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Abstract

The mechanism of message passing in graph neural networks (GNNs) is still
mysterious. Apart from convolutional neural networks, no theoretical ori-
gin for GNNs has been proposed. To our surprise, message passing can be
best understood in terms of power iteration. By fully or partly removing
activation functions and layer weights of GNNs, we propose subspace power
iteration clustering (SPIC) models that iteratively learn with only one ag-
gregator. Experiments show that our models extend GNNs and enhance
their capability to process random featured networks. Moreover, we demon-
strate the redundancy of some state-of-the-art GNNs in design and define a
lower limit for model evaluation by a random aggregator of message passing.
Our findings push the boundaries of the theoretical understanding of neural
networks.

Keywords: Graph Neural Networks, Message Passing, Power Iteration,
Subspace Power Iteration Clustering

1. Introduction

The graph neural network (GNN) is one of the most widely used tech-
niques for graph-structured data analysis, with applications in the social
sciences, physics, applied chemistry, biology, and linguistics. In virtually
every scientific field dealing with graph data, the GNN is the first choice to
obtain an impression of one’s data. However, similar to the convolutional
neural network (CNN), to explain the mechanism of the GNN is challeng-
ing due to its complex nonlinear iterations. It is worth noting that we can
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understand the GNN better by removing the feature transformations from
each layer. This idea can be expressed as
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where M is the aggregator, X is the graph feature, and Ω is the feature
transformation matrix.

With the above model simplification, ReLU is invalid due to the fact
that the aggregator M is nonnegative and the graph feature can always
be transformed to become nonnegative, and every node in a graph will al-
ways receive nonnegative information. Then the above k-layer GNN can be
expressed as
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′
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= MkX

X
′

= Softmax(X
′

k
Ω

F
)

(2)

The expression X
′

k = MkX is known as the power iteration (without
normalization) [1]. When k is large enough, multiplying X repeatedly by
the matrix M moves every column vector of X to the dominant eigenvector
(the eigenvector of the largest-in-magnitude eigenvalue) of M . In practice,
a GNN is a shallow iteration that calculates an eigenvalue-weighted linear
combination of all the eigenvectors of the matrix M . For simplicity, we prove
the above propositions from a one-dimensional perspective. Assume that the
matrix M has n eigenvectors x1, x2, ..., xn with corresponding eigenvalues of
λ1, λ2, ..., λn, in descending order. The n linearly independent eigenvectors
form a basis for Rn. Then a nonzero random starting vector v0 has

v0 = c1x1 + c2x2 + ...+ cnxn, ci 6= 0. (3)

Multiplying both sides of this equation by M , we ontain

Mv0 = c1(Mx1) + c2(Mx2) + ...+ cn(Mxn)

= c1(λ1x1) + c2(λ2x2) + ...+ cn(λnxn)
(4)
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Repeated multiplication of both sides of this equation by M gives

Mkv0 = c1(λ
k
1x1) + c2(λ

k
2x2) + ...+ cn(λ

k
nxn) (5)

The importance of each dimension (eigenvector) is down-weighted by
(a power of) its eigenvalue. In spectral clustering, the top d eigenvectors
generally define a subspace where the clusters are well-separated. That
subspace of Mkv0 is somewhat clearer, if we scale the equation by the largest
eigenvalue coefficient c1λ

k
1,

Mkv0

c1λk
1

= x1 +
c2
c1
(
λ2

λ1
)kx2 + ...+

cn
c1

(
λn

λ1
)kxn (6)

With increasing k, some dimensions shrink quickly and even collapse.
Hence we can obtain some “good” dimensions and diminish the number of
“bad” dimensions. In theory, we can approach the effective subspace by
tuning k.

The above fact is not new. Lin and Cohen used it to detect communities
in an unsupervised way, and proposed power iteration clustering(PIC) [2],
but constrained on one dimension.

When running power iteration with a vector spaceMk[v0|v1|...vp], we can
capture the true group structure from these varying-convergence trajectories
of different vector dimensions. We refer to this as subspace power iteration
clustering (SPIC).

Our work makes the following contributions:

1. We identify a possible theoretical origin for GNNs apart from CNNs.

2. We extend GNNs and enhance their capability to process random fea-
tured networks by our SPIC models.

3. We classify GNNs and demonstrate the redundancy of current models.

4. We define a lower limit for GNN performance evaluation by random
aggregators.

The remainder of this paper is organized as follows. Section 2 intro-
duces some related work. SPIC models are proposed in Section 3, and are
evaluated and compared in Section 4, where we also discuss experiments to
explore their properties. Section 5 provides conclusions and suggestions for
future work.
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2. Related Work

Identifying the static or evolving community structure of networks is
drawing increasing attention [3–5]. State-of-the-art GNNs have been tested
on the task of community detection. Compared with conventional meth-
ods, GNNs show their superior performance at producing nice graph em-
beddings and capturing complex structures [6] Classic spectral clustering
methods such as the normalized cut [7] use the exact eigenvectors to parti-
tion the nodes into communities, and they suffer from high computational
complexity. GNNs have a similar mechanism with the spectral clustering.
The power iteration we explain in the introduction actually performs the
matrix decomposition.

When explaining the mechanism of GNNs, people seldom refer to spec-
tral clustering or power iteration clustering. The success of GNNs has been
attributed to Laplacian smoothing [8], which makes the features of vertices
in the same cluster similar, and thus easy to cluster. This process can be
further understood through power iteration, and is best illustrated in the
context of spectral graph drawing.

Here, we take the GraphSAGE-mean model as an example and plot a
graph on one dimension, say the x − axis. Iteratively placing each node
at the average between its old place and the centroid of its neighbors for k
times can be expressed as

(I +D−1A)kx = x′, (7)

where D is the degree matrix and A is the adjacency matrix.
Combined with the concept of community, by which nodes interact more

frequently with members of the same group than with those of other groups,
all nodes are thus on the way to their cluster centers. This explains geo-
metrically why power iteration works for community detection. Note that
I + D−1A,D−1A, I − D−1A share the same eigenvectors. When k is suf-
ficiently large, x converges to the dominant eigenvector 1n ≡ (1, 1, ..., 1)T

of the degree normalized Laplacian D−1L, i.e., all the nodes are put in the
same location [9].

Some scholars extract a simple Laplacian power model from GNNs but
interpret it differently. Wu et al. took the power iteration, MkX, as a
feature preprocessing step [10]. Dehmamy et al. regarded Mk as the graph
moment, which counts the number of paths from node i to j with length k
[11].

Other interpretations [12–15] focus on graph structures or features, and
try to identify the informative components and important node features with
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a crucial role in a GNN’s prediction. However, when M or X is random,
if MkX still contributes to the community detection, their interpretations
may need some adjustments.

3. SPIC Models

We reclassify the Laplacian aggregators, introduce a more general con-
cept, and propose our SPIC models, which are of three types depending on
the application of message-Laplacian eigenvalues and eigenvectors. Inspired
by the statistical characterization of graph attention networks (GAT) on
protein-protein interaction (PPI) data, we enrich these linear models with
nonlinear layers.

3.1. Laplacian Matrix

Many Laplacians have been proposed, but there is no consensus in the
literature as to which definition is most appropriate for message passing. We
classify them according to the eigenvectors, since we know the mechanism
of GNN:

Laplacian Aggregator





Lsm ≡ {I ±D− 1
2AD− 1

2 ,D− 1
2AD− 1

2 }
Lrw ≡ {I ±D−1A,D−1A}
Ldi ≡ (Γ + ΓT )/2,

, (8)

where Lsm and Lrw are symmetric and random-walk Laplacians, respectively.
Lrw is similar to Lsm and Lrw = I − D− 1

2 (I − LsmD− 1
2 ). Ldi is directed

Laplacian [16] and Γ is an asymmetric weight matrix.
Moreover, we denote LG as a generalized message Laplacian, by which

passing messages contributes to the community detection.

3.2. Static Laplacian SPIC

We propose SPIC models for some state-of-the-art GNNs to show the
idea of the static Laplacian. GNNs are listed in Table 1, where Ã = A +
I, D̃ii =

∑
j=0 Ãij , Ω

′
is the weight matrix in each GNN layer and Ω

F
is the

feature transformation in a linear model. Interestingly, a basic GCN SPIC
model, SGC, has been proposed, but its theory is totally different from ours.
It misses the power iteration by taking (D̃− 1

2 ÃD̃− 1
2 )kX as a preprocessing

step and leaves many questions, which we will answer, such as: why can we
remove the activation functions from GNNs, does this removal always work,
how to determine k, and does only the model redundancy exist? We write
this model as

DAD(SGC) ≡ (βI + D̃− 1
2 ÃD̃− 1

2 )kXΩ
F

β = 0, 1, 2... (9)
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Table 1: Static GNNs

GNNs Aggregator

GCN [17] X ′ = D̃− 1
2 ÃD̃− 1

2XΩ
′

GraphSAGE [18] X ′ = D̃−1ÃXΩ
′

SGC(linear) [10] X ′ = (D̃− 1
2 ÃD̃− 1

2 )kXΩ
F

Table 2: Semistatic GNNs

GNNs Aggregator

Spectral GCN [19] X ′ = Ug(Λ)UTXΩ
′

ChebNet [20] X ′ =
∑K−1

k=0 ΩkTk(L̃)X

TAG [21] X ′ =
∑K

k=0ΩkD̃
− 1

2 ÃkD̃− 1
2XΩ

F

APPNP(linear) [22] X ′ = X(K)Ω
F
,Xk = [(1− α)D̃− 1

2 ÃkD̃− 1
2Xk−1 + αX0]

GraphSAGE-mean was discussed in Section 2. We directly state it as

DA ≡ (βI + D̃−1Ã)kXΩ
F

β = 0, 1, 2... (10)

Static Laplacian SPIC is close to the original power iteration and uses
one Laplacian matrix as the aggregator.

3.3. Semistatic Laplacian SPIC

The aggregators listed in Table 2 suffer from high computational costs
and model redundancy. We provide some simple comparisons from experi-
ments, and focus on theoretical analysis.

The SPIC model of spectral GCN provides a new understanding of its
convolutional operations. Removing all the activation functions and the
layer weights, we have

X ′ = Ug(Λ0)...g(Λk)U
TXΩ

F
≈ Ug(Λ)kUTXΩ

F
, (11)

where U is an eigenvector matrix and g(Λ) denotes a diagonal eigenvalue
matrix.

The eigenvectors are invariant, and the eigenvalues are dynamic. In
essence, it calculates a learned eigenvalue-weighted linear combination of
the eigenvectors at a high computational expense.

The SPIC model of ChebNet and TAG-like algorithms has been proposed
as APPNP. It is derived from PageRank, which is a kind of power method.
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Table 3: Dynamic GNNs

GNNs Aggregator

AGNN [23] X ′ = P ′X
GAT [24] X ′ = Q′X

The creators of APPNP do realize this, but take it as a tool, like SGC. Let
us expand them with K = 3 and α ∈ (0, 1):





X
′

Cheb
= [Ω0I +Ω1Lsm +Ω2L

2
sm]X

XTAG
′ = [Ω0D

−1 +Ω1Lsm +Ω2L
2
sm +Ω3L

3]X

X
′

APPNP
= [α+ α(1 − α)Lsm + α(1− α)2L2

sm + (1− α)3L3
sm]XΩ

F

(12)

They use a similar aggregator, which is a linear combination of DAD(SGC)
models. If they do not outperform corresponding static models(GCN/DAD),
then we may say the semistatic model has redundancy.

One-dimension APPNP can clarify the definition of the semistatic Lapla-

cian. We denote the starting vector v0 in eigenspace as v0 = c
(0)
1 x1+c

(0)
2 x2+

...+ c
(0)
n xn, ci 6= 0, and write an APPNP of three iterations as

X
′

APPNP =
K∑

i=0

(c
(i)
1 λi

1x1 + c
(i)
2 λi

2x2 + ...+ c(i)n λi

nxn)

= g(λ1)x1 + g(λ2)x2 + ...+ g(λn)xn

(13)

The eigenvectors are invariant, and the scaling factor g(λ) is a mixture
of eigenvalues, which is similar to the SPIC model of Spectral GCN. That
is the key of the semistatic models.

3.4. Dynamic Laplacian SPIC

The above models are based on the traditional Laplacian, which use no
prior information. We present some prior Laplacian models in this section.
The models in Table 3 use the attention mechanism and integrate the learned
feature similarity into their edge weight. The aggregators are dynamic and
graph-dependent.

AGNN defines its aggregator as P
′

ij =
exp(ε

′
·cos(xi,xj))∑

t∈N(i)∪{i} exp(ε
′
·cos(xi,xt))

. P ′ is

symmetric, and there is only one parameter ε
′
in each layer. We design its

SPIC model by removing all activation functions and feature preprocessing
operations to obtain

P AGNN ≡ (βI + P )kXΩ
F
, β = 0, 1, 2..., (14)
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where Pij = softmax(ε · cos(xi, xj)), and ε is a hyperparameter set to 1.0
in this paper.

GAT is an interesting method. Its attention mechanism causes the rel-
ative importance of nodes to differ, which transforms the undirected graph
to a bidirectional network with asymmetric edge weights. An asymmetric
matrix may not satisfy the diagonalizable condition of the original power
iteration. We can symmetrize the attention weight by averaging the matrix
and its transpose. That is the idea of the directed Laplacian Ldi. We create
a SPIC model by removing all activations, layer weights, and multi-heads,
and iteratively learning with only one attention,

P GAT ≡ (βI +Q)kXΩ
F
, β = 0, 1, 2..., (15)

where Q = Z+ZT

2 , Zij =
exp(LeakyReLU(aT [Ω

F
xi||ΩF

xj ]))∑
t∈N(i)∪{i} exp(LeakyReLU(aT [Ω

F
xi||ΩF

xt]))
, and a is

the attention vector. We design an asymmetric model by directly using the
attention weight,

P GAT am ≡ (βI + Z)kXΩ
F
, β = 0, 1, 2... (16)

We will further discuss the symmetric or diagonalizable issue below.

3.5. SPIC with Nonlinear Layers

We can use GAT to infer the graph types based on the attentions learned.
Li et al. [25] observed that the attention weights almost distribute uniformly
on all the benchmark citation networks, regardless of the heads and layers.
Significant differences are observed for the case of PPI. We classify the above
data as linear or nonlinear. For nonlinear data, we need to add some nonlin-
ear layers to our SPIC models. Three testing models based on P GAT are
as follows,

P GAT Relu1 ≡





X = XΩp

X = ReLU(QX) + βX
X ′ = (βI +Q)k−1XΩ

F

(17)

P GAT General ≡





X0 = XΩp

Xk = ReLU(QXk−1Ω
R
) + βXk−1

X ′ = XkΩ
F

(18)

P GAT w ≡

{
X = XΩp

X ′ = (βI +Q)kXΩk
RΩF

(19)

ReLU is put on the first layer of P GAT Relu1 to keep the features non-
negative. Q and X are all nonnegative. We put ReLU and another feature
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Table 4: Dataset statistics of the citation networks and PPI

Type Dataset #Nodes #Edges Train/Val/Test Connected

Linear Cora 2,708 5,429 140/500/1,000 No
Linear CiteSeer 3,327 4,732 120/500/1,000 No
Linear PubMed 19,717 44,338 60/500/1,000 Yes
Nonlinear PPI 2,599 27,189 2,050/297/252 No

transformation Ω
R
in each layer of P GAT General to strengthen its learning

ability. P GAT w is designed as the linear model of P GAT General.
By setting Q = D̃− 1

2 ÃD̃− 1
2 , we can propose DAD Relu1, DAD General

and DAD w. We next explore the nonlinear issue by testing these models
on PPI.

4. Experiment and Exploration

We compare SPIC models and GNNs on citation networks, conduct ex-
periments to explore the properties of SPIC, and answer the questions posed
in Section 3.

4.1. Datasets and Codes

We focus on the task of node classification by using citation networks
[26] and PPI [27] data. All the citation networks are PyTorch built-in data,
which are split well for training. For PPI, we choose two of its 24 networks
and treat them as one big network. Dataset statistics are summarized in
Table 4.

All experiments on GNNs are performed based on the codes released
by PyTorch. Our models and training settings may be found at https:
//github.com/Eigenworld/SPIC . Results are averaged over 10(for semistatic)
or 20 runs, and 100 epochs per run. For the single-label task (e.g., tests on
citation networks), we report the mean classification accuracy (with stan-
dard deviation), and for the multi-label task (e.g., tests on PPI), we report
the micro-averaged F1 score.

4.2. Comparison of GNNs and SPIC models

Many structures of the existing GNNs such as activation functions, layer
weights, and multi-aggregators may not be the must-have modules. For
fairness, all GNNs compute 64 hidden features and all linear models are
iterated for two or three times. Table 5 shows that removing the activations
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Table 5: Test accuracy (%) on citation networks

Model Cora CiteSeer PubMed

GCN DAD(SGC) 82.2± 0.6% 82.3± 0.5% 72.0 ± 1.1% 72.0± 0.4% 78.8 ± 0.5% 79.2± 0.4%
SAGE DA 82.3± 0.9% 82.3± 0.5% 71.4 ± 1.0% 72.3± 0.2% 78.5 ± 0.5% 79.3± 0.7%
AGNN P AGNN 81.5± 0.7% 82.5± 0.6% 71.5 ± 0.7% 72.5± 0.5% 78.9 ± 0.7% 79.0± 0.6%
GAT P GAT 82.4± 0.8% 81.7± 0.5% 71.7 ± 0.8% 71.2± 1.2% 78.1 ± 0.6% 77.3± 1.1%

P GAT am 81.0± 0.7% 71.0 ± 0.8% 77.3± 1.0%
TAG APPNP 82.4± 0.9% 82.4± 0.7% 71.2 ± 0.9% 72.0± 0.3% 78.7 ± 0.4% 78.8± 0.7%

Table 6: Test Micro F1 Score (%) on PPI

Model GAT P GAT P GAT Relu1 P GAT General P GAT w
PPI 65.5± 0.5% 51.0 ± 1.0% ↓ 54.8 ± 1.8% 63.6± 0.5% 53.2± 0.8%

Model GCN DAD(SGC) DAD Relu1 DAD General DAD w
PPI 62.1± 0.6% 46.1 ± 1.0% ↓ 64.4± 0.5% 64.1± 0.7% 54.1± 1.0%

and layer weights from GNNs does not degrade the performance on citation
networks. In fact, linear models perform comparably (boldface) to state-of-
the-art GNNs. The results of two linear GAT show no big difference between
symmetric and asymmetric aggregators. In Section 4.4, we will further test
this issue. TAG and APPNP do not show superior performance over GCN
and DAD, respectively, which verifies their model redundancy, as mentioned
in Section 3.3.

Moreover, all GAT layers and heads learn similar aggregators on citations
networks [25]. These duplicated aggregators are simply shifted versions of
each other, and they indicate the linearity of model and data. This may
explain why all the activations and layer weights can be removed from GNNs
on citation networks.

Before diving into the tests on nonlinear data, let us observe the atten-
tion weights of GAT in Fig. 1, where about eight different attentions are
learned. The first two layers capture the similar attention pattern and four
different attentions are learned. The attentions captured by the final layer
are obviously different from those of previous layers. Pure linear models
shown in Table 6 do not work this time. When adding ReLU to the first
iteration, DAD Relu1 behaves closely to GAT. When adding the activation
and layer weight to each iteration, P GAT General almost reverts to the per-
formance of GAT. The final contrast model shows that the nonlinear layers
work, and layer weights contribute slightly.

4.3. Graph Feature Space Exploration

How seriously does our project suffer from feature redundancy? We
show feature redundancy using Cora’s first 800 dimensional features and

10
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Figure 1: Entropy histogram plots for attention weights of GAT on PPI. Each node entropy
is calculated by H({wij‖j ∈ N(i)}) = −

∑
j∈N(i) wijlogwij .

Table 7: Test accuracy (%) on reduced Cora

Model Cora 800 Cora 193

GCN DAD(SGC) 80.6± 0.5% 82.0± 0.4% 75.5 ± 1.2% 79.0± 0.6%
SAGE DA 80.9± 0.5% 81.6± 0.7% 76.2 ± 0.9% 79.2± 0.4%
AGNN P AGNN 80.7± 0.7% 81.5± 0.3% 78.5 ± 0.8% 79.1± 0.5%
GAT P GAT 80.6± 0.5% 80.4± 0.4% 77.4 ± 0.6% 78.6± 0.8%

193 compressed dimensional features. The original feature size is 1433.
Table 7 shows that we loss little by reducing feature dimensions, espe-

cially for SPIC models, which means we can further optimize the graph
features. A follow-up question is how can we design the feature width. We
explore this issue by running DAD on random-feature graphs. Table 8 re-
veals that wider is not always better and it depends on the data. We further
compare SPIC and state-of-the-art GNN models on well-designed random
citation networks in the following.

Considering Tables 9 and 5, GNNs only well serve the networks with real-
world features, whereas SPIC models can still capture communities in these
random featured networks. The noteworthy change here is that random
features require more iterations (k = 20).

Table 8: Test accuracy (%) of DAD on random citation networks

Cora 100 Cora 300 Cora 500 Cora 1000 Cora 2000
68.5 ± 0.6% ↑ 74.5± 0.7% ↑ 73.6± 0.3% 72.8± 0.5% 72.4 ± 0.5%

Cite 100 Cite 300 Cite 500 Cite 1000 Cite 2000
42.4 ± 1.0% ↑ 47.0± 0.7% ↑ 48.8± 0.9% ↑ 50.9± 0.6% ↑ 49.6 ± 0.9%

Pub 100 Cite 300 Pub 500 Pub 1000 Pub 2000
65.7 ± 0.6% ↑ 67.0± 0.4% ↑ 69.0± 0.8% ↑ 72.0± 0.6% ↑ 68.8 ± 0.9%
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Table 9: Test accuracy (%) on random citation networks

Model Cora 300 CiteSeer 500 PubMed 1000

GCN DAD(SGC) 43.9± 0.9% 74.3± 0.2% 28.7 ± 0.6% 49.8± 1.0% 42.5 ± 1.1% 72.0± 0.6%
SAGE DA 50.1± 0.8% 75.3± 0.6% 32.2 ± 0.9% 50.4± 1.3% 44.2 ± 1.5% 72.4± 0.7%
AGNN P AGNN 42.9± 0.7% 75.0± 0.5% 28.4 ± 0.4% 49.5± 0.8% 43.5 ± 2.4% 71.8± 0.6%
GAT P GAT 51.9± 1.6% 61.6± 2.6% 33.2 ± 0.9% 44.2± 1.3% 44.9 ± 1.9% 70.0± 2.8%

Table 10: Test accuracy (%) of random Laplacian models

Model Cora CiteSeer PubMed

RL sm RL am 73.7 ± 1.3% 75.7± 1.7% 62.7 ± 0.9% 64.5 ± 1.4% 75.9± 0.6% 76.9± 0.3%
RGAT sm RGAT am 80.4 ± 0.5% 80.2± 0.7% 65.5 ± 1.8% 65.3 ± 2.0% 77.2± 0.7% 77.5± 0.7%

4.4. Random Laplacian

Previous studies focused on the aggregator design and never tested ran-
dom aggregators. We design symmetric and asymmetric random aggregator
tests on citation networks. In Section 3.1, we define the generalized Lapla-
cian LG in the manner of message passing. Here, we instantiate it with
random symmetric and asymmetric models,

{
RL sm ≡ [(H +HT )/2 + I]kX, H = A ∗W
RL am = (A ∗W + I)kX

, (20)

whereW is a matrix filled with random numbers from a uniform distribution
over [0,1).

Another instantiation is to randomly initialize the attention vector of
P GAT and we propose RGAT sm and RGAT am.

The results in Table 10 are noteworthy, random Laplacian works, which
indicates that the topology itself contributes notably to community detec-
tion. In this sense, if a method does not outperform the random Laplacian,
we may conclude it is not effective enough. The symmetry test on P GAT
is consistent with the results in Section 4.2, and RL am is slightly better
than RL sm. So, they both work and we need not be concerned about the
symmetric or diagonalizable issue of the aggregator.

5. Conclusion

By fully or partly removing activation functions and layer weights of
GNNs, we propose subspace power iteration clustering (SPIC) models to
explore the mechanism of GNNs. Five cases were discussed:

A○All activation functions and layer weights are removed.
B○All layer weights are removed and ReLU is put on the first layer.
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C○All layers have activation functions and share the same weight.
D○All layers share the same weight and all activations are removed.
E○Random aggregators are used.
We can extract the power iteration model MkX in all these cases. Model

A○ shows a failure of activations and weights in the case of linear data and
random featured graphs. B○, C○ and D○suggest that GNNs depend much on
activations and layer weights for nonlinear data, but we can follow a power
iteration style to remove unnecessary parameters and greatly simplify GNNs.

The type of data is defined by GAT:

• Linear:When running GAT, attention weights almost distribute uni-
formly regardless of the heads and layers. Activations and layer weights
are invalid to some extent on these data.

• Nonlinear: Significant differences of attention can be observed.

It is interesting that random aggregators also work. The topology itself
means much to the community detection; perhaps we should not put much
focus on the design of GNN aggregators.

Experiments with the above methods verify that GNNs can be simplified
to a power iteration style with fewer parameters. The noteworthy improve-
ment is that SPIC models can deal with the random featured networks. Also,
the network features can be optimized to speed up GNNs. It is obvious that
there is a lot of leeway and creativity in explaining the mechanism of GNN.
An interesting direction for future work is to explore the relation between
CNN and power iteration.
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