
Missing Data Imputation with Adversarially-trained

Graph Convolutional Networks

Indro Spinellia, Simone Scardapanea,∗, Aurelio Uncinia

aDepartment of Information Engineering, Electronics and Telecommunications (DIET),
Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

Missing data imputation (MDI) is the task of replacing missing values in a
dataset with alternative, predicted ones. Because of the widespread presence
of missing data, it is a fundamental problem in many scientific disciplines.
Popular methods for MDI use global statistics computed from the entire
dataset (e.g., the feature-wise medians), or build predictive models operat-
ing independently on every instance. In this paper we propose a more general
framework for MDI, leveraging recent work in the field of graph neural net-
works (GNNs). We formulate the MDI task in terms of a graph denoising
autoencoder, where each edge of the graph encodes the similarity between
two patterns. A GNN encoder learns to build intermediate representations
for each example by interleaving classical projection layers and locally com-
bining information between neighbors, while another decoding GNN learns
to reconstruct the full imputed dataset from this intermediate embedding.
In order to speed-up training and improve the performance, we use a combi-
nation of multiple losses, including an adversarial loss implemented with the
Wasserstein metric and a gradient penalty. We also explore a few extensions
to the basic architecture involving the use of residual connections between
layers, and of global statistics computed from the dataset to improve the
accuracy. On a large experimental evaluation with varying levels of artificial
noise, we show that our method is on par or better than several alternative
imputation methods. On three datasets with pre-existing missing values,
we show that our method is robust to the choice of a downstream classifier,
obtaining similar or slightly higher results compared to other choices.

∗Corresponding author. Phone: +39 06 44585495, Fax: +39 06 4873300.
Email address: simone.scardapane@uniroma1.it (Simone Scardapane)

Published in Neural Networks (editorial preprint)

ar
X

iv
:1

90
5.

01
90

7v
2

 [
cs

.L
G

]
 2

4
Ju

n
20

20

Keywords: Imputation; Graph neural network; Graph data; Convolutional
network

1. Introduction

While machine learning and deep learning have achieved tremendous re-
sults over the last years (Goodfellow et al., 2016), with new breaktroughs
arising constantly (e.g., in drug discovery (Chen et al., 2018)), the vast ma-
jority of supervised learning methods still require datasets with complete in-
formation. At the same time, many real-world problems require dealing with
incomplete data, such as in the biomedical or insurance sectors (Van Buuren,
2018). For this reason, flexible missing data imputation (MDI) methods are
a fundamental component for widespread adoption of machine learning. An
MDI algorithm takes a dataset with missing values in some of its input vec-
tors, and replaces these values with some appropriately predicted ones in
order to obtain a full dataset.1 In particular, there is the need for powerful
multivariate imputation methods able to work in a variety of data generation
regimes (Yoon et al., 2018).

It has been recognized for a while that data imputation can be framed
under a predictive framework, and classical machine learning methods (e.g.,
for regression and classification) might be adapted for this task (Bertsimas
et al., 2017). However, some care must be taken when adapting them, for
two fundamental reasons. Firstly, different inputs in general have different
missing components, while most machine learning models assume full input
vectors. Secondly, MDI might be a simple preprocessing step for downstream
learning tasks, and in this case performance in terms of reconstruction might
not be a perfect proxy for classification/regression accuracy later on.

In general, the resulting predictive approaches to MDI can be classified
depending on whether they try to build a global model for data imputation,
or whether they use similar data points to infer the missing components.
Algorithms in the latter class include using simple statistics computed from
the entire dataset (e.g., medians), or more advanced k-NN strategies (Lak-
shminarayan et al., 1996). In the former case, instead, we have simple linear

1In the literature, this problem is also called missing value imputation (MVI) (Lin and
Tsai, 2019). In this paper, we use the terms data and value interchangeably based on
context.

2

models (Lakshminarayan et al., 1996), support vector machines (Wang et al.,
2006) or, more recently, deep neural architectures (Yoon et al., 2018). These
are surveyed more in-depth in Section 2.1.

We argue that a more powerful technique for MDI should exploit both
ideas, i.e., use similar data points for each imputation and global models
built from the overall dataset. In fact, recently a large class of neural network
techniques have emerged that are able to model and exploit this kind of struc-
tured information (in the form of relationships between examples), by work-
ing in the domain of graphs (Bronstein et al., 2017; Battaglia et al., 2018).
These models have been applied successfully to a wide range of problems,
among which recommender systems (Ying et al., 2018), quantum chemistry
(Gilmer et al., 2017), entity extraction from relational data (Schlichtkrull
et al., 2018), semi-supervised learning (Kipf and Welling, 2017), and many
others. However, to the best of our knowledge these techniques have never
been applied to MDI. To overcome this, in this paper we define an archi-
tecture for MDI based on a specific class of graph neural networks, namely,
graph convolutional networks (GCN), and empirically evaluate it on a large
set of benchmark datasets (Kipf and Welling, 2017).

Contributions of the paper

Our generic framework for MDI is shown later on in Figure 1. We frame
the overall problem in terms of a GCN autoencoder,2 that learns to recon-
struct the overall dataset conditioned on some artificial noise added during
the training phase (similar to a classical denoising autoencoder (Vincent
et al., 2008)). To build a graph of similarities between points we leverage
prior literature on manifold regularization (Belkin et al., 2006), and we de-
scribe a simple technique that was found to work well in most situations.

After describing the basic architecture, we also detail three extensions to
it that are able to improve either the accuracy or the speed of convergence:

• Firstly, we train the autoencoder with a mixture of standard loss func-
tions and an adversarial loss, which was shown to provide significant
improvements for denoising autoencoders in the non-graph case (Yoon
et al., 2018).

2We use the term autoencoder to refer to any architecture that learns to map an input
(or a corrupted version in the case of denoising autoencoders) to itself.

3

• Secondly, we motivate another extension with the inclusion of resid-
ual connections from the input to the output layer, similar to residual
networks (He et al., 2016).

• Finally, we also describe how to include global information on the
dataset (e.g., means and medians for all feature columns) using a
generic context vector in input to the GCN layers.

We test our overall architecture on a large benchmark of datasets with
varying levels of artificially-added noise and three real-world datasets with
pre-existing missing values (two biomedical datasets and one time-series
dataset). For the former, we show that our proposed GINN method is on par
or outperforms several existing state-of-the-art approaches, especially when
we consider high levels of injected artificial noise, e.g., up to 50% of missing
values in the original dataset. For the latter, we show that our method is ro-
bust to the selection of a downstream classifier, with an accuracy comparable
to any other combination of an imputation method and a classifier.

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we describe the
relation of this paper with state-of-the-art methods for MDI (Section 2.1)
and graph neural networks (Section 2.2). The GCN, which is the building
block of our method, is described in Section 3. Then, our graph imputation
neural network (GINN) framework and all its extensions are described in
Section 4. After a large experimental evaluation in Section 5, we provide
some concluding remarks in Section 6.

2. Related work

2.1. Missing data imputation

Algorithms for MDI can be categorized depending on whether they per-
form univariate or multivariate imputation, and on whether they provide
one or multiple imputations for each missing datum (Van Buuren, 2018).
In addition, different algorithms can make different theoretical assumptions
on whether the data is missing completely at random (MCAR) or not. In
this paper we consider multivariate imputation, which is standard in the
neural network’s literature. In the following we briefly review state-of-the-
approaches on this topic, including several algorithms that we will compare
to, and discuss their relation with our proposal.

4

A popular technique for MDI is multiple imputation using chained equa-
tions (MICE) (Azur et al., 2011; White et al., 2011; Van Buuren, 2018).
MICE iteratively imputes each variable in the dataset by keeping the other
variables fixed, repeating this for multiple cycles, each time drawing one
or more observations from some predictive distribution on that variable.
Although MICE has shown very good performance in some settings, espe-
cially in the bio-medical sector, the assumptions beyond MICE (especially
the MCAR assumption) might result in biased predictions and subsequently
lower accuracy (Azur et al., 2011).

In the machine learning community, it was recognized very soon that
MDI can be framed as a predictive task, on which variants of standard su-
pervised algorithms can be applied, including k-nearest neighbors (k-NN)
(Acuna and Rodriguez, 2004), decision trees (Lakshminarayan et al., 1996),
support vector techniques (Wang et al., 2006), and several others. However,
these techniques have always achieved mixed performance in practice com-
pared to simpler strategies such as mean imputation (Bertsimas et al., 2017).
k-NN is limited in making weighted averages of similar feature vectors, while
other algorithms are required to build a global model of the dataset to be
used for imputation. In this paper we also frame the MDI problem in a pre-
dictive context, but our proposed model can leverage both global aspects of
the dataset and local similarities between different points.

More recently, there has been a surge of interest in applying deep learning
techniques to the problem of MDI. These include multiple imputation with
deep denoising autoencoders (MIDA) (Gondara and Wang, 2018), combina-
tions of deep networks with probabilistic mixture models (Śmieja et al., 2018),
recurrent neural networks (Bengio and Gingras, 1996; Che et al., 2018), or
generative models including generative adversarial networks (Yoon et al.,
2018) and variational autoencoders (Nazabal et al., 2018). Generally speak-
ing, these methods are better at capturing complex correlations in the data
(and in the missing data process), thanks to their multiple layers of nonlinear
computations, but they still require to build a global model from the dataset,
while ignoring potentially important contributions from similar points. The
method we propose can be seen as an extension both of the MIDA algorithm
and of Yoon et al. (2018), but we focus on a more recent class of NNs, graph
NNs, to capture local dependencies. We briefly survey the literature on this
topic next.

5

2.2. Graph neural networks

Some of the earliest works on extending NNs to the domain of generic
graphs were presented in Gori et al. (2005); Scarselli et al. (2009), and later
reformulated in Li et al. (2015) in a more recent context. These works were
mainly motivated by the analogies between unrolled recurrent neural net-
works and the diffusion of information across a graph.

Another line of work, upon which we build our proposal, considers instead
the extension of convolutional neural networks to graph domains under the
general term of geometric deep learning (Defferrard et al., 2016; Kipf and
Welling, 2017; Bronstein et al., 2017) (and (Micheli, 2009) for earlier works
on a similar context). This is done by exploiting recent ideas in the field
of graph signal processing (Sandryhaila and Moura, 2013; Sardellitti et al.,
2017) to define a more general convolution operator able to work on irregular
data structures. In particular, in this work we use the GCN of Kipf and
Welling (2017), that for every layer includes a linear diffusion process across
neighbors. Additional interesting lines of research in building GNNs that we
briefly mention include earlier works on graph autoencoders (Sperduti, 1994),
graph attention networks (Veličković et al., 2018), non-local NNs (Wang
et al., 2018), graph embeddings (Zhang et al., 2018), and tree/graph echo
state networks (Gallicchio and Micheli, 2010, 2013). An overview of many
of these ideas is provided in Battaglia et al. (2018). We explore some of the
ideas from Battaglia et al. (2018) in our framework by discussing how to
include global information about the dataset in the reconstruction process in
Section 4.5.

Finally, our work is related to the field of manifold regularization (Belkin
et al., 2005, 2006), a semi-supervised class of methods that exploits simi-
larity information among patterns to enforce a regularization term on the
optimization process. We build upon them for the construction of our simi-
larity graph, a necessary step for exploiting the power of GNNs.

3. Graph convolutional networks

Because the GCN layer is a fundamental building block of our method,
we briefly describe it here before moving on to the proposed framework for
MDI. Consider a set of n vertices of a directed graph, whose connectivity is
described by a (weighted) adjacency matrix A ∈ Rn×n, where Aij is different
from 0 if and only if nodes i and j are connected. Each node i has an
associated vector of features xi ∈ Rd, that we collect row-wise in the matrix

6

X ∈ Rn×d. We would like to have a generic neural network component
able to process simultaneously the features at every node, but also take into
consideration their relations, expressed through the adjacency matrix.

One way to extend the idea of convolutional networks to this domain
is the so-called graph Fourier transform (Bruna et al., 2013; Sandryhaila
and Moura, 2013). Define the Laplacian matrix of the graph as L = D−A,
where D is the diagonal degree matrix with Dii =

∑n
j=1Aij. We can perform

the eigendecomposition of this matrix as L = UΛUT , where U is a matrix
collecting column-wise the eigenvectors of L, and Λ is a diagonal matrix with
the associated eigenvalues. The equivalent of a classical Fourier transform
on a signal can be defined in the graph domain as (Sandryhaila and Moura,
2013):

X̂ = UTX , (1)

and the inverse transform as X = UX̂. Using this, a straightforward way to
define a convolutional layer on graphs (Bruna et al., 2013) is to first apply the
graph Fourier transform, apply a trainable transformation on the frequency
components (associated to the eigenvalues of the Laplacian), and then back-
transform using the inverse Fourier transform. While viable, this approach
is however costly and impractical in most cases.

Later authors (Defferrard et al., 2016; Kipf and Welling, 2017) have noted
that by applying a restricted class of filters to the frequency components
(polynomials), it is possible to work directly in the graph domain using
polynomials of the Laplacian itself. In particular, Kipf and Welling (2017)
proposed the GCN with the use of linear filters, resulting in the following
canonical layer:

H1 = g (LXΘ1) , (2)

where Θ1 is a matrix of adaptable coefficients, and g(·) a generic element-
wise activation function, such as the ReLU g(s) = max (0, s).3 Note that
the right-multiplication by Θ1 is akin to a classical feedforward layer, while
the left-multiplication by L allows to propagate the information across the
immediate neighbors of each node. Multiple layers of this form can then be

3To avoid some numerical instabilities, it is possible to renormalize the Laplacian to
properly bound its eigenvalues, ad done in Kipf and Welling (2017). More in general, one
can substitute the Laplacian with any valid graph shift operator (Gama et al., 2019).

7

stacked to obtain a complete graph NN. Importantly, for a generic network
with L layers of the form (2), the output of node i will depend on the outputs
of its neighbors up to degree L.

4. Proposed framework for missing data imputation

In MDI, we are also given a data matrix X, which has the same size
and semantic as in the previous section, but in general no graph information
associated with it. Some of the values of X, denoted by a binary mask M ∈
{0, 1}n×d, are missing and need to be imputed for downstream processing
or classification/regression. We assume to have either numerical features,
which are properly normalized, or categorical features that are represented
with one-hot encoding. For other types of features, e.g., text, a previous
embedding step is needed (Pennington et al., 2014).4

Predictive models for MDI described previously in Section 2.1 build a
function f(xi) for imputing missing values of a single example xi, but in
general, do not exploit directly the potentially important information con-
tained in points that might be similar to it. Here, we propose to model this
constraint explicitly by building f using GCN blocks, as shown schemati-
cally in Figure 1. To do this, we first need to build a graph of inter-patterns
similarities from X, as described in the next section.

4.1. Construction of the similarity graph

The first fundamental step of our method is the discovery of the graph
structure underneath the tabular representation of the data. In the resulting
graph, each feature vector in the dataset is encoded as a node of the graph,
while the adjacency matrix A is derived from a similarity matrix S of the
features vectors. As we stated before, constructing a similarity graph from
the data is a known problem in the literature, and here we leverage some
work from the field of manifold regularization (Belkin et al., 2005, 2006),
adapting it for handling the presence of missing data. A small overview on
possible alternatives is provided at the end of this section.

4When facing a supervised learning problem, for which there is an additional label
(e.g., class) associated to each input xi, we can easily include the training labels in the
imputation process by concatenating them to the input vector.

8

Sim
ilary	G

raph	C
onstruction

Cross	entropy	loss
	(categorical	features)

Adversarial	loss

Original	dataset

Clean	example

Missing	values

Imputed	dataset

Clean	example

Imputed	values

Mean-squared	error
(continuous	features)

Graph	Convolutional	Encoder

Graph	Convolutional	Decoder
(Node-wise	imputer)

Critic

Figure 1: Schematics of the proposed framework for missing data imputation. In green
we show the components that are trained end-to-end on the imputation task. In orange
we show the different losses. Details on all the steps are provided in the text.

9

Figure 2: Subset of the graph reconstructed from the Iris dataset using our pipeline. For
each node the color intensity represents the number of connections and the size the number
of missing features. A clear correlation can be seen between the two.

The similarity matrix is computed pairwise for all features vectors using
the Euclidean distance, but each time only the non-missing elements of both
vectors are used for the computation (Eirola et al., 2013):

Sij = d(xi � (Mi �Mj),xj � (Mi �Mj)) (3)

where � stands for the Hadamard product between vectors, Mi is the ith
column of the binary matrix M, and d is the Euclidean distance.

In practice, it is common to have sparse similarity matrices (Belkin et al.,
2006), most notably for efficiency and computational reasons (see in particu-
lar the discussion on computational cost later on), allowing most operations
to scale at-most linearly in the number of neighbors. In order to have a sparse
graph, with meaningful connections between similar nodes, we apply a prun-
ing step over the similarity matrix S inspired from the large-scale manifold
learning algorithm in Talwalkar et al. (2013). A threshold is applied indepen-
dently over every row of S, by computing a percentile for each row that will
act as a threshold, such that only the connections above this threshold inside
every row are kept. To make this process more robust, we iterate it twice.
The result is used as adjacency matrix for the GCN in the next section.

10

We found that the 97.72nd percentile provides good results over all the
datasets used in the benchmark of Section 5, allowing us to discard at each
step around 95% of all the possible connections (in accordance with Talwalkar
et al. (2013)). Figure 2 shows a subset of the graph produced with this
procedure starting from the Iris dataset; here we display the relationship
between the number of missing features in a node and its degree. It can be
seen from the figure how nodes with very few non-zero elements are correlated
with a higher number of connections.5

On the construction of the similarity graph: the method described in this
section, which is the one we follow in our experiments and in our open-source
implementation, was found to provide good empirical performance. Nonethe-
less, we underline that in the proposed GINN framework, the similarity graph
can be built according to any guideline or method available in the literature.
For example, classical alternative choices in the semi-supervised literature in-
clude binary weights on the edges, heat kernel similarity (Belkin et al., 2006),
or selecting a fixed number of neighbors instead of a percentile (Geng et al.,
2012). If the inputs contain text, images, or similar data, cosine similarity on
custom pre-trained embeddings are also a popular choice (Bui et al., 2018).
We leave an analysis of these different alternatives to future work.

4.2. Autoencoder architecture

Autoencoders are composed by an encoder which maps the inputs to an
intermediate representation in a different dimensional space h = encode(x),
and a decoder that maps h ∈ Rm to the original dimensional space x̂ =
decode(h). We use m > d for an overcomplete representation, thus mapping
the input into a higher dimensional space with the aim of helping data re-
covery. Our graph imputer neural network (GINN) will thus be defined as
follows:

H = ReLU (LXΘ1)

X̂ = Sigmoid (LHΘ2) (4)

5This is due to the absence of a re-normalization step in the computation of the similar-
ity matrix (Eirola et al., 2013). In practice, we have found this setup to work better than
renormalizing all distance measures, possibly because of the increased degree of elements
with multiple missing values.

11

where L has been defined in Section 3 (the extension to networks with mul-
tiple hidden layers being straightforward).

Note that we cannot trivially train the autoencoder on the missing values,
because they are not known in the training stage. To solve this, we adopt
a denoising version of the autoencoder (Vincent et al., 2008), in which for
every optimization step we add additional masking noise on the input, by
the means of an inverted dropout layer applied directly on the input of the
network. In particular, at each optimization step, we randomly remove 50%
of the remaining inputs.6 In this way, the autoencoder learns to reconstruct
any part of the input matrix, similarly to (Gondara and Wang, 2018).

We train the whole model end-to-end minimizing the reconstruction error
over the non-missing elements of the dataset. The loss function is thus defined
as the combination of a mean squared error (MSE) for the numerical variables
and the cross-entropy (CE) for the categorical variables:

LA = αMSE(X, X̂) + (1− α)CE(X, X̂) (5)

where MSE always returns 0 for categorical values and vice versa for CE.
α is an additional hyper-parameter that we initialize as the ratio between
the number of numerical columns of the dataset and the total number of
columns. Alternatively, it can be tuned like the other hyper-parameters of
the network, although we have not found any definite improvement in doing
so.

Computational cost of the model

The computational cost of our approach is related mostly to (a) the one-
time cost of constructing the similarity graph, and (b) the use of a GCN
layer instead of a standard feedforward layer as in alternative autoencoder
architectures (Gondara and Wang, 2018). The cost of point (a) is well-
studied in the literature on large-scale similarity search, e.g., (Dong et al.,
2011), and many techniques and implementations exist for making it efficient.
The cost of the GCN layer is discussed in Kipf and Welling (2017, Section
3.2). In particular, using a sparse representation for the adjacency matrix
reduces the memory requirement to O(|E|), where E is the number of edges
in the graph, and the cost of computing (2) to O(|E|CF), where C and F

6The only exception: whenever training labels are used as inputs for the imputation
process, we do not apply dropout on them.

12

are the number of input and output features respectively. In practice, when
using an early-stopping strategy for training, we have found the training time
for our GINN algorithm (including point (a)) to be significantly faster than
alternative neural approaches and on-par with non-neural competitors such
as MICE, e.g., see Fig. 4 in the additional materials for a comparison.

4.3. Adversarial training of the autoencoder

In order to speed up training, we use an additional adversarial training
strategy where a critic, a feedforward network in our case, learns to distin-
guish between imputed and real data. This is inspired by generative adver-
sarial networks (Goodfellow et al., 2014) and was found to have significant
effects in several reconstructions tasks, particularly in the medical domain
(Ker et al., 2018). In particular, having an adversarial loss during reconstruc-
tion forces the reconstructed vector to lie close to the natural distribution of
the original patterns (Shen et al., 2019).

To train jointly autoencoder and critic and have a stable training we used
the Wasserstein distance introduced in Arjovsky et al. (2017), which is infor-
mally defined as the minimum cost of transporting mass in order to transform
a distribution q into a distribution p. Using the Kantorovich-Rubinstein du-
ality (Villani, 2008) the objective function is obtained as follows:

min
A

max
C∈D

E
x∼Preal

[C(x)]− E
x̂∼Pimp

[C(x̂))] (6)

where D is the set of 1-Lipschitz functions, Pimp is the model distribution
implicitly defined by our GCN autoencoder x̂ = A(x), and Preal is the un-
known data distribution. Practically, Eq. (6) can be computed by drawing
random mini-batches of data and approximating expectations with averages.

The original loss in Arjovsky et al. (2017) used weight clipping to force
the Lipschitz property. A further step towards training stability, introduced
in Gulrajani et al. (2017), is to use a gradient penalty instead of the weight
clipping, obtaining the final loss:

LC = E
x̂∼Pimp

[C(x̂)]− E
x∼Preal

[C(x)] + λ E
x̃∼Px̃

[
(‖∇x̃C(x̃)‖2 − 1)2

]
(7)

where λ is an additional hyper-parameter. We define Px̃ as sampling uni-
formly from the combination of the real distribution Pimp and from the dis-
tribution resulting from the imputation Pimp. This means that the feature

13

vector x̃ will be composed by both real and imputed elements in almost equal
quantity. This distance is continuous and differentiable thus, the more we
train the critic, the more reliable the gradients are. Following standard prac-
tice in the GAN literature, in our implementation the GCN autoencoder is
trained once for every five optimization steps of the critic, and the total loss
becomes:

LD = LA − E
x̂∼Pimp

[C(x̂)] (8)

since it must fool the critic and minimize the reconstruction error at the same
time.

4.4. Including skip connections in the model

The autoencoder itself generates an approximate reconstruction of the
dataset, while the critic loss guides the autoencoder in this process. However,
our main scope is the imputation of values not present in the data. For this
task we want a greater contribution coming from the most similar nodes.
For this reason, we introduce an additional skip layer which consists always
in a graph convolution operation but propagating the information across the
immediate neighbors of each node without the node itself. This prevents the
autoencoder from learning the identity function.

The decoding layer becomes:

X̂ = Sigmoid
(
LHΘ2 + L̃XΘ3

)
(9)

where L̃ is computed similarly to L (as described in Section 3), but starting
from an adjacency matrix without self loops. This is shown schematically in
Figure 3.

4.5. Including global statistics from the dataset

Another extension we explore is the possibility of including global in-
formation on the dataset during the computation of the autoencoder. The
inclusion of a global set of attributes, in the context of graph neural networks,
was described in-depth by Battaglia et al. (2018).

As a proof of concept, in our case we set as global attribute vector g
for the graph some statistical information of the dataset, including mean or
mode of every attribute. The global component can be taken into account
in the last layer, weighting their contribution for the update of each node:

14

N N

N

N N

Input

Encoder Imputer

Output

Skip

Figure 3: Schematics of the graph autoencoder with the skip connection. We highlight
the nodes involved, directly or indirectly by the convolution for the update of the node N.
The encoding phase involves 1-hop neighbors, decoding/imputation phase instead involves
nodes up to 2-hops. The skip connections involves 1-hop neighbors without considering
node N.

X̂ = Sigmoid
(
LHΘ2 + L̃XΘ3 + Θ4g

)
(10)

In addition, if the computation of the global information is differentiable,
we can compute a loss term with respect to the global attributes of the
original dataset:

L = Ld + γMSE(global(X̂), global(X)) (11)

where γ is some additional weighting term.

15

5. Experimental evaluation

We divide our experimental evaluation in five subsections. Firstly, fol-
lowing common literature, we evaluate the proposed GINN framework on 20
real-world datasets from the UCI Machine Learning Repository (Dua and
Graff, 2017) to which we artificially add some desired level of missing val-
ues, to evaluate the imputation performances. The characteristics of these
20 datasets are summarized in Table 1. This selection contains categorical,
numerical, and mixed datasets, ranging from 150 observation to 30000 and
from only 4 attributes to almost 40. Every dataset is divided into training
70% and test 30% sets. Missingness is introduced completely at random on
the training set with 4 different levels of noise: 10%, 20%, 30%, and 50%.
Our evaluation will focus first on imputation performance as described in
Section 5.1, then on the accuracy of post-imputation prediction in Section
5.2. We then perform a comprehensive ablation study of the architecture in
Section 5.3, and an evaluation of the performance of the algorithm on new
data in Section 5.4.

Secondly, in Section 5.5 we evaluate the performance of the algorithm
on three real-world datasets with pre-existing (i.e., non artificially induced)
missing values. In this part we also evaluate the computational cost of the
method when compared to other state-of-the-art approaches. In one case,
missing values are also present in the training labels, in which case we provide
an application of our method to a semi-supervised scenario (as described later
on).

For all the benchmarks, we use an embedding dimension of the hidden
layer of 128, sufficient for an overcomplete representation for all the datasets
involved, and we train the model for a maximum of 10000 iterations with an
early stopping strategy for the reconstruction loss over the known elements.
The critic used is a simple 3-layer feed-forward network trained 5 times for
each optimization step of the autoencoder. We used the Adam optimizer
(Kingma and Ba, 2014) for both networks with a learning rate of 1 × 10−3

and 1×10−5 respectively for autoencoder and critic. When label information
is available for the datasets, we consider the training labels as an additional
feature of each input vector, but we remove this information when processing
new (validation or test) data. All experiments are repeated five times and
we collect average performance and standard deviation.

All the code for replicating our experiments and using the GINN algo-

16

rithm is released as an open-source library on the web.7

Name observations numerical attr. categorical attr.

abalone 4177 8 0
anuran-calls 7195 22 3
balance-scale 625 4 0
breast-cancer-diagnostic 569 30 0
car-evaluation 1728 0 6
default-credit-card 30000 13 10
electrical-grid-stability 10000 14 0
heart 303 8 5
ionosphere 351 34 0
iris 150 5 0
page-blocks 5473 10 0
phishing 1353 0 9
satellite 6435 36 0
tic-tac-toe 958 0 9
turkiye-student-evaluation 5820 0 32
wine-quality-red 1599 11 0
wine-quality-white 4898 11 0
wine 178 13 0
wireless-localization 2000 7 0
yeast 1484 8 0

Table 1: Datasets used for the benchmark. All of them were downloaded from the UCI
repository.

5.1. Imputation Performance

This evaluation focuses on the comparison of MAE and RMSE between
GINN and 6 other state-of-the-art imputation algorithms: MICE (van Bu-
uren and Groothuis-Oudshoorn, 2011), MIDA (Gondara and Wang, 2018),
MissForest (Stekhoven and Buehlmann, 2012), mean (Little and Rubin, 1986),
matrix factorization and k-NN imputation (Botstein et al., 2001). Con-
cerning MICE and MissForest we used the default parameters discussed in
the corresponding papers. For the other methods, we fine-tuned the hyper-
parameters according to the corresponding literature to provide a fair com-

7https://github.com/spindro/GINN

17

https://github.com/spindro/GINN

parison. In particular, we used 1 × 10−3 and 1 × 10−4 as learning rate for
matrix factorization and MIDA with the latter being a 2-layer with 128 units
per layer network like our embedding dimension. Finally, we let k = 5 for
the k-NN. The imputation accuracy for each dataset is presented in Table
2 for the scenario in which 30% of the entries are missing, while the results
for all other levels of missingness (both in terms of RMSE and MAE) are
presented in the supplementary material. We can see from Table 2 that the
proposed GINN method obtains the best imputation performance in almost
half of the datasets, being the second-best in almost all the remaining ones.

To provide a more schematic comparison, in Figure 4 we show the sum-
mary of those results for every level of missing data. In these histograms,
we provide the number of times that each method achieves the best imputa-
tion (on average), i.e. the lowest RMSE in Figure 4(a) and MAE in Figure
4(b). Concerning the lower percentage of missing elements (10%, 20%) our
method is almost on par with the best among the algorithms tested, i.e.,
MissForest. When those percentages increase our method brings a huge im-
provement over the state-of-the-art with the highest difference at 50% where
our method significantly outperforms all other techniques. Aggregating the
results obtained at 30% and 50% percentage of missing features, we have
that our method is the best in 50% of the cases against the 27.5% of its best
competitor MissForest, when looking at the MAE, and 47.5% against 20%
for the RMSE. We defer a statistical analysis of these results to the next
subsection, where we analyze also the results for a downstream predictive
task.

5.2. Predictive Performance

Now we evaluate the performance of standard machine learning algo-
rithms for classification, both binary and multi-class, trained on the various
imputations analyzed previously. We consider 4 different classifiers: a k-NN
classifier with k = 5, regularized logistic regression, C-Support Vector Classi-
fication with an RBF kernel and a random forest classifier with 10 estimators
and a maximum depth of 5. All hyper-parameters are initialized with their
default values in the scikit-learn implementation.8

The classification accuracy is presented in Table 3 for the scenario in
which 30% of the entries in the data matrix are missing, assuming MCAR,

8https://scikit-learn.org/stable/modules/classes.html

18

https://scikit-learn.org/stable/modules/classes.html

R
M

S
E

G
IN

N
M

ID
A

M
IC

E
M

F
R

F
k
-N

N
M

E
D

IA
N

ab
al

on
e

0.
90

4
±

0.
04

8
1.

19
0
±

0.
00

2
1.

06
9
±

0.
05

3
3.

32
1
±

2.
22

0
0
.8

1
1
±

0.
00

8
1.

07
2
±

0.
03

5
1.

11
2
±

0.
00

1
an

u
ra

n
-c

al
ls

0.
07

0
±

0.
00

9
0.

18
7
±

0.
00

1
0.

07
6
±

0.
00

0
0.

09
1
±

0.
00

0
0.

15
4
±

0.
00

3
0
.0

5
8
±

0.
00

0
0.

22
6
±

0.
00

2
b

al
an

ce
-s

ca
le

0.
55

9
±

0.
01

0
0
.4

3
6
±

0.
00

1
0.

57
9
±

0.
00

5
0.

52
1
±

0.
02

1
0.

51
6
±

0.
00

0
0.

58
0
±

0.
00

2
0.

57
7
±

0.
00

1
b

re
as

t-
ca

n
ce

r-
d

ia
gn

os
ti

c
54

.6
33
±

4.
51

9
11

4.
39

0
±

5.
61

2
38

.1
22
±

3.
56

8
23

.5
59
±

2.
96

4
2
1
.1

5
5
±

2.
40

1
39

.6
53
±

6.
12

4
12

7.
64

5
±

6.
90

7
ca

r-
ev

al
u

at
io

n
0
.6

2
3
±

0.
00

3
0.

63
2
±

0.
00

3
0.

63
6
±

0.
00

3
0.

84
5
±

0.
00

0
0.

63
6
±

0.
00

2
0.

63
6
±

0.
00

6
0.

64
9
±

0.
00

2
d

ef
au

lt
-c

re
d

it
-c

ar
d

17
47

9.
40

9
±

28
0.

99
1

19
66

4.
11

5
±

19
7.

61
8

15
68

7.
05

6
±

26
2.

49
9

15
21

2.
92

7
±

38
8.

17
0

1
2
8
9
7
.4

0
6
±

27
9.

29
6

17
29

4.
41

2
±

56
.0

08
23

70
8.

02
7
±

10
0.

79
8

el
ec

tr
ic

al
-g

ri
d

-s
ta

b
il

it
y

1.
53

4
±

0.
00

5
1.

85
7
±

0.
00

3
1.

63
7
±

0.
00

5
1
.4

7
4
±

0.
02

3
1.

53
6
±

0.
00

8
1.

76
3
±

0.
02

8
1.

55
5
±

0.
00

1
h

ea
rt

1
0
.8

8
3
±

2.
00

3
25

.2
12
±

1.
92

6
12

.3
26
±

1.
50

6
11

.3
67
±

1.
74

5
11

.3
68
±

1.
81

4
14

.8
46
±

1.
56

0
11

.7
08
±

1.
72

6
io

n
os

p
h

er
e

0.
42

5
±

0.
00

1
1.

11
8
±

0.
00

5
0.

46
2
±

0.
00

7
34

0.
25

7
±

20
.0

27
0.

40
7
±

0.
00

6
0
.3

8
0
±

0.
00

1
0.

55
1
±

0.
00

4
ir

is
0.

34
9
±

0.
04

7
1.

79
2
±

0.
10

6
0.

37
9
±

0.
00

3
0
.1

0
6
±

0.
26

9
0.

33
3
±

0.
00

8
0.

44
6
±

0.
06

2
1.

15
9
±

0.
05

3
p

ag
e-

b
lo

ck
s

5
3
6
.6

4
5
±

44
.5

94
10

35
.7

50
±

80
.3

23
18

89
.0

68
±

6.
83

0
79

5.
44

1
±

85
.2

33
57

9.
22

7
±

14
7.

15
4

60
4.

17
1
±

33
.6

33
86

9.
47

6
±

49
.5

17
p

h
is

h
in

g
0
.4

9
3
±

0.
00

6
0.

52
9
±

0.
00

6
0.

62
5
±

0.
00

0
0.

59
4
±

0.
00

0
0.

60
6
±

0.
02

0
0.

54
8
±

0.
00

1
0.

58
1
±

0.
00

2
sa

te
ll

it
e

6.
25

6
±

0.
20

0
11

.5
28
±

0.
11

2
4.

48
1
±

0.
01

3
4.

56
2
±

0.
02

4
3
.6

3
4
±

0.
00

5
4.

52
3
±

0.
04

0
18

.3
35
±

0.
06

0
ti

c-
ta

c-
to

e
0
.4

6
9
±

0.
01

0
0.

57
6
±

0.
00

0
0.

65
7
±

0.
00

1
0.

81
6
±

0.
00

5
0.

67
1
±

0.
00

5
0.

62
5
±

0.
00

1
0.

62
2
±

0.
00

1
tu

rk
iy

e-
st

u
d

en
t-

ev
al

u
at

io
n

0.
29

5
±

0.
00

2
0
.2

8
5
±

0.
00

0
0.

53
7
±

0.
00

1
0.

28
7
±

0.
00

0
0.

29
2
±

0.
00

1
0.

30
3
±

0.
00

0
0.

51
5
±

0.
00

1
w

in
e

4
7
.9

0
1
±

7.
29

8
15

4.
34

4
±

22
.9

59
52

.3
58
±

14
.4

01
54

.7
64
±

6.
20

9
48

.6
72
±

8.
52

9
54

.6
36
±

8.
87

4
99

.6
51
±

10
.9

09
w

in
e-

q
u

al
it

y
-r

ed
8
.0

9
9
±

0.
09

7
10

.3
13
±

0.
09

1
9.

09
2
±

0.
07

9
8.

88
3
±

0.
10

0
8.

41
4
±

0.
07

1
9.

75
2
±

0.
07

9
10

.2
65
±

0.
03

1
w

in
e-

q
u

al
it

y
-w

h
it

e
11

.1
88
±

1.
13

3
15

.3
83
±

0.
35

1
11

.1
74
±

0.
18

3
41

.3
24
±

0.
19

6
1
0
.3

5
0
±

0.
15

3
12

.4
54
±

0.
39

1
13

.4
32
±

0.
22

3
w

ir
el

es
s-

lo
ca

li
za

ti
on

4.
85

1
±

0.
22

7
8.

47
0
±

0.
13

1
4.

72
8
±

0.
04

7
1
.8

6
3
±

0.
11

3
4.

21
4
±

0.
10

5
4.

99
5
±

0.
01

0
8.

58
8
±

0.
12

9
ye

as
t

0
.0

8
5
±

0.
00

0
0.

16
2
±

0.
00

2
0.

09
0
±

0.
00

0
0.

09
3
±

0.
00

0
0.

08
6
±

0.
00

0
0.

09
1
±

0.
00

1
0.

10
2
±

0.
00

2

T
ab

le
2:

A
ve

ra
ge

R
o
ot

M
ea

n
S

q
u
ar

ed
E

rr
or

w
it

h
3
0
%

o
f

m
is

si
n

g
el

em
en

ts
.

B
es

t
re

su
lt

s
fo

r
ea

ch
d

a
ta

se
t

is
h

ig
h

li
g
h
te

d
w

it
h

a
b

ol
d

fo
n
t.

O
n
e

st
an

d
ar

d
d

ev
ia

ti
on

is
al

so
p

ro
v
id

ed
.

19

GINN MIDA MICE MF RF KNN MEDIAN
0

5

10

15

20

25

30

co
u

n
t

of
w

in
s

10% missing

20% missing

30% missing

50% missing

(a) Comparison over MAE

GINN MIDA MICE MF RF KNN MEDIAN
0

5

10

15

20

25

30

35

co
u

n
t

of
w

in
s

10% missing

20% missing

30% missing

50% missing

(b) Comparison over RMSE

Figure 4: Number of datasets in which each MDI method achieves (a) lowest average MAE
or (b) lowest average RMSE from the true values. The different colors of the bar stand
for different percentages of missing elements: from the bottom 10% at the lowest to the
top 50% at the highest.

with a random forest classifier. In Figure 5 we show the summary of the
results for each noise level and for each classifier. In these histograms we

20

analyze the number of times each imputation technique allows the classifier
to achieve the best average accuracy. In this comparison, we consider also
the draws.

Our method outperforms competitors with every classification algorithm
tested, and it has the highest number of wins, winning in 85.62% of the
cases. Our method worked very well when paired with SVC and Random for-
est, improving the accuracy for every percentage of missing elements. With
the logistic regression and k-NN classifiers, at the lowest missing percentage
(10%), our method is slightly below the state-of-the-art. As missing percent-
ages increase, we have a huge improvement over the other competitors. This
reflects in the findings of the previous Section and confirms the ability of our
method of being very successful in the case of moderate to severely damaged
datasets.

We corroborate the results of this and the previous section by performing
a statistical analysis of the algorithms according to the guidelines in Demšar
(2006). A Friedman rank test confirms that there are statistical significant
differences both with respect to the RMSE of Figure 4 (p-value of 1.11e−11),
and with respect to the accuracy of the classifiers in Figure 5 (e.g., p-value
for random forest is 1.01e−10). A successive set of Nemenyi post-hoc tests
further confirms statistical significant differences between GINN and all other
methods for the random forest classification in Figure 5, and between GINN
and all other methods except RF for the imputation results in Figure 4.
The full set of rankings and of p-values for these tests can be found in the
additional material for this paper.

5.3. Ablation study

To investigate how much each step described in Section 4 improves our
method, we supervised the quality of imputation and convergence by starting
from a basic autoencoder. As the starting point we used a 2-layer denoising
autoencoder (DAE), obtained by setting the adjacency matrix to be the
identity, obtaining a method similar to (Gondara and Wang, 2018). Then
we introduced the graph and the graph convolutional layer in our imputer
(GINN) followed by the addition of the critic and the adversarial training (A-
GINN), the skip connection (A-GINN skip) and finally the global attributes
(A-GINN skip global).

Regarding imputation performances, Table 4 shows how the introduc-
tion of the graph and the graph-convolution operation over three randomly
selected datasets makes a huge difference against a standard autoencoder.

21

R
an

d
om

fo
re

st
b
as

el
in

e
G

IN
N

M
ID

A
M

IC
E

M
F

R
F

k
-N

N
M

E
D

IA
N

ab
al

on
e

53
.2

69
±

0.
80

4
5
5
.8

2
1
±

1.
56

9
53

.2
69
±

1.
16

9
54

.9
44
±

1.
03

7
51

.7
54
±

1.
16

75
52

.4
72
±

1.
20

36
53

.0
30
±

0.
04

0
51

.6
74
±

1.
55

5
an

u
ra

n
-c

al
ls

92
.7

28
±

0.
46

3
9
4
.4

4
1
±

0.
78

7
89

.8
10
±

1.
76

0
91

.8
48
±

0.
64

8
93

.1
91
±

0.
55

6
92

.6
35
±

0.
39

4
91

.0
60
±

0.
16

2
90

.4
12
±

1.
13

5
b
al

an
ce

-s
ca

le
81

.3
28
±

0.
06

87
76

.5
95
±

0.
45

2
72

.3
40
±

0.
98

2
76

.5
95
±

1.
05

3
77

.6
59
±

1.
30

1
76

.0
63
±

0.
83

4
7
8
.7

2
3
±

0.
89

3
69

.1
48
±

1.
14

0
b
re

as
t-

ca
n
ce

r-
d
ia

gn
os

ti
c

97
.0

76
±

0.
87

7
96

.4
91
±

0.
58

5
95

.9
06
±

2.
63

6
94

.7
36
±

0.
87

7
94

.1
52
±

1.
17

0
97

.0
76
±

0.
87

7
96

.4
91
±

1.
17

0
9
7
.6

6
0
±

1.
17

0
ca

r-
ev

al
u
at

io
n

70
.5

20
±

0.
67

4
7
2
.8

3
2
±

0.
58

6
71

.4
83
±

0.
09

6
69

.9
42
±

0.
09

6
69

.9
42
±

0.
00

0
70

.7
12
±

0.
39

3
70

.5
20
±

0.
48

2
69

.9
42
±

0.
00

0
d
ef

au
lt

-c
re

d
it

-c
ar

d
77

.8
70
±

0.
10

0
7
7
.9

8
0
±

0.
00

1
77

.8
80
±

0.
00

0
77

.8
80
±

0.
00

0
77

.8
86
±

0.
04

2
77

.8
93
±

0.
01

7
77

.9
±

0.
02

5
77

.9
±

0.
08

3
el

ec
tr

ic
al

-g
ri

d
-s

ta
b
il
it

y
98

.5
33
±

0.
03

3
91

.1
00
±

1.
63

3
86

.6
34
±

0.
86

7
97

.5
56
±

1.
65

0
94

.9
90
±

3.
96

7
97

.8
67
±

0.
00

0
98

.7
00
±

0.
33

3
9
9
.3

6
0
±

1.
23

3
h
ea

rt
82

.4
17
±

2.
74

7
8
3
.5

1
6
±

0.
54

9
73

.6
26
±

2.
19

8
8
3
.5

1
6
±

1.
64

8
78

.0
21
±

2.
19

8
82

.4
17
±

1.
64

8
82

.4
17
±

0.
54

9
76

.9
23
±

3.
29

7
io

n
os

p
h
er

e
90

.5
66
±

0.
00

1
9
5
.2

8
3
±

2.
35

8
84

.9
05
±

1.
41

5
92

.4
52
±

0.
00

0
92

.4
52
±

1.
41

5
92

.4
52
±

0.
94

3
9
5
.2

8
3
±

1.
41

5
93

.3
96
±

1.
41

5
ir

is
91

.1
11
±

0.
00

0
88

.8
89
±

1.
66

7
80

.0
00
±

1.
66

7
9
3
.3

3
4
±

0.
00

0
91

.1
12
±

3.
33

3
91

.1
12
±

3.
33

3
9
3
.3

3
4
±

1.
66

7
86

.6
67
±

0.
00

0
p
ag

e-
b
lo

ck
s

94
.6

40
±

0.
59

4
9
5
.0

6
6
±

0.
13

7
94

.8
23
±

0.
00

0
94

.7
62
±

0.
13

7
94

.6
40
±

0.
04

6
94

.6
40
±

0.
04

6
94

.8
84
±

0.
13

7
94

.7
01
±

0.
00

0
p
h
is

h
in

g
84

.7
29
±

1.
10

7
8
4
.4

8
2
±

0.
73

8
83

.0
04
±

0.
73

8
83

.2
51
±

0.
36

9
83

.9
90
±

0.
92

3
83

.0
04
±

0.
73

8
84

.2
36
±

0.
55

4
82

.0
19
±

0.
18

5
sa

te
ll
it

e
83

.9
90
±

0.
20

7
8
3
.8

5
0
±

1.
15

7
81

.6
99
±

0.
15

5
82

.5
50
±

0.
18

1
83

.6
50
±

0.
95

8
83

.3
00
±

0.
23

3
83

.5
00
±

0.
36

3
79

.9
50
±

0.
98

4
ti

c-
ta

c-
to

e
69

.4
43
±

0.
86

8
72

.5
69
±

0.
17

4
68

.0
56
±

0.
69

4
67

.7
08
±

0.
86

8
67

.3
61
±

1.
04

2
65

.9
72
±

4.
68

8
71

.1
80
±

1.
91

0
7
2
.9

1
6
±

0.
17

4
tu

rk
iy

e-
st

u
d
en

t-
ev

al
u
at

io
n

84
.0

20
±

0.
20

0
8
4
.6

5
0
±

0.
85

9
84

.5
93
±

0.
14

3
81

.2
14
±

0.
60

1
8
4
.6

5
0
±

0.
83

0
83

.2
76
±

0.
08

6
83

.5
05
±

1.
08

8
83

.2
18
±

0.
28

6
w

in
e

96
.2

96
±

0.
00

0
9
8
.1

4
8
±

0.
00

0
92

.5
92
±

1.
85

2
9
8
.1

4
8
±

0.
92

6
94

.4
44
±

0.
92

6
9
8
.1

4
8
±

0.
00

0
94

.4
44
±

0.
92

6
94

.4
44
±

3.
70

4
w

in
e-

q
u
al

it
y
-r

ed
63

.3
34
±

1.
65

5
62

.7
08
±

2.
10

5
62

.0
83
±

3.
63

5
61

.6
67
±

2.
10

5
6
3
.3

3
4
±

1.
76

6
62

.2
91
±

1.
04

2
61

.4
58
±

1.
76

6
58

.1
25
±

1.
65

5
w

in
e-

q
u
al

it
y
-w

h
it

e
52

.1
08
±

0.
54

4
5
3
.6

7
3
±

0.
95

2
51

.3
60
±

0.
57

8
52

.5
17
±

0.
37

4
52

.3
12
±

1.
22

4
53

.2
65
±

0.
20

4
51

.0
20
±

0.
13

6
51

.8
36
±

0.
20

4
w

ir
el

es
s-

lo
ca

li
za

ti
on

97
.1

66
±

0.
16

7
96

.3
34
±

1.
08

3
93

.1
67
±

1.
41

7
9
7
.3

3
4
±

0.
83

3
96

.6
67
±

0.
33

3
97

.0
00
±

0.
16

7
95

.8
34
±

0.
08

3
97

.1
67
±

0.
08

3
ye

as
t

55
.1

56
±

0.
56

1
56

.5
02
±

1.
45

7
46

.1
88
±

3.
02

7
5
8
.0

7
1
±

0.
78

5
43

.7
21
±

0.
89

7
54

.4
84
±

0.
11

2
56

.5
02
±

2.
01

8
53

.3
63
±

2.
01

8

T
ab

le
3:

C
la

ss
ifi

ca
ti

on
ac

cu
ra

cy
on

ea
ch

d
at

as
et

u
si

n
g

a
R

a
n

d
o
m

fo
re

st
cl

a
ss

ifi
er

.
T

h
e

m
o
d

el
w

a
s

tr
a
in

ed
ov

er
th

e
im

p
u

te
d

d
at

a
b
y

al
go

ri
th

m
s

fo
r

30
%

M
C

A
R

.
In

th
e

fi
rs

t
co

lu
m

n
(b

a
se

li
n
e)

w
e

h
av

e
th

e
a
cc

u
ra

cy
o
b

ta
in

ed
u

ti
li

zi
n

g
th

e
u

n
d

a
m

a
g
ed

d
at

as
et

.

22

GINN MIDA MICE MF RF KNN MEDIAN
0

5

10

15

20

25

co
u

n
t

of
w

in
s

10% missing

20% missing

30% missing

50% missing

(a) k-NN

GINN MIDA MICE MF RF KNN MEDIAN
0

5

10

15

20

25

co
u

n
t

of
w

in
s

10% missing

20% missing

30% missing

50% missing

(b) Logistic regression

GINN MIDA MICE MF RF KNN MEDIAN
0

10

20

30

40

co
u

n
t

of
w

in
s

10% missing

20% missing

30% missing

50% missing

(c) Random forest

GINN MIDA MICE MF RF KNN MEDIAN
0

5

10

15

20

25

30

35

40
co

u
n
t

of
w

in
s

10% missing

20% missing

30% missing

50% missing

(d) SVC

Figure 5: Number of datasets in which each MDI method achieves the highest classifica-
tion accuracy for each classifier used. The different colors of the bar stand for different
percentages of missing elements: from the bottom 10% the lowest to the top 50% the
highest.

After that, each following step helps to refine even further the imputation
accuracy. The reconstruction loss in Eq. (5), more precisely its logarithm,
shows a similar behaviour, shown in Figure 6. After each step we have a
better convergence. Similar results are obtained for all the other datasets.

The results in Figure 6 are shown with respect to the number of itera-
tions. In the supplementary material, we also provide a similar analysis with
respect to a fixed computational budget, while an analysis of the overall com-
putational time when compared to the other algorithms is provided later on
in Section 5.5.

23

0 200 400 600 800 1000
Iterations

−3.75

−3.50

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

Lo
ga

rit
hm

ic
Lo

ss

DAE
GINN
GINN skip
GINN skip global
A-GINN
A-GINN skip
A-GINN skip global

(a)

Figure 6: Convergence of the logarithmic loss function defined in Equation 5, on the
Ionosphere dataset for each improvement described in this section and with imputation
results shown in Table 4.

5.4. Imputation over unseen data

In this section we test the ability of the model of imputing a new damaged
portion of the dataset that was not available at training time. In order to
impute these new values, we have first to inject the new data in the graph,
adding nodes and edges. We compute a new similarity matrix for the new
features (not considering the labels) and also the similarity between these
new features and the older ones. Then we add the new nodes to the graph
and the edges resulting from the double threshold procedure described in
Section 4.1.

To evaluate this, we introduced missing values and evaluated the impu-
tation performances with and without fine-tuning the model on a second
randomly kept portion of the datasets. In Table 5 we show the MAE of the
imputation over this new portion of dataset and compare against the other
MDI algorithms. We used the same dataset and settings of the ablation
study. The fine-tuned version consists of an additional 500 epochs of train-
ing over the new graph. It can be seen how our method is able to perform
a state-of-the-art imputation on new unseen data without performing addi-
tional training and how it improves in case of a small number of additional
optimization steps.

24

Ionosphere Tic-Tac-Toe Phishing

DAE 0.309± 0.011 0.323± 0.004 0.260± 0.005
GINN 0.263± 0.013 0.317± 0.003 0.247± 0.002
GINN skip 0.258± 0.013 0.314± 0.002 0.246± 0.007
GINN skip global 0.256± 0.013 0.313± 0.000 0.245± 0.007
A-GINN 0.257± 0.011 0.316± 0.001 0.243± 0.006
A-GINN skip 0.256± 0.013 0.305± 0.007 0.243± 0.006
A-GINN skip global 0.255± 0.016 0.303± 0.003 0.241± 0.004

Table 4: Mean Absolute Error, ± the standard deviation, of the imputation over 3 trials
with 20% of missing elements. Each dataset has the corresponding convergence shown in
Figure 6.

MAE Ionosphere Tic-Tac-Toe Phishing

GINN 0.252± 0.008 0.320± 0.012 0.242± 0.002
GINN (FT) 0.235± 0.004 0.299± 0.005 0.237± 0.002
MIDA 0.782± 0.000 0.390± 0.004 0.422± 0.006
MICE 0.335± 0.008 0.414± 0.004 0.644± 0.003
MF 0.312± 0.009 0.667± 0.003 0.462± 0.029
RF 0.254± 0.024 0.456± 0.001 0.344± 0.000
k-NN 0.235± 0.002 0.400± 0.006 0.282± 0.005
MEDIAN 0.362± 0.004 0.388± 0.004 0.343± 0.008

Table 5: Mean Absolute Error of the imputation with 20% of missing elements.

5.5. Evaluation on datasets with pre-existing missing values

To evaluate GINN in a real-world scenario, we compared its performance
against the other state-of-the-art algorithms over three datasets with pre-
existing missing values. When the data is not missing completely at ran-
dom, the problem gets more complex, because there may exist relationships
between the probability of a variable to be missing and other observed data.
We consider two biomedical datasets: mammographic mass introduced in
Elter et al. (2007) and cervical cancer by Fernandes et al. (2017) respectively
with 4% and 13% of missing elements. We performed the imputation with-
out considering the additional information of the label. Then we solved the
binary classification task as done in Section 5.2. The third dataset is a time-
series of air quality measurements (De Vito et al., 2008) with 13% of missing
elements. Differently from the other two, missing values can also be found

25

Name observations numerical attr. categorical attr. missingness

c. cancer 860 9 25 13%
m. mass 960 0 5 4%
air quality 3313 9 0 13%

Table 6: Datasets with pre-existing missingness used for the benchmark in Section 5.5.
All of them were downloaded from the UCI repository.

in the labels, making this a semi-supervised task. We select the three initial
most damaged months as training data and perform imputation on all data,
including the target variable. Then, we performed the downstream task of
classifying, in the two successive months, the target variable discretized in
three bins. A summary of the three datasets is provided in Table 6.

In Table 7 we show the average accuracy (computed over 10 trials) for
every combination of imputation method and downstream classifier. For
clarity, we highlight in bold the best result, and we underline the second-
best one. While our proposed algorithm does not necessarily achieve the best
accuracy overall, it can be seen from Table 7 that it is, in average, the most
resilient to the choice of an external classifier. Overall, when combined with a
logistic regression we obtain the best accuracy for the cervical cancer dataset
(on par with several other algorithms), while we obtain the second-best result
when combined with a random forest or an SVC in the other two cases.
In order to highlight the resilience of the algorithm, in the supplementary
material we provide a statistical analysis when the results from the different
classifiers are aggregated.

Concerning computational performance, we provide execution times for
all the algorithms (for simplicity, in the random forest case) in the supple-
mentary material. Briefly, our algorithm is faster than alternative neural
approaches (as already described in Section 5.3), but slower than non-neural
approaches such as k-NN.

6. Conclusions and future work

In this paper we introduced a novel technique for missing data imputation,
where we used a novel graph convolutional autoencoder to reconstruct the full
dataset. We also describe several improvement to our technique, including
the use of an adversarial loss, and the inclusion of global information from
the dataset in the reconstruction phase. We show through an extensive
numerical simulation that our method has good imputation performance,

26

Classifier M. Mass C. Cancer A. Quality

GINN k-NN
LR
RF
SVC

82.45±0.8
82.81±1.6
83.04±1.2
83.98±1.3

98.35±0.6
99.44±0.4
98.82±0.5
97.71±0.1

90.09±0.6
90.72±0.1
90.86±0.5
90.08±0.0

MIDA k-NN
LR
RF
SVC

81.18±0.7
81.70±1.5
78.50±2.8
83.67±1.4

98.00±0.6
98.97±0.6
97.77±0.2
97.71±0.1

88.29±0.6
89.53±0.1
88.99±0.9
88.49±0.0

MICE k-NN
LR
RF
SVC

80.45±1.2
82.41±1.2
80.19±1.9
83.75±1.1

97.83±0.4
99.44±0.4
97.83±0.4
97.71±0.1

80.99±0.8
81.58±0.0
78.14±0.9
78.56±0.1

MF k-NN
LR
RF
SVC

80.57±1.2
82.27±1.1
77.66±3.6
84.03±1.2

98.45±0.7
99.44±0.4
97.78±0.2
97.71±0.1

84.41±0.5
84.72±1.2
83.78±1.4
83.29±0.0

RF k-NN
LR
RF
SVC

81.02±1.4
82.67±1.1
76.66±6.8
83.71±1.0

97.78±0.2
99.44±0.4
97.89±0.5
97.71±0.1

88.41±0.4
88.30±1.7
88.65±1.1
88.36±0.0

KNN k-NN
LR
RF
SVC

81.61±1.2
82.37±1.8
80.11±2.0
84.03±1.2

98.10±0.6
99.44±0.4
97.81±0.3
97.71±0.1

89.38±0.5
91.18±0.0
89.24±0.5
89.79±0.0

MEDIAN k-NN
LR
RF
SVC

80.37±1.0
82.17±1.1
76.74±5.8
84.03±1.2

98.06±0.7
99.44±0.4
97.98±0.3
97.71±0.1

88.85±0.4
88.46±0.0
89.83±0.5
88.36±0.0

Table 7: Classification accuracy and standard deviation over 10 trials obtained by using
the different imputation algorithms on datasets having pre-existing missing values. For
each dataset, we highlight in bold the best result, and we underline the second-best one.

27

and the results are robust to the selection of an additional classifier later on.
In experiments with a large level of artificial noise, our method is also shown
to significantly outperform competitors.

Future work can consider the adoption of different graph neural archi-
tectures for the autoencoding process (such as those mentioned in Section
2), or the extension to other types of noisy data beyond vector-valued data
and different types of similarity measures. In addition, in order to further
improve accuracy and training time, we can think of training our imputation
module together with a classification step in a end-to-end fashion.

Currently, the major drawbacks of our method are the need for comput-
ing the similarity matrix of the data, and the difficulty of performing mini-
batching in the presence of graph-based data. Both problems are well-known
in the corresponding literature, and in future work we plan on investigating
techniques for speeding up similarity search and mini-batching on the graph
to improve the computational complexity of the method.

References

References

Acuna, E., Rodriguez, C., 2004. The treatment of missing values and its
effect on classifier accuracy. In: Classification, clustering, and data mining
applications. Springer, pp. 639–647.

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein generative adversar-
ial networks. In: Proc. 34th International Conference on Machine Learning
(ICML). Vol. 70. pp. 214–223.

Azur, M. J., Stuart, E. A., Frangakis, C., Leaf, P. J., 2011. Multiple imputa-
tion by chained equations: what is it and how does it work? International
Journal of Methods in Psychiatric Research 20 (1), 40–49.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R.,
et al., 2018. Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Belkin, M., Niyogi, P., Sindhwani, V., 2005. On manifold regularization. In:
AISTATS.

28

Belkin, M., Niyogi, P., Sindhwani, V., 2006. Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples. Jour-
nal of Machine Learning Research 7 (Nov), 2399–2434.

Bengio, Y., Gingras, F., 1996. Recurrent neural networks for missing or asyn-
chronous data. In: Advances in Neural Information Processing Systems.
pp. 395–401.

Bertsimas, D., Pawlowski, C., Zhuo, Y. D., 2017. From predictive methods to
missing data imputation: An optimization approach. Journal of Machine
Learning Research 18, 196–1.

Botstein, D., Sherlock, G., Cantor, M., Troyanskaya, O., Brown, P., Tib-
shirani, R., Altman, R. B., Hastie, T., 06 2001. Missing value estimation
methods for DNA microarrays . Bioinformatics 17 (6), 520–525.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P., 2017.
Geometric deep learning: going beyond euclidean data. IEEE Signal Pro-
cessing Magazine 34 (4), 18–42.

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2013. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

Bui, T. D., Ravi, S., Ramavajjala, V., 2018. Neural graph learning: Train-
ing neural networks using graphs. In: Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. pp. 64–71.

Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y., 2018. Recurrent
neural networks for multivariate time series with missing values. Scientific
Reports 8 (1), 6085.

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T., 2018. The
rise of deep learning in drug discovery. Drug Discovery Today 23 (6), 1241–
1250.

De Vito, S., Massera, E., Piga, M., Martinotto, L., 02 2008. On field cali-
bration of an electronic nose for benzene estimation in an urban pollution
monitoring scenario. Sensors and Actuators B Chemical 129, 750–757.

Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural
networks on graphs with fast localized spectral filtering. In: Advances in
Neural Information Processing Systems. pp. 3844–3852.

29

Demšar, J., 2006. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine learning research 7 (Jan), 1–30.

Dong, W., Moses, C., Li, K., 2011. Efficient k-nearest neighbor graph con-
struction for generic similarity measures. In: Proceedings of the 20th in-
ternational conference on World wide web. ACM, pp. 577–586.

Dua, D., Graff, C., 2017. UCI machine learning repository.
URL http://archive.ics.uci.edu/ml

Eirola, E., Doquire, G., Verleysen, M., Lendasse, A., 2013. Distance estima-
tion in numerical data sets with missing values. Information Sciences 240,
115–128.

Elter, M., Schulz-Wendtland, R., Wittenberg, T., 11 2007. The prediction
of breast cancer biopsy outcomes using two cad approaches that both em-
phasize an intelligible decision process. Medical physics 34, 4164–72.

Fernandes, K., Cardoso, J., Fernndez, J., 05 2017. Transfer learning with
partial observability applied to cervical cancer screening. pp. 243–250.

Gallicchio, C., Micheli, A., 2010. Graph echo state networks. In: Proc. 2010
IEEE International Joint Conference on Neural Networks (IJCNN). IEEE,
pp. 1–8.

Gallicchio, C., Micheli, A., 2013. Tree echo state networks. Neurocomputing
101, 319–337.

Gama, F., Marques, A. G., Leus, G., Ribeiro, A., 2019. Convolutional neural
network architectures for signals supported on graphs. IEEE Transactions
on Signal Processing 67 (4), 1034–1049.

Geng, B., Tao, D., Xu, C., Yang, L., Hua, X.-S., 2012. Ensemble manifold
regularization. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 34 (6), 1227–1233.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., Dahl, G. E., 2017. Neu-
ral message passing for quantum chemistry. In: Proc. 34th International
Conference on Machine Learning (ICML). JMLR. org, pp. 1263–1272.

30

http://archive.ics.uci.edu/ml

Gondara, L., Wang, K., 2018. Multiple imputation using deep denoising au-
toencoders. In: Proc. 22nd Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD). pp. 1–12.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. In:
Advances in Neural Information Processing Systems. pp. 2672–2680.

Gori, M., Monfardini, G., Scarselli, F., 2005. A new model for learning in
graph domains. In: Proc. 2005 IEEE International Joint Conference on
Neural Networks (IJCNN). Vol. 2. IEEE, pp. 729–734.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A. C., 2017.
Improved training of wasserstein gans. In: Advances in Neural Information
Processing Systems. pp. 5767–5777.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition. In: Proceedings 2016 IEEE Conference on Computer Vision
and Pattern Recognition (ICCVPR). pp. 770–778.

Ker, J., Wang, L., Rao, J., Lim, T., 2018. Deep learning applications in
medical image analysis. IEEE Access 6, 9375–9389.

Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization. In:
Proc. 3rd International Conference for Learning Representations (ICLR).

Kipf, T. N., Welling, M., 2017. Semi-supervised classification with graph con-
volutional networks. In: Proc. 2017 International Conference on Learning
Representations (ICLR).

Lakshminarayan, K., Harp, S. A., Goldman, R. P., Samad, T., et al., 1996.
Imputation of missing data using machine learning techniques. In: Proc.
KDD-96. pp. 140–145.

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015. Gated graph sequence
neural networks. In: Proc. 2016 International Conference on Learning Rep-
resentations (ICLR). pp. 1–20.

Lin, W.-C., Tsai, C.-F., 2019. Missing value imputation: a review and anal-
ysis of the literature (2006–2017). Artificial Intelligence Review, 1–23.

31

Little, R. J. A., Rubin, D. B., 1986. Statistical Analysis with Missing Data.
John Wiley & Sons, Inc., New York, NY, USA.

Micheli, A., 2009. Neural network for graphs: A contextual constructive
approach. IEEE Transactions on Neural Networks 20 (3), 498–511.

Nazabal, A., Olmos, P. M., Ghahramani, Z., Valera, I., 2018. Handling in-
complete heterogeneous data using vaes. arXiv preprint arXiv:1807.03653.

Pennington, J., Socher, R., Manning, C., 2014. Glove: Global vectors for
word representation. In: Proc. 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). pp. 1532–1543.

Sandryhaila, A., Moura, J. M., 2013. Discrete signal processing on graphs.
IEEE Transactions on Signal Processing 61 (7), 1644–1656.

Sardellitti, S., Barbarossa, S., Di Lorenzo, P., 2017. On the graph fourier
transform for directed graphs. IEEE Journal of Selected Topics in Signal
Processing 11 (6), 796–811.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., Monfardini, G., 2009.
The graph neural network model. IEEE Transactions on Neural Networks
20 (1), 61–80.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I.,
Welling, M., 2018. Modeling relational data with graph convolutional net-
works. In: European Semantic Web Conference. Springer, pp. 593–607.

Shen, G., Dwivedi, K., Majima, K., Horikawa, T., Kamitani, Y., 2019. End-
to-end deep image reconstruction from human brain activity. Frontiers in
Computational Neuroscience 13.

Śmieja, M., Struski, L., Tabor, J., Zieliński, B., Spurek, P., 2018. Processing
of missing data by neural networks. In: Advances in Neural Information
Processing Systems. pp. 2724–2734.

Sperduti, A., 1994. Encoding labeled graphs by labeling raam. In: Advances
in Neural Information Processing Systems. pp. 1125–1132.

Stekhoven, D. J., Buehlmann, P., 2012. Missforest - non-parametric missing
value imputation for mixed-type data. Bioinformatics 28 (1), 112–118.

32

Talwalkar, A., Kumar, S., Mohri, M., Rowley, H., 2013. Large-scale svd
and manifold learning. The Journal of Machine Learning Research 14 (1),
3129–3152.

Van Buuren, S., 2018. Flexible imputation of missing data. Chapman and
Hall/CRC.

van Buuren, S., Groothuis-Oudshoorn, K., 2011. mice: Multivariate impu-
tation by chained equations in r. Journal of Statistical Software 45 (3),
1–67.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.,
2018. Graph attention networks. In: Proc. 2018 International Conference
on Learning Representations (ICLR).

Villani, C., 2008. Optimal transport – Old and new. Springer Science &
Business Media.

Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., 2008. Extracting
and composing robust features with denoising autoencoders. In: Proc. 25th
International Conference on Machine Learning (ICML). ICML ’08. ACM,
New York, NY, USA, pp. 1096–1103.

Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks.
In: Proc. IEEE Conference on Computer Vision and Pattern Recognition
(ICCVPR). pp. 7794–7803.

Wang, X., Li, A., Jiang, Z., Feng, H., 2006. Missing value estimation for dna
microarray gene expression data by support vector regression imputation
and orthogonal coding scheme. BMC Bioinformatics 7 (1), 32.

White, I. R., Royston, P., Wood, A. M., 2011. Multiple imputation using
chained equations: issues and guidance for practice. Statistics in Medicine
30 (4), 377–399.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., Leskovec, J.,
2018. Graph convolutional neural networks for web-scale recommender sys-
tems. In: Proc. 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. ACM, pp. 974–983.

33

Yoon, J., Jordon, J., van der Schaar, M., 2018. Gain: Missing data im-
putation using generative adversarial nets. In: Proc. 35th International
Conference of Machine Learning (ICML). pp. 1–10.

Zhang, H., Wang, S., Xu, X., Chow, T. W., Wu, Q. J., 2018. Tree2vector:
learning a vectorial representation for tree-structured data. IEEE Trans-
actions on Neural Networks and Learning Systems 28 (11), 5304–5318.

34

Additional material

Detailed RMSE results (Section 5.1)

In Table 8 we provide the individual RMSE imputation values, where
each row is one of the 20 datasets and each column is an imputation method
(abbreviations are explained in the main text). We separate the results with
respect to the level of artificial corruption of the original dataset: the suffix
xx means xx% of missing values that have been artificially added. These

results are aggregated and commented in Fig. 4 and Tab. 3 of the main text.
Results for MAE are similar and can be found on our online repository.

Detailed accuracy for regression/classification (Section 5.2)

In Table 9 we report the accuracy of the downstream classification/regression
task for each choice of classification/regression technique when using a ran-
dom forest technique (results are similar for other methods, and for brevity
we provide them on our online repository). Like before, we separate the re-
sults with respect to the level of artificial corruption of the original dataset:
the suffix xx means xx% of missing values that have been artificially added.
These results are aggregated and commented in Fig. 5(c) and Tab. 4 of the
main text.

Detailed results for the statistical tests

In Fig. 7 we provide the average rankings and p-values for the statistical
test performed on the results of Section 5.1 of the paper (Nemenyi post-hoc
tests on all pairs of algorithms), corresponding to Tab. 2. In Fig. 8 we instead
provide average rankings and corresponding p-values for the statistical tests
performed on the random forest classifier of Section 5.2, corresponding to
Tab. 9. The results are discussed more in-depth in the main paper in Section
5.2.

Ablation study with a computational budget (Section 5.3)

In this section we replicate the ablation study of Section 5.3, but we
evaluate the convergence of each variant with respect to a fixed computational
budget, as shown in Fig. 9. As can be seen, our baseline method with GCN
but no adversarial loss can converge to a significantly better result than
a standard DAE in a fraction of the time. Including the adversarial loss
slightly improves the final result, requiring however 3 − 4 times the budget
of the baseline method.

35

Detailed results for the evaluation on real-world datasets

In Figure 10 we report the scores obtained with a random forest classifier
and the time in seconds needed for the imputation, including for GINN, the
time needed for the similarity-graph construction. As can be seen, GINN’s
imputation allows to achieve the best accuracy and consistency across all
three datasets, even in the case where the imputed training labels are used
to train the classification model. Regarding execution times, GINN is con-
siderably faster than alternative neural approaches and missForest, but it is
slower than the approaches that do not perform a training phase.

We corroborate the results by performing a statistical analysis. To focus
on the impact of the imputation techniques, we compute the relative ranking
for each combination of imputation method and classification algorithm, and
we then aggregate the results with respect to the latter. A Friedman rank test
confirms that there are statistical significant differences with respect to the
accuracy of the classifiers with p-values of 1.6e−7, 1.3e−7, 1.2e−9 respectively
for the Cervical cancer, Mammographic mass and Air quality datasets. A
successive set of Nemenyi post-hoc tests, between all pairs of algorithms,
further confirms statistical significant differences between GINN and all other
methods as reported in Figure 11.

36

RMSE GINN MIDA MICE MF RF KNN MEDIAN
abalone 10 0.901 0.987 1.002 3.110 0.693 0.741 1.031
abalone 20 0.919 1.087 1.031 3.335 0.783 1.031 1.164
abalone 30 0.904 1.190 1.069 3.321 0.811 1.072 1.112
abalone 50 1.038 1.218 1.052 2.679 0.948 1.121 1.155
anuran-calls 10 0.066 0.156 0.069 0.745 0.159 0.049 0.225
anuran-calls 20 0.067 0.157 0.073 0.750 0.158 0.052 0.221
anuran-calls 30 0.070 0.187 0.076 0.091 0.154 0.058 0.226
anuran-calls 50 0.081 0.202 0.086 0.097 0.132 0.089 0.227
balance-scale 10 0.565 0.424 0.579 0.545 0.552 0.614 0.591
balance-scale 20 0.575 0.426 0.559 0.540 0.558 0.604 0.586
balance-scale 30 0.559 0.436 0.579 0.521 0.516 0.580 0.577
balance-scale 50 0.548 0.441 0.566 0.495 0.482 0.581 0.577
breast-cancer 10 45.901 65.698 35.837 25.006 6.021 28.299 105.975
breast-cancer 20 39.258 84.307 35.248 23.413 19.332 27.415 122.510
breast-cancer 30 54.633 114.390 38.122 23.559 21.155 39.653 127.645
breast-cancer 50 57.873 136.427 37.325 26.060 28.434 48.219 121.975
car-evaluation 10 0.616 0.621 0.645 0.846 0.631 0.660 0.653
car-evaluation 20 0.613 0.619 0.628 0.845 0.637 0.647 0.646
car-evaluation 30 0.623 0.632 0.636 0.845 0.636 0.636 0.649
car-evaluation 50 0.615 0.629 0.641 0.846 0.636 0.648 0.640
credit-card 10 17585.4 18323.0 16034.1 15863.5 11762.4 15939.1 24680.3
credit-card 20 17792.4 18462.5 15848.6 14864.0 12055.4 15907.4 23884.7
credit-card 30 17479.4 19664.1 15687.0 15212.9 12897.4 17294.4 23708.0
credit-card 50 19437.2 20063.7 16394.4 15471.8 14139.7 20974.4 23652.4
electrical-grid 10 1.493 1.871 1.625 1.375 1.398 1.586 1.574
electrical-grid 20 1.494 1.855 1.638 1.318 1.438 1.624 1.538
electrical-grid 30 1.534 1.857 1.637 1.474 1.536 1.763 1.555
electrical-grid 50 1.570 1.878 1.656 1.686 1.724 1.666 1.580
heart 10 9.125 17.100 9.696 9.901 9.869 10.477 9.553
heart 20 8.068 18.842 11.220 11.363 10.046 12.816 10.900
heart 30 10.883 25.212 12.326 11.367 11.368 14.846 11.708
heart 50 10.301 20.874 11.671 10.743 10.910 11.651 11.004
ionosphere 10 0.364 0.772 0.416 0.572 0.349 0.348 0.527
ionosphere 20 0.385 0.819 0.458 351.366 0.386 0.379 0.542
ionosphere 30 0.425 1.118 0.462 340.257 0.407 0.380 0.551
ionosphere 50 0.442 1.170 0.475 185.546 0.431 0.415 0.544
iris 10 0.400 1.988 0.386 0.116 0.237 0.287 0.895
iris 20 0.384 1.562 0.411 0.133 0.310 0.352 1.261
iris 30 0.349 1.792 0.379 0.106 0.333 0.446 1.159
iris 50 0.385 1.992 0.453 0.109 0.534 0.414 1.135
page-blocks 10 407.7 814.3 1511.9 684.5 206.7 241.6 1019.8
page-blocks 20 780.0 2305.8 2006.4 1349.1 934.1 723.1 2512.4
page-blocks 30 536.6 1035.7 1889.0 795.4 579.2 604.1 869.4
page-blocks 50 1438.4 1873.5 1624.9 1044.6 1291.9 1858.2 1801.9

37

RMSE GINN MIDA MICE MF RF KNN MEDIAN
phishing 10 0.500 0.506 0.618 0.520 0.607 0.519 0.576
phishing 20 0.513 0.514 0.623 0.531 0.601 0.524 0.579
phishing 30 0.493 0.529 0.625 0.594 0.606 0.548 0.581
phishing 50 0.506 0.541 0.623 0.581 0.596 0.538 0.576
satellite 10 5.978 9.251 4.162 4.846 3.207 4.077 18.293
satellite 20 6.066 9.802 4.312 4.158 3.404 4.257 18.423
satellite 30 6.256 11.528 4.481 4.562 3.634 4.523 18.335
satellite 50 6.934 14.146 5.139 5.179 4.226 6.255 18.375
tic-tac-toe 10 0.467 0.512 0.665 0.816 0.656 0.625 0.624
tic-tac-toe 20 0.466 0.527 0.662 0.816 0.657 0.616 0.614
tic-tac-toe 30 0.469 0.576 0.657 0.816 0.671 0.625 0.622
tic-tac-toe 50 0.470 0.606 0.661 0.816 0.685 0.647 0.618
student 10 0.258 0.247 0.897 0.897 0.293 0.293 0.514
student 20 0.258 0.247 0.536 0.288 0.289 0.294 0.514
student 30 0.295 0.285 0.537 0.287 0.292 0.303 0.515
student 50 0.298 0.268 0.536 0.307 0.289 0.322 0.515
wine 10 43.473 190.147 56.868 51.250 54.981 44.689 121.008
wine 20 46.014 171.845 46.775 46.133 51.354 53.893 106.947
wine 30 47.901 154.344 52.358 54.764 48.672 54.636 99.651
wine 50 49.698 133.361 55.972 51.696 54.857 63.823 82.517
wine-red 10 6.305 8.690 7.017 7.991 5.181 5.951 8.889
wine-red 20 7.244 9.458 8.143 7.287 7.531 7.316 9.586
wine-red 30 8.099 10.313 9.092 8.883 8.414 9.752 10.265
wine-red 50 8.381 10.114 9.566 9.636 10.265 10.408 9.879
wine-white 10 10.115 13.103 10.551 39.086 8.009 8.817 12.908
wine-white 20 10.783 14.253 11.387 42.724 9.126 10.923 13.902
wine-white 30 11.188 15.383 11.174 41.324 10.350 12.454 13.432
wine-white 50 11.214 15.699 12.028 39.693 11.935 14.184 13.373
wireless 10 4.438 6.707 4.452 5.165 3.677 3.863 7.967
wireless 20 4.735 7.082 4.554 2.325 3.892 4.491 8.464
wireless 30 4.851 8.470 4.728 1.863 4.214 4.995 8.588
wireless 50 4.473 9.132 4.677 4.918 4.496 4.629 8.470
yeast 10 0.084 0.131 0.091 0.109 0.088 0.088 0.110
yeast 20 0.083 0.126 0.089 0.082 0.087 0.091 0.099
yeast 30 0.085 0.162 0.090 0.093 0.086 0.091 0.102
yeast 50 0.088 0.156 0.096 0.088 0.096 0.092 0.102

Table 8: Root Mean Squared Error (RMSE) of the imputation per-
formance for all considered algorithms with respect to all possible
percentages of missing elements.

38

Random forest GT GINN MIDA MICE MF RF KNN MEDIAN
abalone 10 52.632 55.263 52.871 53.190 55.024 55.343 54.147 53.907
abalone 20 53.748 54.785 53.030 53.907 52.791 52.951 55.263 52.313
abalone 30 53.270 55.821 53.270 54.944 51.754 52.472 53.030 51.675
abalone 50 54.545 54.625 50.638 52.233 52.313 53.987 53.270 53.828
anuran-calls 10 93.191 93.654 92.450 91.292 90.968 92.867 92.265 91.292
anuran-calls 20 93.840 93.747 90.690 92.774 90.968 92.497 93.747 91.014
anuran-calls 30 92.728 94.442 89.810 91.848 93.191 92.635 91.061 90.412
anuran-calls 50 93.654 92.913 89.208 91.431 91.570 93.793 92.635 90.366
balance-scale 10 78.191 79.787 75.532 74.468 80.319 79.255 71.809 77.128
balance-scale 20 79.255 79.787 78.191 77.128 71.277 73.936 75.532 76.596
balance-scale 30 81.383 76.596 72.340 76.596 77.660 76.064 78.723 69.149
balance-scale 50 80.851 75.532 63.830 61.702 72.872 71.809 75.000 65.957
breast-cancer 10 97.661 95.322 97.661 95.906 95.906 98.246 95.906 95.322
breast-cancer 20 96.491 96.491 95.322 96.491 95.906 94.152 96.491 95.906
breast-cancer 30 97.076 96.491 95.906 94.737 94.152 97.076 96.491 97.661
breast-cancer 50 96.491 94.737 90.058 94.737 94.737 96.491 96.491 93.567
car-evaluation 10 71.291 71.484 71.098 70.135 69.942 69.942 70.520 70.135
car-evaluation 20 70.328 71.869 70.328 69.942 69.942 71.676 69.942 70.135
car-evaluation 30 70.520 72.832 71.484 69.942 69.942 70.713 70.520 69.942
car-evaluation 50 73.218 71.869 73.603 69.942 70.906 71.484 71.484 71.869
credit-card 10 77.933 78.453 77.887 77.873 78.160 77.947 77.880 77.893
credit-card 20 77.913 77.913 77.907 77.880 77.907 77.873 77.853 77.973
credit-card 30 77.873 77.980 77.880 77.880 77.887 77.893 77.900 77.900
credit-card 50 78.433 78.933 78.367 77.880 77.933 77.887 77.893 77.920
electrical-grid 10 97.200 97.433 95.600 99.667 97.433 88.733 99.933 98.867
electrical-grid 20 99.933 99.567 98.633 93.267 99.533 94.500 94.667 99.500
electrical-grid 30 98.533 91.100 86.633 97.567 94.900 97.867 98.700 99.367
electrical-grid 50 95.633 93.900 83.933 95.633 91.433 93.467 99.867 99.367
heart 10 81.319 84.615 82.418 80.220 83.516 78.022 73.626 82.418
heart 20 80.220 85.714 80.220 79.121 78.022 85.714 81.319 78.022
heart 30 82.418 83.516 73.626 83.516 78.022 82.418 82.418 76.923
heart 50 78.022 76.923 74.725 76.923 76.923 82.418 80.220 73.626
ionosphere 10 90.566 90.566 92.453 92.453 90.566 91.509 91.509 91.509
ionosphere 20 94.340 91.509 86.792 92.453 88.679 92.453 91.509 93.396
ionosphere 30 90.566 95.283 84.906 92.453 92.453 92.453 95.283 93.396
ionosphere 50 92.453 92.453 78.302 91.509 86.792 91.509 91.509 92.453
iris 10 88.889 95.556 93.333 93.333 91.111 93.333 93.333 95.556
iris 20 91.111 91.111 91.111 88.889 91.111 91.111 93.333 91.111
iris 30 91.111 88.889 80.000 93.333 91.111 91.111 93.333 86.667
iris 50 93.333 88.889 88.889 88.889 91.111 88.889 91.111 84.444
page-blocks 10 94.762 95.250 94.458 94.093 94.580 94.884 94.580 95.128
page-blocks 20 94.153 94.884 95.250 93.910 94.093 95.371 95.371 94.945
page-blocks 30 94.641 95.067 94.823 94.762 94.641 94.641 94.884 94.702
page-blocks 50 94.458 95.615 94.032 92.387 94.641 94.702 95.067 94.823

39

Random forest GT GINN MIDA MICE MF RF KNN MEDIAN
phishing 10 84.236 86.453 86.207 83.744 84.483 84.729 85.222 83.251
phishing 20 85.222 84.975 85.961 85.714 83.005 84.483 83.744 84.975
phishing 30 84.729 84.483 83.005 83.251 83.990 83.005 84.236 82.020
phishing 50 83.251 85.468 80.296 80.542 82.759 82.512 79.310 80.542
satellite 10 83.450 82.550 82.850 83.350 82.750 82.000 82.550 80.650
satellite 20 83.400 83.300 82.400 82.150 82.050 82.650 83.250 79.700
satellite 30 83.900 83.850 81.700 82.550 83.650 83.300 83.500 79.950
satellite 50 83.200 82.850 78.150 83.250 81.800 83.050 83.350 79.650
tic-tac-toe 10 74.306 75.000 70.833 67.708 68.056 67.708 69.792 68.056
tic-tac-toe 20 69.097 70.486 70.486 66.667 71.875 65.972 70.833 72.222
tic-tac-toe 30 69.444 72.569 68.056 67.708 67.361 65.972 71.181 72.917
tic-tac-toe 50 68.403 68.750 69.444 65.625 65.625 68.750 65.972 66.319
student 10 83.104 85.338 82.188 83.505 80.928 82.245 85.052 83.448
student 20 82.245 82.188 84.364 83.505 84.364 84.021 81.787 83.104
student 30 84.021 84.651 84.593 81.214 84.651 83.276 83.505 83.219
student 50 82.761 83.333 82.245 85.739 82.188 84.135 84.593 84.021
wine 10 92.593 94.444 94.444 98.148 96.296 98.148 94.444 100.000
wine 20 92.593 94.444 94.444 96.296 98.148 90.741 92.593 98.148
wine 30 96.296 98.148 92.593 98.148 94.444 98.148 94.444 94.444
wine 50 90.741 98.148 75.926 98.148 92.593 92.593 92.593 94.444
wine-red 10 61.875 63.958 59.375 60.417 61.458 63.750 62.917 61.875
wine-red 20 61.875 62.917 60.417 60.833 59.375 58.542 62.917 59.792
wine-red 30 63.333 62.708 62.083 61.667 63.333 62.292 61.458 58.125
wine-red 50 63.542 58.542 53.958 60.625 58.542 59.792 55.000 52.917
wine-white 10 51.565 54.490 52.585 53.401 51.565 53.469 53.469 53.061
wine-white 20 52.789 54.490 51.973 54.626 50.816 52.517 54.082 53.946
wine-white 30 52.109 53.673 51.361 52.517 52.313 53.265 51.020 51.837
wine-white 50 54.422 53.401 50.272 52.517 49.728 51.156 50.272 50.340
wireless 10 97.500 97.667 97.333 97.667 97.667 97.000 97.000 97.667
wireless 20 96.833 97.000 97.000 93.667 96.000 94.333 95.500 95.833
wireless 30 97.167 96.333 93.167 97.333 96.667 97.000 95.833 97.167
wireless 50 96.500 97.500 95.333 93.333 95.333 96.000 97.167 95.833
yeast 10 57.848 59.193 59.193 58.072 54.709 59.193 56.951 57.399
yeast 20 58.744 61.211 55.381 59.865 57.623 60.090 58.744 56.726
yeast 30 55.157 56.502 46.188 58.072 43.722 54.484 56.502 53.363
yeast 50 57.623 49.327 39.910 56.951 47.309 52.691 54.036 56.278

Table 9: Classification accuracy on each dataset using a random
forest classifier. The model was trained over the imputed data by
the analyzed algorithms for all percentage of missing elements.

40

0

GINN

MIDA

MICE

MF

RF

KNN

MEDIAN

2.49

5.10

4.28

4.03

2.77

3.85

5.49

(a) Rankings

GINN MIDA MICE MF RF KNN MEDIAN

GI
NN

M
ID

A
M

IC
E

M
F

RF
KN

N
M

ED
IA

N

0.00 0.00 0.00 0.40 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.26

0.00 0.02 0.46 0.00 0.21 0.00

0.00 0.00 0.46 0.00 0.61 0.00

0.40 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.21 0.61 0.00 0.00

0.00 0.26 0.00 0.00 0.00 0.00

(b) P-values

Figure 7: (a) Rankings of the algorithms in Section 5.1 with respect to RMSE, averaged
over all datasets. (b) Corresponding p-values of a set of post-hoc Nemenyi tests. Green
shows significant differences at 0.01, yellow significant differences at 0.05.

41

0

GINN

MIDA

MICE

MF

RF

KNN

MEDIAN

2.71

4.89

4.28

4.64

3.84

3.50

4.15

(a) Rankings

GINN MIDA MICE MF RF KNN MEDIAN

GI
NN

M
ID

A
M

IC
E

M
F

RF
KN

N
M

ED
IA

N

0.00 0.00 0.00 0.00 0.02 0.00

0.00 0.07 0.46 0.00 0.00 0.03

0.00 0.07 0.29 0.20 0.02 0.71

0.00 0.46 0.29 0.02 0.00 0.15

0.00 0.00 0.20 0.02 0.32 0.36

0.02 0.00 0.02 0.00 0.32 0.06

0.00 0.03 0.71 0.15 0.36 0.06

(b) P-values

Figure 8: (a) Rankings of the algorithms in Section 5.2 with respect to the accuracy of
random forest, averaged over all datasets. (b) Corresponding p-values of a set of post-hoc
Nemenyi tests. Green shows significant differences at 0.01, yellow significant differences
at 0.05. 42

0 10 20 30 40 50 60
Execution time (Sec)

−3.75

−3.50

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

Lo
ga

rit
hm

ic
Lo

ss

DAE
GINN
GINN skip
GINN skip global
A-GINN
A-GINN skip
A-GINN skip global

(a)

0 10 20 30 40 50 60
Execution time (Sec)

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

Lo
ga

rit
hm

ic
Lo

ss

DAE
GINN
GINN skip
GINN skip global
A-GINN
A-GINN skip
A-GINN skip global

(b)

0 10 20 30 40 50 60 70
Execution time (Sec)

−2.5

−2.0

−1.5

−1.0

−0.5

Lo
ga

rit
hm

ic
Lo

ss

DAE
GINN
GINN skip
GINN skip global
A-GINN
A-GINN skip
A-GINN skip global

(c)

Figure 9: Convergence of the logarithmic loss function with respect to a fixed computa-
tional budget on the Ionosphere (a), Tic-Tac-Toe (b) and Phishing (c) datasets for each
variant described in the ablation study of Section 5.3.

43

G
IN

N

M
ID

A

M
IC

E

M
F

R
F

K
N

N

M
E

D
IA

N

70

75

80

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

G
IN

N

M
ID

A

M
IC

E

M
F

R
F

K
N

N

M
E

D
IA

N

0

100

200

E
x
ec

u
ti

on
ti

m
e

(S
ec

)

(a) Mammographic mass

G
IN

N

M
ID

A

M
IC

E

M
F

R
F

K
N

N

M
E

D
IA

N

97.5

98.0

98.5

99.0

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

G
IN

N

M
ID

A

M
IC

E

M
F

R
F

K
N

N

M
E

D
IA

N

0

50

100

150

200

E
x
ec

u
ti

on
ti

m
e

(S
ec

)

(b) Cervical cancer

G
IN

N

M
ID

A

M
IC

E

M
F

R
F

K
N

N

M
E

D
IA

N

80

85

90

C
la

ss
ifi

ca
ti

on
A

cc
u

ra
cy

G
IN

N

M
ID

A

M
IC

E

M
F

R
F

K
N

N

M
E

D
IA

N

0

20

40

60

E
x
ec

u
ti

on
ti

m
e

(S
ec

)

(c) Air quality

Figure 10: Random forest classification accuracy and imputation times on (a) Mammo-
graphic mass (b) Cervical cancer and (c) Air quality datasets.

44

GINN MIDA MICE MF RF KNN MEDIAN

GI
NN

M
ID

A
M

IC
E

M
F

RF
KN

N
M

ED
IA

N

0.00 0.00 0.01 0.00 0.00 0.02

0.00 0.24 0.00 0.12 0.03 0.00

0.00 0.24 0.04 0.70 0.32 0.03

0.01 0.00 0.04 0.10 0.31 0.84

0.00 0.12 0.70 0.10 0.54 0.07

0.00 0.03 0.32 0.31 0.54 0.22

0.02 0.00 0.03 0.84 0.07 0.22

(a) Cervical cancer

GINN MIDA MICE MF RF KNN MEDIAN
GI

NN
M

ID
A

M
IC

E
M

F
RF

KN
N

M
ED

IA
N

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.12 0.33 0.01 0.01 0.54

0.00 0.12 0.56 0.26 0.27 0.35

0.00 0.33 0.56 0.08 0.09 0.73

0.00 0.01 0.26 0.08 0.97 0.04

0.00 0.01 0.27 0.09 0.97 0.04

0.00 0.54 0.35 0.73 0.04 0.04

(b) Mammography mass

GINN MIDA MICE MF RF KNN MEDIAN

GI
NN

M
ID

A
M

IC
E

M
F

RF
KN

N
M

ED
IA

N

0.00 0.00 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.10 0.00 0.19

0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.10 0.00 0.00 0.00 0.00

0.04 0.00 0.00 0.00 0.00 0.01

0.00 0.19 0.00 0.00 0.00 0.01

(c) Air quality

Figure 11: Corresponding p-values of a set of post-hoc Nemenyi tests on the rankings of
Table 6 in the paper relative to the downstream classification/regression tasks on the three
datasets with pre-existing missing data: (a) Cervical cancer (13% of missing elements),
(b) Mammographic mass (4% of missing elements) and (c) Air quality (13% of missing
elements). Green shows significant differences at 0.01, yellow significant differences at
0.05.

45

	1 Introduction
	2 Related work
	2.1 Missing data imputation
	2.2 Graph neural networks

	3 Graph convolutional networks
	4 Proposed framework for missing data imputation
	4.1 Construction of the similarity graph
	4.2 Autoencoder architecture
	4.3 Adversarial training of the autoencoder
	4.4 Including skip connections in the model
	4.5 Including global statistics from the dataset

	5 Experimental evaluation
	5.1 Imputation Performance
	5.2 Predictive Performance
	5.3 Ablation study
	5.4 Imputation over unseen data
	5.5 Evaluation on datasets with pre-existing missing values

	6 Conclusions and future work

