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Abstract

Recently, convolutional neural networks (CNNs)-based facial landmark detec-

tion methods have achieved great success. However, most of existing CNN-based

facial landmark detection methods have not attempted to activate multiple cor-

related facial parts and learn different semantic features from them that they can

not accurately model the relationships among the local details and can not fully

explore more discriminative and fine semantic features, thus they suffer from

partial occlusions and large pose variations. To address these problems, we pro-

pose a cross-order cross-semantic deep network (CCDN) to boost the semantic

features learning for robust facial landmark detection. Specifically, a cross-

order two-squeeze multi-excitation (CTM) module is proposed to introduce the

cross-order channel correlations for more discriminative representations learning

and multiple attention-specific part activation. Moreover, a novel cross-order

cross-semantic (COCS) regularizer is designed to drive the network to learn

cross-order cross-semantic features from different activation for facial landmark

detection. It is interesting to show that by integrating the CTM module and

COCS regularizer, the proposed CCDN can effectively activate and learn more

?Fully documented templates are available in the elsarticle package on CTAN.
∗Corresponding author: Zhihui Lai

∗∗Corresponding author: Jie Zhou
Email addresses: lai_zhi_hui@163.com (Zhihui Lai), jie_jpu@163.com (Jie Zhou)

Preprint submitted to Journal of LATEX Templates November 17, 2020

ar
X

iv
:2

01
1.

07
77

7v
1 

 [
cs

.C
V

] 
 1

6 
N

ov
 2

02
0

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


Figure 1: (a) Our CCDN (blue dots) outperforms the state-of-the-art method (green dots). (b)

From the face activation maps (two excitation blocks), we can see that CCDN can learn more

fine and complementary semantic features, which can effectively capture the parts of inter-

esting and suppress occluded ones, thus improving the accuracy of facial landmark detection

with large pose variations and heavy occlusions.

fine and complementary cross-order cross-semantic features to improve the accu-

racy of facial landmark detection under extremely challenging scenarios. Exper-

imental results on challenging benchmark datasets demonstrate the superiority

of our CCDN over state-of-the-art facial landmark detection methods.

Keywords: landmark detection, semantic feature, heavy occlusions, large

poses, feature correlations.

1. INTRODUCTION

Facial landmark detection, also known as face alignment, is a task to locate

fiducial facial landmarks (eye corners, nose tip, etc.) in a face image, which can

help achieve geometric image normalization and feature extraction. It becomes

an indispensable part of facial analysis tasks such as face recognition [1], face

verification [2] and human-computer interaction [3, 4, 5]. Recently, CNNs-based

methods have been one of the mainstream approaches in facial landmark de-

tection and achieve considerable performance on frontal faces. However, when
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suffering from large pose variations, heavy occlusions and complicated illumi-

nations, CNN-based methods still cannot accurately detect landmarks.

The convolutional units in various layers of CNNs can actually pay more at-

tention to parts of interest, i.e., behave as object detectors and landmark region

detectors without any label information. Thus, CNNs-based facial landmark

detection methods [6, 7, 8, 9, 10, 11, 12, 13] are more robust to the variations

in facial poses, expressions and occlusions. However, most CNNs-based facial

landmark detection methods have not attempted to activate multiple corre-

lated facial parts and learn different semantic features from them so that they

cannot accurately model the differences between these correlated facial parts

and the relationships among the local details in the correlated facial parts, i.e.,

they can not fully explore more discriminative and fine semantic features, thus

the performance of the CNNs-based facial landmark detection method suffers

from extremely large poses and heavy occlusions. For instance, the coordinate

regression facial landmark detection methods [6, 8, 9] learn features from the

whole face images and then regress to the landmark coordinates, which drives

the models to learn the whole facial features in a common/normal way that

cannot accurately model the differences of local details and the relationships

among local details. Also, the heatmap regression facial landmark detection

methods [10, 11, 12, 13] generate a landmark heatmap for each landmark and

then predict landmarks by traversing the corresponding landmark heatmaps.

The region (for example, the mouth area) near the landmark largely determines

the location of the predicted landmark, and the information of the other ar-

eas (eyes, eyebrow and forehead areas) has not yet been effectively encoded

although deeper network structures are utilized to learn features with larger

receptive fields and capture facial global constraints. Hence, as shown in Fig.

1, the above methods are not robust enough against large poses and partial oc-

clusions. Furthermore, recent works have shown that the second-order statistics

[14, 15, 16], the part-specific semantic features [17, 18] and the feature selection

mthods [19, 20, 21] can help obtain more discriminative and robust features

and are beneficial to many computer vision tasks. However, how to introduce
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Figure 2: The overall architecture of our proposed cross-order cross-semantic deep net-

work (CCDN). Firstly, four stacked hourglass networks are utilized to learn multi-scale fea-

tures, which are then inputted into a simplified and modified SENet, i.e., the cross-order

two-squeeze multi-excitation (CTM) module is proposed to generate multiple more discrimi-

native attention-specific feature maps for activating more correlated facial parts. Finally, by

integrating the CTM module and cross-order cross-semantic (COCS) regularizer into a novel

CCDN with a seamless formulation, more discriminative and fine cross-order cross-semantic

features can be learned for improving the accuracy of facial landmark detection.

the second-order statistics to activate parts of interest and then learn multiple

more discriminative and fine attention-specific (part-based) semantic features

for robust facial landmark detection are still open questions. To address the

above problems, we propose a cross-order cross-semantic deep network (CCDN)

to activate more correlated facial parts and learn more discriminative and fine

cross-order cross-semantic features from them for more robust facial landmark

detection. The overall architecture of the proposed CCDN is shown in Fig.

2. To be specific, we first propose a cross-order two-squeeze multi-excitation

(CTM) module to generate multiple more discriminative attention-specific fea-

ture maps for activating more correlated facial parts. In the proposed CTM

module, the cross-order channel correlations are introduced to selectively em-

phasize informative features and suppress less useful features by considering

both the first-order and second-order statistics, thereby performing more effec-

tive feature re-calibration and generating more effective attention-specific fea-
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ture maps. Then, a cross-order cross-semantic (COCS) regularizer is developed

to guide the feature maps from different excitation blocks to represent different

semantic meanings (i.e., activate different correlated facial parts) by maximiz-

ing the correlations between the features from the same excitation block, while

de-correlating those from different excitation blocks. Finally, by integrating the

CTM module and COCS regularizer via the proposed CCDN, more fine and

complementary cross-order cross-semantic features can be learned for more ro-

bust facial landmark detection. Experimental results on benchmark datasets

show that our approach obtains better robustness and higher accuracy than

other state-of-the-art facial landmark detection methods.

The main contributions of this work are summarized as follows:

1) With the well-designed CTM module, cross-order channel correlations

can be introduced to perform more effective feature re-calibration and generate

multiple more discriminative attention-specific feature maps, which helps learn

more powerful cross-order cross-semantic features for robust facial landmark de-

tection.

2) A COCS regularizer is designed to drive the network to learn the cross-

order cross-semantic features from different excitation blocks. By exploring

more fine and complementary semantic features, our method is able to enhance

the robustness of facial landmark detection when facing large poses and heavy

occlusions.

3) To the best of our knowledge, this is the first study to explore the cross-

order cross-semantic features for handling facial landmark detection under chal-

lenging scenarios. By integrating the CTM module and COCS regularizer via

a novel CCDN with a seamless formulation, our algorithm outperforms state-

of-the-art methods on the benchmark datasets such as COFW [22], 300W [23],

AFLW [24] and WFLW [8].

The rest of the paper is organized as follows. Section II gives an overview of

the related work. Section III shows the proposed method, including the CTM

module and the COCS regularizer. A series of experiments are conducted to

evaluate the performance of the proposed CCDN in Section IV. Finally, Section

5



Table 1: Notations.

Notation Meaning

X the output feature map of a residual block (X ∈ RJ×H×d).

J , H, D the width, height, and channels of X.

Xd the d-th channel of X (Xd ∈ RJ×H).

κst the first-order channel correlations (κst ∈ RD).

κnd the second-order channel correlations (κnd ∈ RD).

X̂p the output feature maps of excitation p.

Ŷ the final normalized covariance matrix (Ŷ ∈ RD×D).

fp the pooled features of the output of excitation p (fp ∈ RD).

Q the correlation matrix of all pairwise excitation blocks.

GAP global average pooling.

GCP global covariance pooling.

V concludes the paper. The symbols and their meanings are listed in Table 1.

2. RELATED WORK

During the past decades, rapid development has been made on facial land-

mark detection. Generally, most existing facial landmark detection methods

can be divided into three groups: model-based methods, coordinate regression

methods and heatmap regression methods.

Model-based methods. Model-based methods learn parametric models

(shape model [25], appearance model [26] or part model [27]) from labeled

datasets and leverage the principal component analysis (PCA) to model and

constrain the shape variation to improve facial landmark detection. However,

these methods are sensitive to large poses and partial occlusions.

Coordinate Regression methods. The coordinate regression methods

directly learn the mapping from facial appearance features to the landmark co-

ordinate vectors by using various models [6, 8, 28, 29, 30, 31]. In the supervised
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descent method [32] and local binary features [33], the linear regressor and ran-

dom forest are separately utilized to perform cascaded regression for enhancing

the robustness against the variations in facial expressions, head poses and il-

luminations. With a memory unit that shares information across all levels, a

convolutional recurrent neural network [34] is introduced to learn more effective

and robust task-based features to enhance its robustness to large poses and par-

tial occlusions. In cascaded regresssion and de-occlusion [35], a cascaded deep

generative regression model is proposed to handle face de-occlusion problems

and face alignment problems simultaneously, which can effectively locate occlu-

sions and recover more genuine faces that can be further used to improve the

accuracy of facial landmark detection. By paying more attention to the con-

tribution of samples with small and medium-size errors, the wing loss function

[36] is proposed to improve the deep neural network training capability and

help to locate more accurate landmarks. In the look-at-boundary [8], firstly, the

stacked hourglass networks are used to generate more accurate facial boundary

heatmaps by introducing the message passing layers and adversarial learning

concept. With these more accurate boundary heatmaps, its robustness against

partial occlusions can be enhanced. In occlusion-adaptive deep networks [9],

the Resnet is utilized to construct the geometry-aware module, the distillation

module and the low-rank learning module for overcoming the occlusion problem

in face alignment. With the effective shape constraints and the favorable re-

gression ability, the robustness of the coordinate regression methods have been

enhanced. However, they usually regress from the whole facial features to land-

mark coordinates, which can not accurately model the detailed differences in

local details and the relationships among local details, thus they are not robust

enough against facial landmark detection due to large poses and partial occlu-

sions.

Heatmap Regression methods. This category of methods [37, 10, 11, 12,

13] predicts the landmarks by generating and traversing the landmark heatmaps.

To address the facial landmark detection problems causing by variations in the

image styles, a style aggregated network [10] is proposed to transform the orig-
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inal face image to style-aggregated images that are then used to train a more

complicated model for robust facial landmark detection. Liu et al. [11] propose

a novel probabilistic model that can effectively predict the semantically con-

sistent landmarks, the ground-truth landmark can be updated and the predict

landmarks become more accurate. In LUVLi [12], a novel framework is pro-

posed to jointly estimate facial landmark locations, uncertainty and visibility,

thus providing accurate uncertainty predictions and improving the performance

of facial landmark detection. Chandran et al. [13] propose a novel, fully convo-

lutional regional architecture to address face alignment on very high-resolution

images. By automatically defining and focusing on regions of interest instead

of considering the image holistically, this architecture can achieve superior per-

formance across all resolutions from 256 to 4K. Since this kind of method can

better encode the part constraints and context information, and effectively drive

the network to focus on parts of interest for facial landmark detection, they have

achieved state-of-the-art accuracy. However, they are unable to take full advan-

tage of distant and correlated facial local details and can not accurately model

the relationships among correlated local details, that they still suffer from large

poses and heavy occlusions.

Until now, most CNNs-based facial landmark detection methods can not

fully explore more discriminative and fine semantic features, as they can not

accurately activate the most correlated facial parts and model the differences

between them, suffering from performance degradation under large poses and

heavy occlusions. Hence, we propose a cross-order cross-semantic deep network

by integrating the CTM module and COCS regularizer for more robust facial

landmark detection.

3. Robust Facial Landmark Detection by Cross-order Cross-semantic

Deep Network

In this section, we firstly elaborate on the proposed CTM module and then

present the COCS regularizer. Finally, we illustrate the proposed CCDN.
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Figure 3: The network structure of cross-order two-squeeze multi-excitation (CTM) mod-

ule. By integrating the two-squeeze blocks and multi-excitation blocks into the proposed

CTM module, the cross-order channel correlations containing both first-order and second-

order statistics can be introduced to perform more effective channel-wise feature re-calibration

and learn multiple attention-specific feature maps.

3.1. Cross-order Two-squeeze Multi-excitation Module

Squeeze-and-Excitation Networks (SENet) [38] can effectively model channel-

wise feature dependencies and perform dynamic channel-wise feature re-calibration.

However, SENet ignores the statistics information higher than the first-order,

thus hindering the discriminative ability of the network. Moreover, recent works

[14, 15] have shown that second-order statistics are more discriminative and rep-

resentative than first-order ones. Inspired by the above observations, we propose

a cross-order two-squeeze multi-excitation module to perform more effective fea-

ture re-calibrating and multiple attention-specific feature maps generating by

introducing the well-designed cross-order channel correlations. As shown in Fig.

3, the cross-order channel correlations mainly contain the first-order and second-

order channel correlations. With such proposed cross-order channel correlations,

the two-squeeze blocks are able to learn more robust and discriminative represen-

tations for more effective feature re-calibrating and the multi-excitation blocks

can help learn multiple attention-specific feature maps for each input image.

Then, by integrating the two-squeeze blocks and the multi-excitation blocks via
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the proposed CTM module, our method is possible to activate parts of interest

and ready to learn cross-order cross-semantic features.

3.1.1. Two-squeeze blocks

The two-squeeze blocks are proposed to introduce the cross-order channel

correlations that contain both first-order channel correlations and second-order

channel correlations. The first-order channel correlations can be introduced

by global average pooling (GAP) operation. Specifically, let X denote the output

feature map of a residual block, where X ∈ RN×D and N = J × H. J , H

and D are used to denote the width, height and channels of the feature maps,

respectively. Let X = [X1,X2, · · · ,Xd, · · · ,XD], the d-th dimension of the first-

order channel correlations κst ∈ RD can be computed as:

κst
d = GAP (Xd) =

1

J ×H

J∑
j=1

H∑
h=1

Xd (j, h) (1)

With the GAP operation in Eq. (1), the first-order channel correlations can

be modeled and ready to be utilized for performing channel-wise feature re-

calibration. The second-order statistics can be introduced by the global covari-

ance pooling (GCP) [14] operation, however, how to introduce the second-order

statistics to the middle layers (i.e., the feature maps) of the network still pose

a challenge. Inspired by recent works [38, 17, 15], we utilize the second-order

statistics to model the channel-wise feature correlations and perform channel-

wise feature re-calibration. Hence, the second-order channel correlations

are introduced by the GCP operation that can be achieved by the Newton-

Schulz iteration [39]. We use Ŷ to denote the final normalized covariance matrix

and Ŷ = [y1,y2, · · · ,yd, · · · ,yD]. yd can be used to model the second-order

channel-wise feature dependencies among the d-th channel and all channels.

The d-th dimension of the second-order channel-wise feature dependencies κnd

can be calculated as:

κnd
d = GCP(Xd) =

1

D

∑
d
yd (2)

With the GCP operation, the second-order channel correlations can be
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better utilized to model the channel-wise feature dependencies and help obtain

more discriminative representations.

3.1.2. Multi-excitation blocks

With the two-squeeze blocks, the first-order and second-order channel corre-

lations are modeled. Then they are utilized to perform feature re-calibration by

gating mechanisms, in which a simple Sigmoid function can serve as a proper

gating function. The whole process can be explored as :

Xp,ord = sp,ordX

= Sigmoid
(
W p,ord

U ReLU
(
W p,ord

V κord
))

X
(3)

where Sigmoid represents the sigmoid function, ord ∈ {st, nd} denotes the first-

order or second-order statistics, sp,ord denotes the scaling factor of excitation

p corresponding to the first-order or second-order channel correlations. W p,ord
U

and W p,ord
V denote the parameters of 1 × 1 convolution layers, whose channel

dimensions are set to D/4 and D, respectively. Xp,ord represents re-calibrated

feature maps with the first-order or second-order channel correlations corre-

sponding to excitation p. Then, the final output of excitation p can be illustrated

as :

X̂p = Xp,st + Xp,nd (4)

With the proposed CTM module, the cross-order channel correlations can

be used to perform more effective feature re-calibration and generate multiple

more effective attention-specific feature maps for learning more discriminative

and fine semantic features.

3.2. Cross-order Cross-semantic regularizer

The proposed CTM module can effectively perform feature re-calibration

and generate multiple attention-specific feature maps by introducing the cross-

order channel correlations. However, it is challenging to learn multiple more

discriminative and fine semantic features from them, i.e., drive features from

different excitation blocks to represent different semantic meanings. Metric
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learning [40] has been utilized to address the above problems by pulling positive

features closer to the anchor and negative features away. However, it is hard

to design an effective metric learning loss and how to optimize the loss is still

a challenging problem. Hence, in this paper, we propose a cross-order cross-

semantic regularizer to learn cross-order cross-semantic features by exploring

the correlations between features from different layers and different excitation

blocks. Specifically, we maximize feature correlations from the same excitation

block and minimizing those from different excitation blocks.

Firstly, we perform GAP operation on the re-calibrated feature maps X̂p to

obtain the corresponding pooled features fp and fp ∈ RD. Then, we normalize

fp by l2-normalization. The pairwise correlations of two excitation blocks Qp,p′

can be formulated as:

Qp,p′ =
1

B2

∑
FT

p Fp (5)

where B is the batch size and Fp = [fp,1, fp,2, · · · , fp,B ] ∈ RD×B . Q denotes the

correlations of all pairwise excitation blocks. By maximizing the correlations

within the same excitation block (the main diagonal elements of Q) and mini-

mizing the correlations between different excitation blocks (the elements of Q

except the main diagonal), the cross-semantic loss can be defined as follows:

min
Q
L (Q) =

‖Q‖2F − ‖diag (Q)‖22
‖diag (Q)‖22

(6)

where ‖ · ‖ denotes the Frobenius norm and diag(Q) means the main diagonal

elements of the matrix Q. By optmizing the Eq. (6), more fine and comple-

mentary semantic features can be learned from the re-calibrated feature maps.

As utilizing semantic features from different layers of CNNs has been shown

to be beneficial to many vision tasks [17], in this paper, we further fuse features

from different layers by a cross-layer feature fusing (CFF) block as shown in

Fig. 4. The CFF block utilizes the deconvolutional operation to upscale the

size of the feature maps, which can reduce noise when compared with by other

upscale operations such as bi-linear interpolation. The whole process of CFF

block can be formulated as follows:
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Figure 4: With the well-designed cross-layer feature fusing (CFF) block, features from different

layers can be aggregated to get more effective and discriminative representations, which are

then optimized by the proposed cross-order cross-semantic regularizer to obtain cross-order

cross-semantic features for robust facial landmark detection.

X̂p
G = BN(K2 ∗ (X̂p

T−1 + Fconv(K1 ∗ X̂p
T ))) (7)

where ∗, BN and Fconv are used to denote the convolutional, batch normal-

ization (BN) and deconvolutional operations. X̂p
T and X̂p

T−1 denote the feature

maps at layer T and T −1, respectively. K1 denotes the 1×1 convolution kernel

and K2 represents the 3×3 convolution kernel. With such a well-designed CFF

block, features from different layers can be aggregated to learn more effective

and discriminative representations. Hence, the final COCS regularizer loss can

be formulated as follows:

min
Q

E(Q) = L
(
QT
)

+ L
(
QT−1

)
+ L

(
QG
)

(8)

where L
(
QT
)
, L
(
QT−1

)
and L

(
QG
)

denote the cross-semantic loss at layers T ,

T − 1 and of the fused feature maps, respectively. With such COCS regularizer

loss, more fine and complementary cross-order cross-semantic features can be

easily obtained, which helps improve the accuracy of facial landmark detection.

3.3. Cross-order Cross-semantic Deep Network

The proposed CTM module can perform effective feature re-calibration and

generate multiple attention-specific feature maps by introducing the cross-order
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channel correlations. Then, the COCS regularizer is proposed to drive the

network to learn different semantic features from different excitation blocks.

Finally, the CTM module and COCS regularizer are integrated into a cross-

order cross-semantic deep network with a seamless formulation to obtain more

fine and complementary cross-order cross-semantic features that can be utilized

to enhance the robustness of facial landmark detection under extremely large

poses and heavy occlusions. The overall network structure of CCDN is shown

in Fig. 2 and the final objective function of our CCDN can be formulated as

follows:

min
W

Φ (W ) = min
W

∑
i (‖S∗

i − CCDN (W ; IMGi)‖22
+ γ1L

(
QT
)

+ γ2L
(
QT−1

)
+ γ3L

(
QG
) (9)

where CCDN means the proposed approach. W denotes the parameters of

CCDN, S∗
i denotes the ground-truth shape of face image IMGi, γ1, γ2 and γ3

are hyper-parameters that balance the contribution of different costs. The first

term is used to solve the mapping between the input facial features and the

ground-truth landmarks. The other terms are used to obtain cross-order cross-

semantic features and the regularization term is omitted for simplifying the

formula. The optimization of CCDN is a typical end-to-end network training

process under the supervision of Eq. (9). Hence, with the proposed CTM

module and COCS regularizer, our CCDN is more robust against extremely

large poses and heavy occlusions.

4. Experiments

In this section, we firstly introduce the evaluation settings including the

datasets and the methods for comparison. Then, we compare our algorithm with

state-of-the-art facial landmark detection methods on challenging benchmark

datasets such as COFW [22], 300W [23], AFLW [24] and WFLW [8].
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4.1. Dataset and Implementation Details

To validate the performance of the proposed method, we mainly introduce

four challenging benchmark datasets with large variations in poses, expressions,

occlusions and illuminations such as COFW [22], 300W [23], AFLW [24] and

WFLW [8].

300W (68 landmarks): It is a well-known competition dataset for facial

landmark detection, and each face image is densely annotated with 68 land-

marks. It consists of some present datasets including LFPW [41], AFW [42],

Helen [43] and IBUG [23]. With a total of 3148 pictures, the training sets are

made up of the training sets of AFW, LFPW and Helen while the testing set

includes 689 images with such testing sets as IBUG, LFPW and Helen. The

testing set is further divided into three subsets: 1) Challenging subset (i.e.,

IBUG dataset). It contains 135 images that are collected from a more general

“in the wild” scenarios, and experiments on IBUG dataset are more challeng-

ing. 2) Common subset (554 images, including 224 images from LFPW test

set and 330 images from Helen test set). 3) Fullset (689 images, containing the

challenging subset and common subset).

COFW-68 (68 landmarks): It is another very challenging dataset on oc-

clusion issues which is published by Burgos-Artizzu et al. [22]. It contains 1345

training images in which 845 images come from the LFPW [41] dataset and the

other images are heavily occluded. The testing set contains 507 face images

with heavy occlusions, large pose variations and expression variations.

AFLW (19 landmarks): It contains 25993 face images with jaw angles rang-

ing from −120◦ to +120◦ and pitch angles ranging from −90◦ to +90◦. AFLW-

full divides the 24386 images into two parts: 20000 for training and 4386 for

testing. AFLW-frontal selects 1165 images out of the 4386 testing images to

evaluate the alignment algorithm on frontal faces.

WFLW (98 landmarks): It contains 10000 faces (7500 for training and 2500

for testing) with 98 landmarks. Apart from landmark annotation, WFLW also

has rich attribute annotations (such as occlusion, pose, make-up, illumination,

blur and expression.) that can be used for a comprehensive analysis of existing
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algorithms.

Evaluation metric Normalized Mean Error (NME) [28] is commonly used

to evaluate facial landmark detection methods. For 300W, NME normalized by

the inter-pupil distance and the inter-ocular distance are utilized, separately.

For COFW, NME normalized by the inter-pupil distance is used. For AFLW,

we use NME normalized by the face size given by AFLW. For WFLW, NME

normalized by inter-ocular distance is adopted.

Implementation Details In our experiments, we first use the four stacked

hourglass networks as our backbone [37]. All the training and testing images are

cropped and resized to 128×128 according to the provided bounding boxes. To

perform data augmentation, we randomly sample the angle of rotation and the

bounding box scale from Gaussian distribution. During the training process,

we use the staircase function. The initial learning rate is 2.5 × 10−4 which is

decayed to 6.25× 10−5 after 100 epochs. The learning rate is divided by 2 and

2 at epoch 40 and 100, respectively. p is set to 4. γ1, γ2 and γ3 are set to 0.025,

0.01 and 0.05, resepectively. The CCDN is trained with Pytorch on 8 Nvidia

Tesla V100 GPUs.

In the next section, we firstly compare our algorithm with the state-of-the-

art methods, such as 3DDFA [44], RAR [29], Wing [36], LAB [8], DU-Net [48],

Liu et al. [11], ODN [9], HRNet [49], Chandran et al. [13] and LUVLi [12].

When compared with those methods, we either use the released codes by the

original authors or restore the original experiment, and both have achieved the

expected effects in the corresponding papers. Moreover, we also compare our

method with the Baseline (the Baseline uses four stacked hourglass networks to

regress landmark coordinate vectors and its performance outperforms HGs [37])

and FCDN (the first-order statistics are only used to activate the correlated

facial parts and learn fine and complementary cross-semantic features). Then,

we show some exemplar results on facial landmark detection under large poses

and partial occlusions and the corresponding results of performance evaluation

in facial landmark detection, i.e., the NME and the cumulative error distribution

(CED) curves.
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Table 2: Comparisons with state-of-the-art methods on 300W dataset.

Method
Common

Subset

Challenging

Subset
Fullset

Inter-pupil Normalization

3DDFACVPR16[44] 5.53 9.56 6.31

RARECCV16[29] 4.12 8.35 4.94

WingCVPR18[36] 3.27 7.18 4.04

LABCVPR18[8] 3.42 6.98 4.12

BCNN-JDR19′ [45] 3.68 7.16 4.36

Liu et al.CVPR19[11] 3.45 6.38 4.02

ODNCVPR19[9] 3.56 6.67 4.17

RCEN19′ [46] 3.25 6.70 3.93

Chandran et al.CVPR20[13] 2.83 7.04 4.23

Baseline 4.39 7.41 4.98

FCDN 3.64 6.51 4.20

CCDN 3.21 6.02 3.77

Inter-ocular Normalization

PCD-CNNCVPR18[47] 3.67 7.62 4.44

SANCVPR18[10] 3.34 6.60 3.98

LABCVPR18[8] 2.98 5.19 3.49

DU-NetECCV18[48] 2.90 5.15 3.35

HRNet19′ [49] 2.87 5.15 3.32

AWingICCV19[50] 2.72 4.52 3.07

LUVLiCVPR20[12] 2.76 5.16 3.23

CCDN 2.75 4.43 3.08
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Figure 5: Comparison of CED curves between our method and state-of-the-art methods on

300W Challenging Subset (68 landmarks). Our approach is more robust to partial occlusions

and large poses than other methods. Best viewed in color.

4.2. Comparison with State-of-the-Art methods

4.2.1. Evaluation under Normal Circumstances

Faces in the 300W common subset and full set have fewer variations in head

poses, facial expressions and occlusions. Therefore, we evaluate the effective-

ness of our method under normal circumstances on these two subsets. Table 2

displays the comparison of NME with state-of-the-art face alignment methods

in detail. From Table 2, we can see that our method achieves 3.21% NME on

the 300W common subset and 3.77% NME on the 300W full set, which out-

performs state-of-the-art methods on faces under normal circumstances. These

results indicate that our CCDN can improve the accuracy of FLD under normal

circumstances, which mainly because 1) the proposed CTM module can effec-

tively perform feature re-calibration and generate multiple attention-specific fea-

ture maps by introducing the cross-order channel correlations; 2) the proposed

COCS regularizer can drive the network to learn more fine and complemen-
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Figure 6: Exemplar results on facial landmark detection under the variations in facial expres-

sions (the 1st row), large poses (the 2nd row), partial occlusions (the 3rd row), illuminations

(the 4th row) and complicated cases (the 5th row) on 300W dataset. With the proposed

CCDN, our method is more robust to faces under challenging scenarios .

tary cross-order cross-semantic features that possess more discriminative and

representative probabilities, and 3) by integrating the CTM module and COCS

regularizer into a novel CCDN with a seamless formulation, our method is able

to the accuracy of facial landmark detection under normal circumstances.

4.2.2. Evaluation of Robustness against Occlusions

Most state-of-the-art methods have got promising results on FLD under con-

strained environments. However, when face images suffer heavy occlusions and

complicated illuminations, the accuracy of FLD will degrade greatly. In order

to test the performance of our CCDN on faces with occlusions, we conduct the

experiments on three heavy occluded benchmark datasets including the COFW

dataset, 300W challenging subset and WFLW dataset.

On the COFW dataset, the failure rate is defined by the percentage of test
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Table 3: Comparisons with state-of-the-art methods on COFW dataset. The error (NME) is

normalized by the inter-pupil distance.

Method NME Failure

DRDACVPR16[51] 6.46 6.00

RARECCV16[29] 6.03 4.14

DAC-CSRCVPR17[52] 6.03 4.73

CAM19′ [53] 5.95 3.94

PCD-CNNCVPR18[47] 5.77 3.73

WingCVPR18[36] 5.44 3.75

LABCVPR18[8] 5.58 2.76

AWingICCV19[50] 4.94 0.99

ODNCVPR19[9] 5.30 -

Baseline 6.17 5.52

FCDN 5.32 2.17

CCDN 4.91 1.12
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images with more than 10% detection error. As illustrated in Table 3, we com-

pare the proposed CCDN with other representative methods on the COFW

dataset. Our CCDN boosts the NME to 4.91% and the failure rate to 1.12%,

which outperforms the state-of-the-art methods.

We also compare our approach against the state-of-the-art methods on the

300W challenging subset in Table 2 and Fig. 5. As shown in Table 2, our

method achieves 6.02% NME on the 300W challenging subset, which outper-

forms state-of-the-art methods on occluded faces. Furthermore, the cumulative

error distribution(CED) curve in Fig. 5 and the exemplar results in facial land-

mark detection under complicated cases in Fig. 6 also depict that our model

achieves superior performance in comparison with other methods.

The WFLW dataset contains complicated occluded subsets such as the Illu-

mination subset, Make-Up Subset and Occlusion Subset. As shown in Table 5,

our CCDN outperforms other state-of-the-art FLD methods.

Hence, from the experimental results on the COFW dataset, 300W chal-

lenging subset and WFLW dataset, we can conclude that with the proposed

CTM module and COCS regularizer, our CCDN can effectively activate multi-

ple correlated facial parts and suppress the occluded parts, which help learn the

cross-order cross-semantic features for enhancing its robustness against heavy

occlusions.

4.2.3. Evaluation of Robustness against Large Poses

Face under large pose is another great challenge for FLD. To further evaluate

the effectiveness of our proposed method under large poses, we carry out ex-

periments on the AFLW dataset, 300W challenging subset and WFLW dataset.

For the AFLW dataset, Table 4 shows that our method achieves 1.35% NME

on the AFLW-full testing set and 1.14% NME on the AFLW-frontal testing

set, which outperforms the state-of-the-art methods. Furthermore, the CED

curve in Fig. 7 also depicts that our model exceeds the other methods. For the

WFLW dataset, the NME on the Pose Subset and Expression Subset surpasses

the other methods. Hence, from the experimental results of the three datasets
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Table 4: Comparisons with state-of-the-art methods on AFLW dataset. The error (NME) is

normalized by face size.

Method full frontal

CCLCVPR16[24] 2.72 2.17

TSRCVPR17[54] 2.17 -

DAC-CSRCVPR17[52] 2.27 1.81

LLLICCV19[55] 1.97 -

SANCVPR18[10] 1.91 1.85

DSRNCVPR18[56] 1.86 -

LABCVPR18[8] 1.85 1.62

HRNet19′ [49] 1.85 1.62

ODNCVPR19[9] 1.63 1.38

Liu et al.CVPR19[11] 1.60 -

LUVLiCVPR20[12] 1.39 1.19

Baseline 2.46 1.90

FCDN 1.61 1.36

CCDN 1.35 1.14
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Table 5: Comparisons with state-of-the-art methods on WFLW dataset. The error (NME) is

normalized by the inter-ocular distance.

Method Testset
Pose

Subset

Expression

Subset

Illumination

Subset

Make-Up

Subset

Occlusion

Subset

Blur

Subset

CCFSCVPR15[57] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLNCVPR17[58] 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LABCVPR18[8] 5.27 10.24 5.51 5.23 5.15 6.79 6.32

WingCVPR18[36] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

HRNet19′ [36] 4.60 7.86 4.78 4.57 4.26 5.42 5.36

AWingICCV19[36] 4.36 7.38 4.58 4.32 4.27 5.19 4.96

LUVLiCVPR20[36] 4.37 7.56 4.77 4.30 4.33 5.29 4.94

Baseline 5.78 9.47 6.39 5.83 5.91 7.07 7.21

FCDN 4.86 7.81 5.13 4.77 4.77 5.78 5.34

CCDN 4.29 7.22 4.71 4.34 4.21 5.25 4.88
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Figure 7: Comparisons of CED curves of our method and state-of-the-art methods like SDM

on AFLW-full dataset(19 landmarks). Our approach outperforms the other methods. Best

viewed in color.

(see Table 2, 4, 5, Fig. 5 and Fig. 7), we can conclude that by incorporating the

CTM module with the COCS regularizer, our CCDN can generate more effective

multiple attention-specific feature maps, which helps to better activate parts of

interest and learn more fine and complementary cross-order cross-semantic fea-

tures, thus enhancing the robustness of our CCDN against the large pose and

expression variations.

4.3. Self Evaluations

Analysis of γ1, γ2 and γ3. We firstly calculate L
(
QT
)
, L
(
QT−1

)
and

L
(
QG
)

according to X̂p
T , ˆXp

T−1 and X̂p
G. L

(
QT
)

and L
(
QG
)

are closer to the

output of networks than L
(
QT−1

)
, therefore, γ1 and γ3 should be given large

weights. Moreover, L
(
QG

)
should be more important than L

(
QT
)
, hence,

we have γ2 ≤ γ1 ≤ γ3. We also conduct the corresponding experiments by

using different γ1, γ2 and γ3 values on the 300W challenging datasets. From

the experimental results in Table 6, we can find that γ1 = 0.025, γ2 = 0.01 and
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Figure 8: The first row represents the face activation maps with two excitation blocks

corresponding to two face images. The second row represents the face activation maps with

four excitation blocks. Compared with two excitation blocks, four excitation blocks can learn

more detailed and robust face activation maps, that is, more effective semantic features. Best

viewed in color.

γ3 = 0.05 are good choices to balance these four tasks.

Number of excitation blocks. The number of excitation blocks impacts

the performance of facial landmark detection. Hence, we conduct experiments

on numbers of excitation blocks on 300W dataset. Moreover, to visualize the

cross-order cross-semantic features, we construct face activation maps by mod-

ifying the resized activation maps [59]. Specifically, every two activation maps

are constructed for each landmark (x and y coordinate). Then, by averaging

Table 6: The effect (NME (%)) of different γ1, γ2 and γ3 values on the 300W challenging

subset.

γ1 γ2 γ3 NME(%)

0.01 0.01 0.01 7.21

0.01 0.01 0.025 6.79

0.025 0.01 0.025 6.43

0.025 0.01 0.05 6.02

0.025 0.01 0.1 6.22
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Table 7: Experimental results (NME (%)) on the number of excitation blocks on benchmark

datasets.

number 1 2 3 4

300W-challenging 7.41 6.35 6.14 6.02

AFLW-full 2.46 1.62 1.48 1.35

WFLW-testset 5.78 4.75 4.44 4.29

activation maps of all landmarks, the face activation map is constructed. Fig. 8

displays the face activation maps with different excitation blocks. Also, Table 7

statistics the NME on 300W challenging subset, AFLW-full and WFLW-testset

with different excitation blocks. From the experimental results from Fig. 8 and

Table 7, we can conclude that 1) face activation maps are more robust to partial

occlusions and large poses as they can effectively activate the parts of interest

and suppress the occluded ones; 2) the foreground (the red regions) of face acti-

vation maps is shown to cover large regions (including different facial parts such

as eyebrow, eyes, nose and mouth area) so that they can effectively activate

multiple correlated facial parts and help to better model the relationships be-

tween different facial local details; 3) face activation maps from the same layer

complement each other – they concentrate on different parts of faces which help

to obtain more fine and complementary semantic features, and 4) with more

excitation blocks, more fine cross-order cross-semantic features can be learned,

which leads to more discriminative representations. Therefore, our CCDN is

more robust to faces under the variations in poses, expressions, occlusions and

illuminations.

4.4. Ablation Study

From the above experimental results, we can see that Our CCDN is more

robust to faces under extremely large poses and heavy occlusions than state-

of-the-art methods, which mainly because 1) we use several excitation blocks

to learn more fine and complementary cross-order cross-semantic features that
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possess more representative and discriminative capabilities, and 2) by introduc-

ing the second-order statistics and COCS regularizer, the proposed CCDN can

help activate more correlated facial parts and further improve the alignment

accuracy. The former has been effectively verified in Section 4.3, we evaluate

the latter in this ablation study by separately using the Baseline (the Baseline

uses four stacked hourglass networks to regress landmark coordinate vectors and

its performance outperforms HGs [37]), FCDN (the first-order statistics is only

used to activate the correlated facial parts and learn fine and complementary

cross-semantic features) and CCDN( the first-order and second-order statistics

are both used). From experimental results in Tables 2–5, we can find that

CCDN outperforms the Baseline and FCDN, and FCDN performs better than

the Baseline, which indicates that 1) the second-order statistics can effectively

help activate multiple correlated facial parts and learn more discriminative se-

mantic features, and 2) by integrating the CTM module and COCS regularizer

via the proposed CCDN, the cross-order cross-semantic features can be learned

and utilized to enhance the robustness of facial landmark detection methods

against heavy occlusions and large poses.

4.5. Experimental results and discussions

From the experimental results listed in Tables 2 – 7 and the figures presented

in previous subsections, we have the following observations and corresponding

analyses.

(1) CCDN and the heatmap regression methods (HGs [37], SAN [10], Liu

et al. [11] and LUVLi [12]) enhance their robustness to the variations in fa-

cial poses, expressions and occlusions by effectively model the differences in fa-

cial local details and the correlations/relationships between different facial local

details. The heatmap regression methods achieve this by utilizing the multi-

scale features with larger receptive fields, while our method by proposing the

cross-order cross-semantic deep network. However, our method outperforms the

heatmap regression methods, which indicates that: 1) the well-designed cross-

order two-squeeze multi-excitation module can effectively utilize the cross-order
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channel correlations to activate parts of interest and generate multiple attention-

specific feature maps. 2) the proposed cross-order cross-semantic regularizer

is able to drive the network to learn more fine and complementary cross-order

cross-semantic features that are more robust to large poses and heavy occlusions

from the generated multiple attention-specific feature maps. 3) by integrating

the CTM module and COCS regularizer into a cross-order cross-semantic deep

network with a seamless formulation, the robustness and accuracy of our method

can be enhanced.

(2) CCDN is similar to CCL [24] and CAM [53] that firstly partition the

optimization space of facial landmark detection into multiple domains of ho-

mogeneous descent and then fuse the regression results of relevant domains to

further improve the accuracy of facial landmark detection. Compared to CCL

and CAM, our method achieves this in an end-to-end way, i.e., by the pro-

posed cross-order cross-semantic deep network. The final result of our method

outperforms CCL and CAM, which indicates that our proposed CCDN can

effectively activate parts of interest and learn more fine and complementary se-

mantic features to enhance its robustness to the variations in large poses and

heavy occlusions.

(3) The second-order statistics can be utilized by the proposed CTM module

to activate parts of interest and learn multiple attention-specific feature maps

for learning the cross-order cross-semantic features. If we remove the second-

order statistics, CCDN is equal to the FCDN. As shown in Table 2–5, CCDN

exceeds the FCDN. This indicates that the second-order statistics can be used

to effectively model the channel-wise feature dependencies and perform dynamic

channel-wise feature re-calibration, which further helps activate parts of inter-

est and learn multiple attention-specific feature maps for robust facial landmark

detection.

(4) The coordinate regression facial landmark detection methods [6, 8, 9]

learn features from the whole face images and then regress to the landmark co-

ordinates, while our method firstly activates parts of interest and then learn mul-

tiple attention-specific semantic features to improve its accuracy. If we remove
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the learning of multiple attention-specific semantic features, CCDN is euqal to

the Baseline. As shown in Table 2–5, our method outperforms the Baseline and

the coordinate regression facial landmark detection methods [6, 8, 9]. These in-

dicate that by learning multiple attention-specific semantic features (more fine

and complementary cross-order cross-semantic features), our method is able to

achieve more accurate facial landmark detection.

(5) The more excitation blocks, the higher the accuracy of our method.

However, more excitation blocks will consume more computational cost. From

the experiment, we can find that utilizing four excitation blocks is a good choice

that can effectively balance the accuracy and the computational cost.

5. Conclusion

Unconstrained facial landmark detection is still a very challenging topic due

to large poses and partial occlusions. In this work, we present a cross-order

cross-semantic deep network to address facial landmark detection under ex-

tremely large poses and heavy occlusions. By fusing the CTM module and the

COCS regularizer with a seamless formulation, our CCDN is able to achieve

more robust facial landmark detection. It is shown that the CTM module

can effectively activate parts of interest and drive the network to learn mul-

tiple attention-specific feature maps, which can be further regularized by the

COCS regularizer to learn different semantic features. With such more fine

and complementary cross-order cross-semantic features, the robustness of our

proposed CCDN to extremely large poses and heavy occlusions have been en-

hanced. It can also be found from the experiments that by integrating the

second-order statistics into the activation of parts of interest and the learning of

attention-specific features, more fine and complementary semantic features can

be obtained, which further enhances the robustness of the proposed method in

challenging scenarios.

29



6. Acknowledgments

This work is supported by the National Natural Science Foundation of

China(Grant No. 62076164, 62002233, 61802267, 61976145 and 61806127 ), the

Natural Science Foundation of Guangdong Province (Grant No. 2019A1515111121,

2018A030310451 and 2018A030310450), the Shenzhen Municipal Science and

Technology Innovation Council (Grant No. JCYJ20180305124834854) and the

China Postdoctoral Science Fundation (Grant No. 2020M672802).

References

References

[1] S. M. Moghadam, S. A. Seyyedsalehi, Nonlinear analysis and synthesis of

video images using deep dynamic bottleneck neural networks for face recog-

nition, Neural networks : the official journal of the International Neural

Network Society 105 (2018) 304–315.

[2] F.-R. Xiong, Y. Xiao, Z. Cao, Y. Wang, J. T. Zhou, J. Wu, Ecml: An en-

semble cascade metric-learning mechanism toward face verification., IEEE

transactions on cybernetics PP.

[3] H. Zheng, R. Wang, W. Ji, M. Zong, W. K. Wong, Z. Lai, H. Lv, Discrim-

inative deep multi-task learning for facial expression recognition, Inf. Sci.

533 (2020) 60–71.

[4] Y. Liu, X. Zhang, Y. Lin, H. Wang, Facial expression recognition via deep

action units graph network based on psychological mechanism, IEEE Trans-

actions on Cognitive and Developmental Systems 12 (2020) 311–322.

[5] F. Zhang, T. Zhang, Q. Mao, C. Xu, A unified deep model for joint facial

expression recognition, face synthesis, and face alignment, IEEE Transac-

tions on Image Processing 29 (2020) 6574–6589.

30



[6] Z. Zhang, P. Luo, C. C. Loy, X. Tang, Facial landmark detection by

deep multi-task learning, in: European Conference on Computer Vision,

Springer, 2014, pp. 94–108.

[7] J. Wan, J. Li, J. Chang, Y. Wu, Y. Xiao, C. Song, Face alignment by

coarse-to-fine shape estimation, Chinese Journal of Electronics 27 (2018)

1183–1191.

[8] W. Wu, C. Qian, S. Yang, Q. Wang, Y. Cai, Q. Zhou, Look at bound-

ary: A boundary-aware face alignment algorithm, in: IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2129–2138.

[9] M. Zhu, D. Shi, M. Zheng, M. Sadiq, Robust facial landmark detection

via occlusion-adaptive deep networks, in: IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3486–3496.

[10] X. Dong, Y. Yan, W. Ouyang, Y. Yang, Style aggregated network for facial

landmark detection, IEEE Conference on Computer Vision and Pattern

Recognition (2018) 379–388.

[11] Z. Liu, X. Zhu, G. Hu, H. Guo, M. Tang, Z. Lei, N. M. Robertson, J. Wang,

Semantic alignment: Finding semantically consistent ground-truth for fa-

cial landmark detection, in: IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3467–3476.

[12] A. Kumar, T. K. Marks, W. Mou, Y. Wang, M. Jones, A. Cherian,

T. Koike-Akino, X. Liu, C. Feng, Luvli face alignment: Estimat-

ing landmarks’ location, uncertainty, and visibility likelihood, ArXiv

abs/2004.02980.

[13] P. Chandran, D. Bradley, M. Gross, T. Beeler, Attention-driven cropping

for very high resolution facial landmark detection, 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (2020) 5861–5870.

31



[14] Z. Gao, J. Xie, Q. Wang, P. Li, Global second-order pooling convolutional

networks, in: IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 3024–3033.

[15] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, X. P. Zhang, Second-order attention

network for single image super-resolution, in: IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019.

[16] Q. Wang, P. Li, Q. Hu, P. Zhu, W. Zuo, Deep global generalized gaussian

networks, in: IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 5080–5088.

[17] W. Luo, X. Yang, X. Mo, Y. Lu, L. S. Davis, J. Li, J. Yang, S.-N. Lim,

Cross-x learning for fine-grained visual categorization, in: Proceedings of

the IEEE International Conference on Computer Vision, 2019, pp. 8242–

8251.

[18] Z. Cai, Q. Fan, R. S. Feris, N. Vasconcelos, A unified multi-scale deep con-

volutional neural network for fast object detection, in: European conference

on computer vision, Springer, 2016, pp. 354–370.

[19] Z. Li, J. Tang, Unsupervised feature selection via nonnegative spectral

analysis and redundancy control, IEEE Transactions on Image Processing

24 (2015) 5343–5355.

[20] Z. Li, J. Tang, L. Zhang, J. Yang, Weakly-supervised semantic guided

hashing for social image retrieval, International Journal of Computer Vision

(2020) 1–14.

[21] C. Gao, J. Zhou, D. Q. Miao, J. J. Wen, X. D. Yue, Three-way decision

with co-training for partially labeled data, Information Sciences. (2020)

doi:10.1016/j.ins.2020.08.104.

[22] X. P. Burgosartizzu, P. Perona, P. Dollar, Robust face landmark estimation

under occlusion, in: IEEE International Conference on Computer Vision,

2013, pp. 1513–1520.

32



[23] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. P. Zafeiriou, M. Pantic, 300

faces in-the-wild challenge: database and results, Image Vision Comput. 47

(2016) 3–18.

[24] S. Zhu, C. Li, C. C. Loy, X. Tang, Unconstrained face alignment via cas-

caded compositional learning, IEEE Conference on Computer Vision and

Pattern Recognition (2016) 3409–3417.

[25] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape models-

their training and application, Computer vision and image understanding

61 (1) (1995) 38–59.

[26] T. F. Cootes, G. J. Edwards, C. J. Taylor, Active appearance models, IEEE

Transactions on pattern analysis and machine intelligence 23 (6) (2001)

681–685.

[27] D. Cristinacce, T. F. Cootes, Feature detection and tracking with con-

strained local models, in: British Machine Vision Conference, 2006.

[28] X. Cao, Y. Wei, F. Wen, J. Sun, Face alignment by explicit shape regression,

International Journal of Computer Vision 107 (2) (2014) 177–190.

[29] S. Xiao, J. Feng, J. Xing, H. Lai, S. Yan, A. Kassim, Robust facial land-

mark detection via recurrent attentive-refinement networks, in: European

Conference on Computer Vision, 2016, pp. 57–72.

[30] R. Weng, J. Lu, Y. P. Tan, J. Zhou, Learning cascaded deep auto-encoder

networks for face alignment, IEEE Transactions on Multimedia 18 (10)

(2016) 2066–2078.

[31] W. Z. S. Y. Huiyu Mo, Leibo Liu, S. Wei, Face alignment with expression-

and pose-based adaptive initialization, IEEE Transactions on Multimedia

21 (4) (2019) 943–956.

[32] X. Xiong, F. De la Torre, Supervised descent method and its applications

to face alignment, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2013, pp. 532–539.

33



[33] S. Ren, X. Cao, Y. Wei, J. Sun, Face alignment at 3000 fps via regressing

local binary features, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 1685–1692.

[34] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, S. Zafeiriou,

Mnemonic descent method: A recurrent process applied for end-to-end face

alignment, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 4177–4187.

[35] J. Wan, J. Li, Z. Lai, B. Du, L. Zhang, Robust face alignment by cascaded

regression and de-occlusion, Neural Networks 123 (2020) 261–272.

[36] Z.-H. Feng, J. Kittler, M. Awais, P. Huber, X. Wu, Wing loss for robust

facial landmark localisation with convolutional neural networks, IEEE Con-

ference on Computer Vision and Pattern Recognition (2017) 2235–2245.

[37] J. Yang, Q. Liu, K. Zhang, Stacked hourglass network for robust facial

landmark localisation, IEEE Conference on Computer Vision and Pattern

Recognition Workshops (2017) 2025–2033.

[38] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 7132–7141.

[39] P. Li, J. Xie, Q. Wang, Z. Gao, Towards faster training of global covariance

pooling networks by iterative matrix square root normalization, in: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2018, pp. 947–955.

[40] M. Sun, Y. Yuan, F. Zhou, E. Ding, Multi-attention multi-class constraint

for fine-grained image recognition, in: Proceedings of the European Con-

ference on Computer Vision (ECCV), 2018, pp. 805–821.

[41] X. Zhu, D. Ramanan, Face detection, pose estimation, and landmark lo-

calization in the wild, IEEE Conference on Computer Vision and Pattern

Recognition (2012) 2879–2886.

34



[42] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, N. Kumar, Localizing

parts of faces using a consensus of exemplars, in: IEEE Conference on

Computer Vision and Pattern Recognition, pp. 545–552.

[43] V. Le, J. Brandt, Z. Lin, L. Bourdev, T. Huang, Interactive facial feature

localization, in: European Conference on Computer Vision, Springer, 2012,

pp. 679–692.

[44] X. Zhu, Z. Lei, X. Liu, H. Shi, S. Z. Li, Face alignment across large poses: A

3d solution, IEEE Conference on Computer Vision and Pattern Recognition

(2016) 146–155.

[45] M. Zhu, D. Shi, J. Gao, Branched convolutional neural networks incorpo-

rated with jacobian deep regression for facial landmark detection, Neural

networks : the official journal of the International Neural Network Society

118 (2019) 127–139.

[46] J. W. C. L. Xuxin Lin, Yanyan Liang, S. Z. Li, Region-based context en-

hanced network for robust multiple face alignment, IEEE Transactions on

Multimedia 21 (12) (2019) 3053–3067.

[47] A. Kumar, R. Chellappa, Disentangling 3d pose in a dendritic cnn for un-

constrained 2d face alignment, 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (2018) 430–439.

[48] Z. Tang, X. Peng, S. Geng, L. Wu, S. Zhang, D. N. Metaxas, Quantized

densely connected u-nets for efficient landmark localization, in: Proceed-

ings of the European Conference on Computer Vision (ECCV), 2018.

[49] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang,

W. Liu, J. Wang, High-resolution representations for labeling pixels and

regions, ArXiv abs/1904.04514.

[50] X. Wang, L. Bo, F. Li, Adaptive wing loss for robust face alignment via

heatmap regression, 2019 IEEE/CVF International Conference on Com-

puter Vision (ICCV) (2019) 6970–6980.

35



[51] J. Zhang, M. Kan, S. Shan, X. Chen, Occlusion-free face alignment: Deep

regression networks coupled with de-corrupt autoencoders, IEEE Confer-

ence on Computer Vision and Pattern Recognition (2016) 3428–3437.

[52] Z.-H. Feng, J. Kittler, W. J. Christmas, P. Huber, X. Wu, Dynamic

attention-controlled cascaded shape regression exploiting training data aug-

mentation and fuzzy-set sample weighting, IEEE Conference on Computer

Vision and Pattern Recognition (2017) 3681–3690.

[53] J. Wan, J. Li, J. Chang, Y. Wu, Y. Xiao, X. Li, H. Zheng, Face alignment

by component adaptive mechanism, Neurocomputing 329 (2019) 227–236.

[54] J.-J. Lv, X. Shao, J. Xing, C. Cheng, X. Zhou, A deep regression architec-

ture with two-stage re-initialization for high performance facial landmark

detection, 2017 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR) (2017) 3691–3700.

[55] J. P. Robinson, Y. Li, N. Zhang, Y. Fu, S. Tulyakov, Laplace landmark lo-

calization, 2019 IEEE/CVF International Conference on Computer Vision

(ICCV) (2019) 10102–10111.

[56] X. Miao, X. Zhen, X. Liu, C. Deng, V. Athitsos, H. Huang, Direct shape

regression networks for end-to-end face alignment, 2018 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (2018) 5040–5049.

[57] S. Zhu, C. Li, C. Change Loy, X. Tang, Face alignment by coarse-to-fine

shape searching, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 4998–5006.

[58] W. Wu, S. Yang, Leveraging intra and inter-dataset variations for robust

face alignment, in: Proceedings of the IEEE conference on computer vision

and pattern recognition workshops, 2017, pp. 150–159.

[59] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep

features for discriminative localization, in: Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2016, pp. 2921–2929.

36


	1 INTRODUCTION
	2 RELATED WORK
	3 Robust Facial Landmark Detection by Cross-order Cross-semantic Deep Network
	3.1 Cross-order Two-squeeze Multi-excitation Module
	3.1.1 Two-squeeze blocks
	3.1.2 Multi-excitation blocks

	3.2 Cross-order Cross-semantic regularizer
	3.3 Cross-order Cross-semantic Deep Network

	4 Experiments
	4.1 Dataset and Implementation Details
	4.2 Comparison with State-of-the-Art methods
	4.2.1 Evaluation under Normal Circumstances
	4.2.2 Evaluation of Robustness against Occlusions
	4.2.3 Evaluation of Robustness against Large Poses

	4.3 Self Evaluations
	4.4 Ablation Study
	4.5 Experimental results and discussions

	5 Conclusion
	6 Acknowledgments

