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ABSTRACT
In this paper, an improved recurrent neural network (RNN) scheme is proposed to perf
jectory control of redundant robot manipulators using remote center of motion (RCM)
Firstly, learning by demonstration is implemented to model the surgical operation skills i
sian space. After that, considering the kinematic constraints associated with the optimiza
of redundant manipulators, we propose a novel RNN-based approach to facilitate accurat
ing based on the general quadratic performance index, which includes managing the co
RCM joint angle, and joint velocity, simultaneously. The results of the conducted theoret
confirm that the RCM constraint has been established successfully, and accordingly. The
ing end-effector tracking errors asymptotically converge to zero. Finally, demonstration e
are conducted in a laboratory setup environment using KUKA LWR4+ to validate the e
of the proposed control strategy.

duction
past decades, common commercial industrial se-
with redundant manipulators have been success-
ted and further developed in precise automation
for a variety of applications [14, 15]. Thanks to
r cost with respect to specialized surgical robots, it
ed increased research interest for their applications
ical field, especially in minimally invasive surgery
ese surgical procedures require a small incision in
inal wall allowing the insertion of a surgical tool.
implementation of these techniques provides the
f an improvement in the control and precision of
l tool while reducing trauma to patients [16]. The
sion produces a constraint, commonly known as
e Center of Motion (RCM) constraint, on the in-
ot end effector [13]. While a mechanical imple-
is generally considered safer but requires complex
and calibration procedures, a programmable RCM
the movement by the control algorithm is cheaper
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and more flexible and is, therefore, a preferable op
However, maintaining the RCM constraint during
cal operations becomes a challenging problem for
cal robotics society.

Generally, robot-assisted surgical operations ca
sified according to the following two modes: 1) a s
sion is opened, and the surgical tooltip crosses the
nal wall by hands-on insertion, and 2) a surgeon co
tooltip of a slave robot performing a surgical opera

In the second mode, the physical interaction be
trocar and the abdominal wall is inevitable [18]. D
possibility of uncertain disturbances during the ph
teraction, the accuracy of the surgical tip and the R
straint may be affected, while both are of vital im
to assure the safety of the surgical operation. T
with the high requirements associated with accura
cal robots are required to learn and adapt the intera
cording to the complex environment. Especially, in
when the interaction is with a rigid object, it may c
siderable force and instability. Impedance control
thewidely used controlmethods to improve the rob
robotic systems [2]. In the related literature, researc
reported on uncertainties associated with impedanc
considering adaptive control considering the envir
dynamics in robotic systems [17, 18]. Similar to im
control, hybrid position/force control has been prov
of the most efficient control methods to achieve co
of the robot’s behavior in the operational space, w
modify the desired trajectory based on the externa
tion force. This type of control allowsmaking the in
between the robot and the unknown environment
address the properties of the complex environmen
uncertain disturbance, compensatory items are imp
in control systems [8, 23, 25].
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as discussed in a number of related researchworks.
inematic formalization in the joint space to solve
constraint was presented in [5]. The novel con-
ecture for redundant robots was proposed by San-
aiming to solve the fixedRCMconstraints through
ian admittance control without considering themove-
e RCM.
tice, in the case of the robot control systems with
traints, such as MIS, RCM is inevitably kinematic
ic. Specifically, with regard to RCM constraints,
disturbances from the kinematic level and interac-
are the major challenges related to providing the
nd safety of the robot controller execution. Due
arity and uncertainties [29], neither perfect knowl-
ystem nor a perfect model can be presumed. RCM
s do not only affect the accuracy of the robot end
t may also lead to the instability of the robot con-
fore, it is essential to investigate control strategies
ve the stability and accuracy of robotic systems
resolve these challenges. Based on the robot con-
, RCM constraints have been studied with regard
control schemes [13].
er, the recent results corresponding to the active
straints required to be solved are still unsatisfac-
pt for the several schemes that introduced adap-
l theory to address this problem. The efforts and
of applying adaptive control algorithms to solve

constraint are still relatively limited, basically, in
tage [18]. However, adaptive controlmethods [30]
widely investigated in general. Comparedwith the
control methods, the adaptive controls are char-
y the powerful approximation ability [28]. In [9],
ve neural network-based controller is proposed to
te uncertainties and nonlinearity aiming to improve
ly sub-structured systems. In [10], complex func-
stimated using a fuzzy logic system employed to-
h the backstepping control approach to optimize
ance. When it comes to the self-learning opti-

em for discrete-time nonlinear systems, an adap-
scheme was investigated in [21], where an iter-
heuristic dynamic programming (DHP) strategy
yed to the event-based mechanism. Besides, in
prove the performance of the reinforcement learn-
roximate neural optimal control scheme was pre-
22] for the continuous-time nonlinear systems.
ation of quadratic programming (QP) problem in
still a major challenge. The distributed meth-
rete-time and continuous-time have validated the
ess for solving the QP scheme. For example, a
odel combined with the supervised learning and
orcement learning was discussed in [7]. In order
the guaranteed convergence and flexible struc-
erative low-complexity scheme was proposed to
ith the quadratic program in [20]. In addition, to
active-set with the tight bound more effectively,

too complicated in calculation, and are not suitab
fast response in robot system. Therefore, this pape
a novel RNN-based algorithm to facilitate accurac
general quadratic performance.

In recent years, neural learning enhanced by
control schemes have attracted great attention [6].
linear terms of kinematics have been compensated
ing the Nussbaum function and a well defined smo
tion in [24]. In [19], the adaptive neural impedanc
scheme has been designed for an n-link robotic ma
with uncertainties generated by the kinematic co
An auxiliary system has been introduced in the
design to cope with the effect of the predefined co

In the present research, a neural-learning enhan
sian admittance control scheme based on the recurr
network (RNN) approximation is proposed to im
accuracy of the end effector and to comply with t
RCM constraint. The main contributions of this
highlighted as follows:

1. Learning by demonstration is adopted to m
surgical operation skills in the Cartesian spa

2. The uncertainties existing in the robotic sy
to the RCM constraints are compensated b
RNN-based adaptive controller scheme.

3. Experimental demonstration using KUKA L
performed to evaluate the applicability of the
RNN controller.

The remainder of this paper is organized as follo
lem statement and preliminaries are presented in S
In Section 3, the control development using neural
in the presence of RCM constraints is discussed.
experimental results are provided in Section 4, and
clusions are drawn in Section 5.

2. Preliminaries and Problem Descript
In MIS surgical procedures, a surgeon needs t

the end-effector applied to the patient’s organs, su
mm incision or suturing according to the desired t
One of the key issues associated with skill transfe
tablish the accurate representation of the actuator t
In this section, we discuss the process of skill transf
ing on the dynamic movement primitive (DMP),
mixtureModeling (GMM), andGaussianmixture r
(GMR). In addition, the RCMand its kinematic con
lem investigated in this paper are also described.
2.1. Dynamic Movement Primitive

At present, DMP is a general approach used in
and biological systems that implies identifying m
primitives for the motor control in robotics and bio
The DMP method is represented as a set of equatio
can be used to model different linear or nonlinear
which is convenient to imitate the learning of the
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movement fusion. The DMP is expressed as follow:
̈t
v̇t
F

subjected

ℎt
(
vt
)
=

where [t
g denote t
in the Car
ness matri
sian space
�v is the sasymptoti
and center

It shou
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In this
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the sum of
els [31]. I
position d
linear item
GMM. Th
fined in (1
Gaussian

̈ =

where �Skponent in
item stiffn
sian space
obtained f(
vt,j , v ,j

)
Each data
position va
tribution P
as below:

p
(
v

where K is the number of the Gaussian model; p(k) de-
nditional
that the

j − �k
))

(5)
,
∑
k, Ek

}
ean vari-

rior prob-
rem, the
ed as fol-

(6)

Θ is de-

(7)

MM pa-
aximiza-
train the
odel pa-
ompleted

ssion pa-
MM ob-
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}
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= Kp (g − t) −Kv̇t + F (
vt
)

= �vvt(
vt
)
= ℎTt

(
vt
)
!
(
g − 0)

(1)

to
∑N
i=1  i

(
vt
)
vt∑N

i=1  i
(
vt
) ,  i

(
vt
)
= exp

(
− 1
2�i

(
vt − ci

)2)

(2)
, ̇t, ̈t] is the Cartesian space trajectory; 0 andhe initial and goal positions of an attractor point
tesian space, respectively; Kp andKv are the stiff-
x, and the damping term of DMP in the 3D Carte-
, respectively; ! is the shape parameter of DMP;
cale parameter of the canonical system, where vtcally decays from 1 to 0; �i and ci are the width
of the i -th Gaussian kernel.
ld be noted that DMP consists of the following
a linear spring damper part Kp (g − t) − Kv̇t
near part F (

vt
), which can be applied to model

ories based on learning by demonstrations even in
f a nonlinear system. Therefore, DMP is deemed
to imitate the human motions owing to its feature
ence to the attractor point g.
ssian Mixture Model
subsection, the GMM is presented to encode the
s obtained from learning. GMM is a probability-
stical model that can be used to describe the prob-
sity distribution of a high-dimensional dataset by
weights corresponding tomultiple Gaussianmod-
n the present study, GMM is used to describe the
ensity in the Cartesian space and to obtain the non-
s in DMP by regression corresponding to each
e DMP framework of multi-demonstrations de-
) is reformulated in terms of the K component
model as follows:
K∑
k=1

ℎk
(
Kp
k
(
�k − ) −Kv

kẊ + F
) (3)

and ℎk are the mean and weighted of the k-th com-
Gaussian mixture model. Kp

k and Kv
k are the k-th

ess, and the damping matrix of DMP in the Carte-
, respectively. The Cartesian space data points
rom demonstrations are defined as follows: vj =
(j = 1,… , N),whereN is the length of a dataset.
point includes the time temporal value vt,j and thelue v ,j . To encode the dataset of the position dis-(
vt, v

)
, the following GMM model is defined

) K∑ ( )

notes the prior probability, and p (vj|k
) is the co

probability density function.
The manipulator operates in the 3D space, so

parameters in (4) can be denoted as follows:
p(k) = �k
p
(
vj|k

)
= 1√

(2�)3|∑k|
e
(
− 12

(
vj − �k

)T∑−1
k

(
v

Wedefine theGMMparameters asΘ = {
�k, �kwhere �k, �k,∑k, andEk are the prior probability, mable, covariance variable, and the cumulated poste

ability, respectively. According to the Bayes theo
cumulated posterior probability Ek can be express
lows:

Ek =
N∑
j=1

p
(
k|vj

)

p
(
k|vj

)
=

p(k)p
(
vj|k

)
∑K
m=1 p(m)p

(
vj|m

)

Then, the log-likelihood of the GMM model
fined,

Θ = 1
N

N∑
j=1

log
(
p
(
vj
))

where p (vj
)
=
∑K
k=1 p(k)P

(
vj|k

). To estimate G
rameters Θ = {

�k, �k,
∑
k, Ek

}
, the expectation m

tion algorithm described in [32−33] is employed to
model parameters, and therefore, we obtain the m
rameters after their convergence. The iteration is c
when (t+1)Θ

(t)Θ
≤ 0.01.

2.3. Gaussian Mixture Regression
In fact, the aim of training is to obtain the regre

rameter F from the target dataset. As soon as the G
tains the multi-demonstration probability distribu
GMR is applied to reconstruct the general form of th

To estimate the conditional expectation value
servation parameters are defined as follows: v =
where v is the spatial variable at the time step vt. Tthe purpose of the regression is to estimate the co
expectation of v when the time step vt is firstly in

With regard to the multi-demonstrations obtai
learning, the GMM Θ encodes the set of trajector
Cartesian space obtained from a robot. The k com
GMM is defined as follows,

�k =
{
�t,k, � ,k

}
, Σk =

(
Σtt,k Σt
Σt,k ∑


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j =
k=1

p(k)p vj|k (4) where�k andΣk are themean and covariancematrices of
the k-component GMM, respectively. When the time step vt
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is set, the expected distribution v of the k -th component
is expresse

p
(
v

v̂ ,k

Σ̂
where v̂ ,
bility. Acc
the condit

p
(
v

ℎk =

From (
s and the
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Theref
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The fo
tor is form
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where r ∈
sents the n
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J q̇
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where �−
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e. During
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ft should
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by the in-
computa-
e a novel
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erial ma-
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 ,kd as below:
 ,k|vt, k

)
= (

v ,k; v̂ ,k, Σ̂ ,k
)

= � ,k +
∑
t,k

(
Σtt,k

)−1 (vt − �t,k
)

,k = Σ ,k − Σt,k
(
Σtt,k

)−1 Σt ,k

(9)

k and Σ̂ ,k are derived on the basis of the proba-
ording to theGMMparametersΘ = {

�k, �k,
∑
k, Ek

}
,

ion probability density is obtained as follows:

 |vt
)
=

K∑
k=1

ℎk (
v ; v̂ ,k, Σ̂ ,k

) (10)

p(k)p
(
vt|k

)
∑K
i=1 p(i)p

(
vt|i

) =
�k (

vt;�t,k,Σtt,k
)

∑K
i=1 �i (

vt;�t,i,Σtt,i
)
(11)

8) and (9), estimation of the condition expectation
covariance matrix are derived as follows:
K∑
k=1

ℎkv̂ ,k , Σ̂ =
K∑
k=1

ℎ2kΣ̂ ,k (12)

ore, the movement v̂ = {
v̂t, v̂

} can be generated
ing {v̂ , Σ̂

} at the time step vt.
ipulator Kinematics Model
rward kinematics model of a redundant manipula-
ulated as follows:
f (�) (13)
ℝm is the Cartesian space position; and f (⋅) repre-
onlinear mapping function, which is used to map
pace to the Cartesian space. Generally, the joint
a manipulator is physically constrained; however,
s strong nonlinearity at the position level.
uation (13) is nonlinear and difficult to solve, as
ng is not performed in a point-to-point manner.
it is possible to obtain the linear mapping between
velocity ṙd ∈ ℝm and the joint velocity q̇ ∈ ℝn.
erivative of (13) is defined as below:
= ṙd (14)
ℝm×n is the Jacobian matrix. Let the joint con-
described as follows:
� ≤ �+ (15)
�̇ ≤ �̇+ (16)

and �+ denote the lower and upper bounds of the
ding element of the joint angle vector �, respec-

̇+

Figure 1: Remote center of motion: a robot to
through a small incision rrcm on the obstacle surfac
the robot manipulation, the tool-tip position needs
the desired reference trajectory, while the tool sha
respect the kinematic constraint of the RCM.

Then, we convert the position limit to the velo
which is consistent with optimization objective fu
follows:

� (�− − �) ≤ �̇ ≤ �
(
�+ − �

)

where � > 0 is the constant coefficient. Therefore
bining (16) and (17), the joint limits can be reform
below:

�− ≤ �̇ ≤ �+, �̇ ∈ Ω
�−i = max

{
�̇−i , �

(
�−i − �i

)}

�+i = min
{
�̇+i , �

(
�+i − �i

)}

For the Cartesian space control of a redundant
inverse kinematics is expressed as follows:

� = f−1 (r)

where f−1 (r) denotes the inverse nonlinear mapp
the Cartesian space to the joint space. It should
that the joint trajectory � is difficult to be obtained
verse kinematics provided in (19), due to the high
tional complexity. To address this issue, we propos
dynamic neural network based method aiming to
problem associated with the redundant degree of
as described in Section. 3.

The nonlinear function f (⋅) corresponding to s
nipulators can be obtained using theDenavit-Harten
vention. In the case of the redundant manipulator
there exists n > m. Therefore, the first optimization
F1(r(t), �(t)) associated with task tracking can be dfollows:

min 1
2
�TW �

s.t. f (�) = rd
�− ≤ � ≤ �+

where rd is the desired trajectory of a surgical task
2.5. Remote Center of Motion
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and � denote the lower and upper bounds of the
ity vector, respectively.

During a surgical tracking task, the surgical tooltip of the
robot needs to pass through the RCM. Figure 1 represents the
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assumption that the tool should always be inserted into the
patient’s b
surgical ta

For an
joint space
effector po
function a

rn−
rn =

To com
ways on t
the positio
holding th
keep the e
1 and line
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rrcm =Accor
derived as

⃖⃖⃖⃖⃖⃖⃖rn−1

From
the vector
resented a

ercm

where L =
Wede

rn = [xn, ythe RCM
ercm ⋅ L =

⎡⎢⎢⎢⎢⎣

(yn −

(xn−1

(xn − x

With r
tain the d
value. The
of the RCM

min
s.t

where the
Assum

straint rrcm

2.6. Problem Reformulation in Terms of

ontrol of
s, and fo-
onstraints
e consid-
imization
te tooltip
ges to zero
nstrained
s and end
ion prob-
is defined

) (29)

n solution
n-convex
y to con-
nvex one.
the con-
ed as fol-

(30)

el in (26)

(31)
onding to
m can be

(32)

f explicit
the feed-
t in terms
n (36) as

(33)
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ody at the point rrcm, without affecting the main
sk.
n-DoF robot manipulator, the mapping from its
to the Cartesian coordinate rn−1 ∈ ℝm of its end-
sition rn ∈ ℝm can be described by a nonlinear
s follows:
1 = fn−1(�)
fn(�)

(23)

ply with the RCM constraint, rrcm should be al-
he straight line between rn−1 and rn, where rn is
n of the tooltip and rn−1 is the joint position of
e tool. In an actual surgical operation, we seel to
rror of RCM equal to zero. The vectors of line
2 are defined as follows: ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rn = rn − rn−1,
rrcm − rn−1, respectively.ding to the geometric relationship, the relation is
below:
⃖⃖⃖⃖⃖⃖⃖⃗rrcm × ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rn = 0 (24)
the relationship between the RCM error ercm and
projection, the error of RCM can be further rep-
s follows:

=
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗r1rrcm × ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rn

L

=
(
rrcm − rn−1

)
×
(
rn − rn−1

)
L

(25)
‖‖rn − rn−1‖‖ is the length of the last link.

fine the Cartesian coordinates rn−1 = [xn−1, yn−1, zn−1]T ,
n, zn]T and rrcm = [xrcm, yrcm, zrcm]T . From (25),
error model can be expanded as follows:

yn−1)(zn−1 − zrcm) − (yn−1 − yrcm)(zn − zn−1)

− xrcm)(zn − zn−1) − (xn − xn1)(zn−1 − zrcm)

n−1)(yn−1 − yrcm) − (xn−1 − xrcm)(yn − yn−1)

⎤⎥⎥⎥⎥⎦
(26)

egard to the RCMconstraint task, we seek tomain-
istance of the RCM error ercm at the minimum
refore, the second optimization problemF2(ercm(t), �(t))constrains are defined as,
1
2
�TW � (27)

. ercm = 0 (28)
matrixW = I .

Quadratic Programming
In this subsection, we focus on the kinematic c

serial manipulators considering forward kinematic
cusing on the RCM (28) and joint velocity level c
(14). The end task and RCM constraints should b
ered simultaneously. We expected to find the opt
solution at the velocity level such that the coordina
tracking error ‖‖fn (�) − rn‖‖2 asymptotically conver
and the RCM deviation error ‖‖ercm‖‖2 remains co
within a predefined area.

Considering the RCM and end task constraint
tasks constraints simultaneously, the new optimizat
lem based on F1

(
rn(t), �(t)

) and F2
(
rrcm(t), �(t)

)
as follows:

min F = F1
(
rn(t), �(t)

)
+ F2

(
rrcm(t), �(t)

s.t. �− ≤ � ≤ �+

�̇− ≤ �̇ ≤ �̇+

However, it is difficult to obtain the optimizatio
for the problem (29), as the objective function is no
with regard to variable �. Therefore, it is necessar
vert this non-convex optimization problem to a co

Firstly, the optimization problem (29) can be
verted as velocity level optimization problem defin
lows:

1
2
�̇TW �̇

J�̇ = ṙnd
�− ≤ �̇ ≤ �

Then, the time derivative of the RCM error mod
is reformulated as below:

Jrcmq̇ = ėrcm

where Jrcm ∈ ℝm×n is the Jacobian matrix corresp
the RCM error model.

Therefore, the multi-tasks optimization proble
reformulated as follows:

min 1
2
�̇TW �̇

s.t. J �̇ = vd
Jrcm�̇ = 0
�− ≤ �̇ ≤ �+

where vd = ṙnd .The angle joint drift can occur due to the loss o
information on rn and ercm. Therefore, we designback controller to restrict the movement of the robo
of the end effector and RCM velocity constraint i
follows:

J �̇ = −k1
(
fn (�) − rnd

)
+ ṙnd

Jo
ur

na
l P

re
-p

ro
of
ption 2.1: In the actual experiment, the RCM con-
is known or can be identified by optical tracking. Jrcm�̇ = −k2

(
rrcm

) (34)
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where vd = −k
(
f (�) − r

)
+ ṙ , v = −k

(
r

).
The optim

min
s.t.

It shou
orities, wh
the multi-
reformula

min

s.t.

where c0balance th

3. Neur
Anal
In this

multi-task
straints de
gramming
lationship
3.1. Rec

Prog
To obt

the Lagran

 (
�
c

where �1
as ∇ =
be derived

∇ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

According to theKarushâĂŞKuhnâĂŞTucker (KKT) con-
on of (38)

(39)
equation
following

(40)

t Ω.
nonlinear
lems can

T
rcm

)
�2
)}

(41)
blem de-
d to solve
[27] are

m
)
�2
)}

(42)
scale the
uld be set
alue may
rk of the
the green
raint and
between

ing prob-
equation
stability
ratic pro-
irstly, we

Hang Su e
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1 n nd nd rcm 2 rcmization problem in (32) is rewritten as,
1
2
�̇TW �̇ (35)

J �̇ = vd
Jrcm�̇ = vrcm
�− ≤ �̇ ≤ �+

ld be noted that the multi-tasks have different pri-
ich are scaled by corresponding weights. Finally,
tasks optimization scheme defined in (32) can be
ted as below:
c0
2
�̇T �̇ +

c1
2
‖‖J �̇ − vd‖‖2 +

c2
2
‖‖Jrcm�̇ − vrcm‖‖2

(36)
J �̇ = vd
Jrcm�̇ = vrcm
�− ≤ �̇ ≤ �+

> 0, c1 > 0 and c2 > 0 are the constants used to
e different priorities of multi-tasks.

al Network Design and Stability
ysis
section, the RNN [4, 26] is applied to solve the
s optimization problem according to the RCMcon-
fined in (36). We first transfer the quadratic pro-
problem formulated in (36) to the equivalent re-
problem, and then design the RNN to solve it.
urrent neural network for the Quadratic
ramming Problem
ain the equivalent relationship problem from (36),
ge function is constructed as follows:
̇ , �1, �2

)
=
c1
2
‖‖J �̇ − vd‖‖2 +

c2
2
‖‖Jrcm�̇ − vrcm‖‖2

0
2
�̇T �̇ + �T1

(
vd − J �̇

)
+ �T2

(
vrcm−Jrcm�̇

) (37)

∈ ℝm and �2 ∈ ℝm. The gradient of  is defined[
)
)�̇ ,

)
)�1
, ))�2

]T . Therefore, the gradient ∇ can
as follow,
)
)�̇ = c1J

T (J �̇ − vd
)
+ c2JTrcm

(
Jrcm�̇ − vrcm

)
+c0�̇ +

(
−JT

)
�1 +

(
−JTrcm

)
�2

)
)�1

= J �̇ − vd

)
)�2

= Jrcm�̇ − vrcm
(38)

dition defined in [3], if∇ is continuous, the soluti
should satisfy the following requirement,

∇ = 0
Considering joint angle constraints �̇ ∈ Ω, the

)
)�̇ in (38) can be equivalently reformulated as the
form:

�̇ = PΩ
(
�̇ − )

)�̇

)

where PΩ (⋅) denotes the projection operator on se
Then, substituting equation (40) by (39), the

equations for the two constraint optimization prob
be reformulated as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 = −�̇ + PΩ
{
�̇−

(
c0�̇ + c1JT

(
J �̇ − vd

)

+ c2JTrcm
(
Jrcm�̇ − vrcm

)
+
(
−JT

)
�1 +

(
−J

0 = J �̇ − vd

0 = Jrcm�̇ − vrcm

With regard to the equivalence optimization pro
fined in (40), the neuro-dynamics method is applie
the multi-task optimization problem. The RNNs
constructed as follows,

⎧⎪⎪⎪⎨⎪⎪⎪⎩


�̇ = −�̇ + PΩ
{
�̇−

(
c0�̇ + c1JT

(
J �̇ − vd

)
+

c2JTrcm
(
Jrcm�̇ − vrcm

)
+
(
−JT

)
�1 +

(
−JTrc


�1 = J �̇ − vd


�2 = Jrcm�̇ − vrcm

where 
 is the constant and positive value used to
convergence rate. In the actual experiment, 
 sho
within an appropriate range, as setting too large a v
lead to a slow convergence rate [12]. The framewo
proposed RNN is represented in Figure. 2, where
line denotes the connection between RCM const
state variable �; the red lines denotes the connection
end-tasks constraint and state variable �.
3.2. Convergence Analysis

As mentioned above, the quadratic programm
lem defined in (36) is equivalent to the nonlinear
in (40). Therefore, in this subsection, we prove the
and convergence of the RNN in terms of the quad
gramming problem optimization defined in (42). F

Jo
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ro
of
define the decision variable u = [
�̇, �1, �2

]T ∈ ℝn+2m.
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Figure 2:

Theorem
starting fr
globally c

Proof. Th
state varia


u̇ =

where the
ℝn+2m, G(

Based
follows:

G (u

whereG1(
−JT

)
�1as followi

∇G

where
)G
)�

)G
)�

)G
)�

Eviden
G (u) is co
ther obtain

emonstra-

0

rix∇G (u)
trixG (u)

sion (RCM)
ation, the
reference
the kine-
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Framework of the proposed RNN.

1. If there exists the optimal solution u∗ =
[
�̇∗, �∗1 , �

∗
2
]T ,

om any initial state u(0), then ut =
[
�̇, �1, �2

]T
onverges to the KKT theoretical point u∗.

e RNN defined in (42) is reformulated using the
ble u ,
−u + PΩ {u − G (u)} (43)
projection operator is defined as follows: PΩ ∈

u) =
[
)
)�̇ ,

)
)�1
, ))�2

]T .
on the equation (39), G(u) can be expressed as

) =
⎡
⎢⎢⎣

G1
J �̇ − vd

Jrcm�̇ − vrcm

⎤
⎥⎥⎦
∈ ℝn+2m

= c0�̇+c1JT
(
J �̇ − vd

)
+c2JTrcm

(
Jrcm�̇ − vrcm

)
+

+
(
−JTrcm

)
�2. The gradient of G (u) is obtainedng,

(u) =
⎡⎢⎢⎣

)G1
)�̇

)G1
)�1

)G1
)�2

J 0 0
Jrcm 0 0

⎤
⎥⎥⎦

(44)

1
̇ = c0In + c1JT J + c2JTrcmJ

1
1
= −JT

1
2
= −JTrcm

tly, ∇G (u) exists, and it can be concluded that

Figure 3: Learning tumor resection from human d
tions.

1
2

(
∇G (u) + ∇GT (u)

)

=

⎡⎢⎢⎢⎢⎣

c0In + c1JT J + c2JTrcmJ 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
≥

It can be further concluded that the gradientmat
is a semi-definitematrix. Therefore, the variablema
is monotone. The proof is completed.

RCM: the robot tool passes through a small inci
on the obstacle surface. During the robot manipul
tooltip position r1 is required to follow the desired
trajectory, while the tool shaft should comply with
matic constraint on the obstacle surface.
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ntinuously differentiated. Moreover, we can fur-
the following:
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Figure 4:

Figure 5:
item F .

Figure 6:
lator.

4. Expe
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Firstly
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tedworks,
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pment of
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Gaussian components of GMM.

Regression results corresponding to the nonlinear

Motion trajectories obtained using the KUKA simu-

riment
rameters of RNN is chosen as: c0 = 0.1, c1 = 20,

 = 0.01, k1 = 7, k2 = 7. In order to evaluate
ed control scheme, comparison experiments are
t. The magnitude of the Cartesian position error
the RCM constraint error ‖Ercm‖ are recorded for
For the null space based solution, the parameters
nd in our previous works [18].
, there are six samples of tumor resection collect-

Figure 7: Motion trajectories.

Figure 8: RNN optimization results obtained using
derived from learning.

Figure 9: Results of the comparative experiments: th
error of the end effector.

shown in Figure. 3–Figure. 5. Then, as it is show
ure. 6, a demonstration using the KUKA simulat
formed to check the feasibility of the proposed opt
framework.

To consider somemethods described in the rela
the experiment performance are displayed in Figur
detailed description of the configuration and develo
the system can be found in our previous works [18
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of
uman demonstrations, and the learning results are The operative procedure is organized as follows:
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Figure 10:
of the RCM

Figure 11:

Figure 12:

1. The
to p

2. The
tion

3. The
usin
lear

The ap
implemen
pose of co
trajectorie
ments, res

control to
ve tumors
ted to run

9 and 10
ms of the
uring the
errors of
ble error
t the pro-
ompared
onstrates
mance to
in 3 mm.
d in Fig-

n control
onomous
able con-
rgical op-
etc.. The
rn tumor
n demon-
tly using
t, the hi-
ding to a
problem
en tasks.
ence per-
ition. Fi-
ed to test
related to
prove the
al manip-
straint for

Hang Su e

Journal Pre-proof
Results of the comparison experiments: distribution
constraint error.

Joint position of the manipulator.

Joint velocity of manipulator.

subject uses the hands-on control tomove the robot
erform the multiple demonstrated surgical tasks;
skill learning is activated to learn surgical opera-
s;
robot autonomously tracks the set trajectory rdg different optimization solutions to reproduce the
ned surgical tasks.
proaches described in the related works are also
ted and applied to the same trajectory for the pur-
mparison. Figures 7 and 8 represent the motion

Figure 13: Experimental setup scene: 1) hands-on
enable the robot manipulator to learn how to remo
by demonstrations; 2) autonomous tracking is activa
the application.

converges quickly to the desired trajectory. Figures
represent the comparison of the performance in ter
tracking error and RCM error estimated real time d
tracking task. In Figure. 9, it can be seen that all
the end effector are constrained within the accepta
range of 4 mm; however, it should be outlined tha
posed RNN achieves the lowest error within 4 mm c
with other considered approaches. Figure 10 dem
that the proposed RNN has the appropriate perfor
ensure compliance with the RCM constraint with
The joint position and joint velocity are represente
ures 11 and 12, respectively.

5. Discussion and Conclusion
In this paper, we present a novel optimizatio

method based on RNN for a manipulator in the aut
laparoscopic robotic surgery. It can be used to en
ductingmultiple tasks simultaneously, including su
eration tracking, controlling RCM, and joint limits,
robot manipulator is developed in such a way to lea
resection skills in the Cartesian space from huma
strations. To control the hierarchical tasks efficien
the learning skills to comply with RCM constrain
erarchical operational space formulation correspon
surgical task is investigated. The new optimization
is formulated as the real-time resolution for the giv
We observe that it achieves the acceptable converg
formance even in the case of a random initial pos
nally, an experimental evaluation has been perform
the proposed method on the virtual surgical tasks
a kidney phantom. In future work, in order to im
robustness and accuracy, we will consider the glob
ulability optimization combinedwith the RCMcon
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of
s and the Cartesian trajectory of the real experi-
pectively. It should be noted that the real trajectory the surgical robot.
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