) and O(N(logN)2). They are nearly linear computa-

tional complexity and are thus called fast Haar transforms (FHTs). The Haar convolution in

(3.6) consists of two adjoint Haar transforms and a forward Haar transform, and can then be

evaluated in O(N(logN)2) steps.

3.5. Weight Sharing

We can use weight sharing in Haar convolution to reduce the number of parameters of the

filter, and capture the common feature of the nodes which lie in the same cluster. As the resulting

clusters contain information of neighbourhood, we can use the chain GJ→J0 for weight sharing:

the vertices of the graph which have the same parent at a coarser level share a parameter of the

filter. Here, the coarser level is some fixed level J1, J0 ≤ J1 < J . For example, the weight sharing

rule for chain G2→0 in Figure 1b is: assign the weight gi for each node v
(0)
i , i = 1, 2 on the top

level, the filter (or the weight vector) at the bottom level is then g = (g1, g1, g1, g1, g2, g2, g2, g2).

In this way, one has used the filter g with two independent parameters g1, g2 to convolute with

the input vector with 8 components.

4. Fast algorithms under Haar basis

For the Haar convolution introduced in Definition 3 (see Eq. 3.6), we can develop an efficient

computational strategy by virtue of the sparsity of the Haar transform matrix. Let GJ→J0 be a

coarse-grained chain of the graph G. For convenience, we label the vertices of the level-j graph

Gj by Vj :=
{
v

(j)
1 , . . . , v

(j)
Nj

}
.

8



4.1. Fast Computation for Adjoint Haar Transform ΦT f

The adjoint Haar transform in (3.4) can be computed in the following way. For j =

J0, . . . , J − 1, let c
(j)
k be the number of children of v

(j)
k , i.e. the number of vertices of Gj+1 which

belongs to the cluster v
(j)
k , for k = 1, . . . , Nj . For j = J , let c

(J)
k ≡ 1 for k = 1, . . . , N . For

j = J0, . . . , J and k = 1, . . . , Nj , we define the weight factor for v
(j)
k by

w
(j)
k :=

1√
c

(j)
k

. (4.1)

Let WJ→J0 := {w(j)
k | j = J0, . . . , J, k = 1, . . . , Nj}. Then, the weighted chain (GJ→J0 ,WJ→J0) is

a filtration if each parent in the chain GJ→J0 has at least two children. See e.g. [13, Definition 2.3].

Let {φ`}N`=1 be the Haar basis obtained in Step 2 of Section 3.2, which we also call the Haar

basis for the filtration (GJ→J0 ,WJ→J0) of a graph G. We define the weighted sum for f ∈ l2(G)

by

S(J)
(
f, v

(J)
k

)
:= f(v

(J)
k ), v

(J)
k ∈ GJ , (4.2)

and for j = J0, . . . , J − 1 and v
(j)
k ∈ Gj ,

S(j)
(
f, v

(j)
k

)
:=

∑
v
(j+1)

k′ ∈v(j)k

w
(j+1)
k′ S(j+1)

(
f, v

(j+1)
k′

)
. (4.3)

For each vertex v
(j)
k of Gj , the S(j)

(
f, v

(j)
k

)
is the weighted sum of the S(j+1)

(
f, v

(j+1)
k′

)
at the

level j + 1 for those vertices v
(j+1)
k′ of Gj+1 whose parent is v

(j)
k .

The adjoint Haar transform can be evaluated by the following theorem.

Theorem 4.1. Let {φ`}N`=1 be the Haar basis for the filtration (GJ→J0 ,WJ→J0) of a graph G.

Then, the adjoint Haar transform for the vector f on the graph G can be computed by, for

` = 1, . . . , N ,

(ΦT f)` =

Nj∑
k=1

S(j)
(
f, v

(j)
k

)
w

(j)
k φ

(j)
` (v

(j)
k ), (4.4)

where j is the smallest possible number in {J0, . . . , J} such that φ
(j)
` is the `th member of the

orthonormal basis {φ(j)
` }

Nj

`=1 for l2(Gj) associated with the Haar basis {φ`}N`=1 (see Section 3.2),

v
(j)
k are the vertices of Gj and weights w

(j)
k are given by (4.1).

9



Proof. By the relation between φ` and φ
(j)
` ,

(ΦT f)` =

N∑
k=1

f(v
(J)
k )φ`(v

(J)
k )

=

NJ−1∑
k′=1

 ∑
v
(J)
k ∈v

(J−1)

k′

f(v
(J)
k )

w
(J−1)
k′ φ

(J−1)
` (v

(J−1)
k′ )

=

NJ−1∑
k′=1

S(J−1)(f, v
(J−1)
k′ )w

(J−1)
k′ φ

(J−1)
` (v

(J−1)
k′ )

=

NJ−2∑
k′′=1

 ∑
v
(J−1)

k′ ∈v(J−2)

k′′

S(J−1)(f, v
(J−1)
k′ )w

(J−1)
k′


× w(J−2)

k′′ φ
(J−2)
` (v

(J−2)
k′′ )

=

NJ−2∑
k′′=1

S(J−2)(f, v
(J−2)
k′′ )w

(J−2)
k′′ φ

(J−2)
` (v

(J−2)
k′′ )

· · ·

=

Nj∑
k=1

S(j)(f, v
(j)
k )w

(j)
k φ

(j)
` (v

(j)
k ),

where we recursively compute the summation to obtain the last equality, thus completing the

proof.

4.2. Fast Computation for Forward Haar Transform Φc

The forward Haar transform in (3.5) can be computed, as follows.

Theorem 4.2. Let {φ`}N`=1 be the Haar basis for a filtration (GJ→J0,WJ→J0) of graph G and

{φ(j)
` }

Nj

`=1, j = J0, . . . , J be the associated bases at Gj. Then, the forward Haar transform for

vector c = (c1, . . . , cN ) ∈ RN can be computed by, for k = 1, . . . , N ,

(Φc)k =
J∑

j=1

W
(j)
k

 Nj∑
`=Nj−1+1

c`φ
(j)
` (v

(j)
kj

)

 ,

where for k = 1, . . . , N , v
(j)
kj

is the parent (ancestor) of v
(J)
k at level j, and W

(J)
k := 1 and

W
(j)
k :=

j∏
n=2

w
(n)
kn

for j = J0, . . . , J − 1, (4.5)

where the weight factors w
(n)
kn

for n = 1, . . . , J are given by (4.1).

Proof. Let Nj := |Vj | for j = J0, . . . , J and NJ0−1 := 0. For k = 1, . . . , NJ , let v
(J)
k the kth

vertex of GJ . For i = J0, . . . , J − 1, there exists ki = 1, . . . , Nj such that v
(i)
ki

the parent at level i

10



of v
(J)
k . By the property of the Haar basis, for each vector φ` there exists j ∈ {J0, . . . , J} such

that ` ∈ {Nj−1 + 1, . . . , Nj}, φ` is a constant for the vertices of GJ = G which have the same

parent at level j. Then,

φ`(v
(J)
k ) = w

(J−1)
kJ−1

φ
(J−1)
` (v

(J−1)
kJ−1

)

= w
(J−1)
kJ−1

w
(J−2)
kJ−2

φ
(J−2)
` (v

(J−2)
kJ−2

)

=

 j∏
n=J0

w
(n)
kn

φ
(j)
` (v

(j)
kj

)

= W
(j)
k φ

(j)
` (v

(j)
kj

). (4.6)

where the product of the weights in the third equality only depends upon the level j and the

vertex v
(1)
k , and we have let

W
(j)
k :=

j∏
n=1

w
(n)
kn

in the last equality. By (4.6),

Φ(c, v
(J)
k ) =

N∑
`=1

c`φ`(v
(J)
k ) =

J∑
j=J0

Nj∑
`=Nj−1+1

c`φ`(v
(J)
k )

=
J∑

j=J0

Nj∑
`=Nj−1+1

c`W
(j)
k φ

(j)
` (v

(j)
kj

)

=
J∑

j=J0

W
(j)
k

 Nj∑
`=Nj−1+1

c`φ
(j)
` (v

(j)
kj

)

 ,

thus completing the proof.

4.3. Computational Complexity Analysis

Algorithm 1 gives the computational steps for evaluating (ΦT f)`, ` = 1, . . . , N in Theorem 4.1.

In the first step of Algorithm 1, the total number of summations to compute all elements of

Step 1 is no more than
∑j−1

i=0 Ni+1; In the second step, the total number of multiplication and

summation operations is at most 2
∑N

`=1C = O(N). Here C is the constant which bounds the

number of distinct values of the Haar basis (see Proposition 3.2). Thus, the total computational

cost of Algorithm 1 is O(N).

11



Algorithm 1: Fast Haar Transforms: Adjoint

Input : A real-valued vector f = (f1, . . . , fN ) on the graph G; the Haar basis {φ`}N`=1

for l2(G) with the chain GJ→J0 and the associated basis {φ(j)
` }

Nj

`=1 for l2(Gj).
Output : The vector ΦT f by adjoint Haar transform in (3.4) under the basis {φ`}N`=1.

1. Evaluate the following sums for j = J0, . . . , J − 1 in (4.2) and (4.3).

S(j)
(
f, v

(j)
k

)
, v

(j)
k ∈ Vj .

2. For each `, let j be the integer such that Nj−1 + 1 ≤ ` ≤ Nj , where NJ0−1 := 0.

Evaluating
∑Nj

k=1 S(j)(f, v
(j)
k )w

(j)
k φ

(j)
` (v

(j)
k ) in (4.4) by the following two steps.

(a) Compute the product for all v
(j)
k ∈ Vj :

T`(f, v
(j)
k ) = S(j)(f, v

(j)
k )w

(j)
k φ

(j)
` (v

(j)
k ).

(b) Evaluate sum
∑Nj

k=1 T`(f, v
(j)
k ).

By Theorem 4.2, the evaluation of the forward Haar transform Φc can be implemented by

Algorithm 2. In the first step of Algorithm 2, the number of multiplications is no more than∑N
`=1C = O(N); in the second step, the number of summations is no more than

∑N
`=1C = O(N);

in the third step, the computational steps are O(N(logN)2); in the last step, the total number of

summations and multiplications is O(N logN). Thus, the total computational cost of Algorithm 2

is O(N(logN)2).

Hence, Algorithms 1 and 2 have linear computational cost (up to a logN term). We call

these two algorithms fast Haar transforms (FHTs) under Haar basis on the graph.

Proposition 4.3. The adjoint and forward Haar Transforms in Algorithms 1 and 2 are invertible

in that for any vector f on graph G,

f = Φ(ΦT f).

Proposition 4.3 shows that the forward Haar transform can recover graph data f from the

adjoint Haar transform ΦT f . This means that forward and adjoint Haar transforms have zero-loss

in graph data transmission.

Haar convolution, which computational strategy given by Algorithm 3, can be evaluated fast

by FHTs in Algorithms 1 and 2. From the above discussion, the total computational cost of

Algorithm 3 is O(N(logN)2). That is, using FHTs, Haar convolution can be evaluated in near

linear computational complexity.

5. Graph neural networks with Haar transforms

5.1. Models

The Haar convolution in (3.6) can be applied to any architecture of graph neural network.

For graph classification and graph-based regression tasks, we use the model with convolutional

12



layer consisting of m-hidden neutrons and a non-linear activation function σ (e.g. ReLU): for

i = 1, 2 . . . ,m,

Algorithm 2: Fast Haar Transforms: Forward

Input : A real-valued vector c = (c1, . . . , cN ) on graph G; the Haar basis {φ`}N`=1

for l2(G) associated with the chain GJ→J0 and the associated orthonormal

basis {φ(j)
` }

Nj

`=1 for l2(Gj).
Output : The vector Φc by forward Haar transform in (3.5) under the basis {φ`}N`=1.

1. For each `, let j be the integer such that Nj−1 + 1 ≤ ` ≤ Nj , where NJ0−1 := 0.

For all k = 1, . . . , Nj , compute the product

t`(c, v
(j)
k ) := c`φ

(j)
` (v

(j)
k ).

2. For each j = J0, . . . , J , evaluate the sums

s(c, v
(j)
kj

) :=
∑Nj

`=Nj−1+1 t`(c, v
(j)
kj

).

3. Compute the W
(j)
k for k = 1, . . . , N and j = J0, . . . , J − 1 by (4.5).

4. Compute the weighted sum

(Φc)k =
∑J

j=J0
W

(j)
k s(c, v

(j)
kj

), k = 1, . . . , N.

Algorithm 3: Fast Haar Convolution

Input : Real-valued vectors g := (g1, . . . , gN ) and f := (f1, . . . , fN ) on G;

chain GJ0→J of graph G where GJ := G.

Output : Haar convolution g ? f of g and f as given by Definition 3.6.

1. Compute the adjoint Haar transforms ΦT g and ΦT f by Algorithm 1.

2. Compute the point-wise product of ΦT g and ΦT f .

3. Compute the forward Haar transform of (ΦT g)� (ΦT f) by Algorithm 2.

fout
i = σ

 d∑
j=1

Φ
(
gi,j � (ΦT f in

j )
)

= σ

 d∑
j=1

ΦGi,jΦ
T f in

j

 , (5.1)

for input graph data F in = (f in
1 , f

in
2 , . . . , f

in
d ) ∈ RN×d with N nodes and d input features (for

each vertex). Here, the feature f in
j of the input graph data is convolved with the learnable

filter gi,j ∈ RN by Haar transforms, and then all Haar-transformed features are fused as a new

feature fout
i . This gives the output matrix F out = (fout

1 , fout
2 , . . . , fout

m ) ∈ RN×m. If we write

Gi,j ∈ RN×N as the diagonal matrix of filter gi,j , the convolutional layer has the compact form

of the second equality in (5.1). We call the GNN with Haar convolution in (5.1) HANet.

Weight detaching. For each layer, O(Ndm) parameters need to be tuned. To reduce the

number of parameters, we can replace the filter matrix Gi,j by a unified diagonal filter matrix G

13



and a compression matrix W ∈ Rd×m (which is a detaching approach used in conventional CNN

for extracting features). This then leads to a concise form

F out = σ
(
Φ
(
G(ΦTF in)

)
W
)
. (5.2)

Then, it requires O(N + dm) parameters to train. Recall that constructing the Haar basis uses

a chain GJ→J0 for the graph G, one can implement weight sharing based on the same chain

structure. Specifically, one can use k-means clustering algorithm [41] or METIS algorithm [34]

to generate a chain, which captures clustering feature of the graph. Suppose a coarser level J1

(J0 ≤ J1 < J) having K clusters, then all vertices in the same cluster share the common filter

parameter. The corresponding children vertices in level J1 − 1 share the same filter parameters

as used in their parent vertices, and the bottom level corresponds to the whole set of vertices of

the input graph. Thus, the number of parameters is reduced to O(K + dm).

The HANet uses d times fast Haar convolutions (consisting of d-times adjoint and forward

Haar transforms). The computational cost of Haar convolution in HANet is then O(N(logN)2d).

Deep GNNs with Haar convolution are built by stacking up multiple Haar convolutional layers

of (5.2), followed by an output layer.

à
...... à à

...

...

Graph-structured input Haar convolution and pooling layers (Multiple) Fully connected layer

Figure 2: Network architecture of HANet with multiple Haar convolutional layers and

then fully connected by softmax.

HANet for graph classification and graph-based regression. These two tasks can be

formulated as the following supervised learning: Given a collection of graph-structured data

{fi}ni=1 with labels {yi}ni=1, the classification task is to find a mapping that can classify or regress

labels. The model of HANet uses a similar architecture of canonical deep convolutional neural

network: it has several convolutional layers and fully connected dense layers but the convolutional

layer uses Haar convolution. Figure 2a shows the flowchat for the architecture of HANet with

multiple Haar convolutional layers: the chain GJ→J0 and the Haar basis φ` and the associated

14



G0

G2

G
ra
p
h
C
oa
rs
en
in
g

w1

w1

w1 w1

w1

w1 w1

w2

w2

w2 w2

w2

w2 w2

G0

G2

W
eigh

t
S
h
arin

g

Figure 3: Weight sharing for Haar convolution and graph coarsening for graph pooling

for the chain G2→0.

basis φ
(j)
` , j = J0, . . . , J are pre-computed; graph-structured input f is Haar-convoluted with

filter g which is of length NJ but with NJ−1 independent parameters, where g is expanded from

level J − 1 to J by weight sharing, and the output fout of the first layer is the ReLU of the Haar

convolution of g and f ; the graph pooling reduces fout of size NJ to f̃ in of size NJ−1; and in the

second Haar convolutional layer, the input is f̃ in and the Haar basis is φ
(J−1)
` ; the following layers

continue this process; the final Haar convolutional layer is fully connected by one or multiple

dense layers. For classification, an additional dense layer with softmax function is used.

HANet for node classification. In node classification, the whole graph is the only single

input data, where a fractional proportion of nodes are labeled. The output is the whole graph

with all unknown labels predicted. Here we use the following GNN with two layers.

HANet(f in) := softmax
(

HC(2)
(
ReLU

(
HC(1)

(
f in
))))

(5.3)

where HC(1) and HC(2) are the Haar convolutional layers

HC(i)(f) := Â(w
(i)
1 ? f)w

(i)
2 , i = 1, 2,

where we use the modified Haar convolution w
(i)
1 ? f = Φ

(
w

(i)
1 � (ΦT f)

)
. For a graph with N

nodes and M features, in the first Haar convolutional layer, the filter w
(1)
1 contains N0 ×M

parameters and is extended to a matrix N ×M by weight sharing, where N0 is the number of

nodes at the coarsest level. The w
(1)
2 plays the role of weight compression and feature extraction.

The first layer is activated by the rectifier and the second layer is fully connected with softmax.

The Â, which is defined in [35], is the square matrix of size N determined by the adjacency matrix

of the input graph. This smoothing operation compensates the information loss in coarsening by

taking a weighted average of features of each vertex and its neighbours. For vertices that are

densely connected, it makes their features more similar and significantly improves the ease of

node classification task [38].

15



5.2. Technical Components

Fast computation for HANet. Complexity analysis of FHTs above shows that HANet is

more efficient than GNNs with graph Fourier basis. The graph convolution of the latter incurs

O(N3) computational cost. Many methods have been proposed to improve the computational

performance for graph convolution. For example, ChebNet [19] and GCN [35] use localized

polynomial approximation for the spectral filters; GWNN [64] constructs sparse and localized

graph wavelet basis matrix for graph convolution. These methods implement the multiplication

between a sparse matrix (e.g. the refined adjacency matrix Â in GCN or the wavelet basis

matrix ψs in GWNN [64]) and input matrix F in the convolutional layer. However, to compute

either ÂF or ψsF , the computational complexity, which is roughly proportional to O(εN2d),

to a great extent relies on the sparse degree of Â or ψs, where ε, ε ∈ [0, 1], represents the

percentage of non-zero elements in a square matrix. The O(εN2d) may be significantly higher

than O(N(logN)2d) as long as ε is not extremely small, indicating that our FHTs outperform

these methods especially when N is quite large and ε ≈ 1. In addition, the fast computation for

sparse matrix multiplication (see [23]) can further speed up the evaluation of Haar convolution.

HANet with sparse FHTs can be developed by using the strategy in [31, 33].

Chain. In HANet, the chain and the Haar basis can be pre-computed since the graph

structure is already known. In particular, the chain is computed by a modified version of the

METIS algorithm [34], which fast generates a chain for the weight matrix of a graph. In many

cases, the parents of a chain from METIS have at least two children, and then the weighted

chain is a filtration and Proposition 3.2 applies.

Weight sharing for filter. In the HANet, one can use weight sharing given in Section 3.3

for filters. By doing this, we exploit the local topological property of the graph-structured

data to extract the common feature of neighbour nodes and meanwhile reduce the independent

parameters of the filter. Weight sharing can be added in each convolutional layer of HANet. For

chain GJ→J0 with which the Haar basis is associated, weight sharing can act from the coarsest

level J0 to the finest level J or from any level coarser than J to J . For a filtration, the weight

sharing shrinks the number of parameters by at least rate 2−(J−J0), see Figure 2b.

Graph pooling. We use max graph pooling between two convolutional layers of HANet.

Each pooled input is the maximum over children nodes of each node of the current layer of

the chain. The pooling uses the same chain as the Haar basis at the same layer. For example,

after pooling, the second layer uses the chain G(J−1)→J0 , as illustrated in Figure 2. By the

construction of Haar basis in Section 3.2, the new Haar basis associated with G(J−1)→J0 is exactly

the pre-computed basis {φ(J−1)
` }NJ−1

`=1 .

6. Experiments

In this section, we test the proposed HANet on Quantum Chemistry (graph-based regression)

and Citation Networks (node classification). The experiments for graph classification were carried

out under the Google Colab environment with Tesla K80 GPU while for node classification

16



were under the UNIX environment with a 3.3GHz Intel Core i7 CPU and 16GB RAM. All the

methods were implemented in TensorFlow. SGD+Momentum and Adam optimization methods

were used in the experiments.

6.1. Quantum Chemistry for Graph-based Regression

We test HANet on QM7 [6, 49], which contains 7165 molecules. Each molecule is represented

by the Coulomb (energy) matrix and its atomization energy. We treat each molecule as a

weighted graph where the nodes are the atoms and the adjacency matrix is the 23× 23-Coulomb

matrix of the molecule, where the true number of atoms may be less than 23. The atomization

energy of the molecule is the label. As in most cases the adjacency matrix is not fully ranked,

we take the average of the Coulomb matrices of all molecules as the common adjacency matrix,

for which we generate the Haar basis. To avoid exploding gradients in parameter optimization,

we take the standard score of each entry over all Coulomb matrices as input.

Table 1: Test mean absolute error (MAE) comparison on QM7

Method Test MAE

RF [7] 122.7± 4.2

Multitask [48] 123.7± 15.6

KRR [16] 110.3± 4.7

GC [2] 77.9± 2.1

Multitask(CM) [63] 10.8± 1.3

KRR(CM) [63] 10.2± 0.3

DTNN [52] 8.8± 3.5

ANI-1 [54] 2.86± 0.25

HANet 9.50 ± 0.71

Table 2: Sparsity of Haar basis and CPU time for basis generating, adjoint FHT (AFHT)

and forward FHT (FFHT) on citation networks data set

Dataset Basis Size Sparsity Generating Time (s) AFHT Time (s) FFHT Time (s)

Citeseer 3327 99.58% 1.93509 0.05276 0.05450

Cora 2708 98.84% 0.86429 0.06908 0.05515

Pubmed 19717 99.84% 62.67185 1.08775 1.55694

The network architecture of HANet contains 2 layers of Haar convolution with 8 and 2 filters

and then 2 fully connected layers with 400 and 100 neurons. As the graph is not big, we do not

use graph pooling or weight sharing. Following [22], we use mean squared error (MSE) plus `2

regularization as the loss function in training and mean absolute error (MAE) as the test metric.

We repeat the experiment over 5 splits with the same proportion of training and test data but

17



(a) Haar transform matrix Φ

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) CPU time of FFTs

102 103
10-2

100

102

104

(c) CPU time of generating basis

Figure 4: (a) Haar basis Φ for Cora with a chain of 11 levels (by METIS). Each column

is a vector of the Haar basis. The sparsity of the Haar transform matrix is 98.84% (i.e.

the proportion of zero entries). (b) Comparison of CPU time for FHTs and Direct Matrix

Product for the Haar basis for graphs with nodes ≤ 5, 000. (c) Comparison of CPU time

for generating the orthonormal bases for Haar and graph Laplacian on graphs with nodes

≤ 2, 000.

with different random seeds. We report the average performance and standard deviation for the

HANet in Table 1 compared against other public results [63] by methods Random Forest (RF) [7],

Multitask Networks (Multitask) [48], Kernel Ridge Regression (KRR) [16], Graph Convolutional

models (GC) [2], Deep Tensor Neural Network (DTNN) [52], ANI-1 [54], KRR and Multitask

with Coulomb Matrix featurization (KRR(CM)/Multitask(CM)) [63]. It shows that HANet

ranks third in the list with average test MAE 9.50 and average relative MAE 4.31× 10−6, which

offers a good approximator for QM7 regression.

6.2. Citation Networks for Node Classification

Table 3: Test accuracy comparison on citation networks

Method Citeseer Cora Pubmed

MLP [35] 55.1 46.5 71.4

ManiReg [5] 60.1 59.5 70.7

SemiEmb [60] 59.6 59.0 71.1

LP [70] 45.3 68.0 63.0

DeepWalk [47] 43.2 67.2 65.3

ICA [42] 69.1 75.1 73.9

Planetoid [67] 64.7 75.7 77.2

ChebNet [19] 69.8 81.2 74.4

GCN [35] 70.3 81.5 79.0

HANet 70.1 81.9 79.3

We test the model in (5.3) on citation networks Citeseer, Cora and Pubmed [53], following

the experimental setup of [67, 35]. The Citeseer, Cora and Pubmed are 6, 7 and 3 classification

18



problems with nodes 3327, 2708 and 19717, edges 4732, 5429 and 44338, features 3703, 1433 and

500, and label rates 0.036, 0.052 and 0.003 respectively. In Table 3, we compare the performance

of the model (5.3) of HANet with methods Multilayer Perceptron (MLP), Manifold Regularization

(ManiReg) [5], Semi-supervised Embedding (SemiEmb) [60], Traditional Label Propagation (LP)

[70], DeepWalk [47], Link-based Classification (ICA) [42], Planetoid [67], ChebNet [19] and

GCN [35]. We repeat the experiment 10 times with different random seeds and report the average

test accuracy of HANet. As shown in Table 3, HANet has the top test accuracies on Cora and

Pubmed and ranks second on Citeseer.

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 5: Main figure: Mean and standard deviation of validation accuracies of HANet

and GCN on Cora with epoch ≤ 200. Figure in the lower right corner: Validation loss

function of HANet and GCN.

Figure 5 shows the mean and standard deviation of validation accuracies and the validation

loss with up to epoch 200 of HANet and GCN. HANet achieves slightly higher max accuracy as

well as smaller standard deviation, and the loss also converges faster than GCN.

6.3. Haar Basis and FHTs

In Figure 4a, we show the matrix of the Haar basis vectors for Cora, which has sparsity (i.e.

the proportion of zero entries) 98.84%. The associated chain G10→0 has 2708, 928, 352, 172,

83, 41, 20, 10, 5, 2, 1 nodes from level 10 to 0. Figure 4b shows the comparison of time for

FHTs with direct matrix product. It illustrates that FHTs have nearly linear computational

cost while the cost of matrix product grows at O(N3) for a graph of size N . Figure 4c shows

the comparison of time for generating the Haar basis and the basis for graph Laplacian: Haar

basis needs significantly less time than that for graph Laplacian. Table 2 gives the sparsity

(i.e. the proportion of zero entries) and the CPU time for generating Haar basis and FHTs

19



on three datasets. All sparsity values for three datasets are very high (around 99%), and the

computational cost of FHTs is proportional to N .

7. Conclusion

We introduce Haar basis and Haar transforms on a coarse-grained chain on the graph. From

Haar transforms, we define Haar convolution for GNNs, which has a fast implementation in view

of the sparsity of the Haar transform matrix. Haar convolution gives a sparse representation of

graph data and captures the geometric property of the graph data, and thus provides an effective

graph convolution for any architecture of GNN.

Acknowledgements

Ming Li acknowledges support by the National Natural Science Foundation of China under

Grant 61802132 and Grant 61877020, and the China Post-Doctoral Science Foundation under

Grant 2019T120737. Yu Guang Wang acknowledges support from the Australian Research

Council under Discovery Project DP180100506. This work is supported by the National Science

Foundation under Grant No. DMS-1439786 while Zheng Ma and Yu Guang Wang were in

residence at the Institute for Computational and Experimental Research in Mathematics in

Providence, RI, during Collaborate@ICERM 2019. Xiaosheng Zhuang acknowledges support by

Research Grants Council of Hong Kong (Project No. CityU 11301419).

References

References

[1] Abu-El-Haija, S., Kapoor, A., Perozzi, B., and Lee, J. (2018). N-GCN: Multi-scale graph

convolution for semi-supervised node classification. In Proceedings of International Workshop

on Mining and Learning with Graphs.

[2] Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande, V. (2017). Low data drug discovery

with one-shot learning. ACS Central Science, 3(4):283–293.

[3] Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks. In NIPS, pages

1993–2001.

[4] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,

M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational inductive

biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

[5] Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples. Journal of Machine Learning

Research, 7(Nov):2399–2434.

[6] Blum, L. C. and Reymond, J.-L. (2009). 970 million druglike small molecules for virtual

screening in the chemical universe database GDB-13. Journal of the American Chemical

Society, 131:8732.

20



[7] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[8] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric

deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42.

[9] Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014). Spectral networks and locally

connected networks on graphs. In ICLR.

[10] Chen, D., Lv, J., and Yi, Z. (2017). Graph regularized restricted Boltzmann machine. IEEE

Transactions on Neural Networks and Learning Systems, 29(6):2651–2659.

[11] Chen, J., Ma, T., and Xiao, C. (2018a). FastGCN: fast learning with graph convolutional

networks via importance sampling. In ICLR.

[12] Chen, J., Zhu, J., and Song, L. (2018b). Stochastic training of graph convolutional networks

with variance reduction. In ICML, pages 941–949.

[13] Chui, C., Filbir, F., and Mhaskar, H. (2015). Representation of functions on big data:

graphs and trees. Applied and Computational Harmonic Analysis, 38(3):489 – 509.

[14] Chui, C. K., Mhaskar, H., and Zhuang, X. (2018). Representation of functions on big data

associated with directed graphs. Applied and Computational Harmonic Analysis, 44(1):165 –

188.

[15] Chung, F. R. and Graham, F. C. (1997). Spectral graph theory. American Mathematical

Society.

[16] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–

297.

[17] Da San Martino, G., Navarin, N., and Sperduti, A. (2017). Tree-based kernel for graphs

with continuous attributes. IEEE Transactions on Neural Networks and Learning Systems,

29(7):3270–3276.

[18] Daubechies, I. (1992). Ten lectures on wavelets. SIAM.

[19] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks

on graphs with fast localized spectral filtering. In NIPS, pages 3844–3852.

[20] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik,

A., and Adams, R. P. (2015). Convolutional networks on graphs for learning molecular

fingerprints. In NIPS, pages 2224–2232.

[21] Gavish, M., Nadler, B., and Coifman, R. R. (2010). Multiscale wavelets on trees, graphs

and high dimensional data: theory and applications to semi supervised learning. In ICML,

pages 367–374.

[22] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural

message passing for quantum chemistry. In ICML, pages 1263–1272.

[23] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations. JHU Press.

[24] Goyal, P. and Ferrara, E. (2018). Graph embedding techniques, applications, and perfor-

mance: A survey. Knowledge-Based Systems, 151:78–94.

21



[25] Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen,

69(3):331–371.

[26] Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representation learning on large

graphs. In NIPS, pages 1024–1034.

[27] Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning on graphs:

Methods and applications. IEEE Data Engineering Bulletin.

[28] Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011a). Wavelets on graphs via

spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150.

[29] Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011b). Wavelets on graphs via

spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150.

[30] Han, M. and Xu, M. (2017). Laplacian echo state network for multivariate time series

prediction. IEEE Transactions on Neural Networks and Learning Systems, 29(1):238–244.

[31] Hassanieh, H., Indyk, P., Katabi, D., and Price, E. (2012). Simple and practical algorithm

for sparse fourier transform. In Proceedings of the 23rd Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1183–1194.

[32] Henaff, M., Bruna, J., and LeCun, Y. (2015). Deep convolutional networks on graph-

structured data. arXiv preprint arXiv:1506.05163.

[33] Indyk, P., Kapralov, M., and Price, E. (2014). (Nearly) sample-optimal sparse fourier

transform. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 480–499.

[34] Karypis, G. and Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392.

[35] Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional

networks. In ICLR.

[36] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In NIPS, pages 1097–1105.

[37] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

[38] Li, Q., Han, Z., and Wu, X.-M. (2018). Deeper insights into graph convolutional networks

for semi-supervised learning. AAAI.

[39] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2016). Gated graph sequence neural

networks. In ICLR.

[40] Liao, R., Zhao, Z., Urtasun, R., and Zemel, R. S. (2019). LanczosNet: Multi-scale deep

graph convolutional networks. In ICLR.

[41] Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129–137.

[42] Lu, Q. and Getoor, L. (2003). Link-based classification. In ICML, pages 496–503.

[43] Ma, Z., Li, M., and Wang, Y. G. (2019). PAN: Path integral based convolution for deep

22



graph neural networks. In ICML Workshop on Learning and Reasoning with Graph-Structured

Representation.

[44] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. (2017).

Geometric deep learning on graphs and manifolds using mixture model CNNs. In CVPR,

pages 5425–5434.

[45] Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2015). A review of relational

machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.

[46] Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning convolutional neural networks

for graphs. In ICML, pages 2014–2023.

[47] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). DeepWalk: Online learning of social

representations. In ACM SIGKDD, pages 701–710.

[48] Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., and Pande, V. (2015).

Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072.

[49] Rupp, M., Tkatchenko, A., Müller, K.-R., and von Lilienfeld, O. A. (2012). Fast and accurate

modeling of molecular atomization energies with machine learning. Physical Review Letters,

108:058301.

[50] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). Com-

putational capabilities of graph neural networks. IEEE Transactions on Neural Networks,

20(1):81–102.

[51] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The

graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80.

[52] Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., and Tkatchenko, A. (2017).

Quantum-chemical insights from deep tensor neural networks. Nature Communications,

8:13890.

[53] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008).

Collective classification in network data. AI Magazine, 29(3):93.

[54] Smith, J. S., Isayev, O., and Roitberg, A. E. (2017). ANI-1: An extensible neural network

potential with DFT accuracy at force field computational cost. Chemical Science, 8(4):3192–

3203.

[55] Thekumparampil, K. K., Wang, C., Oh, S., and Li, L.-J. (2018). Attention-based graph

neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735.

[56] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2018).

Graph attention networks. In ICLR.

[57] Wang, Y. G., Li, M., Ma, Z., Montufar, G., Zhuang, X., and Fan, Y. (2019). HaarPooling:

Graph pooling with compressive haar basis. arXiv preprint arXiv:1909.11580.

[58] Wang, Y. G. and Zhuang, X. (2018). Tight framelets and fast framelet filter bank transforms

on manifolds. Applied and Computational Harmonic Analysis.

[59] Wang, Y. G. and Zhuang, X. (2019). Tight framelets on graphs for multiscale analysis. In

Wavelets and Sparsity XVIII, SPIE Proc., pages 11138–11.

23



[60] Weston, J., Ratle, F., Mobahi, H., and Collobert, R. (2012). Deep learning via semi-

supervised embedding. In Neural Networks: Tricks of the Trade, pages 639–655.

[61] Wu, F., Zhang, T., Souza Jr, A. H. d., Fifty, C., Yu, T., and Weinberger, K. Q. (2019a).

Simplifying graph convolutional networks. In ICML.

[62] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2019b). A comprehensive

survey on graph neural networks. arXiv preprint arXiv:1901.00596.

[63] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K.,

and Pande, V. (2018). MoleculeNet: A benchmark for molecular machine learning. Chemical

Science, 9(2):513–530.

[64] Xu, B., Shen, H., Cao, Q., Qiu, Y., and Cheng, X. (2019a). Graph wavelet neural network.

In ICLR.

[65] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019b). How powerful are graph neural

networks? In ICLR.

[66] Yang, Y., Wang, X., Song, M., Yuan, J., and Tao, D. (2019). SPAGAN: Shortest path graph

attention network. In IJCAI.

[67] Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting semi-supervised learning

with graph embeddings. In ICML, pages 40–48.

[68] Zhang, Z., Cui, P., and Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint

arXiv:1812.04202.

[69] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., and Sun, M. (2018). Graph neural networks:

A review of methods and applications. arXiv preprint arXiv:1812.08434.

[70] Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning using Gaussian

fields and harmonic functions. In ICML, pages 912–919.

24


	1 Introduction
	2 Related Work
	3 Graph convolution with Haar basis
	3.1 Graph Fourier Transform
	3.2 Haar Basis
	3.3 Haar Convolution
	3.4 Fast Algorithms for Haar Transforms and Haar Convolution
	3.5 Weight Sharing

	4 Fast algorithms under Haar basis
	4.1 Fast Computation for Adjoint Haar Transform Tf
	4.2 Fast Computation for Forward Haar Transform c
	4.3 Computational Complexity Analysis

	5 Graph neural networks with Haar transforms
	5.1 Models
	5.2 Technical Components

	6 Experiments
	6.1 Quantum Chemistry for Graph-based Regression
	6.2 Citation Networks for Node Classification
	6.3 Haar Basis and FHTs

	7 Conclusion

