
CRaDLe: Deep Code Retrieval Based on Semantic Dependency
Learning
Wenchao Gua, Zongjie Lib, Cuiyun Gaob,∗, Chaozheng Wangb, Hongyu Zhangc, Zenglin Xub

and Michael R. Lyua

aThe Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
bThe School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
cThe University of Newcastle, Australia

ART ICLE INFO
Keywords:
Code retrieval
semantic dependency
dependency learning
neural network

ABSTRACT
Code retrieval is a common practice for programmers to reuse existing code snippets in the open-
source repositories. Given a user query (i.e., a natural language description), code retrieval aims at
searching the most relevant ones from a set of code snippets. The main challenge of effective code
retrieval lies in mitigating the semantic gap between natural language descriptions and code snip-
pets. With the ever-increasing amount of available open-source code, recent studies resort to neural
networks to learn the semantic matching relationships between the two sources. The statement-level
dependency information, which highlights the dependency relations among the program statements
during the execution, reflects the structural importance of one statement in the code, which is favorable
for accurately capturing the code semantics but has never been explored for the code retrieval task.
In this paper, we propose CRaDLe, a novel approach for Code Retrieval based on statement-level
semantic Dependency Learning. Specifically, CRaDLe distills code representations through fusing
both the dependency and semantic information at the statement level, and then learns a unified vector
representation for each code and description pair for modeling the matching relationship. Comprehen-
sive experiments and analysis on real-world datasets show that the proposed approach can accurately
retrieve code snippets for a given query and significantly outperform the state-of-the-art approaches
on the task.

1. Introduction
Implementing projects from scratch is tedious for pro-

grammers. In most cases, they know what they want to do,
but do not have the capability to implement all the details.
For example, a Python programmer may want to “convert
date_string into datetime format”, but not able to recognize
the proper syntax datetime.strptime(date_string, format)

for the realization. To mitigate the impasse, it is common
for programmers to search the web in natural language (NL),
find relevant code snippets, andmodify them into the desired
form [4]. Many code retrieval approaches [4, 24, 25] have
been proposed to improve the recommendation accuracy of
the returned code snippets given a natural language descrip-
tion. The main challenge of effective code retrieval is the
semantic gap between source code and natural language de-
scriptions since the two sources are heterogeneous and share
few common lexical tokens, synonyms and language struc-
tures [11].

Prior efforts have been conducted for effective code re-
trieval. The existing research can be divided into two cat-
egories according to the involved techniques, i.e., Informa-
tion Retrieval (IR)-based and Deep Neural Network (DNN)-
based. The IR-based techniques rely on token-wise similari-

∗Corresponding author
wcgu@cse.cuhk.edu.hk (Wenchao Gu); lizongjie@stu.hit.edu.cn (

Zongjie Li); gaocuiyun@hit.edu.cn (Cuiyun Gao);
wangchaozheng@stu.hit.edu.cn (Chaozheng Wang);
hongyu.zhang@newcastle.edu.au (Hongyu Zhang); xuzenglin@hit.edu.cn (
Zenglin Xu); lyu@cse.cuhk.edu.hk (Michael R. Lyu)

ORCID(s): 0000-0003-3503-8845 (Wenchao Gu)

ties between source code and queries. Since the variable and
API definitions in code are generally word combinations or
abbreviations in natural language, more semantically-similar
tokens in code and queries can indicate more relevancy be-
tween them. For example, McMillan et al. propose Port-
folio which utilizes keyword matching and PageRank to re-
turn a list of functions [25]. Lv et al. propose CodeHow to
combine API matching for code retrieval [24]. With an in-
creasing amount of available source code and flourish devel-
opment of deep learning techniques, many studies [11, 13]
propose to adopt neural network models for jointly encod-
ing tokens of source code and queries into a single and joint
vector space, where one encoder is employed for each input
(natural or programming) sequence. The objective is to map
semantically relevant code and language into vectors that are
near to each other in the vector space.

Considering the highly-structured characteristic of source
code, recent research proposes to integrate the structural in-
formation of code such as Abstract Syntax Tree (AST) and
Control Flow Graph (CFG) for representing code seman-
tics [37, 33, 38], demonstrating the effectiveness of involving
structural information for the task. However, the deep nature
of the extracted trees in ASTs renders it hard for deep learn-
ing models to comprehensively capture the structural infor-
mation [38]. CFG, which represents all possible execution
paths for a program, may contain statement orders which are
not contributing to the actual execution result, probably lead-
ing to biased code representation learning [33]. In this paper,
we propose to utilize statement-level dependency relations in
a code snippet based on ProgramDependency Graph (PDG).

Wenchao GU et al.: Preprint submitted to Elsevier Page 1 of 12

ar
X

iv
:2

01
2.

01
02

8v
2

 [
cs

.S
E

]
 2

9
M

ar
 2

02
2

CRaDLe

The PDG is established based on AST but less deeper than
AST in the structure and only retains the execution paths that
will affect the execution result. The dependency relations are
then explicitly integrated with the statement-level semantics
to capture the code semantics. Actually, the effectiveness of
incorporating dependency relations for code representation
learning has proven in tasks such as bug detection [20] and
code clone detection [12]; while no prior work has explored
the impact on the code retrieval task so far.

Specifically, we introduce a novel neural network model
named CRaDLe, an abbreviation of Code Retrieval based
on semantic Dependency Learning. CRaDLe couples both
structural and semantic information of code at the statement
level, where the code structures are extracted based on PDG.
Extensive experiments have been conducted to verify the
performance of the proposed approach. The evaluation re-
sults show that CRaDLe can significantly outperform the
state-of-the-art models by at least 36.38% and 22.34% on
two real datasets respectively, in terms of R@1, one stan-
dard metric for validating recommendation performance.

In summary, the main contributions of the paper include:
• We propose a novel code retrieval model, CRaDLe, to

encode both source code and natural language queries
into unified vector representations. CRaDLe is the
first code retrieval approach that integrates the depen-
dency and semantics information at the statement level
for learning code representations.

• We conduct large-scale experimental evaluations on
public benchmarks. The results demonstrate the supe-
rior performance of CRaDLe over the state-of-the-art
and baseline models.

The rest of this paper is organized as follows. Section 2
introduces an overview of the proposed approach and details
the design of the approach. Section 3 illustrates the experi-
mental datasets, evaluation metrics, and implementation de-
tails. Section 4 elaborates on the experimental results. Sec-
tion 6 surveys the related work and Section 7 concludes our
work.

2. The Proposed CRaDLe
In this section, we elaborate on the overview and de-

tailed design of the proposed approach CRaDLe, including
the code encoder, description encoder and the similaritymea-
surement component.
2.1. Overview

Figure 1 depicts the overview of the proposed approach,
CRaDLe. The implementation includes both offline and on-
line modes. During the offline stage, we first collect datasets
containing <code, description> pairs. The collected code
and descriptions are then preprocessed and separately en-
coded into vectors by the code encoder and query encoder re-
spectively. Unified representations of code and correspond-
ing descriptions are finally learnt after the offline training
process, where semantically similar code and descriptions

locate closely to each other in the same embedding space.
During the online process, when a new natural language query
arrives, the trainedmodel recommends themost related code
snippets to the programmer according to the semantic dis-
tances between code and the query in the embedding space.

Figure 2 illustrates the overall framework of the CRaDLe
approach, which details the design of the code encoder and
description encoder. The code encoder fuses the statement-
level token semantics and distilled dependency information
to represent the code semantics. The description encoder
also embeds the token sequences in the descriptions to vec-
tors. Finally, similarity matching scores between the code
and descriptions are learnt based on their respective vector
representations.

Description：
“Sort the array”

Code:

def Sort():
…

<Code, Description>

GitHub

Repository

Query

(Description)

Encoder

Code

Encoder

CRaDLe

Embedding Space

Programmer

Natural

Language Query

Ranked Code

Snippets

Figure 1: Overview of the proposed CRaDLe.

2.2. Code Encoder
The code encoder aims at embedding code snippets into

vector representations. We propose to integrate the statement-
level token semantics with the dependency information be-
tween statements for accurately capturing the code seman-
tics. We first illustrate the process conducted for the de-
pendency information extraction, and then describe the net-
works proposed for learning statement-level dependency and
semantic representations.

Algorithm 1 shows the procedures for the code encoder.
The input of the code encoder includes the token matrix E
comprised by a sequence of token embedding vectors {e1,1, ..., ei,j , ...}and dependency matrixΥ. First, the dependency embedding
layer encodes the dependencymatrixΥ into dependency em-
beddings P . The token embedding layer then represents the
token matrix E into statement-level representations T com-
prised by {t1, ..., ti, ...}. Finally, the token embeddings are
concatenated with the dependency embeddings in statement
level, and the newly comprised vectors are fed into the Bi-
LSTM layer. The last hidden state vector from the Bi-LSTM
layer is treated as the representation vector of the code.
2.2.1. Dependency Information Extraction

We obtain the dependency information between state-
ments by adopting PDGs of the code snippets. PDG explic-
itly indicates the data dependency and control dependency
of a program, where the data dependency can represent the
relevant data flow relationships and control dependency ex-
hibits the essential control flow relationships [9]. Since there
exists no mature tool for extracting PDG of one code snip-
pet in interpreted languages such as Python, we propose to
establish the PDG based on the AST of a code snippet.

Wenchao GU et al.: Preprint submitted to Elsevier Page 2 of 12

CRaDLe

Code Description

Statement-Level TokensStatement Dependency

Data Dependency Control Dependency

Dependency Matrix 𝑠1

𝑠𝑙+1

find longest palindrome

Maxpooling

Cosine Distance

Description Vector [𝒅]

Code Vector [𝒄]

𝒏
 𝒕

𝒑

MLP

…
…

…

…Attention

Vector

𝛼1

𝛼𝑙+1

…

……

…

Υ

Bi-LSTM

Bi-LSTM

Figure 2: Overall framework of the proposed CRaDLe.

Algorithm 1: The algorithm of code encoding
input : the token matrix E, the matrix of input

dependency: Υ
output: The representation vector of code: C
Function CODEENCODER(E, Υ):

P ← DependencyEmbedding(Υ) ;
// corresponding to Equ. 1

T ← T okenEmbedding(E);
S ← StatementAttention(T) ; // corresponding

to Equ. 2 and Equ. 3

C ←
SemanticDependencyEmbedding([S;P]) ;
// corresponding to Equ. 4

return C;

For clarifying the PDG establishment process, we use
the code example illustrated in Listing 1. Figure 3 (a) de-
picts the mark for each statement in the code example, in
which we regard the function name and required parameters
as two separate statements. Function name can be treated as
a short summary of the code functionality; while the defini-
tions of the required parameters generally reflect the seman-
tics of the input data. Treating function names and parame-
ters separately could be helpful for capturing their respective
semantics.

Figure 3 (b) demonstrates the simplified AST of the code
example where we construct the AST in statement level and
hide the details of each statement. The data dependency of
one statement with the other statement can be identified if
the variable used in one statement is (re)defined in the other
statement and the value of the variable is unchanged on the
execution path between these two statements. The control
dependency of one statement with the other is determined if
the execution of the statement relies on the execution results

of the other one. The control dependency can be directly
captured by the tree structure in the AST, i.e., statements in
child leaf nodes are considered possessing dependent rela-
tions with the statements in the parent nodes. The extracted
PDG is depicted in Figure 3 (c), with red arrowed lines and
black arrowed lines indicate data dependency and control de-
pendency between the two statements, respectively. Tokens
beside each statement block denote the related variables, in
which we use black or red underlined variables to distinguish
whether the variables are used or (re)defined in the corre-
sponding statement. For example, the parent nodes of S10in the AST include S3, S5, S7, and S9 (as shown in Figure 3(b)), so the control dependency between S10 and S3,5,7,9 ismarked in the obtained PDG. Also, the variable mid in S6,corresponding to line 5 in the Listing 1, is from S4, i.e., line3 in the code example; so S6 shows a data dependency rela-tion to S4 in the PDG.
2.2.2. Statement-Level Dependency Embedding

The dependency embedding network is designed to en-
code the data dependency and control dependency involved
in the PDG of a code snippet into a vector representation.
According to the extracted PDG (as shown in Figure 3 (c)),
we can build a dependency matrix Υ ∈ {0, 1}(l)×(l), where l
indicates the number of statements in the code. The element
�ij = 1 if the i-th statement has a data/control dependency
on the j-th statement; otherwise �ij = 0. Note that �ij ≠ �ji.For example, S4 and S6 exhibit a data dependency relation,
so �64 = 1. To embed the obtained dependency matrix Υ,
we employ one layer of multi-layer perceptron (MLP):

pi = tanh(WΓ�i),∀i = 1, 2, ..., l,
P = [p1, ...,p(l)],

(1)

whereWΓ is the matrix of trainable parameters in MLP and
Wenchao GU et al.: Preprint submitted to Elsevier Page 3 of 12

CRaDLe

pi is the embedding of the dependency information for each
statement.
2.2.3. Statement-Level Token Embedding

The token embedding network is designed for captur-
ing the semantics of each statement based on the constituted
tokens. We first tokenize the statements into sequences of
tokens following Gu et al.’s work [11], during which pro-
cess duplicate tokens and the keywords in the programming
language such as while and break are removed. Then to-
kens in each sequence are embedded into vectors individ-
ually through an embedding layer. An attention layer is uti-
lized to compute a weighted average. Given a sequence of
token embedding vectors {ei,1, ..., ei,j , ...} for the i-th state-
ment, the attention weight �i,j for each ei,j is calculated as
follows:

�i,j =
exp(e⊺i,j)

∑

j exp(e
⊺
i,j)
. (2)

Each statement is embedded based on the attention weights
�i,j .

ti =
∑

j
�i,je

⊺
i,j , (3)

where i indicates the i-th statement.
2.2.4. Semantic Dependency Embedding

We consider both statement-level dependency and se-
mantic information for learning the vector representation of
a code snippet. Specifically, for each statement si, we con-catenate its dependency embedding pi and token embedding
ti as the representation of the statement, i.e., si = [ti;pi]. We
finally adopt bi-LSTM to encode the sequence of the state-
ment embeddings and use the last hidden state as the vector
representation of the code.

c = BiLSTM(hl, sl), (4)
where l indicates the number of statements.
1 def binarySearch (arr, l, r, x):

2 if r >= l:

3 mid = int(l + (r - l)/2)

4 if arr[mid] == x:

5 return mid

6 elif arr[mid] > x:

7 return binarySearch(arr, l, mid-1, x)

8 else:

9 return binarySearch(arr, mid+1, r, x)

10 else:

11 return -1

Code Listing 1: An example of Python code snippet for il-
lustrating the semantic dependency learning process.

2.3. Description Encoder
The description encoder aims at embedding natural lan-

guage descriptions into vectors. Given a description D =
{w1, ..., wk, ..., wNd

} comprising a sequence of Nd words,
the description encoder embeds it into a vector d using a bi-
LSTM model with maxpooling:

hk = BiLSTM(hk−1,wk),∀k = 1, 2, ..., Nd ,
d = maxpooling([h1, ...,hNd

]).
(5)

The maxpooling layer is used to mitigate the effect of
long-term information loss caused by the LSTMmechanism
and catch the global feature of the whole sentence.
2.4. Similarity Measurement

The semantic similarity between the code vector c and
description vector d is calculated based on its cosine distance
in the embedding space:

cos(c,d) = c⊺d
||c||||d||

. (6)
The vector features of the two different embedding mod-

els are trained using the loss function, i.e., Equ. 6, to maxi-
mize the cosine similarities in the projected space, so aligned
code and descriptions would be close to each other in the
space. Such design is widely adopted in prior code search
studies [11, 5, 29]. The target of the design is to get unified
representations for both code and description, so as to miti-
gate the problem of semantic gap between them. The higher
the similarity, the more relevant the code is to the descrip-
tion.
2.5. Model Training

We obtain the representation vectors for code snippets
and descriptions based on the proposed code encoder and
description encoder, respectively. Following previous stud-
ies [11, 5, 29], we project the code vectors and description
vectors to the same space, and train the vectors for aligned
code snippets and descriptions to be close in the space.

Specifically, every single code snippet in the training data
T will be constructed as a triplet < C,D+, D− >. C rep-
resents the code snippet from the training Corpora, D+ in-
dicates the description which semantically matches the code
snippet in the ground truth, and D− denotes the negative
description which is randomly chosen from the training cor-
pora with the true description excluded. The loss function is
as below:

(�) =
∑

<C,D+,D−>∈T
max(0, �−cos(c,d+)+cos(c,d-)), (7)

where � denotes the parameters in the proposed model, c de-
notes the code vector of C , d+ and d- denote the description
vectors of D+ and D−, respectively. Based on the train-
ing loss function, we can get unified representations for both
code and description, thus mitigating the semantic gap be-
tween them.

Wenchao GU et al.: Preprint submitted to Elsevier Page 4 of 12

CRaDLe

Mark Statement

𝑆1 binarySearch

𝑆2 arr, l, r, x

if r >= l:

mid = int(l + (r - l)/2)

if arr[mid] == x:

return mid

elif arr[mid] > x:

return binarySearch(arr, l, mid-1, x)

else:

return binarySearch(arr, mid+1, r, x)

else:

return -1

𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆10
𝑆11
𝑆12

FunctionDef

name args body

𝑆3

𝑆4 𝑆5 𝑆11

𝑆6 𝑆7 𝑆12

𝑆8 𝑆9

𝑆10

𝑆1 𝑆2

𝑠1

𝑠2

𝑠3

𝑠5𝑠4 𝑠11

𝑠7𝑠6 𝑠12

𝑠9𝑠8

𝑠10

arr, l, r, x

r

mid, l, r
arr, mid, x

mid
arr, mid, x

arr, l, r, x

arr, l, r, x

(a) Marked statements. (b) The simplified AST. (c) The extracted PDG.

Figure 3: Workflow for extracting PDG of the code snippet in Listing 1. For the extracted PDG in (c), red and black arrowed
lines indicate data dependency and control dependency respectively. The tokens beside each statement block denote the variables
(re)defined (highlighted in red underlined font) or used in the corresponding statement.

3. Experimental Setup
In the section, we introduce the collected dataset for ex-

perimentation, the evaluation metrics, implementation de-
tails and baseline models.
3.1. Dataset Collection

Two datasets are adopted for our experimental evalua-
tion. One dataset is obtained from CodeSearchNet [13], a
publicly-availableGitHub repository. We focus on the Python
program language since it is one of the most popular pro-
gramming languages, accounting for more than 30% of the
total market share as PYPL reported [28]. Detailed statis-
tics of the dataset can be found in Table 3. All the code
in the corpus is in Python and with English descriptions.
We have 407,126, 22,302, and 21,902 <code, description>
pairs for training, validating and testing, respectively. The
median and average numbers of the statements in the code
are around 10. We also observe that the statements contain
around three tokens on average, with the minimum at zero
which is because the input parameters beside the method
name are treated as an individual statement and some code
snippetsmay not require any input parameters. Another dataset
is from Code2seq [3], with the statistics illustrated in Ta-
ble 4. We only select the code written in Python 3 from both
datasets since the PDG extraction tool (introduced in Sec-
tion 2.2.1) is specifically designed for Python 3 and may fail
to parse the code written in Python 2.

Table 1 and Table 2 illustrate the distribution of state-
ments numbers of the codes in the two dataset, i.e., Code-
SearchNet and Code2Seq, respectively. We can observe that
the long tail phenomenon occurs in the two datasets. Be-
sides, more than 50% of the code has ≤10 statements and
more than 80% has ≤20 statements.
3.2. Performance Measurement

Following the evaluation settings in [33], we fix a set of
999 distractor snippets cj for each test pair (ci,di) and calcu-late the average ranking score for all the testing pairs as the

Table 1
Statistics of the number of statements in CodeSearchNet
dataset.

#Statements Training Set Validation Set Test Set

0 ∼ 10 230,183 12,413 12,326
11 ∼ 20 117,060 6,364 6,361
21 ∼ 30 32,904 1,875 1,843
31 ∼ 40 12,834 755 633
41 ∼ 50 5,723 386 326
51 ∼ 8,422 509 413

Table 2
Statistics of the number of statements in Code2Seq dataset.

#Statements Training Set Validation Set Test Set

0 ∼ 10 218,679 32,429 33,210
11 ∼ 20 73,870 11,301 12,251
21 ∼ 30 2,0956 3,215 3,478
31 ∼ 40 7,957 1,251 1,370
41 ∼ 50 3,540 573 632
51 ∼ 4,326 650 786

evaluation result. We involve two metrics: R@k and MRR,
for validating the ranking performance.
3.2.1. R@k

R@k is a common metric to evaluate whether an ap-
proach can retrieve the correct answer in the top k return-
ing results. It is widely used by many studies on the code
retrieval task. The metric is calculated as follows:

R@k = 1
|Q|

|Q|
∑

q=1
�(FRankq < k), (8)

whereQ denotes the query set and FRankq denotes the rankof the correct answer for query q. The function �(Frankq <
k) returns 1 if the rank of the correct answer within the top k

Wenchao GU et al.: Preprint submitted to Elsevier Page 5 of 12

CRaDLe

Table 3
Statistics of the CodeSearchNet dataset.

Training Validating Testing

<code, description> 407,126 22,302 21,902

Statistics of # statements in code
Min. 1 1 1
Med. 7 8 7
Max. 1,385 909 363
Ave. 11.45 11.87 11.24

Statistics of # tokens in the statements
Min. 0 0 0
Med. 3 3 3
Max. 514 155 83
Ave. 3.92 3.87 3.91

Table 4
Statistics of the Code2seq dataset.

Training Validating Testing

<code, description> 329,328 49,419 51,727

Statistics of # statements in code
Min. 2 2 2
Med. 7 7 7
Max. 1,463 416 1,463
Ave. 10.17 10.33 10.68

Statistics of # tokens in the statements
Min. 0 0 0
Med. 3 3 3
Max. 682 199 1864
Ave. 3.75 3.73 3.73

returning results otherwise the function returns 0. A higher
R@k indicates a better code retrieval performance.
3.2.2. MRR

Mean Reciprocal Rank (MRR) is the average of the re-
ciprocal ranks of the correct answers of query setQ, which is
another popular evaluation metric for the code retrieval task.
The metric MRR is calculated as follows:

MRR = 1
|Q|

|Q|
∑

q=1

1
FRankq

. (9)

The higher the MRR value is, the better performance the
model has.
3.3. Implementation Details

In our experiment, we select the top 10,000 words ac-
cording to the word frequencies as the vocabularies of code
snippets and descriptions, respectively. All the word embed-
dings are randomly initialized and adjusted during training.
The dimension of word embedding is set as 256. All LSTMs
have 1024 hidden units in each direction. The maximum
number of considered statements in the code and the maxi-
mum number of tokens in each statement are set as 20 and 5,

respectively. The sequence lengths of descriptions are lim-
ited as 30 following the work [11]. The CRaDLe model is
trained via theAdamWalgorithm[17] and the learning rate is
2.08e-4. To mitigate the over-fitting issue, we add a dropout
layer with dropout rate at 0.25. We train our models on a
server with one Nvidia GeForce RTX 2080 Ti and 11 GB
memory. The training lasts ∼20 hours with 200 epochs and
the early stopping strategy [10] is adopted to avoid overfit-
ting.
3.4. Baseline Models

We compare our proposed model with several state-of-
the-art baseline models. CODEnn is one of the state-of-the-
art models proposed in [11]. This model extracts the method
name, API sequence and tokens from the code and utilizes
neural network to learn the unified vector representation of
query and these code features. UNIF [5] focuses on the se-
mantic information from the tokens in the code and utilizes
embedding techniques and attention mechanism to embed
the tokens in the query and code into a single vector respec-
tively. The projection of the query and code vector in the
same space is learned by this model. NeuralBoW [34] em-
beds each token in the two input sequences to a learnable
embedding. The token embeddings are then combined into
a sequence embedding using max-pooling and an attention-
like weighted sum mechanism. The RNN baseline adopts
two-layer bi-directional LSTM model [7] to encode the in-
put sequences. CONV [16] uses 1D convolutional neural
network over both the input sequences of tokens. CONV-
Self [21] combines 1D convolutional neural network and
self-attention layer to embed both input sequences. Self-
Attn [13] utilizes multi-head attention [32] to encode both
input sequences of tokens, and has proven effective on mul-
tiple types of programming languages such as Python and
JavaScript. The hyper-parameters of the baselines are de-
fined according to the original papers [11, 5, 13]. During
implementing CODEnn, NeuralBoW, RNN, CONV, CON-
VSelf and SelfAttn, we directly utilized the released code;
while for UNIF, we tried our best to replicate the code ac-
cording to the paper and will make the replication publicly
available.

4. Experimental Results
In this section, we present the evaluation results, includ-

ing the main results, parameter analysis, case studies and er-
ror analysis.
4.1. Main Results

Involving semantic dependency embeddings increases
the code search performance. Table 5 and 6 illustrate the
evaluation results comparing with the baseline models. As
can be seen, CRaDLe presents the best performance com-
paring with all the baseline models, increasing the perfor-
mance of 36.38% in terms ofR@1, 17.13% in term ofR@5,
12.54% in term of R@10 and 25.26% in term of MRR at
least on the dataset of CodeSearchNet. CRaDLe can achieve
the improvement of the performance at least 22.34%, 22.51%,

Wenchao GU et al.: Preprint submitted to Elsevier Page 6 of 12

CRaDLe

Table 5
Comparison results with baseline models on the CodeSearch-
Net dataset. The best results are highlighted in bold fonts.

Approach R@1 R@5 R@10 MRR

CODEnn 0.367 0.573 0.652 0.465
UNIF 0.379 0.615 0.706 0.490
NeuralBoW 0.521 0.747 0.807 0.622
RNN 0.556 0.772 0.832 0.654
CONV 0.475 0.703 0.776 0.579
CONVSelf 0.571 0.788 0.845 0.668
SelfAttn 0.580 0.786 0.840 0.673

CRaDLe maxpooling 0.777 0.914 0.946 0.838
CRaDLe 0.791 0.923 0.951 0.843

21.54% and 21.79% in R@1, R@5, R@10 and MRR on
the dataset of Code2Seq, respectively. This indicates that
CRaDLe can rank the correct answer the topmore accurately
when given a natural language query. The improvement on
R@1 is most significant among all the metrics in our pro-
posed model, which is over 20% in both datasets. R@1 is
the metric concerned most by programmers since they pre-
fer to use the code search system which can return the best
results in first. The higher MRR score further verifies the
effectiveness of CRaDLe. The difference between CRaDLe
and the baseline models is the code representation strategy,
which shows the effectiveness of the semantic dependency
embeddings for code search.

Attentionmechanism can be helpful for effective code
search. By comparing CONV with CONVSelf, we can ob-
serve that with the attention mechanism integrated, CONV
presents a better performance than the pure CONV model
on both datasets. For example, CONVSelf increases the ac-
curacy of CONV by 20.21% and 15.37% in terms of R@1
andMRR on the CodeSearchNet dataset, respectively. Sim-
ilar result also appears on the Code2Seq dataset. The results
imply the effectiveness of the attention mechanism on the
code search task. We also compared with the performance
of the CRaDLe maxpooling where the attention mechanism is
replaced with the max pooling strategy [18]. As can be seen
in Table 5 and Table 6, CRaDLe with the attention mecha-
nism involved outperforms the CRaDLe with max pooling
strategy integrated on both datasets, which further demon-
strates the effectiveness of the attention mechanism on the
task.

CRaDLe shows better generalizability than baseline
models. As can be observed from Table 5 and Table 6,
one baseline model’s extraordinary performance on a spe-
cific dataset can not transfer to other datasets. For example,
SelfAttn achieves the best performance among all the base-
lines on the CodeSearchNet dataset with respect toR@1, but
perform worse than NeuralBoW on the Code2seq dataset.
Comparing with the baselines, CRaDLe presents the best
performance on both datasets, which can explicate the good
generalizability of CRaDLe.

Table 6
Comparison results with baseline models on the Code2seq
dataset. The best results are highlighted in bold fonts.

Approach R@1 R@5 R@10 MRR

CODEnn 0.330 0.532 0.617 0.427
UNIF 0.380 0.588 0.668 0.478
NeuralBoW 0.546 0.693 0.738 0.615
RNN 0.438 0.623 0.688 0.526
CONV 0.425 0.584 0.645 0.502
CONVSelf 0.470 0.642 0.700 0.552
SelfAttn 0.525 0.683 0.731 0.599

CRaDLe maxpooling 0.664 0.843 0.892 0.745
CRaDLe 0.668 0.849 0.897 0.749

4.2. Parameter Analysis
In this section, we will discuss how the hyperparame-

ters affect the performance of CRaDLe. Three hyperparam-
eters are analyzed, including the number of hidden units in
LSTMs, the maximum number of considered statements in
the code, and the maximum number of considered tokens in
each statement. Figure 4 and Figure 5 depict the results of
the parameter analysis.
4.2.1. # Hidden units in LSTMs

As shown in Figure 4(a) and Figure 5(a), all the met-
ric values present an increasing trend as the number of hid-
den units grows. The phenomenon is understandable since
more hidden units imply that the model has more parame-
ters to learn and can extract more knowledge from the same
input. We can also observe that for each doubling of the
number of hidden units, the growth rates of the R@1 scores
are 1.9%, 0.54%, 0.41% respectively on the CodeSearchNet
dataset. The trend is identical for the Code2Seq dataset. So
we can summarize that with an increasing number of the hid-
den units, the model performance would increase but the in-
creasing rates show a declining tendency. Due to the limita-
tion of the computing source and the marginal enhancement
when the number of hidden units is larger than 1,024, we
choose 1,024 as the number of hidden units for our experi-
ment.
4.2.2. # Maximum statements in code

Figure 4(b) and Figure 5(b) illustrate the variations of
the model performance as the maximum number of con-
sidered statements increases. We can observe that the met-
rics achieve the highest values when the number equals 20
and manifests a declining trend as the statement number fur-
ther increases. As can be found in Table 3 and Table 4, the
median numbers of the statements in both CodeSearchNet
and Code2seq datasets are 7, with the average at around 10.
Thus, more statements considered would not be beneficial
for capturing the code semantics for most code snippets. In
the experiment, we set the maximum number of considered
statements in code as 20.

Wenchao GU et al.: Preprint submitted to Elsevier Page 7 of 12

CRaDLe

0.75

0.8

0.85

0.9

0.95

1

128 256 512 1024

R@1 R@5 R@10 MRR

Hidden Units

S
c
o
re

(a) # hidden units in LSTMs

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40

R@1 R@5 R@10 MRR

Statements

S
c
o
re

(b) # maximum statements in code

0.75

0.8

0.85

0.9

0.95

1

5 10 15 20

R@1 R@5 R@10 MRR

S
c
o
re

Tokens

(c) # maximum tokens in statement

Figure 4: Parameter sensitivity study for CodeSearchNet.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

128 256 512 1024

R@1 R@5 R@10 MRR

S
c
o
re

Hidden Units

(a) # hidden units in LSTMs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

10 20 30 40

R@1 R@5 R@10 MRR

Statements

S
c
o
re

(b) # maximum statements in code

0.65

0.7

0.75

0.8

0.85

0.9

0.95

5 10 15 20

R@1 R@5 R@10 MRR

S
c
o
re

Tokens

(c) # maximum tokens in statement

Figure 5: Parameter sensitivity study for Code2Seq.

4.2.3. # Maximum tokens in statement
The impact of different maximum numbers of involved

tokens in a statement is shown in Figure 4(c) and Figure 5(c).
We can find that when the involved token number increases,
the performance presents a downward trend. According to
Table 3 and Table 4, the average number of tokens in the
statements is∼3. Sowithmore tokens recognized, themodel
could not learn more knowledge of the code snippets. In
the experiment, to balance the model performance with the
number of tokens considered, we define the maximum num-
ber of the tokens in a statement as 5.
1 def logs(self, prefix='worker'):

2 logs = []

3 logs += [('success_rate', np.mean(self.success_history))]

4 if self.compute_Q:

5 logs += [('mean_Q', np.mean(self.Q_history))]

6 logs += [('episode', self.n_episodes)]

7
8 if prefix != '' and not prefix.endswith('/'):

9 return [(prefix + '/' + key, val) for key, val in logs]

10 else:

11 return logs

Code Listing 2: Successful case 1.

4.3. Ablation Study
In the ablation study, we validate the contribution of data

dependency or control dependency to CRaDLe and the ef-
fectiveness of combing both dependency types. Table 7 and
Table 8 shows the results of the ablation study on the datasets
of CodeSearchNet and Code2seq, respectively. CRaDLeFull

Table 7
Ablation study on the CodeSearchNet dataset.

Approach R@1 R@5 R@10 MRR

CRaDLeFull 0.791 0.923 0.951 0.843
CRaDLeDataDependency 0.779 0.910 0.946 0.840
CRaDLeControlDependency 0.785 0.918 0.950 0.845

represents the model utilizes both data dependency and con-
trol dependency, CRaDLeDataDependency represents themodel
only employs data dependency and CRaDLeControlDependencyrepresents the mode only utilizes control dependency.

From the results, we can find that the performance of
the model that only utilizes data dependency is very close
to the performance of the model with only control depen-
dency, which shows that the importance of data dependency
and control dependency is relatively equivalent under our
implementation. However, we can find that the model that
contains both data dependency and control dependency out-
performs the model that only contains one dependency type,
especially in terms of the R@1 metric. The results indicate
that the combination of data dependency and control depen-
dency is beneficial for effective code search.
4.4. Case Studies

Listing 2 shows our predicted code snippet for the query
“Generates a dictionary that contains all collected statis-
tics”. We can find that our predicted result correctly matches
the given query. Although no overlapping words exist be-

Wenchao GU et al.: Preprint submitted to Elsevier Page 8 of 12

CRaDLe

Table 8
Ablation study on the Code2seq dataset.

Approach R@1 R@5 R@10 MRR

CRaDLeFull 0.668 0.849 0.897 0.749
CRaDLeDataDependency 0.645 0.827 0.880 0.724
CRaDLeControlDependency 0.645 0.828 0.882 0.730

tween the code and query, CRaDLe could capture that the
code tokens such as rate and compute are semantically related
to the queryword “statistics”. Besides, since the semantically-
related tokens mainly appear at the line 3, 4 and 5, and do not
span the entire code, we guess that the involved dependency
information helps to establish the relationships among the
statements.

Listing 3 shows another predicted code snippet that ac-
curately matches the given query “Tile N images into one big
PxQ image (P,Q)”. Clearly, the function name contains the
keywords in the query, e.g., “tile" and “images". Moreover,
the core idea of this query is to tile N images into one im-
age, essentially related to matrix operations. As shown in
the Listing 3, the code contains tokens associated with ma-
trix transformation such as reshape and transpose. So with
statement-level tokens explicitly incorporated, CRaDLe could
well catch the code functionality.
1 def tile_images(img_nhwc):

2 img_nhwc = np.asarray(img_nhwc)

3 N, h, w, c = img_nhwc.shape

4 H = int(np.ceil(np.sqrt(N)))

5 W = int(np.ceil(float(N)/H))

6 img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N,

H*W)])↪

7 img_HWhwc = img_nhwc.reshape(H, W, h, w, c)

8 img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)

9 img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)

10 return img_Hh_Ww_c

Code Listing 3: Successful case 2.
Overall, the above two examples indicate that CRaDLe

can accurately capture the code semantics with the statement-
level dependency and semantic information integrated.
4.5. Error Analysis

Although most of the time, our model returns correct
code snippets, we still notice that our model fails under the
following two particular circumstances.
4.5.1. Code Containing Complex Mathematical Logic

Listing 4 provides a failure case where the code contains
complex mathematical logic. The description correspond-
ing to the code is “Convert directly the matrix from Carte-
sian coordinates (the origin in the middle of image) to Image
coordinates (the origin on the top-left of image)", which in-
cludes some mathematical concepts such as “Cartesian co-
ordinates”. Nevertheless, no words related to the mathe-
matical concepts appear in the code. Less knowledge learnt
about themathematical terminology renders themodel harder

to capture the semantic relevance between the code and nat-
ural language. Future work can incorporate external knowl-
edge such as API documentation orWikipedia for enhancing
the understanding of the mathematical concepts.
1 def transform_matrix_offset_center(matrix, y, x):

2 o_x = (x - 1) / 2.0

3 o_y = (y - 1) / 2.0

4 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])

5 reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])

6 transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)

7 return transform_matrix

Code Listing 4: Failure case 1.

4.5.2. Code Containing Function Invocation
We also find that the proposed model may fail to capture

the code semantics when the code involves function invo-
cation but the details of the invoked function are missing.
Listing 5 illustrates such an example, and the correspond-
ing description is “Get successor to key, raises KeyError if
a key is max key or key does not exist”. As can be seen in
the code example, the execution results strongly rely on the
invoked function succ_item(), however, the implementation
of the invoked function is not detailed. For the case, the code
semantics is difficult to be fully captured by the model, lead-
ing to failure.
1 def succ_key(self, key, default=_sentinel):

2 item = self.succ_item(key, default)

3 return default if item is default else item[0]

Code Listing 5: Failure case 2.

5. Discussion
5.1. Dependency Embedding Approach

In this section, we design another method for represent-
ing the dependency information. Specifically, we enrich the
dependency matrix with the semantics of the tokens at state-
ment level. The statement-level dependency embedding is
calculated as below:

pi =
∑

j tj�ij
max (1,

∑

j �ij)
,∀i = 1, 2, ..., l,

P = [p1, ...,p(l)],
(10)

where tj represents the statement-level token embedding for
j-th statement, which is calculated via Equ. 1. �ij indicateswhether the i-th statement has a data/control dependency on
the j-th statement and pi is the new dependency embedding.

We evaluated the performance of new dependency em-
beddingmethods on the datasets of CodeSearchNet andCod-
e2seq, as shown in Table 9.

From the table, we can find that the new strategy for en-
coding the dependency information outperforms our original
approach in terms of the R@1 and MRR metrics for both
datasets. The results indicate that the new approach for the
dependency embedding may be more effective than the orig-
inal approach for the task.

Wenchao GU et al.: Preprint submitted to Elsevier Page 9 of 12

CRaDLe

Table 9
Comparison results with our original models. The best results
are highlighted in bold fonts.

Dataset Approach R@1 R@5 R@10 MRR

CodeSearchNet CRaDLeoriginal 0.791 0.923 0.951 0.843

CRaDLenew 0.794 0.920 0.949 0.851

Code2seq CRaDLeoriginal 0.668 0.849 0.897 0.749

CRaDLenew 0.676 0.852 0.899 0.756

Graph neural networks (GNNs) is also a potential way
to represent the dependency between different statements in
one code snippet. However, using GNNs for representing
the semantic dependency of code is beyond the scope of the
work, since the assumption of GNNs that adjacent nodes
share similar semantics no long holds for the control depen-
dency information, and it would be more challenging to en-
code the semantic dependency information through GNNs.
In the future, we will investigate various strategies to embed
the semantic dependency with GNNs [19, 35].

6. Related Work
The work is inspired by the studies related to both code

search and code semantics representation learning.
6.1. Code Search

In software development, developers accomplish the goal
of effective and high quality code by reusing the existing
huge amount of available code resources. Prior work has
explored a number of methods to find the implicit connec-
tions between human language queries and code databases.
Early studies concentrate mainly on extracting useful fea-
tures from both codes and queries. For example, the work
[30] extracts scattered verbs from queries and applies action-
oriented identifier graph model to inspect the result graph,
which helps to optimize the queries. In [23], Lu et al. re-
formulate and extract natural language phrases from source
code identifiers since the synonyms in source codes and NL
queries may affect the code search result significantly. The
work [25] proposes Portfolio uses random surfer to model
the navigation behavior of programmers. Then with asso-
ciation model based on Spreading Activation Network [8],
functional relevant functions can be set in the same list. Pon-
zanelli et al. [27] propose to retrieve pertinent discussions
from Stack Overflowwhen given a context in the IDE, which
saves developers’ time spent on formulating more standard-
ized queries.

With rapid development of deep learning, an increasing
amount of work has focused on using neural networks for
effective code search. In the work [29], Sachdev et al. first
develop neural code search model called NCS to conduct NL
search directly over large source code corpora. In Liu et al.’
work [22], they present a neural model called NQE, which
expands the queries and improves performance for shorter

queries. Codenn embeds both code snippets and natural lan-
guage descriptions into a unified vector space, in such way
that code and its corresponding NL description have similar
vectors [11]. Iyer et al. [14] use attentional long short term
memory (LSTM) networks to focus on more cardinal parts
of the source code to produce search queries. Cambronero et
al. propose UNIF, a bag-of-words-based network which in-
cludes API sequences, method tokens, method body tokens
and docstring tokens for representing source code [5]. Yao,
Pedamail, and Sun regard code annotation and code search
as dual task and consider the generated code annotations for
better code search [36]. Husain et al. explore the seman-
tic representations of different neural architectures and they
find that self-attention-based architectures achieve the best
performance [13].
6.2. Representation Learning for Source Code

Prior work has conducted many investigations to effec-
tively represent the semantics of source code. Early studies
widely use machine learning and traditional information re-
trieval methods. For instance, In [31], Vásquez et al. adopt
SVM to discriminate semantic similarities between code snip-
pets and properly categorize software repositories. In the
work [15], programs are morphed into token sequences for
facilitating potential code clone detection. Recent work em-
ploys deep learning techniques for code semantics learning.
Mou et al. adopt tree-structured convolutional neural net-
work (Tree-CNN) to convert source code into distributed
vector for program classification [26]. The work [1] suggests
that the order of the embedded words can affect the accuracy
of semantic representations. Besides the plain textual infor-
mation, many studies utilize the structural features of source
code, such as abstract syntax tree (AST) and control flow
graph (CFG), to enrich the representations of source code.
For example, in the work [38], AST-based neural network
is proposed to capture the structural information of source
code. In another work [6], an API graph and a greedy sub-
graph search algorithm are utilized to help find the usage
of source code, which excavates more semantic details in
source code. Functions repetitively called and variables with
the same names are involved into Graph Neural Networks
(GNNs) for better representing the graph information in the
work [2]. Wan et al. propose a multi-modal attention net-
work to combine the heterogeneous sources including AST,
CFG and sequences of code tokens [33].

7. Conclusions
In this paper, we propose a novel deep neural network

named CRaDLe for code retrieval. According to our knowl-
edge, CRaDLe is the first deep learning model which uti-
lizes the program dependency information for the task. CRa-
DLe learns the code representations with the semantic de-
pendency information combined. Specifically, the depen-
dency information and statement-level tokens are jointly em-
bedded for learning code semantics. Finally, CRaDLe learns
unified representations for both code and natural language
queries. The experiment results have shown that CRaDLe

Wenchao GU et al.: Preprint submitted to Elsevier Page 10 of 12

CRaDLe

outperforms the state-of-the-art approaches and the semantic
dependency learning is helpful for effective code retrieval.

In the future, we will make a further exploration of the
code structure and explicitly incorporate external knowledge
such as API documentation to find a better way of represent-
ing source code semantics.

References
[1] Akbar, S.A., Kak, A.C., 2019. SCOR: source code retrieval with se-

mantics and order, in: Storey, M.D., Adams, B., Haiduc, S. (Eds.),
Proceedings of the 16th International Conference onMining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, IEEE
/ ACM. pp. 1–12. URL: https://doi.org/10.1109/MSR.2019.00012,
doi:10.1109/MSR.2019.00012.

[2] Allamanis, M., Brockschmidt, M., Khademi, M., 2018. Learning
to represent programs with graphs, in: 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, OpenRe-
view.net.

[3] Alon, U., Brody, S., Levy, O., Yahav, E., 2019. code2seq: Generat-
ing sequences from structured representations of code, in: 7th Inter-
national Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, OpenReview.net.

[4] Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.,
2009. Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code, in: Jr., D.R.O., Arthur, R.B.,
Hinckley, K., Morris, M.R., Hudson, S.E., Greenberg, S. (Eds.), Pro-
ceedings of the 27th International Conference on Human Factors in
Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009,
ACM. pp. 1589–1598.

[5] Cambronero, J., Li, H., Kim, S., Sen, K., Chandra, S., 2019. When
deep learning met code search, in: Dumas, M., Pfahl, D., Apel, S.,
Russo, A. (Eds.), Proceedings of the ACM JointMeeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019, ACM. pp. 964–974.

[6] Chan, W., Cheng, H., Lo, D., 2012. Searching connected API sub-
graph via text phrases, in: Tracz, W., Robillard, M.P., Bultan, T.
(Eds.), 20th ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA -
November 11 - 16, 2012, ACM. p. 10.

[7] Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y., 2014. On
the properties of neural machine translation: Encoder-decoder ap-
proaches, in: Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M. (Eds.),
Proceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, Doha, Qatar, 25
October 2014, Association for Computational Linguistics. pp. 103–
111.

[8] Crestani, F., 1997. Application of spreading activation techniques in
information retrieval. Artif. Intell. Rev. 11, 453–482.

[9] Ferrante, J., Ottenstein, K.J., Warren, J.D., 1987. The program de-
pendence graph and its use in optimization. ACM Trans. Program.
Lang. Syst. 9, 319–349.

[10] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep
learning. volume 1. MIT press Cambridge.

[11] Gu, X., Zhang, H., Kim, S., 2018. Deep code search, in: Chaudron,
M., Crnkovic, I., Chechik, M., Harman, M. (Eds.), Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, ACM. pp. 933–944.

[12] Henderson, T.A.D., Podgurski, A., 2016. Sampling code clones
from program dependence graphs with GRAPLE, in: Proceed-
ings of the 2nd International Workshop on Software Analytics,
SWAN@SIGSOFT FSE 2016, Seattle, WA, USA, November 13,
2016, pp. 47–53.

[13] Husain, H., Wu, H., Gazit, T., Allamanis, M., Brockschmidt, M.,

2019. Codesearchnet challenge: Evaluating the state of semantic code
search. CoRR abs/1909.09436.

[14] Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L., 2016. Summariz-
ing source code using a neural attention model, in: Proceedings of
the 54th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers, The Association for Computer Linguistics.

[15] Kamiya, T., Kusumoto, S., Inoue, K., 2002. Ccfinder: A multilin-
guistic token-based code clone detection system for large scale source
code. IEEE Trans. Software Eng. 28, 654–670.

[16] Kim, Y., 2014. Convolutional neural networks for sentence classifi-
cation, in: Moschitti, A., Pang, B., Daelemans, W. (Eds.), Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL, ACL.
pp. 1746–1751.

[17] Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimiza-
tion, in: Bengio, Y., LeCun, Y. (Eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

[18] Lee, C.Y., Gallagher, P.W., Tu, Z., 2016. Generalizing pooling func-
tions in convolutional neural networks: Mixed, gated, and tree, in:
Artificial intelligence and statistics, pp. 464–472.

[19] Li, M., Ma, Z., Wang, Y.G., Zhuang, X., 2020. Fast haar transforms
for graph neural networks. Neural Networks 128, 188–198.

[20] Li, Y., Wang, S., Nguyen, T.N., Nguyen, S.V., 2019. Improving
bug detection via context-based code representation learning and
attention-based neural networks. Proc. ACM Program. Lang. 3,
162:1–162:30.

[21] Lin, Z., Feng, M., dos Santos, C.N., Yu, M., Xiang, B., Zhou, B., Ben-
gio, Y., 2017. A structured self-attentive sentence embedding, in: 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net.

[22] Liu, J., Kim, S., Murali, V., Chaudhuri, S., Chandra, S., 2019. Neural
query expansion for code search, in: Mattson, T., Muzahid, A., Solar-
Lezama, A. (Eds.), Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming Languages,
MAPL@PLDI 2019, Phoenix, AZ, USA, June 22, 2019, ACM. pp.
29–37.

[23] Lu, M., Sun, X., Wang, S., Lo, D., Duan, Y., 2015. Query expansion
via wordnet for effective code search, in: Guéhéneuc, Y., Adams, B.,
Serebrenik, A. (Eds.), 22nd IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering, SANER 2015, Mon-
treal, QC, Canada, March 2-6, 2015, IEEE Computer Society. pp.
545–549.

[24] Lv, F., Zhang, H., Lou, J., Wang, S., Zhang, D., Zhao, J., 2015. Code-
how: Effective code search based on API understanding and extended
boolean model (E), in: Cohen, M.B., Grunske, L., Whalen, M. (Eds.),
30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
IEEE Computer Society. pp. 260–270.

[25] McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C., 2011.
Portfolio: finding relevant functions and their usage, in: Taylor, R.N.,
Gall, H.C., Medvidovic, N. (Eds.), Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, ACM. pp. 111–120.

[26] Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional
neural networks over tree structures for programming language pro-
cessing, in: Schuurmans, D., Wellman, M.P. (Eds.), Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, AAAI Press. pp. 1287–1293.

[27] Ponzanelli, L., Bavota, G., Penta, M.D., Oliveto, R., Lanza, M., 2014.
Mining stackoverflow to turn the IDE into a self-confident program-
ming prompter, in: Devanbu, P.T., Kim, S., Pinzger, M. (Eds.), 11th
Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, ACM. pp.
102–111.

Wenchao GU et al.: Preprint submitted to Elsevier Page 11 of 12

https://doi.org/10.1109/MSR.2019.00012
http://dx.doi.org/10.1109/MSR.2019.00012

CRaDLe

[28] pypl, 2020. Pypl popularity of programming language. http://pypl.
github.io/PYPL.html.

[29] Sachdev, S., Li, H., Luan, S., Kim, S., Sen, K., Chandra, S., 2018.
Retrieval on source code: a neural code search, in: Gottschlich,
J., Cheung, A. (Eds.), Proceedings of the 2nd ACM SIGPLAN In-
ternational Workshop on Machine Learning and Programming Lan-
guages, MAPL@PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, ACM. pp. 31–41.

[30] Shepherd, D.C., Fry, Z.P., Hill, E., Pollock, L.L., Vijay-Shanker, K.,
2007. Using natural language program analysis to locate and under-
stand action-oriented concerns, in: Barry, B.M., de Moor, O. (Eds.),
Proceedings of the 6th International Conference on Aspect-Oriented
Software Development, AOSD 2007, Vancouver, British Columbia,
Canada, March 12-16, 2007, ACM. pp. 212–224.

[31] Vásquez, M.L., McMillan, C., Poshyvanyk, D., Grechanik, M., 2014.
On using machine learning to automatically classify software appli-
cations into domain categories. Empir. Softw. Eng. 19, 582–618.

[32] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need, in:
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R.,
Vishwanathan, S.V.N., Garnett, R. (Eds.), Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pp. 5998–6008.

[33] Wan, Y., Shu, J., Sui, Y., Xu, G., Zhao, Z., Wu, J., Yu, P.S., 2019.
Multi-modal attention network learning for semantic source code re-
trieval, in: 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019, IEEE. pp. 13–25.

[34] Wang, S.I., Manning, C.D., 2012. Baselines and bigrams: Simple,
good sentiment and topic classification, in: The 50th Annual Meeting
of the Association for Computational Linguistics, Proceedings of the
Conference, July 8-14, 2012, Jeju Island, Korea - Volume 2: Short
Papers, The Association for Computer Linguistics. pp. 90–94.

[35] Wang, Y., Li, M., Ma, Z., Montúfar, G., Zhuang, X., Fan, Y., 2020.
Haar graph pooling, in: Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, PMLR. pp. 9952–9962.

[36] Yao, Z., Peddamail, J.R., Sun, H., 2019. Coacor: Code annotation for
code retrieval with reinforcement learning, in: Liu, L., White, R.W.,
Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L.
(Eds.), The World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019, ACM. pp. 2203–2214.

[37] Yin, P., Neubig, G., 2017. A syntactic neural model for general-
purpose code generation, in: Barzilay, R., Kan, M. (Eds.), Proceed-
ings of the 55th AnnualMeeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, Association for Computational Linguistics. pp.
440–450.

[38] Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019.
A novel neural source code representation based on abstract syntax
tree, in: Atlee, J.M., Bultan, T., Whittle, J. (Eds.), Proceedings of the
41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, IEEE / ACM. pp. 783–794.

Wenchao GU et al.: Preprint submitted to Elsevier Page 12 of 12

http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html

