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Abstract

Graph autoencoders (AE) and variational autoencoders (VAE) are powerful node embed-
ding methods, but suffer from scalability issues. In this paper, we introduce FastGAE, a
general framework to scale graph AE and VAE to large graphs with millions of nodes and
edges. Our strategy, based on an effective stochastic subgraph decoding scheme, signifi-
cantly speeds up the training of graph AE and VAE while preserving or even improving
performances. We demonstrate the effectiveness of FastGAE on various real-world graphs,
outperforming the few existing approaches to scale graph AE and VAE by a wide margin.

Keywords: Graph Autoencoders, Graph Variational Autoencoders, Scalability, Graph
Convolutional Networks, Node Embedding, Link Prediction, Node Clustering

1. Introduction

Graph structures efficiently represent relationships and interactions among entities.
Social networks, molecules, citations of scientific publications and web pages constitute
some of the most famous examples of data usually represented as graphs, i.e. as nodes
connected via edges. Extracting information from these connections is essential to address
numerous graph-based learning problems, ranging from link prediction to influence
maximization and node clustering. In this direction, several significant improvements were
recently achieved by methods leveraging node embeddings [1, 2]. Instead of relying on
hand made features, these methods aim at automatically learning low-dimensional vector
space representations of nodes capturing relevant information from the graph, such as
structural proximity, notably by using graph neural networks [3, 4], matrix factorization
[5] or random walk processes [6, 7, 8].

In particular, during the last few years, graph autoencoders (graph AE) and graph
variational autoencoders (graph VAE) emerged as two of the most promising and powerful
unsupervised node embedding methods [9, 10, 11]. Introduced as extensions of standard
AE [12, 13] and VAE [14] to graph structures, they involve the combination of two stacked
models. First, an encoder, typically based on a graph neural network (GNN), maps
the nodes into an embedding space; then, a decoder tries to reconstruct the original
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graph structure from the vector representations. Both models are jointly trained to
optimize the quality of the reconstruction from the embedding space, in an unsupervised
fashion with (for VAE) or without (for AE) a probabilistic approach. Recently, graph
AE and VAE have been widely adopted to tackle challenging graph-based problems,
such as node clustering [15, 16, 17, 18, 19], graph generation [20, 21, 22, 23, 24] and
link prediction [11, 25, 26, 27, 28], often reaching competitive results w.r.t. popular
unsupervised baselines such as DeepWalk [6] and node2vec [8].

Nonetheless, graph AE, VAE and their extensions suffer from scalability issues. As we
explain in Section 2, they mainly result from the costly decoding operations involved in
the graph reconstruction. While several recent works provided strategies to scale GNN
models2 i.e. encoders [4, 29, 30, 31], the question of how to overcome complex decoders
in graph AE and VAE remains open, preventing them from scaling. As a consequence,
existing graph AE and VAE have been mainly applied to relatively small graphs, with up
to a few thousand nodes. As larger graphs are ubiquitous, we propose to address these
scalability concerns in this paper, making the following contributions:

• We introduce FastGAE, a general framework to scale graph AE and VAE models
to large graphs with millions of nodes and edges. We leverage graph mining-based
sampling schemes and an effective subgraph decoding strategy to significantly lower
the computational complexity of graph AE and VAE models, while preserving or
even improving their performances.

• We propose an in-depth theoretical and experimental analysis of our method. We
demonstrate its empirical effectiveness on seven graphs, with various characteristics
and natures, and with up to millions of nodes and edges.

• We publicly release the code of FastGAE3, to ensure reproducibility and future
usages.

The remainder of this paper is organized as follows. After reviewing key notions on
standard graph AE and VAE and on their complexity in Section 2, we present and analyze
FastGAE, our scalable framework, in Section 3. We report our experimental evaluation
and a discussion of our results in Section 4, and we conclude in Section 5.

2. Preliminaries

Throughout most of this paper, we consider an undirected graph G = (V, E) with
|V| = n nodes and |E| = m edges ; extensions of our work to directed graphs are
nonetheless discussed in Section 5. We denote by A the binary and symmetric adjacency
matrix of G, and by X an n × f matrix stacking up f -dimensional node-level features
vectors, one for each node of G. For featureless graphs, we simply assume X = In, where
In is the n× n identity matrix.

2We nonetheless point out that these works were done out of the graph AE and VAE unsupervised
frameworks that we consider in this paper. They aimed at scaling GNN models that were trained in a
supervised or semi-supervised manner.

3Our code is available at: https://github.com/deezer/fastgae
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2.1. Graph Autoencoders
Graph autoencoders (AE) [9, 10, 11] involve the combination of two stacked models:

an encoder and a decoder.

2.1.1. Encoder

First, the encoder model aims at learning an n× d matrix Z, whose rows zi are the
d-dimensional embedding vectors of each node i ∈ V, with d� n. This matrix is usually
obtained through a graph neural network (GNN) [3, 32, 33] processing A and X. More
precisely, most recent variants of graph AE implement multi-layer graph convolutional
networks (GCN) encoders [3, 11, 34]. In a L-layer GCN (with L ≥ 2), with input layer
H(0) = X and output layer H(L) = Z i.e. the embedding vectors, we have:

H(l) = ReLU(ÃH(l−1)W (l−1)), for l ∈ {1, ..., L− 1} (1)

H(L) = ÃH(L−1)W (L−1).

In the above equations, Ã = D−1/2(A+ In)D−1/2 is the symmetric normalization of A,
with D denoting the diagonal degree matrix of A + In. In a nutshell, at each layer l
we compute a representation for each node, by averaging the representations from layer
l− 1 of its direct neighbors (that, from layer 2, have already aggregated information from
their own neighbors) and of itself (thus the A+ In in the normalization), together with a
ReLU activation: ReLU(x) = max(x, 0). W (0), ...,W (L−1) are weight matrices, to tune
as subsequently detailed in Section 2.1.3.

2.1.2. Decoder

Then, the decoder model aims at reconstructing the graph from the embedding. Kipf
and Welling [11] and most subsequent works on graph AE models implement a simple
inner-product decoder. The reconstructed adjacency matrix is then:

Â = σ(ZZT ), (2)

with Z = GCN(A,X), and with σ(·) the sigmoid function: σ(x) = 1/(1 + e−x). In other
words, we have Âij = σ(zTi zj) for all (i, j) ∈ V × V i.e. nodes with large inner-products
in the embedding are more likely to be connected in the graph according to the model.
While we will also consider this decoder in our experiments for simplicity and consistency
with previous works, we point out the existence of more sophisticated decoders in recent
research, such as the asymmetric decoder of Salha et al. [28], the reverse message passing
schemes of Grover et al. [27] and the decoder of Shi et al. [19] reconstructing node triads.

2.1.3. Learning

The objective of graph AE is to learn low-dimensional vector representations that
ensure a good reconstruction Â from the decoder. To achieve this, GCN weights are
usually tuned by iteratively minimizing, by gradient descent [35], a reconstruction loss
capturing the similarity between A and Â. In the graph AE framework, this loss is usually
formulated as a cross entropy loss [11] i.e.:

L =
−1

n2

∑
(i,j)∈V2

[
Aij log(Âij) + (1−Aij) log(1− Âij)

]
. (3)

Also, in practice, the pairs with Aij = 1 are often re-weighted in the loss, when dealing
with a sparse adjacency matrix A [11, 36].
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2.2. Graph Variational Autoencoders

Kipf and Welling [11] also introduced graph extensions of variational autoencoders (VAE),
a model originally introduced for general data by Kingma and Welling [14].

2.2.1. Encoder

In a graph VAE, we establish a probabilistic model on A, involving a d-dimensional
latent variable zi for each node i ∈ V, corresponding to its embedding vector. Kipf and
Welling [11] propose the following mean-field inference model as encoder :

q(Z|A,X) =

n∏
i=1

q(zi|A,X), (4)

with q(zi|A,X) corresponding to a N (µi,diag(σ2
i )) distribution. They leverage two

GCNs to learn the d-dimensional Gaussian mean and variance vectors µi and σi for each
node. In a nutshell, µ = GCNµ(A,X), with µ the matrix of mean vectors µi ; also,
log σ = GCNσ(A,X). The embedding vectors zi are samples subsequently drawn from
these distributions.

2.2.2. Decoder

Then, from these embedding vectors, a generative model aims at decoding A using, as
for graph AE, inner-products together with sigmoid activations. We have:

Âij = p(Aij = 1|zi, zj) = σ(zTi zj). (5)

Then:

p(A|Z) =

n∏
i,j=1

p(Aij |zi, zj). (6)

2.2.3. Learning

Kipf and Welling [11] propose to iteratively maximize a lower bound of the model’s
likelihood (ELBO) [14] by gradient descent w.r.t. the GCNs’ weights:

LELBO = Eq(Z|A,X)

[
log p(A|Z)

]
−DKL

(
q(Z|A,X)||p(Z)

)
. (7)

DKL(·||·) denotes the Kullback-Leibler divergence [37], and p(Z) corresponds to an initial
standard Gaussian prior on the distribution of latent vectors. We refer to [11, 14] for
more technical details on computations.

2.3. On Complexity and Scalability

GCN models have become popular encoders for graph AE and VAE, thanks to their
relative simplicity w.r.t. other GNN architectures [32, 33]. The cost of evaluating each
layer of a GCN encoder is linear w.r.t. the number of edges m [3], which can also be
improved by instead encoding nodes with a FastGCN [30], with a Cluster-GCN [31], or
by using simple graph convolutions [38] or other stochastic strategies [4, 29, 39, 40].

However, the inner-product decoders of graph AE and VAE both involve the multi-
plication of the dense matrices Z and ZT at each training iteration. It suffers from a
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quadratic O(n2) complexity, as the aforementioned alternative decoders that all require
inner-products or Euclidean distances computations. Storing n × n dense matrices Â
can also lead to memory issues for large n. As a consequence, the recent aforementioned
efforts to scale GCNs (that were achieved in a supervised setting, and out of the wider
graph AE and VAE frameworks studied in this paper, where GCNs are only a building
block) are not sufficient to scale graph AE and VAE. These models still suffer from a
quadratic time complexity due to their costly decoding operations, and therefore from
scalability issues.

As a result, graph AE, VAE and their extensions were usually applied to relatively
small graphs with up to a few thousand nodes and edges. We acknowledge that Kipf and
Welling [11], Grover et al. [27] and Salha et al. [36] all very briefly mentioned sampling
ideas as possible extensions, but without further investigation. We will later observe
that a direct uniform sampling of nodes is often sub-optimal. Recently, Shi et al. [19]
incorporated more elaborated mini-batch sampling ideas in their work on graph AE and
VAE. More specifically, authors proposed to reconstruct triads of nodes in their decoder
instead of simple inner-products. The total number of triads in a graph is

(
n
3

)
which

is very large, but authors proposed to sample a smaller number of triads to make their
model tractable. Nonetheless, as the objective of their work was more to improve the
performances of graph AE and VAE than to provide scalable models, they did not report
running times nor experiments on large graphs.

In a wider analysis on scalable graph AE and VAE, Salha et al. [18] proposed to
speed up computations by training the AE/VAE only on a smaller version of the graph,
namely on the k-core of the graph [41], then by propagating representations to other
nodes via simpler but faster heuristics. While they did provide experiments on larger
graphs, their performances tend to significantly deteriorate for smaller cores i.e. for faster
models. To sum up, the question of how to effectively scale graph AE and VAE remains
unsatisfactorily addressed.

3. Scaling Graph AE and VAE with FastGAE

In this Section, we introduce our proposed framework to scale graph AE and VAE.
We refer to it as FastGAE, and as variational FastGAE when applied to graph VAE.

3.1. Encoding the Entire Graph...

As explained in Section 2.3, GCN models [3] and their scalable extensions [30, 31, 38, 40]
can effectively process large graphs. Therefore, in our FastGAE framework, we rely on
these models to encode all the nodes into the embedding space. More precisely, in the
following experiments, we implement standard GCN encoders for the sake of simplicity
and for an easier comparison to existing graph AE and VAE architectures. This design
choice is made without loss of generality, the FastGAE framework being valid for any
other encoder producing an embedding matrix Z.

3.2. ...But Decoding Stochastic Subgraphs

However, while computing node embedding vectors through a forward GCN pass is
fast, tuning the weights of this encoder in the graph AE and VAE settings requires the
reconstruction of the entire matrix Â at each training iteration which, as detailed in
Section 2.3, suffers from a quadratic complexity and is intractable for large graphs.
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3.2.1. Subgraph Decoding

To overcome this issue, we propose to approximate reconstruction losses, by computing
their values only from wisely selected random subparts of the original graph. More
precisely, at each training iteration, we aim at decoding a different sampled subgraph
of G with n(S) nodes, with n(S) < n being a fixed parameter. Let G(S) = (V(S), E(S)) be
such sampled subgraph, with V(S) ⊂ V, |V(S)| = n(S), and with E(S) denoting the subset

of edges connecting the nodes in V(S). Instead of reconstructing the n× n matrix Â, we

propose to reconstruct the smaller n(S) × n(S) matrix Â(S) with:

Â(S) ij = σ(zTi zj), ∀(i, j) ∈ V2
(S), (8)

and to only learn from the quality of Â(S) w.r.t. its ground truth counterpart A(S), as
measured by a cross entropy loss for AE, or an ELBO loss for VAE. We propose to use
the resulting approximate loss for gradients computations and GCN weights updates by
gradient descent. We draw a different subgraph G(S) at each training iteration, using the
sampling methods detailed next.

3.2.2. (Naive) Uniform Node Sampling

A very simple way to obtain such subgraphs would consist in uniformly sampling n(S)
nodes from the set V at each training iteration. However, with such strategy, there is no
guarantee that the most important links (or absence of links) from the original graph
structure will be preserved in the drawn subgraphs to reconstruct during the training
phase. As we will experimentally show in Section 4, this usually significantly impacts
the quality of the final node embedding, leading to underperforming performances on
downstream evaluation tasks. As a consequence, in the following sections, we propose
and study more refined strategies, aiming at leveraging the graph structure to obtain a
more effective sampling.

3.2.3. Node Sampling with Graph Mining

We propose to consider alternative sampling methods, that increase the probability of
including some particular nodes in the drawn subgraph w.r.t. some others. Let f : V → R+

denote some measure of the relative importance of nodes in the graph, obtained through
graph mining methods. Assuming such function is available, we draw inspiration from
word sampling in natural language processing [42, 43] and propose to set the probability
to pick each node i ∈ V as the first element of V(S) as:

pi =
f(i)α∑

j∈V
(f(j)α)

, (9)

with α ∈ R+. Then, assuming we sample n(S) distinct nodes without replacement,
each remaining node i ∈ V \ V(S) has a probability pi/

∑
j /∈V(S)

pj to be picked as

the second element of V(S), and so on until |V(S)| = n(S). The previous division is a
simple normalization to ensure

∑
j /∈V(S)

pj = 1 at each sampling step. Alternatively, one

could also sample n(S) nodes with replacement : it simplifies computations, as sampling
probabilities are then independent of previous draws and remain fixed to pi, but a node
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could then be drawn several times. We stress out that, in our implementation, both
variants return very similar results. We later adopt the former.

In a nutshell, important nodes according to f are more likely to be selected for decoding,
and the hyperparameter α helps sharpening (for α > 1) or smoothing (for α < 1) the
distribution. Setting α = 0 leads to the aforementioned uniform node sampling. In
our experiments, we will consider and evaluate two importance measures f from graph
mining:

• the degree of each node, which is simply the number of direct connections of each
node: f(i) =

∑
j∈V Aij .

• the core number of each node: f(i) = C(i). The k-core version of a graph is its
largest subgraph for which every node has a degree higher or equal to k within this
subgraph. The core number C(i) of a node i corresponds to the largest value of k
for which i is in the k-core. Core decomposition has been widely used over the past
years to quantify the significance of nodes and extract representative subgraphs (see
e.g. Malliaros et al. [41] for a review). They constitute a more global importance
measure than the local node degree.

Besides their popularity and their complementarity, we also chose to focus on these two
metrics for computational efficiency. Indeed, contrary to other potential importance
metrics based on influence maximization [44], random walks [45] or centrality measures
[46], both can be evaluated in a linear O(m) running time [47]. As we will empirically
check in Section 4, this leads to fast and scalable computations of probability distributions,
which is crucial for our FastGAE framework whose primary objective is scalability. We
refer the interested reader to the work of Leskovec and Faloutsos [45], Hu and Lau [48] and
Chiericetti et al. [49] for a broader overview of other existing graph sampling methods.

3.3. Theoretical Considerations

In the Section 3.3.1, we provide a global overview of some theoretical analyses that
we subsequently further develop in Sections 3.3.2 and 3.3.3. For readability reasons, we
will report the proofs of all propositions in the appendices.

3.3.1. Overview of Theoretical Considerations

On Approximate Losses. In the case of degree and core-based sampling strategies, some
node pairs from the graph are more likely to appear in subgraphs than others. The
probability to draw a node i, or an edge incident to i, increases with pi and with f(i)
for α > 0. As a consequence, at each gradient descent iteration, the approximate loss
(say LFastGAE) is biased w.r.t. the standard graph AE or VAE loss that would have been
computed on G (say L), i.e. E(LFastGAE) 6= L in general. For completeness, in Propositions
1, 2 and 3 of the upcoming Section 3.3.2, we provide a theoretical analysis, in which
we fully explicit the expected loss E(LFastGAE) that we actually stochastically optimize
in FastGAE, as well as the formal probabilities to sample a given node or node pair
at each training iteration. Moreover, we will show in Section 4 that, despite such bias,
optimizing this alternative loss does not deteriorate the quality of node embeddings. On
the contrary, we will provide insights exhibiting the fact that re-weighting node pairs
from high degree/core nodes can actually be beneficial.
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On the Selection of n(S). When selecting n(S), one faces a performance/speed trade-
off: reconstructing very small subgraphs will speed up training but, as we later verify,
this might also deteriorate performances. While we claimed in the previous paragraph
that stochastically minimizing E(LFastGAE) instead of L might be beneficial, we also
acknowledge that, for small values of n(S), the actual loss LFastGAE computed at a given
training iteration can significantly deviate from its expectation. In this paper, we propose
to use these deviations as a criterion to select a relevant subgraph size. In Propositions
4 and 5 of the upcoming Section 3.3.3, we leverage concentration inequalities to derive
a theoretically-grounded threshold size, denoted n∗(S) in the following, for which, at each
training iteration, the deviation between the evaluation of LFastGAE for each node and its
expectation is proven to be bounded with a high probability. This proposed subgraph
size is of the form:

n∗(S) = C
√
n (10)

where constant C > 0 depends on the deviation magnitude and probability, and is
explicitly presented thereafter. Our experiments will confirm the relevance of this choice.

3.3.2. On Approximate Losses

Let us recall that, in our FastGAE framework, at each training iteration we run a
full GCN forward pass and sample a subgraph G(S) = (V(S), E(S)). Then, we evaluate
reconstruction losses only on this subgraph, which involves fewer operations w.r.t. standard
decoders, and we use the resulting approximate loss for GCN weights updates via gradient
descent. More precisely, in standard implementations of graph AE/VAE, the cross entropy
loss (from Section 2.1 on AE) and the negative of the ELBO’s expectation part (from
Section 2.2 on VAE) are empirically derived by computing the following node pairs average
at each training iteration:

L =
1

n2

∑
(i,j)∈V2

Lij(Aij , Âij), (11)

with4:
Lij(Aij , Âij) = −[Aij log(Âij) + (1−Aij) log(1− Âij)].

In the FastGAE framework, we instead compute:

LFastGAE =
1

n2(S)

∑
(i,j)∈V2

1((i,j)∈V2
(S)

)Lij(Aij , Âij), (12)

with 1((i,j)∈V2
(S)

) = 1 if (i, j) ∈ V2
(S) and 0 otherwise.

We recall that, for variational FastGAE, we need to substract the Kullback-Leibler
(KL) divergence, as in the ELBO of standard graph VAE, to obtain our actual loss
evaluation. At this stage, two options are possible:

4In most graph AE and VAE implementations (see e.g. [11]), the terms with Aij = 1 are often
re-weighted in the loss, in case of sparse A. They are multiplied by w ≥ 1, a positive links re-weighting
scalar parameter which is usually inversely proportional to the graph sparsity. In our analyses, to clarify
notations, we omit this scalar multiplication, which is equivalent to implicitly assuming that w = 1. This
simplification is made without loss of generality and all results remain valid for any w > 1.
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• Computing the KL term only on the nodes in the subgraph.

• Or, computing the KL term on all nodes.

We consider that the two options are valid. The first one ensures that the resulting loss
is a proper lower bound of the likelihood computed on this subgraph. The second one,
despite violating this property, can nonetheless be empirically convenient and interpreted
as the addition of a regularization term on all node embedding vectors (penalizing large
deviations w.r.t. a N (0, Id) prior distribution on these vectors) to the performance term
LFastGAE. In our implementations, both options returned similar results. In the following
propositions, we assume that the KL term is computed on all nodes for simplicity, and
we therefore only approximate the performance term L, both in the AE and in the VAE
settings.

Propositions 1 and 2 detail the formal probabilities to sample a given node or a given
node pair at each training iteration. We consider both sampling variants with and without
replacement (see Section 3.2) for this analysis, as the former significantly simplifies results
w.r.t. the later.

Proposition 1. Let G(S) = (V(S), E(S)) be a subgraph of G obtained from sampling n(S)
nodes with replacement using the node sampling strategy of FastGAE. Let i and j denote
two distinct nodes from the original graph G: (i, j) ∈ V2. Then:

P
(
i ∈ V(S)

)
= 1− (1− pi)n(S) . (13)

Also:

P
(

(i, j) ∈ V2
(S)

)
= 1−

[
(1− pi)n(S) + (1− pj)n(S)

− (1− pi − pj)n(S)

]
. (14)

Proposition 2. Let G(S) = (V(S), E(S)) be a subgraph of G obtained from sampling n(S)
nodes without replacement using the node sampling strategy of FastGAE. Let i and j
denote two distinct nodes from G: (i, j) ∈ V2. Then:

P
(
i ∈ V(S)

)
=

∑
U∈U(i)

pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

, (15)

where U(i) = {U ⊂ V, |U| = n(S) and i ∈ U} is the set of all ordered subsets of n(S)
distinct nodes including node i. For a given set U ∈ U(i), we denote by (u1, u2, ..., un(S)

)
its ordered elements. Also,

P
(

(i, j) ∈ V2
(S)

)
=

∑
U∈U(i)∩U(j)

pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

. (16)

Despite different formulations, both variants share a similar behaviour in practice
on most real-world graphs. In this paper, as explained in Section 3.2, we sample nodes
without replacement. One can derive from the above expressions that the probability to
draw a node i, or an edge incident to i, increases with n(S), with pi and with f(i) for
α > 0. This also leads to the following formulation of the expected (re-weighted) loss that
FastGAE stochastically optimizes.
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Proposition 3. Using the expressions of Proposition 1 (with replacement) or Proposition
2 (without replacement):

E
[
LFastGAE

]
=

1

n2(S)

∑
(i,j)∈V2

P
(

(i, j) ∈ V2
(S)

)
Lij(Aij , Âij). (17)

3.3.3. On the Selection of n(S)
While our experiments will tend to show that stochastically minimizing E(LFastGAE)

(equation 17) instead of L (equation 11) might be beneficial, we also acknowledge that,
for small values of n(S), the actual loss LFastGAE computed at a given training iteration
(equation 12) might significantly deviate from its expectation.

We propose to use these deviations as a criterion to automatically select a relevant
subgraph size. More precisely, let us rewrite LFastGAE from equation 12 as follows:

LFastGAE =
1

n(S)

∑
i∈V

1(i∈V(S))L
FastGAE(i),

where the node-level terms LFastGAE(i) are defined as:

LFastGAE(i) =
1

n(S)

∑
j∈V

1(j∈V(S))Lij(Aij , Âij)

and where Lij denotes the cross entropy loss as in equation 11. In the following, we
leverage concentration inequalities [50] to derive a theoretically-grounded threshold size,
denoted n∗(S) in the following, for which, under mild asssumptions, the (random) node-level
deviation

|LFastGAE(i)− E[LFastGAE(i)]|

at each training iteration is proven to be bounded with a high probability, for any node i.
This proposed subgraph size is of the form:

n∗(S) = C
√
n,

where constant C > 0 depends on the deviation magnitude and probability, and is
explicitly presented in Proposition 5. In our empirical analysis, this criterion will allow
us to significantly improve the scalability and training speed of graph AE and VAE
models (see discussion on complexity in Section 3.4), while reaching fairly competitive
performances in a majority of experiments (see Section 4).

To prove our bounds, we require the following technical assumption on the recon-
structed matrix Â:

Assumption 1. Let (i, j) ∈ V2. We thereafter assume that Âij = σ(zTi zj) can actually
be capped, and that:

Âij ∈ [ε, 1− ε]

where 0 < ε < 1 is a constant that can be arbitrarily close to 0.

Under this assumption, we derive Propositions 4 and 5.
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Proposition 4. Let us consider a training iteration of the FastGAE framework, a sampled
subgraph G(S) = (V(S), E(S)), with |V(S)| = n(S) < n nodes sampled without replacement,
and the corresponding node-level approximate reconstruction computed for a given node i:

LFastGAE(i) =
1

n(S)

∑
j∈V

1(j∈V(S))Lij(Aij , Âij),

with the random variable 1(j∈V(S)) = 1 if node j ∈ V(S) and 0 otherwise, with Aij ∈ {0, 1}
for all (i, j) ∈ V2 and with:

Lij(Aij , Âij) = −[Aij log(Âij) + (1−Aij) log(1− Âij)].

Then, under Assumption 1, for any γ ≥ 0, we have:

P(|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ) ≤ 2 exp
(
− 2(

γ

log(ε)
)2
n2
(S)

n

)
. (18)

We note that the right hand side term tends to 0 exponentially fast w.r.t. the deviation
magnitude γ and w.r.t. the subgraph size n(S).

Proposition 5. For any confidence level α ∈]0, 1[ and node i ∈ V, selecting a subgraph
size n(S) such that

n(S) ≥ n∗(S) =
√
n

√
− log(α2 ) log(ε)2

2γ2︸ ︷︷ ︸
denoted C in eq. 10

(19)

guarantees that
P(|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ) ≤ α.

As an opening, we note that, while the current bounds are empirically effective (see
Section 4), future research will aim at directly bounding the deviation of LFastGAE instead
of the node-level terms LFastGAE(i), which would be more ambitious and challenging
due to the inherent dependencies among sampled node pairs in FastGAE. Also, while
Proposition 4 and 5 focus on the case of the cross entropy loss for consistency w.r.t. the
main paper, a similar analysis (omitted here) could be performed to obtain comparable
bounds for other bounded reconstruction losses. For instance, in the case of the Frobenius
loss, where Lij(Aij , Âij) = (Aij − Âij)2, and without Assumption 1, one can obtain
similar concentration guarantees as Proposition 5, with C being replaced by the constant

C ′ =
√
− log(α/2)

2γ2 .

Numerical Application. In our experiments, all n∗(S) threshold subgraph sizes will be
computed by evaluating equation 19, setting the following values for hyperparameters:
γ = 1, α = 0.1 and ε = 0.001.

3.4. Complexity of FastGAE

As previously detailed, both the encoder and the sampling step of FastGAE have a
linear time complexity w.r.t. m. Moreover, our decoder runs in O(n2(S)) time, with n(S)
being significantly smaller than n in practice. In particular, setting n(S) = n∗(S) ensures a
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O(n) time complexity for decoding (as n∗2(S) = (C
√
n)2 = C2n) and an overall O(m+ n)

linear time complexity for a complete FastGAE training iteration. Faster bounds can
also be achieved by lowering n(S) or by replacing GCNs by another encoder. Therefore,
as we will empirically verify in Section 4, our framework is significantly faster and more
scalable than standard graph AE/VAE.

3.5. Differences with Related Work

Before diving into experiments, we would like to emphasize some key differences
between FastGAE and existing works. Foremost, FastGAE is not directly comparable
to the existing research cited in Section 2.3 to scale GCN models, e.g. to FastGCN [30]
that also sample nodes. Indeed, FastGCN is a GCN-like model, optimized to classify
node labels in a (semi) supervised fashion. It samples the neighborhood of each node
when averaging vector representations in forward passes. On the contrary, in this paper,
after full GCN forward passes, we instead sample subgraphs to reconstruct, in order to
approximate the reconstruction losses of two unsupervised models, in which GCNs are only
a building part (the encoder) of a larger framework (the AE or the VAE). Both settings
therefore address different problems; as explained in Section 3.1, FastGCN, GraphSAGE
or Cluster-GCN could actually be used in conjuction with FastGAE, as encoders.

Futhermore, FastGAE is also more elaborated than data cleaning methods that simply
consist in removing some nodes from a graph, e.g. the low-degree ones, to reduce its size.
Indeed, in the case of FastGAE with degree sampling, low-degree nodes are still 1) fully
used in the GCN encoder, and 2) might also appear in some subgraphs that we decode
(but less often than high-degree nodes). As we leverage new different subgraphs at each
iteration, we explore different parts of the entire graph during training.

Last, we note that effective subset selection for faster learning has already provided
promising results in the machine learning community [51, 52, 53]; however, contrary
to these works, we focus on an unsupervised graph-based problem, and our sampling
methods remain fixed throughout learning as we rely on graph mining to select G(S).

4. Empirical Analysis

In this section, we present an in-depth experimental evaluation of our proposed
framework to scale graph AE and VAE models.

4.1. Experimental Setting

4.1.1. Datasets

We provide experimental results on seven graphs of increasing sizes. Their statistics are
presented in Table 1. We first study the Cora, Citeseer and Pubmed citation networks5,
with and without node features corresponding to f -dimensional bag-of-words vectors
(with f = 1433, 3703 and 500 respectively). Nodes are clustered in respectively 6, 7
and 3 topic classes, acting as ground truth communities. These datasets are common
benchmarks for evaluating graph AE and VAE (see Kipf and Welling [11] and a majority
of recent works [15, 16, 17, 18, 19, 26, 27, 28, 54]). For these medium-size graphs, we

5https://linqs.soe.ucsc.edu/data
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Dataset Number of nodes Number of edges

Cora 2708 5429
Citeseer 3327 4732
Pubmed 19717 44338
SBM 100000 1498844
Google 875713 4322051
Youtube 3223589 9375374
Patent 3774768 16518948

Table 1: Datasets Statistics

can directly compare the performance of FastGAE to standard graph AE and VAE, as
training standard models is still computationally affordable.

Then, we consider four significantly larger graphs, with up to millions of nodes and
edges, and for which training standard graph AE or VAE is intractable. We consider
the Google6 hyperlinks web graph, the Youtube7 social network of users (friendship
connections), the US Patent6 citation network, and a synthetic graph, denoted SBM,
generated from a stochastic block model which is a generative model for random graphs
[55]. In this last graph, by design, nodes are clustered in 100 groups of 1000 nodes, acting
as ground truth communities. Two nodes from a same community (resp. from different
communities) are connected by an edge with probability 2× 10−2 (resp. 2× 10−4).

Our evaluation therefore includes graphs with various characteristics, sizes, and from
four different families (citation networks, social networks, web graphs and stochastic block
model graphs).

4.1.2. Evaluation Tasks

We consider two downstream tasks for evaluation:

• First, we consider a link prediction task. We train all models on masked graphs
for which 15% of edges were randomly removed. Then, we create validation and
test sets from the removed edges (resp. from 5% and 10% of edges) and from
the same number of sampled unconnected node pairs. Using decoder predictions
Âij , we evaluate our ability to classify edges from non-edges, using the mean Area
Under the ROC Curve (AUC) and Average Precision (AP) scores8 on test sets.
Link prediction is the most common task to evaluate graph AE and VAE models
since the seminal research of Kipf and Welling [11] (see e.g. Salha et al. [36] and
references therein for an overview), and we therefore found essential to consider it
as well in our work.

• We also perform node clustering experiments, on datasets with ground truth com-
munities. For this task, after training models on complete versions of the graphs, we

6http://snap.stanford.edu/data/index.html
7http://konect.cc/networks/
8We computed scores via scikit-learn [56]. Formulas are provided in https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.roc auc score.html for AUC, and in https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.average precision score.html for AP.
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run k-means algorithms in embedding spaces to cluster the zi vectors. We compare
these clusters to the ground truth ones using the mean Adjusted Mutual Information
(AMI) scores9 on test sets.

We emphasize that we chose to focus on these two tasks instead of a more direct
reconstruction task (despite working with autoencoders), as AUC and AP scores from
link prediction, as well as AMI scores from node clustering, are more insighful and under-
standable metrics than a direct reporting of some cross-entropy or ELBO reconstruction
losses. Besides, we also aimed at providing a consistent experimental setting w.r.t. the
existing literature on graph AE and and VAE that, for the most part, focused on link
prediction and, to some extent, on node clustering tasks.

4.1.3. Details on Models: Hyperparameters and Model Selection Procedure for Standard
and FastGAE-based AE/VAE

In the upcoming experiments, for the aforementioned graphs and evaluation tasks, we
compare standard graph AE and VAE models (when they are tractable) to FastGAE-based
versions of these models.

All AE and VAE models, with and without FastGAE, were optimized for the link
prediction task. More specifically, we selected the best sets of hyperparameters in terms
of mean AUC scores on the validation sets introduced in Section 4.1.2. Instructions to
easily run a similar validation are provided in our source code.

We trained models for 200 iterations (resp. 300) for graphs with n < 100000 (resp.
n ≥ 100000), and thoroughly checked the convergence of all models for these values (in
terms of loss stability in the validation set). Other hyperparameters for these models are
described thereafter.

Our encoders are 2-layer GCNs (we tested models with 1 to 3 layers). They include
32-dim hidden layers, and 16-dim output layer, which means that the dimension of
embedding vectors (denoted d in Section 2.1.1 on AE and in Section 2.2.1 on VAE) is
equal to d = 16. We emphasize that we also tested models with d ∈ {32, 64, 128}, reaching
similar conclusions w.r.t. d = 16 (the impact of d is further discussed in Section 4.2.4).

Besides, for all models, we used the Adam optimizer [57], without dropout (we tested
models with dropout values in {0, 0.1, 0.2, 0.3, 0.4, 0.5}). Regarding learning rates for such
optimizer, we tested values from the grid {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2}.
We eventually picked a learning rate of 0.1 for Patent with uniform sampling, and of 0.01
otherwise as, one again, these values returned the best mean AUC scores on validation
sets. Last, as Kipf and Welling [11], we considered all graphs as undirected and ignored
edges directions when available.

We used TensorFlow [58], training models on an NVIDIA GTX 1080 GPU, and
running other operations on a double Intel Xeon Gold 6134 CPU.

4.1.4. Details on Models: Other Baselines

For completeness, we also compare standard graph AE/VAE and FastGAE-based
models to the few other existing methods to scale graph AE/VAE, using a similar sets of
hyperparameters and similar embedding values (d = 16) as previous section:

9We computed AMI scores via scikit-learn [56]. The formula is provided in https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.adjusted mutual info score.html
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• We consider a simple negative sampling strategy, briefly mentioned by Kipf and
Welling [11] and suggested by Fey and Lenssen [59], where we reconstruct all
edges but only |E| randomly picked unconnected node pairs to compute losses. We
leveraged methods made available by Fey and Lenssen [59] to estimate losses, with
consistent dropout values, learning rates and architectures w.r.t. Section 4.1.3.

• We also consider the framework recently proposed by Salha et al. [18], denoted as
Core-GAE in next tables. Authors train the AE/VAE only on the smaller graph
k-core, then propagate embedding representations to other nodes out of the k-core
via simple heuristics; k is a parameter tuning the size of the input graph for learning
(which ranges from 1 to the maximal k for which the corresponding k-core is not
empty). We used the author’s implementation [18] with optimal values (regarding
mean AUC scores on validation sets) for the hyperparameter k detailed in next
tables, and with consistent dropout values, learning rates and architectures w.r.t.
Section 4.1.3.

• Besides, the other aforementioned sampling ideas briefly mentioned (as possible
extensions) in the recent literature [27, 36] actually are particular cases of FastGAE,
namely with uniform sampling.

Last, in addition to an extensive comparison between the different AE/VAE models, we
also report results obtained with the following non AE/VAE-based baselines:

• A spectral embedding, which is a powerful but not scalable baseline. We used the
implementation provided by Pedregosa et al. [56]; embedding axes correspond the
the d first eigenvectors of G’s Laplacian matrix, excluding non-informative vectors,
and with d denoting the embedding dimension [60] as for all other models.

• node2vec [8], another very popular and scalable node embedding method. We
trained models with hyperparameters p = 1 and q = 1, from 10 random walks of
length 80 per node, with a window size of 5 and on a single epoch, and using the
author’s implementation [8]. We omit comparison to other random walk-based
models [6, 7] due to very similar performances on some of our preliminary tests.

• For node clustering, we also compare our approach to Louvain’s scalable community
detection algorithm, from a direct usage of the authors’ implementation [61].

4.2. Results

In the remainder of this section, we provide an empirical evaluation of FastGAE and
of its variational FastGAE variant.

4.2.1. Preliminary Insights on High Degree/Core Nodes

Before studying FastGAE we report important insights from preliminary experiments
on standard graph AE/VAE. They motivated the design of our framework and emphasize
the relevance of sampling high-degree/core nodes. On the medium-size Cora, Citeseer
and Pubmed graphs, we trained standard graph AE/VAE models, but tried to mask k
nodes and their edges from the computation of reconstruction losses, for different values
of k. Such masking procedure is expected to lower performances, as the model leverages
less information about the quality of the reconstruction for learning.
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Figure 1 shows that, when these k removed nodes are the top-k highest degrees/cores
nodes, performances on the link prediction task tumble down. On the contrary, removing
the k nodes with minimal degrees or core numbers from the loss leads to almost no drop,
and even slightly better results on Pubmed, which suggests that removing non-informative
nodes might even be beneficial for learning.

In Figure 2, we report similar results on Adjusted Mutual Information scores for node
clustering. These ablation studies suggest that, when implementing stochastic subgraph
decoding strategies for scalability, sampling high-degree/core nodes is indeed crucial to
learn meaningful embeddings. FastGAE, which explicitly exploits these structural node
properties, and optimizes a reconstruction loss that re-weights high degrees/cores node
pairs, behaves consistently w.r.t. such important insights.
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Figure 1: Link prediction on featureless Cora, Citesser and Pubmed using standard Graph VAE models,
but trained while masking k nodes and their connections from the decoder/reconstruction loss. AUC
scores are averaged over 100 runs with random train/test splits.
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Figure 2: Node clustering on featureless Cora, Citesser and Pubmed using standard Graph VAE models,
but trained while masking k nodes and their connections from the decoder/reconstruction loss. Adjusted
MI scores are averaged over 100 runs with random train/test splits.
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Model Subgraphs Average Perf. on Test Set Average Running Times (in seconds)
(Dimension d = 16) size n(S) AUC (in %) AP (in %) Compute Train Total Speed gain

pi model w.r.t. GAE

Standard Graph AE - 82.51 ± 0.64 87.42 ± 0.38 - 811.43 811.43 -

FastGAE with 5000 84.82 ± 0.32 88.19 ± 0.23 0.01 14.41 14.42 × 56.27
degree sampling 2500 84.12 ± 0.40 87.56 ± 0.30 0.01 5.72 5.73 × 141.61

(α = 1) 1187∗ 83.67 ± 0.42 87.01 ± 0.31 0.01 3.20 3.21 × 252.78
500 82.68 ± 0.51 85.89 ± 0.47 0.01 2.98 2.99 × 271.38
250 80.77 ± 0.55 84.05 ± 0.51 0.01 2.83 2.84 × 285.71

FastGAE with 5000 84.62 ± 0.24 88.09 ± 0.16 1.75 15.98 17.73 × 45.77
core sampling 2500 83.69 ± 0.34 87.28 ± 0.31 1.75 7.51 9.26 × 87.63

(α = 2) 1187∗ 82.53 ± 0.46 86.28 ± 0.37 1.75 4.81 6.56 × 123.69
500 80.96 ± 0.52 84.86 ± 0.46 1.75 4.57 6.32 × 128.39
250 79.53 ± 0.53 83.10 ± 0.50 1.75 4.44 6.19 × 131.08

FastGAE with 5000 81.08 ± 0.48 85.90 ± 0.60 - 13.90 13.90 × 58.37
uniform sampling 2500 78.72 ± 0.74 83.50 ± 0.75 - 5.48 5.48 × 148.07

1187∗ 77.28 ± 0.89 81.89 ± 0.91 - 3.10 3.10 × 261.75
500 75.09 ± 2.05 78.53 ± 2.04 - 2.98 2.98 × 271.29
250 74.12 ± 2.07 77.72 ± 1.22 - 2.82 2.82 × 287.74

Core-GAE, k = 2 (best choice) - 84.30 ± 0.27 86.11 ± 0.43 - 168.91 168.91 × 4.80
Core-GAE, k = 9 (fastest choice) - 61.65 ± 0.94 64.82 ± 0.72 - 2.92 2.92 × 277.89

Negative Sampling GAE - 81.19 ± 0.68 83.21 ± 0.40 - 111.79 111.79 × 7.28
node2vec - 81.25 ± 0.26 85.55 ± 0.26 - 48.91 48.91 × 16.59

Spectral Embedding - 83.14 ± 0.42 86.55 ± 0.41 - 31.71 31.71 × 25.59

Table 2: Link prediction on the featureless Pubmed graph (n = 19717, m = 44338) using standard Graph
AE, FastGAE with degree, core and uniform sampling, and baselines. For degree and core sampling,
values of the hyperparameter α (as defined in equation 9) were tuned, as described in Figure C.6. All
models learn embedding vectors of dimension d = 16. Scores are averaged over 100 runs with different and
random train/validation/test sets. Bold numbers correspond to the best performance (several numbers are
bold when scores are comparable, in a ±1 standard deviation range) and best running time. Subgraphs
sizes annotated with ∗ correspond to the n∗

(S)
threshold, as introduced in equation 19.

4.2.2. FastGAE for Medium-Size Graphs

We now evaluate FastGAE and its variational FastGAE variant. First, we focus
on medium-size graphs. For Cora, Citeseer and Pubmed, we can compare FastGAE
to standard graph AE/VAE. The above Table 2 details mean AUC and AP scores
and standard errors over 100 runs with different train/test splits for link prediction on
(featureless) Pubmed with AE models. For the sake of brevity, we report more summarized
results for other medium-size graphs, for VAE and for node clustering, in Table 3 and
Figure 3 (for link prediction) as well as in Table 4 and Figure 4 (for node clustering).

FastGAE vs Standard Graph AE/VAE. Let us first compare FastGAE to standard graph
AE/VAE models. In Table 2, we observe that, for sample sizes roughly 20 times smaller
than n, FastGAE models with degree and core sampling both achieve competitive or even
outperforming10 results w.r.t. standard graph AE on Pubmed (e.g. +2.31 AUC points
for FastGAE with degree sampling and n(S) = 5000).

Futhermore, FastGAE models are also significantly faster : in Table 2 for instance, our
approach with degree sampling is up to × 252.78 faster without performance degradation.
The additional operation required by our framework, i.e. computing the pi distribution,

10At first glance, the fact that FastGAE sometimes even slightly outperforms standard graph AE/VAE
models might be surprising. This improvement is actually consistent with recent research on the benefits
of mini-batch-based GNNs [62, 63]. It comes from the relevance of the two sampling schemes that we
consider (core-based and degree-based) and from the stochastic nature of the training, that might tend
to avoid local minima more easily [64].
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Dataset Model Average Perf. on Test Set Avg. Run. Times (in sec.) Speed
(Dimension d = 16) AUC (in %) AP (in %) Comp. Train Total Gain

pi model

Standard Graph AE 84.79 ± 1.10 88.45 ± 0.82 - 3.87 3.87 -
FastGAE (degree, α = 2)

Cora - with n(S) = 250 84.13 ± 1.20 86.65 ± 1.23 0.002 1.46 1.462 × 2.65

- with n(S) = n∗
(S)

= 440 84.74 ± 0.81 87.42 ± 0.75 0.002 1.56 1.562 × 2.48

- with n(S) = 1000 84.75 ± 0.84 87.77 ± 0.81 0.002 1.65 1.652 × 2.34

Best baseline
Spectral Embedding 86.49 ± 0.98 87.42 ± 1.04 - 2.49 2.49 × 1.55

Standard Graph VAE 91.64 ± 0.92 92.66 ± 0.91 - 4.25 4.25 -
Var. FastGAE (degree, α = 2)

Cora - with n(S) = 250 90.50 ± 1.10 91.10 ± 1.08 0.002 2.30 2.302 × 1.85

with - with n(S) = n∗
(S)

= 440 90.82 ± 1.07 91.44 ± 1.13 0.002 2.52 2.522 × 1.69

features - with n(S) = 1000 91.72 ± 0.98 92.36 ± 1.11 0.002 2.87 2.872 × 1.48

Best baseline
Core-Graph VAE, k = 2 87.94 ± 1.12 89.00 ± 1.11 - 3.09 3.09 × 1.38

Standard Graph AE 78.25 ± 1.69 83.79 ± 1.24 - 5.25 5.25 -
FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 77.28 ± 1.11 81.29 ± 0.92 0.002 1.47 1.472 × 3.57

- with n(S) = n∗
(S)

= 488 78.30 ± 1.30 82.42 ± 1.09 0.002 1.58 1.582 × 3.32

- with n(S) = 1000 78.31 ± 1.25 82.40 ± 0.99 0.002 1.61 1.612 × 3.26

Best baseline
Spectral Embedding 80.42 ± 1.38 83.75 ± 1.12 - 3.50 3.50 × 1.50

Standard Graph VAE 90.72 ± 1.01 92.05 ± 0.97 - 6.28 6.28 -
Var. FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 89.37 ± 1.69 89.63 ± 1.83 0.002 2.32 2.322 × 2.70

with - with n(S) = n∗
(S)

= 488 90.10 ± 1.33 90.15 ± 1.50 0.002 2.62 2.622 × 2.40

features - with n(S) = 1000 90.22 ± 1.14 90.16 ± 1.20 0.002 2.89 2.892 × 2.17

Best baseline
Core-Graph VAE, k = 2 81.85 ± 1.72 83.65 ± 1.64 - 2.55 2.55 × 2.46

Standard Graph AE 82.51 ± 0.64 87.42 ± 0.38 - 811.43 811.43 -
FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 82.68 ± 0.51 85.89 ± 0.47 0.01 2.98 2.99 × 271.38

- with n(S) = n∗
(S)

= 1187 83.67 ± 0.42 87.01 ± 0.31 0.01 3.20 3.21 × 252.78

- with n(S) = 5000 84.82 ± 0.32 88.19 ± 0.23 0.01 14.41 14.42 × 56.27

Best baseline
Core-Graph AE, k = 2 84.30 ± 0.27 86.11 ± 0.43 - 168.91 168.91 × 4.80

Standard Graph AE 96.28 ± 0.36 96.29 ± 0.25 - 952.63 952.63 -
FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 95.08 ± 0.45 95.24 ± 0.46 0.01 3.53 3.54 × 269.10

with - with n(S) = n∗
(S)

= 1187 95.45 ± 0.26 95.70 ± 0.30 0.01 4.01 4.02 × 237.56

features - with n(S) = 5000 96.12 ± 0.20 96.35 ± 0.19 0.01 19.74 19.75 × 48.23

Best baseline
Core-Graph AE, k = 2 85.34 ± 0.33 86.06 ± 0.24 - 40.22 40.22 × 23.69

Table 3: Link prediction on all medium-size graphs. For each graph, for brevity, we only report the best
graph AE or VAE model in terms of AUC and AP scores, a few representative degree-based FastGAE
versions of this model, and the best baseline (among Core-Graph AE/VAE, Negative Sampling Graph
AE/VAE, node2vec and the spectral embedding). Scores are averaged over 100 runs with different and
random train/validation/test sets. For degree sampling, values of the hyperparameter α (as defined in
equation 9) were tuned, as described in Figure C.6. All models learn embedding vectors of dimension
d = 16. Bold numbers correspond to the best performance (several numbers are bold when scores are
comparable, in a ±1 standard deviation range) and best running time.

is efficient in practice, especially for degree sampling. By further reducing the subgraph
size n(S), one can achieve even faster results, while only losing a few AUC/AP points in
performance.

In Table 3, Table 4, Figure 3 and Figure 4, we consolidate our results by reaching
similar conclusions on VAE, on other medium-size graphs (with and without features),
and on node clustering. On Figures 3 and 4, we also confirm that, even for relatively
low n(S)/n proportions, our proposed method achieves comparable performances w.r.t.
standard models.
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Dataset Model Average Performance Average Running Times (in sec.) Speed
(Dimension d = 16) AMI (in %) Compute Train Total Gain

pi model

Standard Graph AE 30.88 ± 2.56 - 3.90 3.90 -
FastGAE (degree, α = 2)

Cora - with n(S) = 250 33.32 ± 2.61 0.002 1.51 1.512 × 2.58

- with n(S) = n∗
(S)

= 440 34.64 ± 2.45 0.002 1.59 1.592 × 2.45

- with n(S) = 1000 35.56 ± 2.80 0.002 1.67 1.672 × 2.33

Best baseline
Louvain 46.72 ± 0.85 - 1.79 1.79 × 2.18

Standard Graph VAE 44.84 ± 2.63 - 4.32 4.32 -
Var. FastGAE (degree, α = 2)

Cora - with n(S) = 250 41.35 ± 3.49 0.002 2.40 2.402 × 1.80

with - with n(S) = n∗
(S)

= 440 42.89 ± 2.72 0.002 2.67 2.672 × 1.62

features - with n(S) = 1000 45.02 ± 2.81 0.002 2.92 2.922 × 1.48

Best baseline
Louvain 46.72 ± 0.85 - 1.79 1.79 × 2.41

Standard Graph VAE 9.85 ± 1.24 - 5.44 5.44 -
Var. FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 9.34 ± 1.48 0.002 1.77 1.772 × 3.07

- with n(S) = n∗
(S)

= 488 10.02 ± 1.42 0.002 2.02 2.022 × 2.69

- with n(S) = 1000 10.16 ± 1.41 0.002 2.19 2.192 × 2.48

Best baseline
Louvain 16.39 ± 1.45 - 2.41 2.41 × 2.26

Standard Graph VAE 20.17 ± 3.07 - 6.45 6.45 -
Var. FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 20.49 ± 3.74 0.002 2.80 2.802 × 2.30

with - with n(S) = n∗
(S)

= 488 20.53 ± 3.45 0.002 2.88 2.882 × 2.24

features - with n(S) = 1000 20.94 ± 3.21 0.002 3.11 3.112 × 2.07

Best baseline
Cora-Graph VAE, k = 2 16.53 ± 1.95 - 2.76 2.76 × 2.33

Standard Graph VAE 20.52 ± 2.97 - 856.05 856.05 -
Var. FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 16.86 ± 4.84 0.01 3.17 3.18 × 269.20

- with n(S) = n∗
(S)

= 1187 18.84 ± 4.78 0.01 3.61 3.62 × 236.49

- with n(S) = 5000 22.81 ± 4.80 0.01 14.95 14.96 × 57.22

Best baseline
Core-Graph VAE, k = 2 23.56 ± 3.12 - 50.11 50.11 × 17.08

Standard Graph VAE 25.43 ± 1.47 - 970.67 970.67 -
Var. FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 29.04 ± 4.17 0.01 4.03 4.04 × 240.26

with - with n(S) = n∗
(S)

= 1187 31.11 ± 3.27 0.01 4.65 4.66 × 208.30

features - with n(S) = 5000 30.89 ± 3.01 0.01 20.01 20.02 × 48.49

Best baseline
Core-Graph VAE, k = 2 24.35 ± 1.55 - 57.09 57.09 × 17.00

Standard Graph VAE (intractable) (intractable) -
Var. FastGAE (degree, α = 2)

SBM - with n(S) = 2500 30.77 ± 0.32 0.03 52.01 52.04 -

- with n(S) = n∗
(S)

= 2673 30.89 ± 0.30 0.03 53.98 54.01 -

-with n(S) = 5000 32.28 ± 0.26 0.03 61.96 61.69 -

Best baseline
Louvain 35.90 ± 0.14 - 464.11 464.11 -

Table 4: Node clustering on all graphs with communities. For each graph, for brevity, we only report
the best graph AE or VAE model in terms of mean AMI, a few representative degree-based FastGAE
versions of this model, and the best baseline (among Core-Graph AE/VAE, Negative Sampling Graph
AE/VAE, node2vec, Louvain and the spectral embedding). Scores are averaged over 100 runs (resp.
10 runs) for medium-size graphs (resp. for the large graph SBM). For degree sampling, values of the
hyperparameter α (as defined in equation 9) were tuned, as described in Figure C.6. All models learn
embedding vectors of dimension d = 16. Bold numbers correspond to the best performance (several
numbers are bold when scores are comparable, in a ±1 standard deviation range) and best running time.
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(d) Cora (with features)
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(e) Citeseer (with features)
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Figure 3: Summarized results for link prediction on the medium-size graphs Cora, Citeseer and Pubmed:
relative mean AUC scores of degree-based Variational FastGAE models w.r.t. standard Graph VAE
depending on the proportion of sampled nodes n(S)/n in decoders. We observe that, even for relatively
low n(S)/n proportions, Variational FastGAE achieves comparable or even slightly better performances
w.r.t. standard Graph VAE (results above the red line).

Comparison of Uniform, Core-based and Degree-based FastGAE. In all our experiments,
we observe that FastGAE with core and degree sampling both outperform FastGAE (and
variational FastGAE) with uniform sampling. Furthermore, core and degree sampling also
return more stable scores, i.e. with lower standard errors, especially when the number
of samples n(S) is relatively small. Such results confirm the empirical superiority of
strategies that leverage the graph structure w.r.t. pure random strategies.

FastGAE vs Baselines. In Table 2, Table 3 and Table 4, these models also outperform
the other few existing methods to scale graph AE and VAE, usually by a wide margin.
For instance, in Table 2, we show that, to achieve (almost) comparable link prediction
performances w.r.t. FastGAE on Pubmed, Core-GAE [18] requires longer running times
(see Core-GAE with k = 2), and that faster variants significantly underperform (almost -20
AUC points for Core-GAE with k = 9 w.r.t. FastGAE with degree sampling). FastGAE
is also conceptually simpler than Core-GAE, which we consider to be another advantage
of our approach.
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Figure 4: Summarized results for node clustering on the medium-size graphs Cora, Citeseer and Pubmed:
relative mean AMI scores of degree-based Variational FastGAE models w.r.t. standard Graph VAE
depending on the proportion of sampled nodes n(S)/n in decoders. We observe that, even for relatively
low n(S)/n proportions, Variational FastGAE achieves comparable or even slightly better performances
w.r.t. standard Graph VAE (results above the red line).

Besides, FastGAE-based models are faster and more effective than the ones leveraging
negative sampling [59] (e.g. +3.63 AUC points for FastGAE with degree sampling and
n(S) = 20000 w.r.t. Negative Sampling GAE in Table 2). This performance gain might
be explained by the more systematic inclusion of unconnected pairs of important nodes11

in the losses of FastGAE-based models.
Last, but not least, our proposed framework is also competitive w.r.t. the popular

non AE/VAE-based baselines in most cases. The only exception concerns the node
clustering experiments on Cora and Citeseer (see Table 4) where the Louvain baseline [61]
outperfoms AE/VAE models, which we will further discuss in Section 4.2.3.

11Indeed, when performing negative sampling for graph AE, we only reconstruct a few random
unconnected node pairs, and ignore the others. However, reconstructing some of these neglected pairs
might actually be crucial. Let us consider two nodes with high core number or centrality: knowing that
these two important nodes are not connected is critical to learn meaningful embeddings. The FastGAE
sampling scheme ensures a more systematic inclusion of these important ”negative pairs” in the decoding
step than negative sampling.
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Model Subgraphs Average Perf. on Test Set Average Running Times (in seconds)
(Dimension d = 16) size n(S) AUC (in %) AP (in %) Compute Train Total

pi model

Standard Graph AE - (intractable) (intractable)

FastGAE with 20000 92.91 ± 0.22 93.35 ± 0.21 0.30 4401.67 4401.97 (1h13)
degree sampling 16425∗ 93.02 ± 0.23 93.39 ± 0.23 0.30 3693.32 3693.62 (1h02)

(α = 2) 10000 91.76 ± 0.23 91.74 ± 0.21 0.30 1164.22 1164.52 (19 min)
2500 87.53 ± 0.50 87.42 ± 0.51 0.30 537.99 538.29 (9 min)
1000 85.55 ± 0.62 85.96 ± 0.55 0.30 500.12 500.42 (8 min)

FastGAE with 20000 90.71 ± 0.21 91.70 ± 0.19 668.05 4800.58 5468.63 (1h31)
core sampling 16425∗ 90.48 ± 0.21 90.85 ± 0.23 668.05 4027.90 4695.95 (1h18)

(α = 2) 10000 89.08 ± 0.25 88.65 ± 0.24 668.05 1232.03 1900.08 (32 min)
2500 82.50 ± 0.51 81.42 ± 0.60 668.05 544.64 1222.69 (20 min)
1000 73.99 ± 0.70 75.24 ± 0.74 668.05 503.88 1171.93 (19 min)

FastGAE with 20000 85.97 ± 0.26 87.71 ± 0.25 - 4397.89 4387.89 (1h13)
uniform sampling 16425∗ 84.40 ± 0.25 86.11 ± 0.25 - 3602.66 3602.66 (1h)

10000 83.77 ± 0.28 83.37 ± 0.26 - 1106.01 1106.01 (18 min)
2500 70.66 ± 0.35 71.16 ± 0.38 - 485.03 485.03 (8 min)
1000 59.34 ± 0.83 58.83 ± 1.30 - 438.02 438.02 (7 min)

Core-GAE, k = 14 (best choice) - 88.06 ± 0.27 88.94 ± 0.23 - 4805.11 4805.11 (1h20)
Core-GAE, k = 21 (fastest choice) - 86.94 ± 0.69 87.23 ± 0.71 - 619.01 619.01 (10 min)

Negative Sampling GAE - 86.11 ± 0.48 86.70 ± 0.49 - 2392.96 2392.96 (40 min)
node2vec - 92.96 ± 0.23 93.43 ± 0.17 - 25851.39 25851.39 (7h11)

Spectral Embedding - (intractable) (intractable)

Table 5: Link prediction on Patent (n = 3774768, m = 16518948), using FastGAE with degree, core and
uniform sampling, and baselines. Standard Graph AE is intractable. For degree and core sampling, values
of the hyperparameter α (as defined in equation 9) were tuned, as described in Figure C.6. All models
learn embedding vectors of dimension d = 16. Scores are averaged over 10 runs with different and random
train/validation/test sets. Bold numbers correspond to the best performance (several numbers are bold
when scores are comparable, in a ±1 standard deviation range) and best running time. Subgraphs sizes
annotated with ∗ correspond to the n∗

(S)
threshold, as introduced in equation 19.

On the hyperparameter α. In Appendix C, we report optimal values of α for all graphs.
We recall that α ∈ R+ is the hyperparameter introduced in equation 9, that helps
balancing important and ”less important” nodes during sampling. Setting α = 0, leads
to the uniform sampling setting where all nodes are sampled with an equal probability.
On the contrary, by setting α→∞ we would always sample the most important nodes
and ignore others. Experiments from Figure C.6 from Appendix C show that these two
extreme cases are usually sub-optimal, and that a careful tuning of α (e.g. α = 2 for core
sampling in Table 2) improves performances.

On the threshold n∗(S). In Section 3.3, we introduced a theoretically-grounded threshold

n∗(S) = C
√
n to select the subgraph size. Overall, in all our experiments (see Table 3,

Table 4 and Table 5), selecting the proposed n∗(S) provided interesting performance/speed

trade-offs, leading to fairly competitive results w.r.t. standard graph AE/VAE and best
baselines, while being significantly faster.

4.2.3. FastGAE for Large Graphs

After studying medium-size graphs, we now report in this section the evaluation of
FastGAE and variational FastGAE on the four large graphs from our experiments: SBM,
Google, Youtube and Patent. The above Table 5 details mean AUC and AP scores and
standard errors over 10 runs with different train/test splits for link prediction on the
Patent graph with FastGAE. We also report more summarized results (for the sake of
brevity) for link prediction on SBM, Google, Youtube and Patent in Figure 5 and in
Table 6, and summarized results for node clustering on SBM in Figure 5 and in the
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Figure 5: Summarized results for link prediction on the four large graphs SBM, Google, Youtube and
Patent (subfigures a, b, c and d) and for node clustering on SBM (subfigure e): relative mean AUC
scores (or mean AMI scores for subfigure e) of degree-based Variational FastGAE models w.r.t. the best
scalable baseline, depending on the proportion of sampled nodes n(S)/n in decoders.

previous Table 4. As in Table 5, all scores are averaged over 10 runs with different
train/test splits.

FastGAE vs Scalable AE/VAE Baselines. On large graphs, direct comparison with
standard graph AE and VAE is unfortunately impossible. However, our FastGAE and
variational FastGAE models almost always outperform the other existing approaches to
scale graph AE and VAE, usually by a wide margin. For instance, for link prediction
on Patent (Table 5), degree-based and core-based FastGAE models with n(S) = 20000,
16425 and 10000 all outperform the best Core-GAE by up to roughly 5 AUC points (for
degree-based FastGAE with n(S) = 20000) and with comparable or better running times.

Regarding the Core-GAE baseline [18], we also point out that, in one of our large
graphs, namely on the SBM one, this method was even intractable due to the lack of size
decreasing core structure on this graph. Indeed, the 21-core of SBM includes 95200 nodes,
which is too large to train a graph AE or VAE on our machines, and the 22-core is empty.
Requiring a size decreasing core structure is a drawback of Core-GAE w.r.t. the more
flexible FastGAE approach.

24



Moreover, as for medium-size graphs, we also observe that core-based and degree-based
FastGAE tend to significantly outperform negative sampling (e.g. up to +6.8 AUC points
for link prediction on Patent in Table 5; also, Negative Sampling GAE never appears as
the best baseline in Table 4 nor in Table 6), consolidating our previous conclusions.

Besides, as before, the proposed n∗(S) provides quite effective performance/speed trade-
offs and will constitute an interesting heuristic to help future FastGAE users selecting
subgraph sizes.

Comparison of Uniform, Core-based and Degree-based FastGAE. As for medium-size
graphs, core-based sampling and degree-based sampling is empirically more effective than
uniform sampling (e.g. in Table 5, +6.94 AUC points for FastGAE with degree sampling
on Patent, with n(S) = 20000), and associated to lower standard errors. We observe that
computing the pi probabilities through core-based sampling is longer on large graphs, but
bring no empirical benefit w.r.t. degree-based sampling: we therefore recommend using
degree-based sampling for large graphs.

FastGAE vs non-AE/VAE baselines, and the case of Node Clustering. For the link
prediction task, best FastGAE models usually reach competitive results w.r.t. node2vec
while being significantly faster (see e.g. the last column of Table 6). However, regarding
node clustering, we observe in Table 4 and in Figure 5 that the Louvain baseline outperfoms
AE/VAE models on SBM, a phenomenon that we also noted on the Cora and Citeseer
graphs (section 4.2.2). We conjecture that current graph AE and VAE models might be
suboptimal to effectively reconstruct communities in graph data ; this claim is consistent
with recent experiments on these datasets [18, 36]. As our objective, in this paper, was to
scale existing graph AE/VAE, but not to ensure nor to claim their superiority over all other
methods for node clustering, we do not further investigate this limit here. Nonetheless,
future works on more effective cluster reconstruction from AE/VAE embeddings could
definitely lead towards the improvement of these models.

4.2.4. On the embedding dimension d

Our tables present results for a fixed embedding dimension of d = 16, for all models
(all variants of AE/VAE and other baselines), even for large graphs. Nonetheless, we
reached similar conclusions for d = 32, 64 and 128: although performances sometimes
slightly improved by increasing d, the ranking of the different models remained unchanged.
We also considered optimizing d individually for each model (to cover potential cases
where the impact of d on the performance of each model would have been different) but,
again, it did not modify the ranking of models in terms of AUC, AP and AMI scores.

4.2.5. On the number of training iterations

As detailed in Section 4.1.3, all graph AE and VAE models, with or without our
FastGAE framework, were trained for 200 iterations (resp. 300) for graphs with n <
100000 (resp. n ≥ 100000). We thoroughly checked the convergence of all models, by
assessing the stabilization of performances in terms of AUC scores on validation sets.
Using a fixed number of iterations is common in recent research on graph AE and VAE
[11, 17, 18, 25]. We nonetheless think that early-stopping [65] would also be a relevant
alternative strategy, that could lead to additional speed-ups, and might deserve further
investigations in future works. Besides, we observed that, for very small values of n(S),
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Dataset Model Average Perf. on Test Set Average Running Times (in sec.)
(Dimension d = 16) AUC (in %) AP (in %) Compute Train Total

pi model

Standard Graph VAE (intractable) (intractable)
Var. FastGAE (degree, α = 2)

SBM - with n(S) = 2000 79.37 ± 0.52 80.68 ± 0.84 0.03 27.36 27.39

- with n(S) = n∗
(S)

= 2673 80.96 ± 0.35 83.69 ± 0.60 0.03 30.66 30.69

- with n(S) = 5000 81.45 ± 0.39 84.30 ± 0.82 0.03 43.86 43.89

Best baseline
node2vec 80.89 ± 0.32 83.51 ± 0.29 - 1328.82 1328.82 (22 min)

Standard Graph AE (intractable) (intractable)
FastGAE (degree, α = 1)

Google - with n(S) = 2500 94.52 ± 0.26 95.50 ± 0.11 0.14 122.53 122.67

- with n(S) = n∗
(S)

= 7911 95.75 ± 0.24 96.62 ± 0.09 0.14 158.63 158.77

- with n(S) = 10000 95.91 ± 0.19 96.64 ± 0.12 0.14 168.10 168.24

Best baseline
node2vec 94.89 ± 0.63 96.82 ± 0.72 - 14762.78 14762.78 (4h06)

Standard Graph VAE (intractable) (intractable)
Var. FastGAE (degree, α = 5)

Youtube - with n(S) = 3000 81.14 ± 0.19 86.61 ± 0.16 0.28 453.22 453.50 (8min)

- with n(S) = n∗
(S)

= 15179 81.83 ± 0.15 87.21 ± 0.15 0.28 2964.51 2964.79 (49min)

- with n(S) = 20000 82.31 ± 0.18 87.36 ± 0.15 0.28 3596.03 3596.31 (1h)

Best baseline
Core-Graph VAE, k = 40 80.53 ± 0.23 82.45 ± 0.20 - 12433.51 12433.51 (3h27)

Standard Graph AE (intractable) (intractable)
FastGAE with (degree, α = 2)

Patent - with n(S) = 5000 90.66 ± 0.25 90.76 ± 0.22 0.30 605.75 606.05 (10min)

- with n(S) = n∗
(S)

= 16425 93.02 ± 0.23 93.39 ± 0.23 0.30 3693.32 3693.62 (1h02)

- with n(S) = 20000 92.91 ± 0.22 93.35 ± 0.21 0.30 4401.67 4401.67 (1h13)

Best baseline
node2vec 92.96 ± 0.23 93.43 ± 0.17 - 25851.39 25851.39 (7h11)

Table 6: Summarized results for link prediction on all large graphs. For each graph, for brevity, we only
report a few representative degree-based FastGAE or Variational FastGAE models, and the best baseline
(among Core-Graph AE/VAE, Negative Sampling Graph AE/VAE and node2vec). Scores are averaged
over 10 runs with different and random train/validation/test sets. Standard Graph AE and VAE are
intractable. Scores are averaged over 10 runs with different and random train/validation/test sets. For
degree sampling, values of the hyperparameter α (as defined in equation 9) were tuned, as described in
Figure C.6. All models learn embedding vectors of dimension d = 16. Bold numbers correspond to the
best performance (several numbers are bold when scores are comparable, in a ±1 standard deviation
range) and best running time.

increasing the number of training iterations did not significantly improved our results:
to improve scores on such settings, increasing the sampling size n(S) was overall more
effective than increasing the number of training iterations.

5. Conclusion and Discussion

In this paper, we introduced and released a general framework to scale graph AE
and VAE models. We demonstrated its effectiveness on large graphs with up to millions
of nodes and edges, both in terms of speed, of scalability and of performance. We
outperformed the few existing approaches to scale graph AE and VAE, usually by a wide
margin. FastGAE is also conceptually simpler than these alternative approaches [18], and
we believe that simple solutions often have the most impact.

Futhermore, FastGAE is a flexible framework that easily extends to AE/VAE models
with alternative GNN encoders. In our experiments, the GCN encoders of standard
graph AE/VAE models and of FastGAE-based models could easily be replaced by any
alternative architecture learning the embedding matrix Z in another way, e.g. by a
FastGCN [30], a Cluster-GCN [31], a GCN with simple graph convolutions (SGC) [38] or
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a GraphSAGE [4] model. Besides, FastGAE easily extends to graph AE or VAE with
alternative decoders. For instance, one could replace the symmetric inner-product decoder
from our experiments by the asymmetric decoder recently proposed by Salha et al. [28],
which would extend FastGAE to directed graphs.

Last, but not least, we also identify possible future research directions for improvements.
Apart from the aforementioned limit (section 4.2.3) of current graph AE and VAE
models on the node clustering task (that, however, concerns all graph AE/VAE from our
experiments and is not specific to FastGAE), we underline that the proposed FastGAE
method could underperform on very sparse graphs. Indeed, in such scenario, the subgraphs
to reconstruct might include a large proportion of isolated nodes, which would negatively
impact learning. Moreover, in the case of large graphs with a lot of sparsely connected
components, we recommend applying FastGAE separately on each component. Also, in
this paper we always assumed that the graph was fixed, which might sometimes be a
limit, that could initiate future interesting studies on extensions of FastGAE for scalable
dynamic graph embeddings, potentially with a dynamic selection of n(S).
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Appendices

This supplementary material provides all proofs from our theoretical analyses as well
as an additional figure. It is organized as follows:

• In Appendix A, we report the proofs of Propositions 1, 2 and 3 from our Section
3.3.2 on approximated losses.

• In Appendix B, we report the proofs of Propositions 4 and 5 from our Section 3.3.3
on the computation of the threshold subgraph size n∗(S).

• The figure of Appendix C presents optimal values of the hyperparameter α.

Appendix A. On Approximate Losses

Proposition 1. Let G(S) = (V(S), E(S)) be a subgraph of G obtained from sampling n(S)
nodes with replacement using the node sampling strategy of FastGAE. Let i and j denote
two distinct nodes from the original graph G: (i, j) ∈ V2. Then:

P
(
i ∈ V(S)

)
= 1− (1− pi)n(S) .

Also:

P
(

(i, j) ∈ V2
(S)

)
= 1−

[
(1− pi)n(S) + (1− pj)n(S)

− (1− pi − pj)n(S)

]
.

Proof. In this setting, sampling probabilities are independent of previous sampling steps,
and remain fixed to pi. Therefore, for node i ∈ V, we have:

P
(
i /∈ V(S)

)
= (1− pi)n(S) .

Indeed, for i not to belong to V(S), it must not be selected at any of the n(S) draws,
which happens with probability 1− pi for each draw. Therefore:

P
(
i ∈ V(S)

)
= 1− (1− pi)n(S) .

Moreover, let i and j denote two distinct nodes from the original graph G: (i, j) ∈ V2.
We have:

P
(

(i, j) /∈ V2
(S)

)
= P

(
i /∈ V(S) or j /∈ V(S)

)
= P

(
i /∈ V(S)

)
+ P

(
j /∈ V(S)

)
− P

(
i /∈ V(S), j /∈ V(S)

)
with, using the previous result, P(i /∈ V(S)) = (1− pi)n(S) and P(j /∈ V(S)) = (1− pj)n(S) .
Using a similar argument, we also obtain:

P
(
i /∈ V(S), j /∈ V(S)

)
=
(

1− (pi + pj)
)n(S)

.
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Therefore:

P
(

(i, j) /∈ V2
(S)

)
=
[
(1− pi)n(S) + (1− pj)n(S)

− (1− pi − pj)n(S)

]
.

And:

P
(

(i, j) ∈ V2
(S)

)
= 1− P

(
(i, j) /∈ V2

(S)

)
= 1−

[
(1− pi)n(S)

+ (1− pj)n(S)

− (1− pi − pj)n(S)

]
.

Last, for self-loops:

P
(

(i, i) ∈ V2
(S)

)
= P

(
i ∈ V(S)

)
= 1− (1− pi)n(S) .

Proposition 2. Let G(S) = (V(S), E(S)) be a subgraph of G obtained from sampling n(S)
nodes without replacement using the node sampling strategy of FastGAE. Let i and j
denote two distinct nodes from G: (i, j) ∈ V2. Then:

P
(
i ∈ V(S)

)
=

∑
U∈U(i)

pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

,

where U(i) = {U ⊂ V, |U| = n(S) and i ∈ U} is the set of all ordered subsets of n(S)
distinct nodes including node i. For a given set U ∈ U(i), we denote by (u1, u2, ..., un(S)

)
its ordered elements. Also,

P
(

(i, j) ∈ V2
(S)

)
=

∑
U∈U(i)∩U(j)

pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

.

Proof. We are looking for the probability that a node i ∈ V from the graph belongs to a
drawn subset V(S), that contains n(S) distinct nodes. For V(S) to include i, V(S) should
match any of the possible ordered subsets of n(S) nodes that include node i. In this
setting where we sample without replacement, the probability to draw node i depends on
nodes previously drawn. All possible orders of sampling the nodes should be considered.
Let:

U(i) =
{
U ⊂ V, |U| = n(S) and i ∈ U

}
denote the set of all ordered subsets of n(S) distinct nodes that include node i. With
such notations:

P
(
i ∈ V(S)

)
= P

(
V(S) ∈ U(i)

)
=

∑
U∈U(i)

P
(
V(S) = U

)
.
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The summation comes from the fact that events are disjoint (V(S) can not match two
of these ordered subsets simultaneously.

Now, for a given set U ∈ U(i), let us denote by (u1, u2, ..., un(S)
) its ordered elements.

Also, let (V(S)1,V(S)2, ...,V(S)n(S)
) be the n(S) ordered nodes of set G(S) (i.e. V(S)1 is the

first drawn node, V(S)2 is the second one, etc). We have:

P
(
V(S) = U

)
= P

(
V(S)1 = u1,V(S)2 = u2, ...,V(S)n(S)

= un(S)

)
= P(V(S)1 = u1)

n(S)∏
k=2

P(V(S)k = uk|V(S)k−1 = uk−1, ...,V(S)1 = u1)

= pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

.

Therefore, by summing elements to come back to P(i ∈ V(S)):

P
(
i ∈ V(S)

)
=

∑
U∈U(i)

pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

.

Moreover, let i and j denote two distinct nodes from the original graph G: (i, j) ∈ V2.
Using similar notations and reasoning, we get:

P
(

(i, j) ∈ V2
(S)

)
= P

(
i ∈ V(S), j ∈ V(S)

)
=

∑
U∈U(i)∩U(j)

P
(
V(S) = U

)
.

Therefore:

P
(

(i, j) ∈ V2
(S)

)
=

∑
U∈U(i)∩U(j)

pu1

n(S)∏
k=2

puk

1−
∑k−1
k′=1 puk′

.

And, for self-loops, P((i, i) ∈ V2
(S)) = P(i ∈ V(S)).

Proposition 3. Using the expressions of Proposition 1 (with replacement) or Proposition
2 (without replacement):

E
[
LFastGAE

]
=

1

n2(S)

∑
(i,j)∈V2

P
(

(i, j) ∈ V2
(S)

)
Lij(Aij , Âij).

Proof. We have:

E
[
LFastGAE

]
= E

[ 1

n2(S)

∑
(i,j)∈V2

1((i,j)∈V2
(S)

)Lij(Aij , Âij)
]

=
1

n2(S)

∑
(i,j)∈V2

E
[
1((i,j)∈V2

(S)
)

]
Lij(Aij , Âij)

=
1

n2(S)

∑
(i,j)∈V2

P
(

(i, j) ∈ V2
(S)

)
Lij(Aij , Âij).
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By replacing P((i, j) ∈ V2
(S)) by the expressions of Proposition 1 (with replacement) or

Proposition 2 (without replacement), we obtain an explicit formulation for E
[
LFastGAE

]
.

Appendix B. On the Selection of n(S)

Proposition 4. Let us consider a training iteration of the FastGAE framework, a sampled
subgraph G(S) = (V(S), E(S)), with |V(S)| = n(S) < n nodes sampled without replacement,
and the corresponding node-level approximate reconstruction computed for a given node i:

LFastGAE(i) =
1

n(S)

∑
j∈V

1(j∈V(S))Lij(Aij , Âij),

with the random variable 1(j∈V(S)) = 1 if node j ∈ V(S) and 0 otherwise, with Aij ∈ {0, 1}
for all (i, j) ∈ V2 and with:

Lij(Aij , Âij) = −[Aij log(Âij) + (1−Aij) log(1− Âij)].

Then, under Assumption 1 from Section 3.3.3, for any γ ≥ 0, we have:

P(|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ) ≤ 2 exp
(
− 2(

γ

log(ε)
)2
n2
(S)

n

)
.

We note that the right hand side term tends to 0 exponentially fast w.r.t. the deviation
magnitude γ and w.r.t. the subgraph size n(S).

Proof. As a preliminary, let us recall Hoeffding’s inequality [50]. Let X1, X2..., Xn be real
independent random variables verifying, for some (ak)1≤k≤n and (bk)1≤k≤n with ak < bk:
∀k,P(ak ≤ Xk ≤ bk) = 1. Let Sn =

∑n
i=1Xi. Then, for all γ > 0, Hoeffding’s inequality

states that:

P(|Sn − E(Sn)| ≥ t) ≤ 2 exp
(
− 2γ2∑n

i=1(bi − ai)2
)
.

[50] also proves that the above inequality holds when the Xi are samples without re-
placement from a finite population (and therefore not independent). In the setting of
Proposition 4, that falls into this second case due to the node-level sampling scheme of
FastGAE, we have:

LFastGAE(i) =
∑
j∈V

Xij ,

where, under Assumption 1:

Xij =
1

n(S)

1(j∈V(S))
Lij(Aij , Âij)

= 1(j∈V(S))︸ ︷︷ ︸
∈{0,1}

−1
n(S)

[Aij log(Âij) + (1−Aij) log(1− Âij)]︸ ︷︷ ︸
∈[log(ε),log(1−ε)]︸ ︷︷ ︸

∈[− log(1−ε)/n(S),− log(ε)/n(S)]

∈
[
0,
− log(ε)

n(S)

]
.
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We note that − log(ε)
n(S)

> 0, as 0 < ε < 1. Applying Hoeffding’s inequality, at each sampling

step and for all γ > 0:

P(|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ) ≤ 2 exp
(
− 2γ2∑

j∈V(
− log(ε)
n(S)

)2

)
= 2 exp

( −2γ2

n (− log(ε))2

n2
(S)

)

= 2 exp
(
− 2(

γ

log(ε)
)2
n2
(S)

n

)
We note that it exhibits the link between the deviation of the loss and the

n2
(S)

n ratio.

Proposition 5. For any confidence level α ∈]0, 1[ and node i ∈ V, selecting a subgraph
size n(S) such that

n(S) ≥ n∗(S) =
√
n

√
− log(α2 ) log(ε)2

2γ2︸ ︷︷ ︸
denoted C in eq. 10

(B.1)

guarantees that
P(|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ) ≤ α.

Proof. This is a corollary of Proposition 4, from which we derive that, for any α ∈]0, 1[:

2 exp
(
− 2(

γ

log(ε)
)2
n2(S)

n

)
≤ α

⇒ P(|LFastGAE − E[LFastGAE]| ≥ γ) ≤ α.

Then:

2 exp
(
− 2(

γ

log(ε)
)2
n2(S)

n

)
≤ α

⇔ − 2(
γ

log(ε)
)2
n2(S)

n
≤ log(

α

2
)

⇔ n(S) ≥
√
n

√
− log(α2 ) log(ε)2

2γ2

Appendix C. On the hyperparameter α

In this last appendix, we report the additional Figure C.6, presenting the optimal
values of the hyperparameter α, for all graphs, and for both core-based and degree-based
sampling.
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Figure C.6: Optimal values of hyperparameter α for degree-based and core-based node sampling w.r.t.
mean AUC scores on validation sets, for Variational FastGAE models and for all graphs.
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