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Abstract

Recent years have witnessed the increasing popularity of Location-based Social Network (LBSN) services, which
provides unparalleled opportunities to build personalized Point-of-Interest (POI) recommender systems. Existing
POI recommendation and location prediction tasks utilize past information for future recommendation or prediction
from a single direction perspective, while the missing POI category identification task needs to utilize the check-in
information both before and after the missing category. Therefore, a long-standing challenge is how to effectively
identify the missing POI categories at any time in the real-world check-in data of mobile users. To this end, in
this paper, we propose a novel neural network approach to identify the missing POI categories by integrating both bi-
directional global non-personal transition patterns and personal preferences of users. Specifically, we delicately design
an attention matching cell to model how well the check-in category information matches their non-personal transition
patterns and personal preferences. Finally, we evaluate our model on two real-world datasets, which clearly validate
its effectiveness compared with the state-of-the-art baselines. Furthermore, our model can be naturally extended to
address next POI category recommendation and prediction tasks with competitive performance.

Keywords: Global Transition Patterns, Personal Preferences, Missing POI Category Identification

1. Introduction

The rapid development and increasing popularity of
Location-based Social Network (LBSN) services en-
courage more and more users to share their real-life
experiences. Data collected by various LBSN services
have been effectively leveraged for studying users’ on-
line activities and mobility patterns, which provide un-
paralleled opportunities to built personalized POI rec-
ommender systems. Generally, the user’s historical vis-
iting records can be regarded as a set of check-ins that
each one contains a POI, a timestamp, a POI category,
and so on. Indeed, the category information is con-
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ducive to explaining users’ activities and plays a crucial
role in various POI-oriented tasks.

Most of the existing POI-oriented studies mainly fo-
cus on recommending or predicting the category of POI
where a user may go in the future or improve the per-
formance of next POI recommendation. Recently, con-
siderable efforts have been made to address next POI
category prediction (Zhang et al., 2017a), and utilize
the category information to solve POI recommendation
and location prediction problems (Chen et al., 2015; He
et al., 2017; Ye et al., 2013). However, these methods
utilize past information for future prediction or recom-
mendation from a single direction perspective, while the
missing POI category identification task needs to utilize
the check-in information before and after the missing
category, which naturally calls for a bi-directional so-
lution. Therefore, a long-standing challenge is how to
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effectively identify the missing POI categories at any
time in the real-world check-in data of mobile users.

Along this line, we propose a novel Bi-directional
Global Transition Patterns and Personal Preferences
model named Bi-GTPPP for missing POI category iden-
tification. The proposed model takes both non-personal
and personal preferences into consideration. On the one
hand, users’ check-in activities usually have some pub-
lic transition patterns, which are non-personal prefer-
ences. For example, users often go to dinner after work
and watch a movie after dinner. The transition patterns
work → dinner, dinner → movie are global and non-
personal for all users. Our model is designed to capture
bi-directional global transition patterns. On the other
hand, different users have personal preferences that af-
fect the check-in behaviors of users. These two pref-
erences are integrated through a delicately designed at-
tention matching cell between the output of LSTM net-
work (Hochreiter and Schmidhuber, 1997) and the pref-
erences. With the bi-directional global transition pat-
terns and users’ personal preferences, the Bi-GTPPP
can yield more accurate missing POI category identi-
fication.

The main contributions of this work are listed as fol-
lows:

• The proposed model can address the non-trivial
missing POI category identification task via uti-
lizing bi-directional global transition patterns and
users’ personal preferences, and existing next POI
category prediction methods are not suitable for
our task.

• The existing next POI category prediction task can
be seen as a special case of the missing POI cate-
gory identification task. The proposed model can
be easily extended to address the next POI category
prediction task by only using forward sequence
information, while the existing prediction models
can not address the identification task well.

• Based on the experiments conducted on real-world
datasets, the proposed Bi-GTPPP model achieves
significantly better performance compared with
existing various state-of-the-art baselines.

2. Related Work

In POI-oriented studies, two important tasks are POI
recommendation and location prediction. In this sec-
tion, we present the related work in threefold: general

POI recommendation and location prediction, category-
aware POI recommendation and location prediction,
and neural network-based methods.

2.1. General POI Recommendation and Location Pre-
diction

Factoring Personalized Markov Chains and Local-
ized Regions (Cheng et al., 2013) takes users’ move-
ment constraint into account via exploiting the person-
alized Markov chain in the check-in sequence. Person-
alized Ranking Metric Embedding (PRME) (Feng et al.,
2015) integrates sequential information, individual pref-
erence, and geographical influence to improve the rec-
ommendation performance. Graph-based Embedding
(Xie et al., 2016) jointly captures the sequential effect,
geographical influence, temporal cyclic effect and se-
mantic effect by embedding into low dimensional space.
More informations such as temporal effects (Gao et al.,
2013), spatial-aware (Yin et al., 2017), behavior patterns
(He et al., 2016), various contexts (Yang et al., 2017a)
also have been studied accordingly in POI recommen-
dation and location prediction tasks.

2.2. Category-aware POI Recommendation and Loca-
tion Prediction

Real-life POI-oriented tasks usually suffer from huge
search space, which is because the number of POIs is
large and needs a lot of computational costs, while the
POI category can help filter candidate POIs and thus re-
duce the search space for efficiency and improve the rec-
ommendation performance. Context-Aware POI Cat-
egory Prediction (Zhang et al., 2017a) emphasizes the
significance of category information in large-scale POI
recommendation. More and more efforts have been
made to utilize the category information. Ye et al. (Ye
et al., 2013) proposed a framework which exploits re-
gion categories to predict the most likely location of
users given their previous activities. Liu et al. (Liu et al.,
2013) employed matrix factorization to predict a user’s
preference on locations in the corresponding categories.
A new POI recommendation problem, namely top-K lo-
cation category based POI recommendation (Chen et al.,
2015), has been formulated considering that users are
more interested in tasting a wide range of location cat-
egories. Listwise Bayesian Personalized Ranking ap-
proach (He et al., 2017) has been proposed to predict the
category ranking to filter candidate POIs. Category in-
formation has also been considered in (Zhou and Wang,
2014) and extended to more applications (Xiao et al.,
2010; Rodrigues et al., 2012).
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2.3. Neural Network for POI Recommendation and Lo-
cation Prediction

Neural networks have been used in the field of POI
recommendation and location prediction (Liu et al.,
2016; Wang et al., 2017; Yin et al., 2017). For exam-
ples, a method called Spatial Temporal Recurrent Neu-
ral Networks (STRNN) (Liu et al., 2016) was proposed
to model temporal and spatial contexts in each layer.
Heterogeneous features and spatial-aware personal pref-
erences were utilized by Spatial-Aware Hierarchical
Collaborative Deep Learning model (Yin et al., 2017).
Some LSTM-based approaches (Zhu et al., 2017; Zhao
et al., 2018) try to capture short-term and long-term
characteristics via specifically designed gates. User
preference over POIs and context associated with users
and POIs were predicted simultaneously in PACE (Pref-
erence And Context Embedding) (Yang et al., 2017a).
More neural network-based approaches (Wang et al.,
2017; Zhang et al., 2017b; Yang et al., 2017b) have also
been adopted to address POI recommendation and lo-
cation prediction. However, the above methods are not
specially designed for missing POI category identifica-
tion and these efforts fail to capture both bi-directional
global transition patterns and users’ personalized pref-
erences for missing POI category identification. So they
can not address the identification task well.

Besides, the most relevant task to missing POI cate-
gory identification is the missing POI check-in identifi-
cation. The work (Xi et al., 2019) is the first to address
the missing POI check-in identification by modelling
of bi-directional spatio-temporal dependence and users’
dynamic preferences (Bi-STDDP). However, the miss-
ing POI category check-ins identification is different
from the missing POI check-in identification in many
ways. Therefore, the model is not suitable for missing
POI category check-ins identification task.

3. Methodology

In this section, we first formulate the problem of
missing POI category identification, and then present
the details of the proposed Bi-GTPPP model, which
contains three parts of attention matching cell, bi-
directional global transition patterns, and personal pref-
erences.

3.1. Problem Statement

Let U = {u1, u2, ..., uN} is a set of N users and
C = {c1, c2, ..., cM} is a set of M POI categories. Each
sample is associated with a category check-ins list of

user u Cu = {cu
1, c

u
2, ..., c

u
L}, where cu

l means user u’s l-
th check-in category is cu

l . Assume the l-th check-in
category cu

l of user u is missing, the task is to identify
which POI category the user u visited according to the
forward sequence {cu

1, c
u
2, ..., c

u
l−1} and the backward se-

quence {cu
l+1, c

u
l+2, ..., c

u
L}.

3.2. Attention Matching cell
Firstly, we formalize a delicately designed attention

matching cell which is adopted in our model to weight
different preference features:

cell(a, b) = (1 − s) × a + s × b, (1)
s = 0.5 + 0.5 × cos(a, b) (2)

= 0.5 + 0.5 ×
a>b
‖a‖‖b‖

, (3)

where a is the feature extracted based on the existing
data (e.g., check-in categories sequence) by LSTM net-
work, b expresses the preferences which are global tran-
sition patterns or personal preferences in our model, and
a and b are in the same space RM . The weight s is the
normalized cosine similarity between a and b, and in-
dicates how much a matches b. If feature a matches
preference b well, then preference b should have a big-
ger weight s, otherwise the feature a should be retained
more. Note that cell(a, b) is not equal to cell(b, a).

3.3. Bi-directional Global Transition Patterns
In this subsection, we first extract features from

users’ check-in categories sequence, and then integrate
global transition patterns.

Firstly, we capture POI category information with
embedding layer. The embedding layer can be seen as
performing the latent factor modeling for category pop-
ularity. It learns one matrix Ec, each row of which rep-
resents a POI category. If we use one-hot encoded cat-
egory cu

l−k, cu
l+k ∈ RM as input vectors, the outputs of

embedding layer can be expressed as

e(cu
l−k) = E>c cu

l−k, (4)
e(cu

l+k) = E>c cu
l+k, (5)

where 1 ≤ k ≤ w, and w is the window width, Ec ∈

RM×d denotes the embedding matrix for categories, d is
the dimension of embedding vectors.

LSTM (Hochreiter and Schmidhuber, 1997) is capa-
ble of learning short and long-term dependencies and
has become an effective and scalable model for sequen-
tial prediction problems, we use the basic LSTM to cap-
ture user’s forward and backward check-in information:

lu
l−1 = LS T M(e(cu

l−w:l−1)), (6)
lu
l+1 = LS T M(e(cu

l+w:l+1)), (7)
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where e(cu
l−w:l−1) and e(cu

l+w:l+1) are the embedded for-
ward and backward check-in sequences respectively,
lu
l−1 ∈ Rh and lu

l+1 ∈ Rh are the bi-directional features
extracted from users’ check-in categories sequence by
LSTM and h is the dimension of the LSTM output
space.

Next, we add a hidden layer to transform the output of
LSTM network to another space for applying attention
matching cell:

hu
l−1 = f (W f lu

l−1), (8)
hu

l+1 = f (Wb lu
l+1), (9)

where W f ∈ RM×h and Wb ∈ RM×h are the parameters
of transformation matrices.

Then, user’s check-in activities usually have some
public transition patterns, for example, users often go to
dinner after work and watch a movie after dinner. The
transition patterns work → dinner, dinner → movie are
global for all users. Our Bi-GTPPP model is designed to
capture the global transition patterns from bi-direction.
For the missing category cu

l , we need to capture the most
relevant forward global transition patterns cu

l−1 → cu
l

and backward cu
l+1 → cu

l :

gl−1 = f (E>f cu
l−1), (10)

gl+1 = f (E>b cu
l+1), (11)

where E f ∈ RM×M and Eb ∈ RM×M denote the for-
ward transition embedding matrix and backward transi-
tion embedding matrix respectively, the activation func-
tion f (x) is chosen as a tanh function f (x) = ex−e−x

ex+e−x . The
output gl−1 ∈ RM can be normalized and expresses the
transition distribution from category cu

l−1 to all candi-
date categories, and gl+1 ∈ RM is the same. However,
we don’t do the normalization considering the expres-
sive power.

Now, we can apply the delicately designed attention
matching cell in Equation (1) to model how well the
user’s bi-directional check-in information matches the
global transition patterns:

mu
l−1 = cell(hu

l−1, gl−1), (12)
mu

l+1 = cell(hu
l+1, gl+1), (13)

mu
l = mu

l−1 + mu
l+1. (14)

The attention matching cell interpolates hu
l−1 and gl−1,

hu
l+1 and gl+1 respectively, and indicates how much hu

l−1
matches gl−1 or hu

l+1 matches gl+1. If user u’s forward
check-in information hu

l−1 matches forward preference
gl−1 well, then forward preference gl−1 should have a
bigger weight, otherwise the feature hu

l−1 should be re-
tained more, and cell(hu

l+1, gl+1) is also the same. Fi-

nally, the bi-directional informations are added to cap-
ture the bi-directional global transition patterns mu

l .

3.4. Personal Preferences and the Final Bi-GTPPP
Model

Different users have personal preferences which
much affect the check-in behaviors of users. For exam-
ple, most users usually watch a movie after dinner, but
some users have a dinner after the movie. If we iden-
tify the missing category of the personalized users as
the global transition pattern dinner → movie, the model
will have an erroneous identification. So here we need
to capture users’ personal preferences. If we use one-hot
encoded user u ∈ RN as input vectors, then the personal
preference of user u can be expressed as:

pu = f (E>p u), (15)

where Ep ∈ RN×M , each row of which represents a
user’s personal preferences for M categories. And the
whole embedding matrix Ep can be seen as performing
the latent factor modeling for all users’ personal cate-
gory preferences. We can initialize the matrix Ep via
counting users’ visiting history on all training data and
fine-tune during model training.

Then, the same structure attention matching cell can
be adopted to model how well the user’s recent bi-
directional check-in information and global transition
patterns match his or her personal preferences:

nu
l = cell(mu

l , pu). (16)

Finally, the prediction of the l-th category the user u
has been can be computed as:

ou
l = so f tmax(Wonu

l ), (17)

where Wo ∈ RM×M are the parameters in the softmax
layer. The ou

l is a distribution which indicates differ-
ent probability of all possible candidate categories the
user u might visit l-th. And the categories correspond-
ing to the k maximum probabilities are the top-k identi-
fications for the missing category.

We present the final neural network architecture of
Bi-GTPPP in Figure 1. First, bi-directional category
sequence features are captured by two basic LSTM
network, and then the inputs of categories and user
are fed into embedding layer to capture bi-directional
global transition patterns and personal preferences in
Equations (10), (11) and (15) respectively. Moreover,
three same structure attention matching cells model how
well the user’s bi-directional category sequence fea-
tures match the global transition patterns and how well

4



Softmax Layer

Personalized 

Preferences

User u

Forward 

Transition Patterns

c(l-1)

Backward 

Transition Patterns

c(l+1)

Category 

Embedding

LSTM LSTM

c(l+w:l+1)c(l-w:l-1)

Hidden Layer Hidden Layer

Matching Cell Matching Cell

Matching Cell

Bi-GTPPP 

Output

Embedding

Attention 

Matching 

Input

Sequence 

Features

Sum

Figure 1: The proposed Bi-GTPPP model

the user’s recent bi-directional check-in information and
global transition patterns match his or her personal pref-
erences in Equations (14) and (16) respectively. Finally,
the softmax layer makes the identification for the miss-
ing l-th category.

We need to minimize the cross entropy of predicted
distribution and the actual distribution:

J(θ) = −
1
S

S∑
i=1

M∑
j=1

yi, j log(ou
l, j|xi, θ), (18)

where S is the number of samples, M is the number of
categories, yi ∈ RM is the one-hot label of sample xi and
θ is the parameters set.

The training is performed in an end-to-end manner
and the Equation (18) is used to train globally the whole
architecture. Training is done through stochastic gradi-
ent descent over shuffled mini-batches with the Adam
(Kingma and Ba, 2014) update rule.

4. Experiments

In this section, we perform experiments to evaluate
the proposed Bi-GTPPP model against various baseline
methods on two real-world LBSNs datasets. We first in-
troduce the datasets, baseline methods, implementation
details and evaluation metrics of our experiments. Fi-
nally, we present our experimental results and analysis.

4.1. Datasets

The statistics of the two public LBSNs datasets are
listed in Table 1.

Table 1: Statistics of the two datasets.
Dataset #user #POI #category #check in #Avg.check-in

NYC 1,083 38333 251 227,428 210.0
TKY 2,293 61858 247 573,703 250.2

• NYC1 (Yang et al., 2015) is a dataset from
Foursquare, which includes long-term (about 10
months) check-in data in New York city collected
from April 2012 to February 2013.

• TKY1 (Yang et al., 2015) is a dataset similar to
NYC except from Tokyo.

We eliminate users with fewer than 10 check-ins in
these two datasets. Then, we sort each user’s check-
in records according to timestamp order, taking the first
80% as training set, the following 10% for the validation
set and the remaining 10% for the test set. The users’
history category information is intentionally removed as
ground truth for testing the identification performance,
this is consistent for all experiments for fair comparison.

4.2. Baselines

We compare the proposed method with counting
based methods (Forward, Backward, TOP1, TOP2),
traditional POI recommendation algorithms (PRME,
PRME-G), neural network-based approaches (RNN,
LSTM, GRU, STRNN, PACE, Bi-STDDP). Some ear-
lier methods likes PMF (Salakhutdinov and Mnih,
2007), FPMC (Rendle et al., 2010), FPMC-LR (Cheng
et al., 2013) have been proved to be not as good as

1https://sites.google.com/site/yangdingqi/home/foursquare-
dataset
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PRME-G (Feng et al., 2015; Liu et al., 2016; He et al.,
2017), so we don’t compare them with our model.

• Forward: The forward transition probability be-
tween categories is taken as the prediction for all
users.

• Backward: The backward transition probability
between categories is taken as the prediction for
all users.

• TOP1: The most popular categories in the training
set are selected as the prediction for all users.

• TOP2: The most popular categories in the training
set are selected as the prediction for each user.

• PRME(Feng et al., 2015): User and POIs are em-
bedded into the same latent space to capture the
user transition patterns.

• PRME-G(Feng et al., 2015): It takes the distance
between destination POIs and recent visited ones
into consideration on the basis of PRME.

• RNN(Zhang et al., 2014): This is a neural network
method which directly models the dependency on
user’s sequential behaviors into the click prediction
process through the recurrent structure in RNN.

• LSTM(Hochreiter and Schmidhuber, 1997): This
is a special RNN model, which contains a mem-
ory cell and three multiplicative gates to learn long-
term dependency.

• GRU(Cho et al., 2014): This is another special
RNN model, which contains two gates and is sim-
pler than LSTM.

• STRNN(Liu et al., 2016): This is a RNN-based
model for next POI recommendation. It incorpo-
rates both the time-specific transition matrices and
distance-specific transition matrices within recur-
rent architecture.

• PACE(Yang et al., 2017a): This is a deep neural
architecture that jointly learns the embeddings of
users and POIs to predict both user preference over
POIs and various context associated with users and
POIs.

• Bi-STDDP(Xi et al., 2019): This is the state-of-
the-art missing POI check-in identification model
which captures bi-directional spatio-temporal de-
pendence and users’ dynamic preferences.

4.3. Implementation Details
For all datasets we use: embedding dimension d of

128, LSTM output space h of 512, window width w of
18, mini-batch size of 128 and learning rate of 0.001.
All these values are chosen via a grid search on the NYC
validation set. The parameters of Ep are initialized via
counting users’ visiting history on training data, and all
other parameters in the neural network are initialized
from glorot uniform distributions (Glorot and Bengio,
2010). We do not perform any datasets-specific tuning
except early stopping on validation sets.

4.4. Evaluation Metrics
To evaluate the performance of our proposed Bi-

GTPPP model and the baselines described above, we
follow the existing works (Liu et al., 2016) to use several
standard metrics: Recall@K, F1-score@K and Mean
Average Precision (MAP). Recall@K is 1 if the cate-
gory visited appears in the top-K ranked list; otherwise
is 0. The final Recall@K is the average value over all
test ground truth instances. MAP is a global evaluation
for ranking tasks, and it is usually used to evaluate the
quality of the whole ranked lists. We report Recall@K
and F1-score@K with K = 1, 5 and 10 in our experi-
ments. The larger the value, the better the performance
for all the evaluation metrics. All the metrics reported
in the experiment are the mean over five runs.

4.5. Performance Comparison and Discussion
We present the experimental results evaluated by Re-

call@K and MAP on NYC and TKY datasets in Table
2. Besides, we also present the scatter and box plots
of different methods in term of MAP over five runs in
Figure 2 and Figure 3. From these results, we have the
following insightful observations,

- The counting-based methods Forward and Back-
ward have acceptable performances on all two
datasets. Similarly, counting-based personalized
TOP2 also has a good performance on NYC and
TKY, and these results are even better than PRME
and PRME-G. This makes sense that users’ behav-
ior patterns are usually regular and follow the long-
tailed distribution. While the non-personalized
TOP1 performs differently on two datasets, this
seems to show that the users’ preferences in Tokyo
are more consistent than those in New York City.

- PRME-G slightly improves the results comparing
with PRME via incorporating distance informa-
tion. And RNN-based methods (RNN, LSTM,
GRU) obtain similar performance improvement
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Table 2: Evaluation of missing category identification in terms of Recall@K, F1-score@K and MAP. Bi-GTPPP-rand means that our model
parameters Ep are initialized from glorot uniform distributions, and Bi-GTPPP-nonstatic means that parameters Ep are initialized via counting
users’ visiting history on training data and fine-tune during training. Underlined results indicate the best baselines over each dataset and metric.
“*” indicates that the improvement is statistically significant compared with the best baselines at p-value < 0.05 over independent samples t-tests.

Recall@1 Recall@5 Recall@10 F1-score@1 F1-score@5 F1-score@10 MAP

NYC

Forward 0.1576 0.3593 0.4877 0.1576 0.1198 0.0887 0.2636
Backward 0.1566 0.3505 0.4868 0.1566 0.1168 0.0885 0.2601

TOP1 0.0594 0.2888 0.4127 0.0594 0.0963 0.0750 0.1756
TOP2 0.1688 0.3842 0.5017 0.1688 0.1281 0.0912 0.3009

PRME 0.1039 0.3249 0.4442 0.1039 0.1083 0.0808 0.2163
PRME-G 0.1180 0.3532 0.4818 0.1180 0.1177 0.0876 0.2334

RNN 0.1873 0.4954 0.6164 0.1873 0.1651 0.1121 0.3292
LSTM 0.2095 0.5191 0.6504 0.2095 0.1730 0.1183 0.3555
GRU 0.2162 0.5234 0.6493 0.2162 0.1745 0.1181 0.3596

STRNN 0.2331 0.5408 0.6689 0.2331 0.1803 0.1216 0.3787
PACE 0.2330 0.5401 0.6675 0.2330 0.1800 0.1214 0.3769

Bi-STDDP 0.2345 0.5409 0.6677 0.2345 0.1803 0.1214 0.3796

Bi-GTPPP-rand 0.2425 0.5591 0.6702 0.2425 0.1864 0.1219 0.3898
Bi-GTPPP-nonstatic 0.2580* 0.5745* 0.6922* 0.2580* 0.1915* 0.1259* 0.4030*

TKY

Forward 0.3920 0.5950 0.6899 0.3920 0.1983 0.1254 0.4962
Backward 0.3924 0.5973 0.6919 0.3924 0.1991 0.1258 0.4965

TOP1 0.3806 0.5376 0.6385 0.3806 0.1792 0.1161 0.4694
TOP2 0.3967 0.6225 0.7013 0.3967 0.2075 0.1275 0.5109

PRME 0.3612 0.5265 0.6128 0.3612 0.1755 0.1114 0.4512
PRME-G 0.3638 0.5358 0.6204 0.3638 0.1786 0.1128 0.4558

RNN 0.4051 0.6773 0.7808 0.4051 0.2258 0.1420 0.5298
LSTM 0.4203 0.6956 0.7930 0.4203 0.2319 0.1442 0.5458
GRU 0.4189 0.6929 0.7912 0.4189 0.2310 0.1439 0.5445

STRNN 0.4325 0.7071 0.8036 0.4325 0.2357 0.1461 0.5576
PACE 0.4251 0.6930 0.8033 0.4251 0.2310 0.1461 0.5568

Bi-STDDP 0.4283 0.7065 0.8022 0.4283 0.2355 0.1459 0.5571

Bi-GTPPP-rand 0.4412 0.7088 0.8069 0.4412 0.2363 0.1467 0.5652
Bi-GTPPP-nonstatic 0.4454* 0.7211* 0.8146* 0.4454* 0.2404 0.1481 0.5721*

over PRME-G because of their sequence modeling
capability.

- PACE predicts user preference over POIs, user
context and POI context together to achieve further
improvement over RNN-based methods. Another
great improvement is achieved by STRNN. It in-
corporates both the time-specific transition matri-
ces and distance-specific transition matrices within
recurrent architecture in each layer. Bi-STDDP
achieves similar performance improvement over
STRNN via incorporating both the bi-directional
spatio-temporal dependence and users’ dynamic
preferences, and they are the best methods among
the baselines on the two datasets. However, the
missing POI category check-ins identification is a
little different from the missing POI check-in iden-

tification. POI check-ins are more dependent on
spatio-temporal information (e.g., it is impossible
that two POI check-ins of the same user are far
apart in space distance, but the time interval is very
short.), but POI category check-ins do not have the
obvious spatio-temporal dependence due to POIs
at different distances may belong to the same cat-
egory. Therefore, the Bi-STDDP can not address
the missing POI category identification well.

- Bi-GTPPP-rand outperforms the baseline methods
over all evaluation metrics on all two datasets. And
Bi-GTPPP-nonstatic further improves the perfor-
mance via utilizing priori information and fine-
tuning during training. On NYC dataset, the
performance improvement of Bi-GTPPP-nonstatic
on Recall@1, Recall@5, Recall@10 comparing
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Figure 2: The scatter plot of different methods in term of MAP over five runs.

with Bi-GTPPP-rand are 6.39%, 2.75%, 3.28% re-
spectively, and comparing with best baseline Bi-
STDDP are 10.02%, 6.21% and 3.67% respec-
tively which indicates that the Bi-GTPPP-nonstatic
improves even more on the higher ranking list.
Similar results can also be observed on TKY
dataset. Besides, the baseline Bi-STDDP is de-
signed for missing POI identification and captures
bi-directional spatio-temporal dependence, which
is unsuitable for the missing POI category identi-
fication task. Because POIs in different locations
may belong to the same category, which results
in the spatio-temporal dependence is poor in miss-
ing POI category identification task. As aforesaid,
POI-oriented tasks usually suffer from huge search
space due to the large amount of POIs, while the
POI category can help filter candidate POIs and
thus reduce the search space for efficiency. For
the TKY dataset, the numbers of the POIs and cat-
egories are 61858 and 247, respectively, and one
category corresponds to 250 POIs on average. If
we adopt the top 10 categories, the recall@10 is
0.8146 and we can reduce the candidate POIs from

Table 3: Impact of forward and backward sequences on NYC dataset
evaluated by Recall@K and MAP.

Recall@1 Recall@5 Recall@10 MAP

F-GTPPP 0.2394 0.5584 0.6787 0.3866
B-GTPPP 0.2403 0.5590 0.6785 0.3869
Bi-GTPPP 0.2580 0.5745 0.6922 0.4030

61858 to 10 × 250 = 2500, which is a 25 times
reduction.

Overall, these improvements indicate the fact that the
baseline methods fail to capture both global transition
patterns and users’ personal preferences, while our pro-
posed Bi-GTPPP can do this.

4.6. Impact of Different Parts

In this subsection, we investigate the influence of
the forward and backward sequences in our Bi-GTPPP
model. An intuitive feeling is that bi-directional se-
quences can bring more useful additional informa-
tion and should have a better performance than sin-
gle sequence. The results shown in Table 3 confirm
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Figure 3: The box plot of different methods in term of MAP over five runs.
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Figure 4: Performance of fine-tuned bi-directional global transition patterns and personal preference on NYC dataset evaluated by Recall@K.

this. The Bi-GTPPP achieves further improvement by
utilizing bi-directional sequences comparing with F-
GTPPP and B-GTPPP which only utilize forward or
backward information respectively. It must be noted
that, although with the single sequence, our proposed
model still achieves substantial performance improve-
ment over various kinds of state-of-the-art methods.
Based on this fact, we can say that our Bi-GTPPP can be
naturally extended to address next POI category recom-

mendation and prediction tasks with competitive perfor-
mance.

Next, we show that our Bi-GTPPP model can cap-
ture bi-directional global transition patterns and user’s
personal preferences. The E f , Eb and Ep denote the
forward transition embedding matrix, backward transi-
tion embedding matrix and user’s personal preferences
respectively which can be used directly for missing POI
category identification. The Recall@K performance of
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Figure 5: Performance of Bi-GTPPP with varying embedding dimension, LSTM output space and window width on NYC dataset evaluated by
MAP.

initialization and fine-tuned E f , Eb and Ep is shown in
Figure 4. We observe that fine-tuned E f and Eb in Fig-
ure 4(a) and 4(b) greatly improve the identification per-
formance comparing with random initialized. And fine-
tuned Ep in Figure 4(c) also performs better than initial-
ization which counts users’ visiting history. It turns out
that bi-directional global transition patterns and user’s
personalized preferences can be captured in our novel
model.

Besides, we can obviously see that Ep obtains more
gain than E f and Eb. It is intuitive that user’s per-
sonal preferences should play a more important role
in the model than the bi-directional transition patterns.
Because user’s personal preference (Ep) captures per-
sonal preferences for each user while the bi-directional
transition patterns (E f and Eb) are global and non-
personalized for all users, and personalized identifica-
tion can obtain more performance improvement.

4.7. Impact of Parameters

Tuning model parameters is critical to the perfor-
mance of the proposed model, such as the embedding
dimension d, LSTM output space h and window width
w in our Bi-GTPPP model. Figure 5(a), 5(b) and 5(c)
show the results under different settings of d, h and
w. We present the MAP performance of Bi-GTPPP on
NYC test set. Note that the best parameters are selected
by grid search on NYC validation set, while the impact
of parameters is evaluated on NYC test set. Validation
and test results are similar under different settings.

The embedding dimension d and LSTM output space
h have similar performance as shown in Figure 5(a) and
5(b). We observe that as the embedding dimension and
LSTM output space increase, the performance of the
model is quickly improved, and then becomes stable.
The embedding dimension and LSTM output space are

related to model complexity, smaller values are difficult
to fit the data, and larger values result in more complex
model and require more computing resources. Making
a balance between performance and efficiency, d = 128
and h = 512 are proper parameters.

Figure 5(c) investigates the impact of window width
on NYC dataset evaluated by MAP. From the experi-
mental results, we observe that the performance first im-
proves quickly with the increase of window width w and
then drops down gradually. The reason is that, smaller
value of w prunes too many useful history information,
and larger value of w brings little useful additional in-
formation and may even hurt the model performance by
introducing noise information due to the long interval.
We finally select w = 18 as the window width.

According to Table 2 and Figure 5, we can see that
even without the best parameters, Bi-GTPPP still out-
performs other baseline methods. In a word, the perfor-
mance of Bi-GTPPP stays stable in a large range of val-
ues of parameters and is not very sensitive to embedding
dimension, LSTM output space and window width.

5. Conclusion and Outlook

In this paper, we proposed a novel neural network
model named Bi-GTPPP to identify the missing cate-
gory of POI where a user has visited at any time in
the past. The Bi-GTPPP integrated bi-directional global
transition patterns and personal preferences via deli-
cately designed attention matching cells. Specifically,
the attention matching cell first bi-directionally models
how well the check-in category information captured
by LSTM network matches the global transition pat-
terns. And then another attention matching cell models
how well the recent check-in category information and
global transition patterns of users match their personal
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preferences. Finally, the proposed model blue is evalu-
ated on two large-scale real-world datasets and the re-
sults demonstrate the performance improvement of our
proposed model compared with various kinds of state-
of-the-art baseline methods. Also, the proposed model
can be naturally extended to address next POI category
prediction task with competitive performance by only
using forward sequence.

Several directions are available for future research
in the area. First, the missing POI category identifica-
tion task can be further explored and applied to a wider
range of applications, such as the urban function zone
dividing and urban planning, and even used for crimi-
nal activities analysis. Second, using POI category in-
formation to assist POI-oriented research will have a
broader application scenario in various real-world ap-
plications. Third, the explanation and interpretability of
POI-oriented research will become more and more im-
portant. Finally, the identification performance can be
improved by combining with other disciplines, for ex-
ample, by learning relevant experience from nonlinear
systems (Sun et al., 2020a, 2019, 2020b).
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