
A Fast Saddle-Point Dynamical System Approach to Robust
Deep Learning

Yasaman Esfandiaria, Aditya Balua, Keivan Ebrahimia, Umesh Vaidyab, Nicola Eliac,
Soumik Sarkara

aIowa State University

bClemson University

cUniversity of Minnesota

Abstract

Recent focus on robustness to adversarial attacks for deep neural networks produced a
large variety of algorithms for training robust models. Most of the effective algorithms
involve solving the min-max optimization problem for training robust models (min step)
under worst-case attacks (max step). However, they often suffer from high computa-
tional cost from running several inner maximization iterations (to find an optimal attack)
inside every outer minimization iteration. Therefore, it becomes difficult to readily ap-
ply such algorithms for moderate to large size real world data sets. To alleviate this, we
explore the effectiveness of iterative descent-ascent algorithms where the maximization
and minimization steps are executed in an alternate fashion to simultaneously obtain the
worst-case attack and the corresponding robust model. Specifically, we propose a novel
discrete-time dynamical system-based algorithm that aims to find the saddle point of a
min-max optimization problem in the presence of uncertainties. Under the assumptions
that the cost function is convex and uncertainties enter concavely in the robust learning
problem, we analytically show that our algorithm converges asymptotically to the robust
optimal solution under a general adversarial budget constraints as induced by `p norm,
for 1 ≤ p ≤ ∞. Based on our proposed analysis, we devise a fast robust training al-
gorithm for deep neural networks. Although such training involves highly non-convex
robust optimization problems, empirical results show that the algorithm can achieve sig-
nificant robustness compared to other state-of-the-art robust models on benchmark data
sets.

Keywords: Adversarial Training, Robust Deep Learning, Robust optimization

∗Corresponding author
Email address: soumiks@iastate.edu (Soumik Sarkar)
*This work was partially supported by NSF CAREER Grant (CNS#1845969)

Preprint submitted to Neural Networks March 3, 2021

ar
X

iv
:1

91
0.

08
62

3v
3

 [
cs

.L
G

]
 1

 M
ar

 2
02

1

1. Introduction

The success of adversarial perturbations to input data for deep learning models poses a
significant challenge for the machine learning community. The motivation for robustness
against these adversaries stems from safety and life-critical applications of deep learning-
based perception system such as self-driving cars, infrastructure assessment and security
applications [1–4]. While pure white-box attacks [2, 5–10] (where an adversary has full
knowledge of the machine learning model) could be difficult to execute in practice, re-
searchers have shown strong transferability of attacks [11] that can still cause significant
damage.

As attacks became more and more powerful, several defense strategies have also been
proposed. A popular category of defense strategy is adversarial training, where ad-
versarial examples are added to the training set followed by training the network us-
ing the augmented dataset [6, 8]. However, such methods seem to be quite sensitive to
adversarial budget used for generating the adversarial examples as well as other train-
ing hyper-parameters. A more powerful and stable defense mechanism originates from
the min-max robust optimization problem (RO) [12–14] by decoupling the minimization
and maximization parts using the Danskin’s theorem [15]. Here, the inner maximization
refers to finding the adversarial perturbation that would maximize the training loss. On
the other hand, the outer minimization deals with minimization of the training loss for
the perturbed inputs. The decoupling process leads to the class of algorithms where, at a
training epoch, one can find the worst-case attacks concerning the current model. Then
a model parameter update step is executed following the traditional training process us-
ing perturbed training set with the worst-case attacks. However, finding the worst-case
perturbation for deep learning models is quite non-trivial and cannot be guaranteed pri-
marily due to the highly non-convex nature of the cost surface and non-concave nature
of adversarial perturbations. Typically, powerful attacks such as projected gradient de-
scent (PGD) [14], trade off-inspired adversarial defense via surrogate-loss minimization
(TRADES) [16], Free adversarial training [17], etc. are run in order to find the worst-case
perturbations at every training epoch. However, it is observed empirically that the at-
tacks with higher computational budgets seem to be more successful in approximating
the worst-case perturbations, e.g., 20 step PGD is much stronger than a single step PGD.
Therefore, it is usually quite expensive computationally to find a robust deep learning
model with this algorithmic principle. Besides, there still remains a significant gap in
the literature, in crafting theoretically sound algorithms for robust learning. There are
only a few studies exploring the robust learning problem analytically. Fawzi et al. [18]
first analyzes robustness of nonlinear classifiers in a general noise regime, Shaham et al.
[19] proposed a framework to justify the performance of adversarial training theoreti-
cally, Zhang et al. [16] considered the trade off between robustness and accuracy, and
the recent paper by Lin et al. [20] proposes gradient descent ascent approach to solve the
robust learning problem. Additionally, Sinha et al. [21] proposed an algorithm for solv-
ing the adversarial training problem from a distributionally robust optimization lens for
finding the worst-case adversary based on the Lagrangian formulation of the objective
function.

2

In this paper, we introduce a new algorithm for adversarial training of deep neural net-
works, which is motivated by the RO problem. Traditionally, robust optimization prob-
lems are solved iteratively by alternative steps of ascent and descent for achieving the
worst case attack and finding the corresponding robust model for the attack. Our pro-
posed defense approach called the stochastic saddle point dynamical systems (SSDS) al-
gorithm, follows this principle to devise a fast algorithm for robust learning. We first
formulate the min-max RO problem that arises in adversarial training of deep neural
networks (DNNs) and show analytically that under strictly-convex and strictly-concave
assumption for the loss function and the adversarial perturbations in the robust learning
problem, SSDS algorithm converges asymptotically to the robust optimal solution, the
min-max saddle point, under a general adversarial budget constraints as induced by `p
norm, for 1 ≤ p ≤ ∞.

Unlike existing approaches, our proposed algorithm does not decouple the minimization
and maximization problems involved in robust optimization. Instead, it attempts to solve
both problems simultaneously by evolving both the model parameters and the adversar-
ial perturbations through the training epochs. As we do not attempt to find the worst-
case perturbations at every training epoch, we save significant computation overhead as
compared to other methods such as PGD-training [14], TRADES [16], and YOPO [22].
While there are recent efforts to mitigate the computational overhead by using random
projections [23] instead of finding the worst case attacks, our approach is fundamentally
different as we still try to solve the coupled robust optimization problem (that includes
finding the worst case perturbations) while reducing the computations overhead.

Contributions: Main contributions of this work are: (i) We propose a new Stochastic
Saddle-point Dynamical Systems (SSDS) algorithm for robust learning that ensure satis-
faction of the attack budget (induced by `p norm, for 1 ≤ p ≤ ∞) asymptotically without
hard projections; (ii) We analyze the convergence characteristics for the proposed SSDS
algorithm under the strictly-convex assumption for the loss function and strictly-concave
assumption for the adversarial perturbations in the robust learning problem; (iii) We pro-
pose a mini-batch variant of the SSDS algorithm to make it feasible for deep learning
problems; (iv) Finally, we provide empirical results (based on CIFAR-10 [24] and other
benchmark datasets) to show that the proposed approach is a computationally inexpen-
sive way to train robust models for white- and black-box attacks in comparison with the
state-of-the-art PGD and TRADES approaches. We also provide comparison with the
stochastic gradient descent ascent algorithm (SGDA) [20] that can be treated as a baseline
for our proposed approach.

2. Related Work

Due to space constraints and a large amount of recent progress made by the adversarial
machine learning community, our discussion of related work is necessarily brief. Here,
we attempt to discuss the most recent & relevant literature. We divide the section as: (1)
adversarial attack/defense and (2) robust optimization.

Adversarial Attack and Defense: Initial evidence for vulnerability of deep classifiers to
imperceptible adversarial perturbations was shown by Szegedy et al. [8]. Around the

3

same time, Biggio et al. [2] showed that SVMs could malfunction in security-sensitive
applications and proposed a regularization term in the classifiers. In the deep learning
community, Goodfellow et al. [6] and Kurakin et al. [7] proposed the Fast Gradient Sign
Method (FGSM) and its iterative variants as powerful attack strategies to fool deep learn-
ing models. adopting a similar notion, PGD [14] attacks are crafted by going through
iterative steps of generating attacks (e.g. 7 and 10 steps) to achieve more powerful ad-
versaries. As the computational expenses associated with such attacks are significant,
researchers have recently suggested different methods to mitigate that. Shafahi et al. [17]
suggested using the gradients which is calculated for updating the model parameters to
save computations and showed comparable results with state-of-the-art. Wong et al. [25]
showed that comparably accurate models can be achieved in less time using FGSM along
with several techniques from DAWNBench submissions [26] (e.g., random initialization)
to improve the performance. Additionally, Zhang et al. [22] showed that by restricting
most of the forward and back propagation within the first layer of the network during
adversary updates, the computational time for achieving a robust model can be reduced.
While these methods mainly focused on white box attacks, Papernot et al. [11] introduced
the notion of black-box attacks where the adversary does not have complete knowledge
of the learning model. Attacks can also be categorized into test-time [2] and train-time
(also known as data poisoning) attacks [27], and targeted and non-targeted attacks [28].
In this paper, we only focus on test-time, non-targeted attacks. Apart from deep percep-
tion models such as Convolutional Neural Networks (CNN), researchers have also shown
similar vulnerabilities of deep reinforcement learning (RL) models using similar philoso-
phy [29–33]. The notion of adversarial robustness is additionally useful in other areas of
machine learning such as image synthesis [34, 35].

Several defense approaches have been proposed in the literature, such as using denoising
autoencoders-based Deep Contractive Networks [36], and defining a network robustness
metric [37]. However, as discussed in the previous section, the most popular robust deep
learning methods involve some form of adversarial training [6, 14, 16, 19, 38, 39]. Defen-
sive distillation [40] is also another method of defense which showed fascinating results.
However, Carlini and Wagner [5] could break such a defense mechanism by proposing
multiple adversarial loss functions. Athalye et al. [41] further analyzed various defense
approaches and demonstrated that most existing defenses could be beaten by approxi-
mating gradients over defensively trained models. Recently, Zhang and Wang [39] intro-
duced Feature Scatter algorithm which increased the accuracy of robust models notably.
This approach involves generating adversarial images through feature scattering in the
latent space.

Robust Optimization: Shaham et al. [19] show that adversarial training of neural net-
works is, in fact, robustification of the network optimization, which we can exploit to
increase the local stability of neural networks. Robust optimization has also been used
in [42] to find an approximately optimal min-max solution that optimizes for non-convex
objectives. This method is based on a reduction from robust optimization to stochastic
optimization. Here a α-approximate stochastic oracle is given, and α-approximate robust
optimization in a convexified solution space is obtained. Nonetheless, ideas from robust
optimization (closely related to regularization in machine learning [43, 44]) for solving

4

robust learning problems has not been explored sufficiently. Also, while there is recent
work in robust optimization using continuous-time dynamical systems for the saddle
point dynamics [45], it is deterministic, and its application to deep learning problems is
not explored.

3. Problem Formulation

In this section, we first formally state the robust learning problem from a robust optimiza-
tion point of view. Then we formulate the saddle-point dynamical system framework for
solving robust learning problems. We consider a standard classification task under a data
distribution D over the dataset I = {I1, I2, · · · , IN}, where, Ii ∈ Rm with set of labels,
y. The loss function (e.g., cross-entropy loss) is denoted by L(I, y, w) with w ∈ Rn as
the model parameters (decision variables). From a robust optimization (RO) perspec-
tive [12, 13, 19, 45], robust learning can be written as

RO :=min
w

E(I,y)∼D

[
max
u∈U

L(I + u, y, w)
]

(1)

where, the loss function L is also a function of additive perturbation or uncertainty u
(constrained by uncertainty set U) to the input.

We approximate the expected loss using the standard empirical risk minimization for a
finite number of i.i.d training samples, Ii for i ∈ {1, 2, · · ·N}. We consider ui as the cor-
responding uncertainty for the data point Ii. Hence, RO problem (Eq. 1) can be written
as

RO :=min
w

∑N
i=1 max

ui∈U i
L(Ii + ui, yi, w) (2)

The fundamental assumption in RO is that the uncertainty variables reside within the
uncertainty sets

U i := {ui ∈ Rm : hi(ui) ≤ 0}, i = 1, . . . , N , (3)

where the hi functions representing the uncertainty sets are typically assumed to be con-
vex functions such as norm-bound budgets. The goal here is to obtain model parameters,
w, (e.g., weights and biases for neural networks) that are robust for all possible uncer-
tainty parameter realizations within the uncertainty sets.

We assume that the RO problem (Eq. 1) has at least one robust feasible solution. Then
we rewrite Eq. 1 in an epigraph form [46].

RO := min
w,t

t

s.t
N

∑
i=1

max
ui∈U i

L(Ii + ui, yi, w)− t ≤ 0 (4)

5

This is an equivalent, albeit more convenient form for our framework, where t is being
added to the vector of model parameters as an auxiliary decision variable.

We define a Lagrangian multiplier λ ≥ 0 and the vector of model parameters as x :=
(w, t). We can write Eq. 4 as

min
x=(w,t)

max
λ≥0

{
t + λ

(N

∑
i=1

max
ui∈U i

L(Ii + ui, yi, w)− t
)}

Then the total Lagrangian can be written as

L(x, λ, u, v) := t + λ
(

∑N
i=1
(

L(Ii + ui, yi, w)

− vi hi(ui)
)
− t
)

(5)

where the set {vi} are the Lagrangian multipliers for the inner maximization problem.
Typically, loss function in an RO framework is considered to be a function of just the
model parameters, not the uncertainty. Therefore, we formulate the algorithm with La-
grangian multipliers that ensure satisfaction of the attack budget asymptotically without
hard projections.

Remark 1. The ability to solve RO with general budget constraints without involving hard
projection is advantageous from a computational perspective, as imposing hard projection may
involve solving an optimization problem in itself.

Derivation of the Lagrangian function along with the definition and properties of the
saddle and KKT point ofRO problem can be found in the supplementary material.

4. Stochastic Saddle-Point Dynamical System Algorithm

Based on the problem setup laid out in the previous section, we now propose the stochas-
tic saddle-point dynamical system (SSDS) algorithm for robust learning. We then intro-
duce the mini-batch variant of the SSDS algorithm conducive to deep learning. Addi-
tionally, we also state the stochastic gradient descent ascent (SGDA) algorithm (Lin et al.
[20]), which can be considered as a simplified baseline for the proposed SSDS algorithm.

4.1. Algorithm Formulation
In the previous section, we provided the total Lagrangian for obtaining the saddle and
KKT point of RO problem. While that is sufficient to understand the saddle point dy-
namics of the RO problem, the implementation for deep learning problems necessitates
the formulation of a stochastic discrete-time saddle point dynamical system to find the
saddle point of the Lagrangian function. Based on the epigraph form of the optimization
problem (Eq. 4), we define x := (t, w), f (x) := t, g(x, u, ξ) := L(Iξ + uξ , y, w)− t, where
ξ ∈ {1, . . . , N} is a random variable modeling the process for randomly selecting a data
point out of N possible samples.

6

With these notations, we propose the following update rules for the parameters:

xk+1 = xk − αk(∂x f (xk) + λk∂xg(xk, uk, ξk)) , (6)

λk+1 =
[
λk + αk

(
g(xk, uk, ξk)−∑N

i=1 vi
khi(ui

k)
)]

+
, (7)

ui
k+1 = ui

k + αk(∂ui g(xk, uk)− vi
k∂ui hi(ui

k)) , (8)

vi
k+1 = [vi

k + αkλkhi(ui
k)]+ i = 1, . . . , N. (9)

where, [·]+ is positive projection, ξk is assumed to be an independent and identically
distributed random process and αk is the adaptive step-size with the following character-
istics

αk =
γk

‖T(zk)‖2
, with γk > 0 ,

∞

∑
k=1

γk = ∞ , ∑∞
k=1 γ2

k < ∞ . (10)

The following assumptions are made on f , g and hi s. Note that the weights x is updated
using the loss function information for a randomly selected sample Iξ . However, the
uncertainty variables ui and associated multipliers vi are updated corresponding to all
samples.

Assumption 1. We assume that f (x) is convex in x and each hi(ui) is convex in ui. Moreover,
g(x, u, ξ) is convex in x and is strictly concave in u for any fixed value of ξ.

Remark 2. Clearly, the assumptions of strict convexity of f and concavity of g are not satisfied in
the DNN setting. However, the strict convexity and strict concavity assumptions could be relaxed
with weaker convergence results than the one reported below.

The following theorem is the main result for asymptotic convergence of the discrete-time
saddle point algorithm with diminishing step-size. We show that the update rules in (6)-
(9) lead to convergence to the KKT point (equivalent to the saddle point as specified in
the supplementary material) of theRO problem.

Theorem 2. Let Assumption 1 hold and we also assume that λ? > 0 where λ? is the saddle point
of the Lagrangian (for λ in Eq.5), then, following is true for the SSDS algorithm with adaptive
step-size αk satisfying Eq. 10.

lim
k→∞

Eξk
0
[xk] = x?, lim

k→∞
Eξk

0
[uk] = u? , (11)

where ξk
0 = {ξ0, . . . , ξk}.

Proof. The proof of the theorem is provided in the supplementary material.

The basic idea behind the convergence proof relies on proving the existence of saddle

7

point (x?, λ?, v?, u?) for the Lagrangian function, L

L(x, λ, u, v) := f (x) + λ (12)(
g(x, u, ξ)−

N

∑
i=1

vihi(ui)

)
(13)

satisfying the following inequalities for all realization of the random variable ξ

L(x?, λ, v?, u, ξ) ≤ L(x?, λ?, v?, u?, ξ) ≤ L(x, λ?, v, u?, ξ)

It is important to emphasize that although the function f , g, and h are assumed to be
convex with respect to x and concave with respect to u (Assumption 1), the Lagrangian
function, L, is not jointly concave with respect to (u, λ). The lack of joint concavity makes
the saddle point proof nontrivial and different from the saddle point problem for a general
min-max optimization problem (Lin et al. [20]). The existence of saddle point for min-
max optimization problem under convexity-concavity assumption is a standard result in
convex optimization and is at the heart of the convergence proof of the stochastic gradient
descent-ascent algorithm.

Remark 3. Although the stability is not shown in this paper, we observe in practice that the
dynamics without λ in the v-update (Eq.9) works for both active and inactive constraints (whether
λ? is positive or zero) of the RO problem and converges to the KKT point. Therefore, λ can be
removed from v-update in practice for solving theRO problem.

4.2. Mini-batch Implementation of SSDS Algorithm
In an attempt to use the proposed approach for robust training of DNNs, we propose
a mini-batch variant of the SSDS algorithm to achieve a more stable convergence. As
stated above, the SSDS algorithm involves the decision variable x := (t, w), where the set
{w} is the parameters of DNN. For simplicity of implementation, we first separate the
update rule for x, described in Eq. 6. In other words, we split the updates of w and t that
also enables us to use standard learning rates (denoted by lr) for the w updates. For the
updates of t and other SSDS variables, such as λ, u and v, we use a diminishing step-size
αk. However, we refrain from applying the diminishing step-size described in (Eq. 10) due
to the sheer complexity involved in taking the norm of the parameters for a large-scale
neural network. Instead, we use an exponentially decaying diminishing step-size, αk+1 =
αke−kp, where p is the decay rate for exponentially diminishing step-size and k is the epoch
number. Note that the updates of u and λ can experience scaling issues depending on the
values of the gradients and variable vk. Therefore, we add two scaling factors C1 and C2
in the update rules of u and λ to bring different terms of the update laws to the same
scale. For a given data set and model architecture, we find appropriate values by a few
trial and error steps. Due to the separation of the updates, another small departure in our
implementation from the prescribed algorithm is - while we perform w updates for every
mini-batch (mj refers to the jth mini-batch of kth epoch), we update other parameters once
every epoch. Also, in the original formulation, we continuously update u corresponding
to all the images while the w is updated using the gradient information of the loss function
evaluated at randomly selected images. In the algorithm implementation, however, u is

8

Algorithm 1 Mini-batch SSDS algorithm

1: Input: ε, lr, p, C1, C2
2: Initialization: λ0, α0,w0, t0,u0, v0
3: for k ∈ {1, ..., K} do
4: distribute mini-batches as m = {m0, m1, .., mn}
5: wm0

k = wk
6: λm0

k = λk
7: for mj ∈ {m0, m1, ..., mn} do

8: ∂wk = ∂wk ∑j∈mj
L(I j + uj

k, yj, wj
k)

9: w
mj+1
k = w

mj
k − lr λk(∂wk)

10: end for
11: tk+1 = tk + αk(λk − 1)
12: v

mj
k+1 = v

mj
k + αk(‖u

mj
k ‖∞ − ε)

13: ∂uk = ∂uk L(Imj + u
mj
k , ymj , w

mj
k)

14: u
mj
k+1 = u

mj
k + αk(∂uk − C1 v

mj
k sign(u

mj
k))

15: for j ∈ mj do

16: Bj = (‖uj
k‖∞ − ε)

17: U j =
(

L(I j + uj
k, yj, wj

k)− vj
k

)
Bj

18: end for
19: U = ∑j∈mj

U(j)

20: λ
mj
k+1 = λ

mj
k + C2 αk

(
U − tk

)
21: wk = wmn

k
22: λk = λmn

k+1
23: αk+1 = αke−kp

24: end for

also updated only corresponding to the randomly selected images based on which the
network weights are updated. This approach helps in reducing computation for large
training sets.

Based on the above setup, we present the mini-batch SSDS algorithm (Algorithm 1). We
can also craft attacks using this. To do that, we run iterative updates of the perturbations
u given a test sample along with its corresponding Lagrangian multiplier v, keeping the
model {w?} and λ∗ fixed. We discuss the attack algorithm in the supplementary material.

4.3. Stochastic Gradient Descent Ascent (SGDA)
In order to study the effectiveness of the Lagrangian formulation to solve the robust op-
timization problem, we consider the baseline SGDA algorithm (Lin et al. [20]), which is
essentially a simplification of the proposed SSDS algorithm as discussed below. We pro-
vide a mini-batch variant of the SGDA algorithm in Algorithm 2 to make it applicable
in the deep learning setting. Comparing these two algorithms, we can readily see that
algorithm 2 is a special case of algorithm 1 where the Lagrangian multipliers (λ and v)

9

are removed. Note, an important analytical advantage of the robust optimization-based
formulation involving the Lagrangian function (Eq. 5) is that it allows us to incorporate
general convex budget constraints (Eq. 3) on the adversary without involving compli-
cated projection operations. In particular, with the Lagrangian multipliers λ and vi, we
can ensure that the budget constraints are met asymptotically. It is important to empha-
size that the use of projection operator to impose general convex budget constraints in-
volves solving an optimization problem in itself and hence it could considerably increase
the computational time. However, when the budget constraints are simple such as `∞
norm constraints, the projection operation is straight forward. For such cases, gradient
descent ascent algorithm can be utilized for adversarial training without involving the
multipliers.

Algorithm 2 Mini-batch SGDA algorithm

1: Input: ε, lr, p
2: Initialization: α0,w0,u0
3: for k ∈ {1, ..., K} do
4: distribute mini-batches as m = {m0, m1, .., mn}
5: w(m0)

k = wk
6: for mj ∈ {m0, m1, ..., mn} do

7: ∂wk = ∂wk ∑j∈mj
L(I j + uj

k, yj, wj
k)

8: w
(mj+1)

k = w
(mj)

k − lr (∂wk)
9: end for

10: u
mj
k+1 = u

mj
k + αk(∂uk L(Imj + u

mj
k , ymj , w

mj
k)

11: wk = wmn
k

12: αk+1 = αke−kp

13: end for

5. Experimental Results

In this section, we analyze the performance of SSDS algorithm empirically. We compare
the effectiveness of our algorithms with the baseline SGDA algorithm and other state-of-
the-art methods (e.g., PGD, TRADES, Free-m, YOPO,etc).

Experiment Setup: We present the empirical studies on the CIFAR-10, CIFAR-100 and
SVHN datasets. We use VGG19 [47], ResNet50 [48], and WideResNet [49] for classifica-
tion. The perturbation size is ε = 0.03, and the exponential step-size decay parameter
p is set to be 0.001. We initialize λ = 4, ν = 1. C1 = C2 = 0.01, t = 1 for SSDS
training. The perturbation step-size is set to be η = 2 for SGDA and SSDS training. For
the purpose of consistency with other research work in this area, we use η = 0.007 (2

255)
for crafting PGD and CW adversaries. The code is available at our GitHub repository:
https://github.com/yasesf93/SSDS.

10

https://github.com/yasesf93/SSDS

0.00 0.01 0.02 0.03 0.04 0.05

|u|
0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f s
am

pl
es

initial
200 epochs
converged

(a)

true: cat adv: cat

(b)

0 200 400 600 800
Number of epochs

0.01

0.02

0.03

0.04

0.05

0.06

|u
|

(c)

0 200 400 600 800

Number of epochs

0.0

0.2

0.4

0.6

0.8

v

(d)

0 200 400 600 800
Number of epochs

0.0

0.1

0.2

0.3

0.4

|u
k

u k
1| 2

(e)

Figure 1: Results on CIFAR-10 dataset using VGG19 model: (a) ‖u‖∞ histogram (b) Randomly chosen image for
SSDS training (left), with its corruption(center) and the corrupted image(right) (c) Evolution of ‖u‖∞ for the above
image (d) values of v for the above image (e) Evolution of ‖uk − uk−1‖2 for the above image

5.1. SSDS Convergence Characteristics
We begin the discussion on SSDS algorithm characteristics by observing the behavior
of the perturbations involved in SSDS training. We plot the histogram of `∞-norms of
final perturbations (u) added to the training images for a few epochs during the training
process (see Fig. 1a). This is to verify the theoretical claim that the final perturbations for
the training images should converge at or below the budget. From the empirical results
shown in Fig. 1a, we make the observation that although perturbations for some images
spill over the threshold value (ε = 0.03) during the course of the training process, most
of the perturbations converge within the bound eventually (interestingly, a large number
of the perturbations settle below the threshold). Next, we focus on a specific training
sample to understand how the dynamics for different variables in the algorithm evolve
during the course of the training process. We observe the dynamics of v over the training
epochs. In this experiment, v was initialized at 1 (for all of the images in the training set),
and it converges to 0 after around epoch 180. Similarly, as shown in Fig. 1c, `∞-norm of
the perturbation generated for the chosen image converges to 0.026 which is below the
specified budget. However, the actual perturbations for individual pixels still continue to
evolve even after the `∞-norm for the entire perturbation matrix settles down. To monitor
the perturbations for the individual pixels, we plot `2 norm of the difference between the
perturbations for two consecutive epochs. We see that this metric finally converges to 0
around epoch 300. At this point, the overall training process also converges except for
small changes due to the stochastic nature of the training algorithm.

Remark 4. Analytically and experimentally, we show that the final perturbation should remain
within the budget after convergence. However, for the purpose of consistency with other algorithms
we compare against, we apply the projection term to the perturbations to ensure the perturbations

11

never exceed the budget and we call this variant SSDS-p.

Algorithm 3 Mini-batch SSDS-p algorithm

1: Input: ε, lr, p, C1, C2
2: Initialization: λ0, α0,w0, t0,u0, v0
3: for k ∈ {1, ..., K} do
4: distribute mini-batches as m = {m0, m1, .., mn}
5: wm0

k = wk
6: λm0

k = λk
7: for mj ∈ {m0, m1, ..., mn} do

8: ∂wk = ∂wk ∑j∈mj
L(I j + uj

k, yj, wj
k)

9: w
mj+1
k = w

mj
k − lr λk(∂wk)

10: end for
11: tk+1 = tk + αk(λk − 1)
12: v

mj
k+1 = v

mj
k + αk(‖u

mj
k ‖∞ − ε)

13: ∂uk = ∂uk L(Imj + u
mj
k , ymj , w

mj
k)

14: u
mj
k+1 = u

mj
k + αk(∂uk − C1 v

mj
k sign(u

mj
k))

15: for j ∈ mj do

16: Bj = (‖uj
k‖∞ − ε)

17: U j =
(

L(I j + uj
k, yj, wj

k)− vj
k

)
Bj

18: end for
19: U = ∑j∈mj

U(j)

20: λ
mj
k+1 = λ

mj
k + C2 αk

(
U − tk

)
21: λ

mj
k+1 ← Π(λ

mj
k+1) (Π is the projection operator)

22: wk = wmn
k

23: λk = λmn
k+1

24: αk+1 = αke−kp

25: end for

5.2. SSDS vs SSDS-p Convergence Results
As discussed in the main paper, we can show theoretically and experimentally that al-
though the perturbations might spill over the threshold value (ε = 0.03) for some epochs,
they will converge at or below the threshold after the convergence. However, to be consis-
tent with other research works in this area, we apply a projection term to ensure that the
perturbations always remain within the budge during the training process which results
in the SSDS-p which is presented in Algorithm 3.

As Fig 2 shows, by applying SSDS-p training the `∞ norm of the perturbations (‖u‖∞)
always stays withing the boundary (Fig 2b) whereas without the projection (Fig 2a) the
perturbations may spill over the boundary.

12

0.00 0.01 0.02 0.03 0.04 0.05

|u|
0

1000

2000

3000

4000

5000

6000

7000
Nu

m
be

r o
f s

am
pl

es
initial
200 epochs
converged

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

|u|
0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f s
am

pl
es

0
200
400
600
800

(b)

Figure 2: CIFAR-10 dataset trained using SSDS vs SSDS-p algorithm, VGG19 model architecture: (a) Histogram
of ‖u‖∞ for SSDS (b) Histogram of ‖u‖∞ for SSDS-p

5.3. SSDS-p performance comparison with SGDA as defense methods
Unlike the computationally expensive techniques such as PGD training, both SGDA and
SSDS-p compute the optimal perturbations/attacks cumulatively over the training epochs.
Therefore, we begin this comparison between SGDA and SSDS-p algorithms by compar-
ing the training schemes associated with each algorithm. As figures 4a and 4b show,
the training scheme is very similar for SGDA and SSDS-p. However, the perturbation
evolution is quite different. Fig 3 shows the `∞ norm of the perturbations added to a ran-
domly selected images. In the case of SSDS-p training, the perturbation evolves gradually
through the training epochs. On the other hand, for the SGDA method, the perturbation
rapidly reaches the budget, and the method does not seem to explore the perturbations
with lower magnitudes as much as SSDS-p. We note that this is a typical observation for
these two algorithms. Based on the results in Table 1, SSDS-p algorithm performs slightly
better for both clean and adversarially perturbed (across all attack algorithms considered
here) input data and the marginal improvement can be attributed to better exploration of
the perturbation space by the SSDS-p algorithm.

Table 1: SGDA and SSDS-p defense model (WideResNet) performance comparison under white-box attacks

Attack Accuracy
Clean 81.97%
FGSM 80.4%
PGD 44.32%

SGDA 48.58%
SSDS-p 51.64%

(a) SGDA training

Attack Accuracy
Clean 82.91 %
FGSM 81.21 %
PGD 45.89%

SGDA 49.18 %
SSDS-p 53.53 %

(b) SSDS-p training

We then visualize the attack on randomly selected images. As Fig 5 suggests, the two
algorithms seem to generate similar attacks although the SSDS-p attacks (Fig 5b) looks

13

more gradient based. As the Lagrangian multiplier corresponding to generating the at-
tacks (v) controls the gradients in each epoch, the gradients play a more significant part
in generation the attacks.

0 100 200 300 400 500
Number of epochs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

|u
|

SGDA
SSDS-p

(a)

100 0 100 200 300 400 500 600 700
Number of epochs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

|u
|

SGDA
SSDS-p

(b)

Figure 3: Evolution of perturbation/attack on two randomly selected images under SGDA and SSDS-p training

0 100 200 300 400 500
Number of epochs

30

40

50

60

70

80

90

Ac
cu

ra
cy

(%
)

SGDA
SSDS-p

(a)

0 100 200 300 400 500
Number of epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

SGDA
SSDS-p

(b)

Figure 4: SGDA vs SSDS-p comparison on CIFAR-10 dataset, WideResNet model architecture: (a) Accuracy (b)
Loss value

5.4. SSDS-p and SGDA attacks

Throughout the paper, we discussed the performance of SSDS-p and SGDA algorithms as
defense method against adversarial perturbations. However, SSDS-p and SGDA attacks
can be generated through an iterative process by freezing the model (w?s) and following
the same algorithm for updating us. Note that, for generating SSDS-p attacks λ is not
getting updated too as it corresponds to the model parameters, whereas vs are being
updated in the same fashion in SSDS-p training. Algorithms 4, 5 are the corresponding
attack algorithms for SGDA and SSDS-p methods.

14

Algorithm 4 SGDA attack algorithm

1: Input: ε, p, w?

2: Initialization:u0, α0
3: for k ∈ {1, ..., K} do

4: u
(mj)

k+1 = u
(mj)

k + αk(∂uk L(I(mj) + u
(mj)

k , y(mj), w?)

5: αk+1 = αke−kp

6: end for

Algorithm 5 SSDS attack algorithm

1: Input: ε, p, C1, w?

2: Initialization:u0, v0, α0
3: for k ∈ {1, ..., K} do

4: v
(mj)

k+1 = v
(mj)

k + αk(‖u
(mj)

k ‖∞ − ε)

5: u
(mj)

k+1 = u
(mj)

k + αk(∂uk L(I(mj) + u
(mj)

k , y(mj), w?)− C1 v
(mj)

k sign(u
(mj)

k))

6: αk+1 = αke−kp

7: end for

Fig. 6 shows the performance of a well trained (SGDA) model on SSDS-p and SGDA
attacks. The plots show that the model performs well and the testing accuracy is high in
the beginning when the optimal attack is still not found, but as the final perturbation is
crafted, the accuracy stays fixed and the test accuracies under SGDA and SSDS-p optimal
attacks are achieved.

5.5. SSDS-p performance evaluation and comparison
In this section, we present a detailed performance evaluation of the proposed SSDS-p
algorithm under both white-box and black-box attacks. We compare the performance of
SSDS-p with the state-of-the-art robust learning algorithms.

Table 2: Performance comparison of several robust learning methods under white-box attacks using WideResNet on
CIFAR-10 dataset

Defence model Clean FGSM PGD-20
Natural 94.82% 35.23% 5.93%

FeatureScatter [39] 90.00% 78.40% 70.50%
Free-8 [17] 85.96% 53.57% 46.82%
PGD-7 [14] 85.70% 54.90% 44.90%

FGSM+DAWNBench [25] 83.12% 59.17% 45.18%
YOPO [22] 86.70% 55.23% 47.98%

TRADES [16] 84.92% 61.06% 56.61%
SGDA 81.97% 80.40% 44.32%
SSDS-p 82.91% 81.21% 45.89%

15

CIFAR-10 dataset Under white-box attacks:

We present the performance of SSDS-p under white-box attacks (with FGSM and PGD
attack models) in Table 2 along with other state-of-the-art defense models. We also pro-
vide SGDA performance in the table as a baseline for our proposed approach. Based on
the results presented, SSDS-p performs the best under FGSM attack, which is a compu-
tationally inexpensive attack. Under computationally expensive attacks using the PGD-
20 algorithm (i.e., PGD with 20 step iteration), SSDS-p performance is comparable with
the PGD-7, Free-8, FGSM+DAWNBench, and YOPO defence algorithms. However, as
Table 11 suggests, while FeatureScatter, PGD, YOPO and TRADES training algorithms
are significantly more computationally complex compared to SSDS-p, other algorithms
(Free-8, FGSM+DAWNBench) have comparable accuracy and running time with SSDS-
p. Comparing the performance of different algorithms in Table 2, we can see that only
TRADES and FeatureScatter algorithm perform significantly better than all other methods
under the PGD-20 attack. However, the methodology for generating the perturbations
and using them eventually for training their robust model is different in FeatureScatter.
In FeatureScatter [39], adversarial examples are generated for training through feature
scattering in the latent space, which is unsupervised in nature and computationally ex-
pensive. Similarly, while SSDS-p along with other methods listed in the table use cross
entropy loss function, TRADES [16] differs in terms of the objective function and is still
quite expensive computationally, similar to PGD training.

CIFAR-10 dataset Under black-box attacks:

We evaluate our proposed SSDS-p method under black-box attacks as well as compare
head-to-head performance against PGD and TRADES approaches. As we wanted to use
pre-trained PGD and TRADES models available online for this study, we had to use only
ResNet50 architecture while comparing with the PGD-trained model and WideResNet ar-
chitecture for comparison with the TRADES model. For the comparison with PGD train-
ing, we use the SSDS-p ResNet50 model for defending against 20 step PGD attacks gen-
erated using a naturally trained model as well as using the pre-trained PGD model [50]
available online as source models. We also evaluate the performance of the PGD above
model under 20-step PGD attacks generated using the naturally trained and the SSDS-p
models as source models. Results presented in Table 3 show that SSDS-p performs sig-
nificantly better than the PGD model under black-box attacks. In order to compare with
TRADES models, we use the pre-trained WideResNet TRADES model, which is available
online. Based on similar experiments, it is evident that SSDS-p also performs better than
the TRADES model under black-box attacks (as shown in Table 4).

CIFAR-100 dataset under white-box attacks:

We present the performance of SGDA, and SSDS-p under white-box attacks in Table 5
and compare them with state-of-the-art methods. Similar to CIFAR-10 results, the perfor-
mance of SSDS-p algorithm is better that Free-8 and PGD-7 robust models under FGSM
attacks, and comparable with PGD-7 under PGD-20 attack. FeatureScatter still achieves
the highest accuracy among all the methods but as we mentioned earlier it uses feature
scattering techniques in the latent space to generate adversaries which makes it compu-

16

Table 3: Black box performance: 20 step PGD attacks crafted by naturally trained model, SSDS-p trained model and
PGD trained model [50] using ResNet50 architecture on CIFAR-10 dataset

Target Source Attack Accuracy
PGD-7 naturally-trained PGD-20 75.15%
SSDS-p naturally-trained PGD-20 78.59%
PGD-7 SSDS-p PGD-20 71.62%
SSDS-p PGD PGD-20 78.53%

Table 4: Black box performance: 20 step PGD attacks crafted by naturally trained model, SSDS-p trained model and
TRADES trained model [16] using WideResNet architecture on CIFAR-10 dataset

Target Source Attack Accuracy
TRADES naturally-trained PGD-20 66.97%
SSDS-p naturally-trained PGD-20 74.37%

TRADES SSDS-p PGD-20 66.82%
SSDS-p TRADES PGD-20 80.63%

tationally expensive.

Table 5: Performance comparison of several robust learning methods under white-box attacks using WideResNet on
CIFAR-100 dataset

Defence model Clean FGSM PGD-20
Natural 74.00% 10.75% 0.00%

FeatureScatter [39] 73.90% 61.00% 47.20%
Free-8 [17] 62.13% 29.14% 25.88%
PGD-7 [14] 59.90% 28.50% 22.60%

SGDA 49.11% 48.01% 16.33%
SSDS-p 50.85% 49.49% 19.01%

CIFAR-100 dataset under black-box attacks:

We evaluate our proposed SSDS-p method under black-box attacks and compare the per-
formance with SGDA. We use the SSDS-p WideResNet model for defending against 20
step PGD attacks generated using a naturally trained model as well as using the pre-
trained SGDA model as source models. We also evaluate the performance of the above
SGDA model under 20-step PGD attacks generated using the naturally trained and the
SSDS-p models as source models. Results presented in Table 6 show that SSDS-p performs
slightly better than the SGDA model under black-box attacks similar to the performance
under white-box attacks.

SVHN dataset under white-box attacks:

We present the performance of SGDA, and SSDS-p under white-box attacks in Table 7
and compare them with stat-of-the-art methods. Results show that the performance of

17

Table 6: Black box performance: 20 step PGD attacks crafted by naturally trained model, SSDS-p trained model and
SGDA trained model using WideResNet model architecture on CIFAR-100 dataset

Target Source Attack Accuracy
SGDA naturally-trained PGD-20 42.50%
SSDS-p naturally-trained PGD-20 44.08%
SGDA SSDS-p PGD-20 41.12%
SSDS-p SGDA PGD-20 42.70%

our SSDS-p algorithm is comparable to FeatureScatter under most of the attack schemes.
We can provide more robust model compared to PGD-7 as well in significantly less time
(refer to Table 11).

Table 7: Performance comparison of several robust learning methods under white-box attacks using ResNet50 on
SVHN dataset:

Defence model Clean FGSM PGD-20 PGD-100 CW-20 CW-100
Natural 97.20% 53.00% 0.3% 0.1% 0.3% 0.1%

PGD-7 [14] 93.9% 68.4% 47.9% 46.0% 48.7% 47.3%
FeatureScatter [39] 96.2% 83.5% 62.9% 52.0% 61.3% 50.8%

SGDA 93.97% 69.82% 52.52% 52.34% 52.42% 52.35%
SSDS-p 94.32 % 73.53% 61.39% 61.33% 61.07% 60.94

SSDS-p with different model architectures:

To further analyse the algorithm, we have evaluated the performance of our model on
other model architectures (e.g., ResNet50 and VGG19). Table 8 summarizes the perfor-
mance of SSDS-p using ResNet50 model architecture along with other training methods
on CIFAR-10 and CIFAR-100 datasets. Results align with Table 2 where SSDS-p performs
the best under FGSM attack and the the model is comparable to PGD-7 model under
PGD-20 attacks. Similarly, results on CIFAR-100 dataset shows that SSDS-p performs the
best compared to SGDA and naturally trained models using ResNet model architecture.

Additionally, as the model architectures play a significant role specially when the input
data is large, we run SSDS-p on different model architectures to analyse the dependency
of SSDS-p on the model capacity, gradients, etc. Based on Table 9, we see that the model
capacity and complexity definitely helps both natural and robust accuracy, although the
effect is not as significant as its effect on PGD robust models reported by Madry et al. [14].

Attacks with more number of steps

To further evaluate our algorithm, We present the performance of SGDA, and SSDS-p
under PGD and CW white-box attacks with various steps. The results are summarized in
Tables 10 for CIFAR-10 and CIFAR-100 datasets. Similar to other robust models, SSDS-p
can preserve the performance when the number of steps increase (the generated attacks
become more powerful).

18

Table 8: Performance comparison of several training methods under white-box attacks using ResNet50 on CIFAR-10
dataset

Dataset Defence model Clean FGSM PGD-20
CIFAR-10 Natural 92.70% 27.50% 0.82%
CIFAR-10 PGD-7 79.4% 51.7% 43.7%
CIFAR-10 SGDA 78.04% 76.42% 40.70%
CIFAR-10 SSDS-p 80.1% 79.32% 42.11 %

CIFAR-100 Natural 47.96% 43.66% 13.01%
CIFAR-100 SGDA 47.07% 46.18% 18.16%
CIFAR-100 SSDS-p 49.77% 49.22% 19.69 %

Table 9: SSDS-p defense with different model architectures under white-box attacks

Attack Accuracy
Clean 77.13%
FGSM 75.92%
PGD 42.32%

SGDA 43.49%
SSDS-p 47.56%

(a) VGG 19

Attack Accuracy
Clean 80.10 %
FGSM 79.32 %
PGD 42.11%

SGDA 44.58 %
SSDS-p 50.09 %

(b) ResNet50

Attack Accuracy
Clean 82.91 %
FGSM 81.21 %
PGD 45.89%

SGDA 49.18 %
SSDS-p 53.53 %

(c) WideResNet

5.6. Computational time comparison
One of the key advantages of our proposed algorithm is the significantly lower compu-
tational overhead compared to the standard techniques for training robust models. To
demonstrate this, we compare computation times with experiments run on one node of
a GPU cluster with Intel Xeon Processor with 32 cores, 128GB RAM and with a Titan X
(Pascal architecture) GPU having 12GB of GPU RAM. Fig. 7 shows that although PGD-
7 and SSDS-p achieve comparable robust classification accuracy for CIFAR-10 dataset,
the training time per epoch for 7 step PGD-training algorithm is approximately 4 times
greater than that of the SSDS-p training algorithm. On the other hand, SSDS-p train-
ing takes around the same time as a 1 step PGD training (or FGSM-based adversarial
training). Table 11 summarizes the running time corresponding to other state-of-the-art
algorithms. SSDS-p (similar to Free-8 and FGSM+DAWNBench) can achieve comparable
accuracy with PGD in significantly less time. FeatureScatter which is the most accurate
compared to other algorithms is computationally very expensive. In summary, our ap-
proach is a computationally efficient framework for robust learning compared to most of
the state-of-the-art techniques.

6. Conclusion

In this paper, we propose a new stochastic saddle-point dynamical systems approach to
solve the robust learning problem. Under certain restrictive assumptions, we present a
detailed convergence analysis of our algorithm. Our proposed algorithm involves a La-
grangian formulation to solve the robust optimization problem, where we introduce two
Lagrangian multipliers for both model parameters and uncertainties. The multiplier for

19

Table 10: Performance comparison of several robust learning methods under white-box attacks using WideResNet

Dataset Defence model PGD-10 PGD-40 PGD-100 CW-20 CW-100
CIFAR-10 Natural 7.83% 4.18% 0% 4.73% 0.32%
CIFAR-10 FeatureScatter [39] 70.90% 70.3% 68.60% 62.40% 60.6%
CIFAR-10 PGD-7 [14] 45.10% 44.80% 44.80% 45.70% 45.40%
CIFAR-10 SGDA 45.74% 44.05% 44.03% 44.82% 44.66%
CIFAR-10 SSDS-p 47.35% 45.61% 46.44% 46.62% 46.40%

CIFAR-100 Natural 12.83% 9.61% 6.42% 12.13% 7.21%
CIFAR-100 SGDA 18.85% 16.09% 15.76% 16.52% 16.37%
CIFAR-100 SSDS-p 19.23% 16.15% 16.10% 16.78% 16.70%

Table 11: Running time comparison of several robust learning methods using WideResNet and Cifar-10 dataset:

Defence model Time (seconds per epoch)
Free-8 [17] 289

FeatureScatter [39] 3132
FGSM+DAWNBench [25] 296

YOPO [22] 790
FGSM [6] 295

PGD-7 [14] 1269
PGD-20 [14] 3011
TRADES [16] 1006

SSDS-p 291

the uncertainties allows us to handle more complex uncertainty constraints where the
uncertainties are assumed to belong to more general convex sets, for example ellipsoids
or intersections of ellipsoids. In the absence of a multiplier to impose these constraints
on the uncertainty set, one will have to resort to solving an optimization problem within
another optimization problem, thereby making the rigorous convergence proof of such
algorithm quite difficult. Our approach is useful even for the case when the uncertainty
has a simple constraint. For example, an `∞ norm bounded uncertainty can be imposed
by simple projection. However, obtaining rigorous convergence proof of an algorithm
consisting of a multiplier to impose the parameter constraints and simple projection to
impose the uncertainty constraints is difficult and does not exist. Similar justification
applies to using Lagrangian multipliers for model parameters, especially since the con-
straints on the model parameters are more complicated than simple box constraints. In
addition to these advantages, we also observe performance improvement over the base-
line SGDA algorithm that does not use the Lagrangian multipliers. Empirically, we show
that the proposed scheme is a computationally inexpensive method that maintains a high
level of performance for clean and corrupted input data, both for white-box and black-
box attacks. We believe that this can be attributed to the adversarial training in SSDS
also acts as a form of regularization. We can explain it based on the equivalence between

20

the robust optimization problem and many regularization problems [43]. Finally, we note
that this is an early attempt to adopting a dynamical systems approach to robust learning.
Future research will focus on relaxing some of the restrictive assumptions in the analysis
for the loss function and uncertainties. Similarly, we will focus on developing the SSDS
algorithm further by modifying the cost functions to better handle the highly non-convex
nature of deep network loss functions, leading to performance improvement.

21

(a) (b)

Figure 5: SGDA vs SSDS-p comparison on CIFAR-10 dataset, WideResNet model architecture: (a) Randomly chosen
image for SGDA training (left), with its corruption(center) and the corrupted image (right) (b) Randomly chosen
image for SSDS-p training (left), with its corruption (center) and the corrupted image(right)

22

0 200 400 600 800 1000
Number of epochs

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

(a) SGDA test accuracy

0 200 400 600 800 1000
Number of epochs

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

(b) SSDS-p test accuracy

Figure 6: Testing accuracy plots for SGDA robust model under (a) SGDA (b) SSDS-p attacks (dataset: CIFAR10,
ε = 0.03, model architecture: VGG19)

Figure 7: Training time per epoch for PGD vs. SSDS-p

23

References

[1] Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and Pra-
teek Mittal. Darts: Deceiving autonomous cars with toxic signs. arXiv preprint
arXiv:1802.06430, 2018.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning
at test time. In Joint European conference on machine learning and knowledge discovery in
databases, pages 387–402. Springer, 2013.

[3] Arya Ketabchi Haghighat, Varsha Ravichandra-Mouli, Pranamesh Chakraborty,
Yasaman Esfandiari, Saeed Arabi, and Anuj Sharma. Applications of deep learning
in intelligent transportation systems. Journal of Big Data Analytics in Transportation, 2
(2):115–145, 2020.

[4] Seyed Amirhossein Hosseini and Omar Smadi. How prediction accuracy can affect
the decision-making process in pavement management system. Infrastructures, 6(2):
28, 2021.

[5] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE,
2017.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[7] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

[8] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[9] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[10] Zhewei Yao, Amir Gholami, Peng Xu, Kurt Keutzer, and Michael W Mahoney. Trust
region based adversarial attack on neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 11350–11359, 2019.

[11] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications security,
pages 506–519. ACM, 2017.

[12] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and appli-
cations of robust optimization. SIAM review, 53(3):464–501, 2011.

24

[13] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization,
volume 28. Princeton University Press, 2009.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[15] John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied
Mathematics, 14(4):641–664, 1966.

[16] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and
Michael I. Jordan. Theoretically principled trade-off between robustness and accu-
racy. CoRR, abs/1901.08573, 2019. URL http://arxiv.org/abs/1901.08573.

[17] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for
free!, 2019.

[18] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robust-
ness of classifiers: from adversarial to random noise. In Advances in Neural Informa-
tion Processing Systems, pages 1632–1640, 2016.

[19] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial
training: Increasing local stability of supervised models through robust optimiza-
tion. Neurocomputing, 307:195–204, 2018.

[20] Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-
concave minimax problems. arXiv preprint arXiv:1906.00331, 2019.

[21] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying
some distributional robustness with principled adversarial training. arXiv preprint
arXiv:1710.10571, 2017.

[22] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You
only propagate once: Accelerating adversarial training via maximal principle. In
Advances in Neural Information Processing Systems, pages 227–238, 2019.

[23] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling prov-
able adversarial defenses. In Advances in Neural Information Processing Systems, pages
8400–8409, 2018.

[24] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[25] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adver-
sarial training. arXiv preprint arXiv:2001.03994, 2020.

[26] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An
end-to-end deep learning benchmark and competition. Training, 100(101):102, 2017.

25

http://arxiv.org/abs/1901.08573

[27] Faiq Khalid, Muhammad Abdullah Hanif, Semeen Rehman, and Muhammad
Shafique. Security for machine learning-based systems: Attacks and challenges dur-
ing training and inference. In 2018 International Conference on Frontiers of Information
Technology (FIT), pages 327–332. IEEE, 2018.

[28] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security of
machine learning. Machine Learning, 81(2):121–148, 2010.

[29] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and
Min Sun. Tactics of adversarial attack on deep reinforcement learning agents. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, pages 3756–3762, 2017. doi: 10.24963/ijcai.2017/525. URL https://doi.

org/10.24963/ijcai.2017/525.

[30] Aaron Havens, Zhanhong Jiang, and Soumik Sarkar. Online robust policy learning
in the presence of unknown adversaries. In Advances in Neural Information Processing
Systems, pages 9916–9926, 2018.

[31] Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, Soumik Sarkar, et al. Robus-
tifying reinforcement learning agents via action space adversarial training. In 2020
American control conference (ACC), pages 3959–3964. IEEE, 2020.

[32] Xian Yeow Lee, Yasaman Esfandiari, Kai Liang Tan, and Soumik Sarkar. Query-based
targeted action-space adversarial policies on deep reinforcement learning agents.
arXiv preprint arXiv:2011.07114, 2020.

[33] Kai Liang Tan, Anuj Sharma, and Soumik Sarkar. Robust deep reinforcement learn-
ing for traffic signal control. Journal of Big Data Analytics in Transportation, pages 1–12,
2020.

[34] Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas, Logan Engstrom,
and Aleksander Madry. Computer vision with a single (robust) classifier. CoRR,
abs/1906.09453, 2019. URL http://arxiv.org/abs/1906.09453.

[35] Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde. Seman-
tic adversarial attacks: Parametric transformations that fool deep classifiers. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 4773–4783,
2019.

[36] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust
to adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

[37] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. Measuring neural net robustness with
constraints. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
2613–2621. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6339-measuring-neural-net-robustness-with-constraints.pdf.

26

https://doi.org/10.24963/ijcai.2017/525
https://doi.org/10.24963/ijcai.2017/525
http://arxiv.org/abs/1906.09453
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf

[38] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble Adversarial Training: Attacks and Defenses. arXiv e-
prints, art. arXiv:1705.07204, May 2017.

[39] Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature
scattering-based adversarial training. In Advances in Neural Information Processing
Systems, pages 1831–1841, 2019.

[40] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 582–597. IEEE, 2016.

[41] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[42] Robert S. Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust opti-
mization for non-convex objectives. In NIPS, 2017.

[43] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press,
2011.

[44] H. Xu, C. Caramanis, and Sh. Mannor. Robust regression and lasso. In Advances in
Neural Information Processing Systems, pages 1801–1808, 2009.

[45] Keivan Ebrahimi, Nicola Elia, and Umesh Vaidya. A continuous time dynamical
system approach for solving robust optimization. In European Control Conference,
Naples, Italy, 2019.

[46] S. Boyd and L. Vandenberghe. Convex Optimization. New York: Cambridge Univ.
Press, 2004.

[47] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[50] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras. Robustness
(python library), 2019. URL https://github.com/MadryLab/robustness.

27

https://github.com/MadryLab/robustness

7. Supplementary Material

Additional theoretical analysis, convergence proofs and experimental results are discussed
here; also more information about the material in the main body of the paper is presented.

7.1. Additional Theorems and Derivations
As we discussed in the main paper, the robust learning problem is:

RO :=min
w

E(I,y)∼D

[
max
u∈U

L(I + u, y, w)
]

(14)

and the total Lagrangian can be written as:

L(x, λ, u, v) := t + λ
(

∑N
i=1
(

L(Ii + ui, yi, w)

− vi hi(ui)
)
− t
)

(15)

Then we propose the following update rules for the parameters:

xk+1 = xk − αk(∂x f (xk) + λk∂xg(xk, uk, ξk)) , (16)

λk+1 =
[
λk + αk

(
g(xk, uk, ξk)−∑N

i=1 vi
khi(ui

k)
)]

+
, (17)

ui
k+1 = ui

k + αk(∂ui g(xk, uk)− vi
k∂ui hi(ui

k)) , (18)

vi
k+1 = [vi

k + αkλkhi(ui
k)]+ i = 1, . . . , N. (19)

where, [·]+ is positive projection, ξk is assumed to be an independent and identically dis-
tributed random process and αk is the adaptive step-size with the following characteristics

αk =
γk

‖T(zk)‖2
, with γk > 0 ,

∞

∑
k=1

γk = ∞ , ∑∞
k=1 γ2

k < ∞ . (20)

Under the following assumption on f , g and hi.

Assumption 3. We assume that f (x) is convex in x and each hi(ui) is convex in ui. Moreover,
g(x, u, ξ) is convex in x and is strictly concave in u for any fixed value of ξ.

Then the following theorem is the main result for asymptotic convergence of the discrete-
time saddle point algorithm with diminishing step-size. We show that the update rules in
(16)-(19) lead to convergence to the KKT point (equivalent to the saddle point as specified
in the supplementary material) of theRO problem.

Theorem 4. Let Assumption 3 hold and we also assume that λ? > 0 where λ? is the saddle point
of the Lagrangian (for λ in Eq.15), then, following is true for the SSDS algorithm with adaptive

28

step-size αk satisfying Eq. 20.

lim
k→∞

Eξk
0
[xk] = x?, lim

k→∞
Eξk

0
[uk] = u? , (21)

where ξk
0 = {ξ0, . . . , ξk}.

To elaborate more on the above derivations, We consider the following definitions in this
section:

x := (t, w), f (x) := t, g(x, u) := L(I + u, y, w)− t . (22)

Lagrangian function derivation
First, we derive the Lagrangian function in (15). The lower level optimization problem in
the RO problem (14) can be written as an optimization problem parametrized by x such
that

θ(x) := ∑N
i=1 max

u(i)∈U (i)
L(I(i) + u(i), y(i), w)− t . (23)

Denote v(i) s as Lagrangian multipliers for the lower level maximization problem and
define v := [v1, . . . , vN]

>. The role of each v(i) multiplier is to satisfy the uncertainty set
constraint associated with the perturbation u(i). Based on the Lagrangian theory, one can
equivalently write

θ(x) = ∑N
i=1 max

u(i)
min
v(i)≥0

(
L(I(i) + u(i), y(i), w)

−v(i) h(i)(u(i))
)
− t . (24)

Hence,RO problem can be written as

29

RO = min
x=(w,t)

max
λ≥0

{
t +

λ
(

∑N
i=1 max

u(i)
min
v(i)≥0

(
L(I(i) + u(i), y(i), w) −

v(i) h(i)(u(i))
)
− t
) }

(25)

= min
x=(w,t)

max
λ≥0

max
u(i)

min
v(i)≥0

{
t +

λ
(

∑N
i=1
(

L(I(i) + u(i), y(i), w)− v(i) h(i)(u(i))
)
− t
) }

.

Therefore, one can derive the total Lagrangian as in (15).

Saddle and KKT point of theRO problem
The following theorem can be stated for the saddle point of the optimization problem
(14).

Theorem 5. Consider the Lagrangian function as defined in (15). Under Assumption 3, following
statements are true for the optimization problem (14)

µ = min
x

max
λ≥0

max
u(i),∀i

min
v(i)≥0,∀i

L = min
x

min
vi≥0,∀i

max
λ≥0

max
u(i),∀i

L ,

µ = min
x,v(i),∀i

max
λ≥0,u(i),∀i

L = max
λ≥0,u(i),∀i

min
x,v(i),∀i

L ,

where x ∈ Rn, λ ≥ 0, u(i) ∈ Rm, and v(i) ≥ 0 for i = 1, . . . , N . Hence, the Lagrangian function
(15) has a saddle point.

Proof. For the ease of notations, consider the RO∫ problem with single constraint and
single uncertainty set as

µ := min
x

f (x) s.t. max
h(u)≤0

g(x, u) ≤ 0 . (26)

The general case (14) with multiple uncertainty sets can be proved along similar lines.
The Lagrangian for upper level problem in (26) is

f (x) + λ

(
max

h(u)≤0
g(x, u)

)
.

30

We can write the total Lagrangian for (26) as

L(x, v, λ, u) = f (x) + λ (g(x, u)− vh(u)) .

Hence, we can write

µ = min
x

max
λ≥0

max
u

min
v≥0
L(x, v, λ, u)

= min
x

max
λ≥0

max
u

min
v≥0

(
f (x) + λ(g(x, u)− vh(u))

)
= min

x

(
f (x) + max

λ≥0
max

u
min
v≥0

λ(g(x, u)− vh(u))
)

.

We now show that

µ = min
x

min
v≥0

max
λ≥0

max
u
L(x, v, λ, u) ,

noting the switch in the sequence of min-max. It is sufficient to show that for any x,

γ := max
λ≥0

max
u

min
v≥0

λ(g(x, u)− vh(u))

= min
v≥0

max
λ≥0

max
u

λ(g(x, u)− vh(u)) .

Let

G(x) := max
h(u)≤0

g(x, u) = max
u

min
v≥0

(g(x, u)− vh(u)) . (27)

So,

γ = max
λ≥0
G(x) =

{
0 G(x) ≤ 0
∞ G(x) > 0 . (28)

From strong duality for the parametric optimization problem (27), we have

G(x) = min
v≥0

max
u

(g(x, u)− vh(u)) .

Now, consider the second part in (20), that is

min
v≥0

max
λ≥0

max
u

λ(g(x, u)− vh(u)) .

Starting from the first max
u

at right, we get

31

max
u

λ(g(x, u)− vh(u)) ={
0 λ = 0
max

u
λ(g(x, u)− vh(u)) λ > 0, v ≥ 0 (29)

Then, consider max
λ≥0

as

max
λ≥0

{
0 λ = 0
max

u
λ(g(x, u)− vh(u)) λ > 0, v ≥ 0 =

∞ v ≥ 0, max
u

(g(x, u)− vh(u)) > 0

0 v ≥ 0, max
u

(g(x, u)− vh(u)) = 0

0 v ≥ 0, max
u

(g(x, u)− vh(u)) < 0
.

Lastly, consider min
v≥0

as

min
v≥0

∞ v ≥ 0, max

u
(g(x, u)− vh(u)) > 0

0 v ≥ 0, max
u

(g(x, u)− vh(u)) = 0

0 v ≥ 0, max
u

(g(x, u)− vh(u)) < 0
=

 ∞ min
v≥0

max
u

(g(x, u)− vh(u)) > 0

0 min
v≥0

max
u

(g(x, u)− vh(u) ≤ 0 ,

which is equal to γ as claimed in (28). Since minimizations (maximizations) can always
be combined, the above result shows that

µ = min
x,v≥0

max
λ≥0,u

L(x, v, λ, u) .

Note that L is (jointly) convex in (x, v), but it is not (jointly) concave in (λ, u); although it
is concave in each of these variables. We next show that notwithstanding this issue, the
optimal solution to µ is a saddle point. Specifically, we show that

µ = min
x,v≥0

max
λ≥0,u

L(x, v, λ, u) = max
λ≥0,u

min
x,v≥0

L(x, v, λ, u) . (30)

To show this, note that strong duality in the upper level parametric optimization problem
in (26) implies

µ = min
x

max
λ≥0

(f (x) + λG(x)) = max
λ≥0

min
x

(f (x) + λ G(x))

= max
λ≥0

min
x

max
u

min
v≥0

(f (x) + λ(g(x, u)− vh(u))) ,

32

where the last equality comes from the definition of G(x) in (27). To obtain the result in
(30), we need to show that for any λ ≥ 0 ,

η = min
x

max
u

min
v≥0

(f (x) + λ(g(x, u)− vh(u)))

= max
u

min
x

min
v≥0

(f (x) + λ(g(x, u)− vh(u))) .

Note that

min
v≥0

(−vλh(u)) =
{

0 λh(u) ≤ 0
−∞ λh(u) > 0 .

So, we have

max
u

(f (x) + λg(x, u) +
{

0 λh(u) ≤ 0
−∞ λh(u) > 0)

= f (x) + max
λh(u)≤0

λg(x, u) .

Thus,

η = min
x

max
λh(u)≤0

(f (x) + λg(x, u)) .

Since g(x, u) is convex in x and concave in u as for Assumption 3, so f (x) + λg(x, u) has
the same properties for λ ≥ 0. It follows that the result does not change if we swap the
order of the optimizations. Hence,

η = min
x

max
λh(u)≤0

(f (x) + λg(x, u))

= max
λh(u)≤0

min
x

(f (x) + λg(x, u))

= max
u

min
x

min
v≥0

(f (x) + λg(x, u)− vh(u)) ,

which completes the proof of Theorem 5.

Let z? = (x?, λ?, u?, v?) be the saddle point for the Lagrangian (15). Using the result of
Theorem 5, it follows that z? enjoys the saddle point property, namely

L(x?, λ, u, v?) ≤ L(x?, λ?, u?, v?) ≤ L(x, λ?, u?, v) . (31)

From the above discussion on the development of Lagrangian function L, it follows that
RO problem can be viewed as two connected optimization problems. The lower level
optimization problem (23) parameterized by x involving maximization over uncertain
variables u(i) s and the upper level optimization problem involving minimization over
the decision variable x. This insight can be used to define the Karush-Kuhn-Tucker (KKT)
conditions for theRO problem as follows.

33

Definition 1. Recalling that x = (w, t), the KKT point (x?, λ?, u?, v?) for theRO problem (14)
can be defined as follows

∂xL(x?, λ?, u?, v?) = 0 ,

∂u(i)L(i)(x?, u(i)?, v(i)?) = 0 , (32)
λ? ≥ 0,

λ?
(

L(I(i) + u(i)?, y(i), w?)−
t? − v(i)? h(i)(u(i)?)

)
= 0 , (33)

v(i)? ≥ 0,

v(i)? h(i)(u(i)?) = 0 , (34)

L(I(i) + u(i)?, y(i), w?)−
t? − v(i)? h(i)(u(i)?) ≤ 0 ,

h(i)(u(i)?) ≤ 0 , (35)

for i = 1, . . . , N , where ∂x f is the notation for the gradient of f w.r.t. x, L defined in (15), and
L(i)(x, u(i), v(i)) := L(I(i) + u(i), y(i), w)− v(i) h(i)(u(i)) for i = 1 . . . , N.

We now propose the following fundamental theorem on establishing the connection be-
tween the KKT and saddle point of theRO problem.

Theorem 6. The KKT point (x?, λ?, u?, v?) satisfying conditions (32)-(35) also satisfies saddle
point inequalities in (31) and vice versa.

Proof. Considering the definitions in (22), we first show that the KKT point satisfies the
saddle point property. Note that

L(x?, λ?, u?, v?)−L(x?, λ, u, v?)

= λ?(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?)) −

λ(g(x?, u)−∑N
i=1 v(i)?h(i)(u(i)))

= (λ? + λ− λ)(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?)) −

λ(g(x?, u)−∑N
i=1 v(i)?h(i)(u(i)))

= λ(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?)) −

λ(g(x?, u)−∑N
i=1 v(i)?h(i)(u(i))) +

(λ? − λ)(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?)) .

Since u? is maximizing g(x?, u)−∑N
i=1 v(i)?h(i)(u(i)), we have

(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?))−

(g(x?, u)−∑N
i=1 v(i)?h(i)(u(i))) ≥ 0 .

34

By complimentary slackness property of the KKT point, we get λ?(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?)) =

0 and g(x?, u?) ≤ 0. Combining all these implies

L(x?, λ?, u?, v?)−L(x?, λ, u, v?) ≥ 0 .

We next show that L(x, λ?, u?, v)−L(x?, λ?, u?, v?) is non-negative. Note that

L(x, λ?, u?, v)−L(x?, λ?, u?, v?)

= f (x)− f (x?) + λ?(g(x, u?)−∑N
i=1 v(i)h(i)(u(i)?) −

λ?(g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?)))

= f (x)− f (x?) + λ?(g(x, u?)− g(x?, u?)) +

N

∑
i=1

λ?(v(i)
? − v(i))h(i)(u(i)?) .

Since (x?, v?) minimizes the Lagrangian, we have

f (x)− f (x?) + λ?(g(x, u?)− g(x?, u?)) ≥ 0 .

Similarly, using complimentary slackness condition and the fact that h(i)(u(i)?) ≤ 0, v(i) ≥
0, and λ? ≥ 0, it follows that ∑N

i=1 λ?(v(i)? − v(i))h(i)(u(i)?) ≥ 0 .
Now, we show that saddle point satisfies KKT conditions. Note that

min
x,v
L(x, λ?, u?, v) = L(x?, λ?, u?, v?) ≤ L(x, λ?, u?, v),

max
u,λ
L(x?, λ, u, v?) = L(x?, λ?, u?, v?) ≥ L(x?, λ, u, v?) .

Hence,

∂x f (x?) + λ?∂xg(x?, u?) = 0 ,

∂u(i)g(x?, u)−∑N
i=1 v(i)?∂u(i)h(i)(u(i)?) = 0 .

To show complimentary slackness, consider the optimization problem with fixed x = x?

as

max
u(i),∀i

g(x?, u) s.t. h(i)(u(i)) ≤ 0 , i = 1, . . . , N .

With g concave in u and each h(i) convex in u(i), the above problem is convex with zero
duality gap and hence, based on convex optimization theory [46], we have

g(x?, u?) = G(x?, v?)

= max
u(i),∀i

(
g(x?, u)−∑N

i=1 v(i)?h(i)(u(i))
)

≥ g(x?, u?)−∑N
i=1 v(i)?h(i)(u(i)?) ≥ g(x?, u?) .

35

The first inequality is true because h(i)(u(i)?) ≤ 0 and v(i)? ≥ 0. Hence, from the last
inequality we get v(i)?h(i)(u(i)?) = 0. We next show that λ?g(x?, u?) = 0. For fixed u?,
consider the optimization problem

min
x

f (x) s.t. g(x, u?) ≤ 0 .

For fixed u?, above is a convex optimization problem and hence, we have zero duality
gap. Then similarly,

f (x?) = F(λ?, u?) = inf
x

f (x) + λ?g(x, u?)

≤ f (x?) + λ?g(x?, u?) ≤ f (x?) .

The first inequality is true because g(x?, u?) ≤ 0, and hence, the last inequality implies
λ?g(x?, u?) = 0. This completes the proof of Theorem 6.

We can specify the equilibrium point (x?, λ?, u?, v?) of the dynamical system (16)-(19) as

∂x f (x?) + λ?∂xg(x?, u?, ξ) = 0,

∂u(i)g(x?, u?, ξ)− v(i)?∂u(i)h(i)(u(i)?) = 0 ,
λ?g(x?, u?, ξ) = 0,

λ? ≥ 0,
g(x?, λ?, ξ) ≤ 0,

λ?v(i)?h(i)(u(i)?) = 0,

v(i)? ≥ 0,

h(i)(u(i)?) ≤ 0.

for i = 1, . . . , N. The above conditions can also be viewed as the generalization of the KKT
conditions from the deterministic setting to stochastic setting. Furthermore, by defining
the Lagrangian function, L(x, λ, u, v, ξ) := f (x) + λ(g(x, u, ξ) − ∑N

i=1 v(i)h(i)(u(i))), fol-
lowing generalization of saddle point condition from deterministic setting (31) to stochas-
tic setting can be considered

L(x?, λ, u, v?, ξ) ≤ L(x?, λ?, u?, v?, ξ) ≤ L(x, λ?, u?, v, ξ) . (36)

Convergence Proof of Stochastic Version of the Algorithm
For the convergence proof of SSDS algorithm in (16)-(19), we will assume λ? > 0 and that
numbers R and Rλ ≤ R are known satisfying

‖z1‖2 ≤ R, ‖z?‖2 ≤ R, ‖λ?‖2 ≤ Rλ .

We will also assume that the norm of the subgradients of f , g and h(i) s, and the values
of f , g and h(i) s are bounded on compact sets based on Assumption 3. Let us start by

36

defining the compact notations

N (‖zk+1 − z?‖2
2) := ‖xk+1 − x?‖2

2 + ‖λk+1 − λ?‖2
2

+λ?‖uk+1 − u?‖2
2 + ‖vk+1 − v?‖2

2 ,
(zk+1 − z?)λ? := (xk+1 − x?) + (λk+1 − λ?)

+λ?(uk+1 − u?) + (vk+1 − v?) ,

‖T‖2
2,λ? := ‖T(x)‖2

2 + ‖T(λ)‖2
2

+λ?‖T(u)‖2
2 + ‖T(v)‖2

2 .

By using the non-expansive property of positive projection operations for λ and v itera-
tions, we write out the following basic equations

Eξk [N (‖zk+1 − z?‖2
2)]

= Eξk [‖xk − αk(∂x f (xk, ξk) + λk∂xg(xk, uk, ξk)− x?‖2
2]

+ Eξk [‖[λk + αkg(xk, uk, ξk)− vkh(uk)]+ − λ?‖2
2]

+ Eξk [λ
?‖uk + αk(∂ug(xk, uk, ξk)− vk∂uh(uk)− u?‖2

2]

+ Eξk [‖[vk + αk(λkh(uk))]+ − v?‖2
2]

≤ Eξk [‖xk − x? − αk(∂x f (xk, ξk) + λk∂xg(xk, uk, ξk))‖2
2]

+ Eξk [‖λk − λ? + αk(g(xk, uk, ξk)− vkh(uk))‖2
2]

+ Eξk λ?‖uk − u? + αk(∂ug(xk, uk, ξk)− vk∂uh(uk))‖2
2]

+ Eξk [‖vk − v? + αk(λkh(uk))‖2
2]

= ‖xk − x?‖2
2 + ‖λk − λ?‖2

2 + λ?‖uk − u?‖2
2 + ‖vk − v?‖2

2

− 2Eξk [αk(∂x f (xk, ξk) + λk∂xg(xk, uk, ξk))
>(xk − x?)]

+ 2Eξk [αk(g(xk, uk, ξk)− vkh(uk))
>(λk − λ?)]

+ 2Eξk [αkλ?(∂ug(xk, uk, ξk)− vk∂uh(uk))
>(uk − u?)]

+ Eξk [2αk(λkh(uk))
>(vk − v?)]

+ Eξk [(αk)
2‖∂x f (xk, ξk) + λk∂xg(xk, uk, ξk)‖2

2]

+ Eξk [(αk)
2‖g(xk, uk, ξk)− vkh(uk)‖2

2]

+ Eξk [(αk)
2λ?‖∂ug(xk, uk, ξk)− vk∂uh(uk)‖2

2]

+ Eξk [(αk)
2‖λkh(uk)‖2

2] .

Using the compact notation, this reads to be

Eξk [N (‖zk+1 − z?‖2
2)] ≤ N (‖zk − z?‖2

2)

− 2Eξk [αkT>k N (zk+1 − z?)] + Eξk [α
2
k ‖Tk‖2

2,λ?] .

37

Considering the upper bound Rλ for two-norm of λ?, we can write

Eξk [N (‖zk+1 − z?‖2
2)] ≤ N (‖zk − z?‖2

2)

− 2Eξk [αkT>k N (zk+1 − z?)] + C γ2
k .

Taking expectation on both the sides with respect to E
ξk−1

0
on both the sides and using the

fact that ξk−1
0 is independent of ξk, we obtain

Eξk
0
[N (‖zk+1 − z?‖2

2)] ≤ E
ξk−1

0
N (‖zk − z?‖2

2)

− 2Eξk
0
[αkT>k N (zk+1 − z?)] + C γ2

k ,

E
ξk−1

0
[N (‖zk − z?‖2

2)] ≤ E
ξk−2

0
N (‖zk−1 − z?‖2

2) (37)

− 2E
ξk−1

0
[αk−1T>k−1N (zk − z?)] + C γ2

k−1, (38)

where C is defined as max{1, Rλ}. Substituting inequality (9) into (8) we obtain

Eξk
0
[N (‖zk+1 − z?‖2

2)] ≤ E
ξk−2

0
N (‖zk−1 − z?‖2

2)

− 2E
ξk−1

0
[αk−1T>k−1N (zk − z?)]

− 2Eξk
0
[αkT>k N (zk+1 − z?)]

+ C(γ2
k + γ2

k−1) .

Using recursion, we obtain

Eξk
0
[N (‖zk+1 − z?‖2

2)] ≤ Eξ0N (‖z1 − z?‖2
2)

− 2
k

∑
i=1

Eξ i
0
[α(i)T(i)>N (zi+1 − z?)] + C

k

∑
i=1

γ(i)2
,

Eξk
0
[N (‖zk+1 − z?‖2

2)] + 2
k

∑
i=1

Eξ i
0
[α(i)T(i)>N (zi+1 − z?)]

≤ Eξ0N (‖z1 − z?‖2
2) + C

k

∑
i=1

γ(i)2 ≤ C(4R2 + S)

38

Eξk
0
[N (‖zk+1 − z?‖2

2)] + 2
(

Eξ1
0
[α1T>1 N (z2 − z?)]

+ Eξ2
0
[α2T>2 N (z3 − z?)] + . . .

+ Eξk
0
[αkT>k N (zk+1 − z?)]

)
≤ Eξ0N (‖z1 − z?‖2

2)

+ C
k

∑
i=1

γ(i)2 ≤ C(4R2 + S) , (39)

where the last inequality comes from the bounds on ‖z1‖2, ‖z?‖2, ‖λ?‖2 and ∑∞
k=1(γk)

2.

We argue that the sum on the left-hand side of (39) is non-negative.

Eξk
0
[αkT>k N (zk+1 − z?)] = E

ξk−1
0

[[Eξk [αkT>k N (zk+1 − z?)]]]

Where we have use the fact that ξk−1
0 is independent of ξk.

Eξk [αkT>k N (zk+1 − z?)]

= Eξk [αk∂x f (xk, ξk) + αkλk∂xg(xk, uk, ξk)
>(xk − x?)]

− Eξk [αk(g(xk, uk, ξk)− vkh(uk))
>(λk − λ?)]

− Eξk [αkλ?(∂ug(xk, uk, ξk)− vk∂uh(uk))
>(uk − u?)]

+ Eξk [−αkλkh(uk)
>(vk − v?)]

≥ Eξk [αk(f (xk, ξk)− f (x?, ξk))] + Eξk [(((((((((
αkλkg(xk, uk, ξk)

− αkλkg(x?, uk, ξk)]− Eξk [(((((((((
αkλkg(xk, uk, ξk)

+(((((((((
αkλ?g(xk, uk, ξk)] + Eξk [(((((((αkλkvkh(uk)−(((((((αkλ?vkh(uk)]

+ Eξk [αkλ?g(xk, u?, ξk)−(((((((((
αkλ?g(xk, uk, ξk)]

+ Eξk [(((((((αkλ?vkh(uk)]− Eξk [αkλ?vkh(u?)−(((((((αkλkvkh(uk)

+ αkλkv?h(uk)]

= Eξk [αk(
(

f (xk, ξk) + λ?g(xk, u?, ξk)− λ?vkh(u?)
)
]

− Eξk [αk
(

f (x?, ξk) + λkg(x?, uk, ξk)− λkv?h(uk)
)
]

= Eξk [αkL(xk, λ?, u?, vk, ξk)]− Eξk [αkL(x?, λk, uk, v?, ξk)]

≥ Eξk [αkL(xk, λ?, u?, vk, ξk)− αkL(x?, λ?, u?, v?, ξk)] ≥ 0 .

Since αk ≥ 0, we have from above that

Eξk
0
[αkT>k N (zk+1 − z?)] ≥ 0

39

Remark 5. Since f is assumed to be strictly convex in x and g is strictly concave in u,

the above inequality

is strict whenever x 6= x? and u 6= u?. Moreover, if the inequality becomes an equality, we get
x = x? and u = u?.

We have

Eξk
0
[N (‖zk+1 − z?‖2

2)] ≤ C(4R2 + S),

2
k

∑
i=1

γ(i)Eξ i
0

[
T(i)>

‖T(i)‖
(z(i) − z?)λ?

]
≤ C(4R2 + S)

By assumption, the norm of Subgradients on the set ‖zk‖2,λ? ≤ D is bounded, so it follows
that ‖Tk‖2 is bounded. Because the sum of γk diverges, for the sum

k

∑
i=1

γ(i)Eξ i
0

[
T(i)>

‖T(i)‖
(zi+1 − z?)λ?

]

to be bounded, we need

lim
k→∞

Eξk
0

[
T>k
‖Tk‖2

N (zk+1 − z?)

]
= 0.

Since ‖Tk‖2 is bounded, the numerator Eξk
0
[T>k N (zk+1− z?)] has to go to zero in the limit.

From Remark 5, we conclude that

lim
k→∞

E
ξk−1

0
[xk] = x?, lim

k→∞
E

ξk−1
0

[uk] = u?.

40

	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Stochastic Saddle-Point Dynamical System Algorithm
	4.1 Algorithm Formulation
	4.2 Mini-batch Implementation of SSDS Algorithm
	4.3 Stochastic Gradient Descent Ascent (SGDA)

	5 Experimental Results
	5.1 SSDS Convergence Characteristics
	5.2 SSDS vs SSDS-p Convergence Results
	5.3 SSDS-p performance comparison with SGDA as defense methods
	5.4 SSDS-p and SGDA attacks
	5.5 SSDS-p performance evaluation and comparison
	5.6 Computational time comparison

	6 Conclusion
	7 Supplementary Material
	7.1 Additional Theorems and Derivations

