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ABSTRACT
Deep attractor networks (DANs) perform speech separation with discriminative embeddings and
speaker attractors. Compared with methods based on the permutation invariant training (PIT), DANs
define a deep embedding space and deliver a more elaborate representation on each time-frequency
(T-F) bin. However, it has been observed that the DANs achieve limited improvement on the sig-
nal quality if directly deployed in a reverberant environment. Following the success of time-domain
separation networks on the clean mixture speech, we propose a time-domain DAN (TD-DAN) with
two-streams of convolutional networks, which efficiently perform both dereverberation and separation
tasks under the condition of a variable number of speakers. The speaker encoding stream (SES) of the
TD-DAN is trained to model the speaker information in the embedding space. The speech decoding
stream (SDS) accepts speaker attractors from the SES and learns to estimate early reflections from
the spectro-temporal representations. Meanwhile, additional clustering losses are used to bridge the
gap between the oracle and the estimated attractors. Experiments were conducted on the Spatialized
Multi-Speaker Wall Street Journal (SMS-WSJ) dataset. The early reflection was compared with the
anechoic and reverberant signals and then was chosen as the learning targets. The experimental results
demonstrated that the TD-DAN achieved scale-invariant source-to-distortion ratio (SI-SDR) gains of
9.79∕7.47 dB on the reverberant 2∕3-speaker evaluation set, exceeding the baseline DAN and con-
volutional time-domain audio separation network (Conv-TasNet) by 1.92∕0.68 dB and 0.91∕0.47 dB,
respectively.

1. Introduction
Speech signals captured by distant microphones often

present with reverberation, noise and multiple speakers, ren-
dering low speech intelligibility for human listeners. In such
situations, obtaining the single-speaker close-talk signal re-
quires the ability to perform dereverberation and source sep-
aration, with noise being viewed as a particular source.

Despite the great success of speech separation on clean
close-talk utterances, blind source separation remains chal-
lenging in a reverberant environment. Some researchers have
designedmore sophisticated network architectures by directly
mapping the reverberant signals to anechoic signals (Nach-
mani, Adi & Wolf (2020)Shi, Liu & Han (2020)). Some
studies have performed dereverberation and separation with
tandem systems, each part of which is designed for a single
task. The framework in (Nakatani, Takahashi, Ochiai, Ki-
noshita, Ikeshita, Delcroix & Araki (2020)) integrates deep
learning-based speech separation, statisticalmodel-based dere-
verberation and beamforming. Another study (Maciejewski,
Wichern, McQuinn & Roux (2019)) cascades networks to
learn different targets and outperforms the spectral mapping
from the reverberant mixture to the anechoic signal. Fan,
hua Tao, Liu, Yi & Wen (2020) proposed deep embedding
methods to capture the difference between the anechoic and
the residual reverberant signals, which inspired us to train
discriminative embeddings for both speaker separation and
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dereverberation under a unified architecture.
More recently, the time-domain audio separation network

(TasNet) has provided a novel separation scheme that works
on time-domain representations with a time-domain convo-
lutional encoder and decoder (Luo & Mesgarani (2018)).
The subsequent Conv-TasNet (Luo&Mesgarani (2019)) and
other works (Shi, Lin, Liu, Liu, Hayakawa & Han (2019);
Bahmaninezhad, Wu, Gu, Zhang, Xu, Yu&Yu (2019)) have
demonstrated significant separation performance that even
exceeds that of the ideal time-frequency (T-F) masks. The
classic Conv-TasNet uses permutation invariant training (PIT)
to generate enhanced signals from different speakers. On the
other hand, the deep attractor network (DAN) (Luo, Chen &
Mesgarani (2018)) presents another paradigm, which calcu-
lates the masks with deep embedding features. Compared
with PIT-based methods, the output of DAN forms a deep
embedding space and delivers a more elaborate representa-
tion on each T-F bin. However, the original DAN is trained
in the T-F domain under clean mixture signals, which limits
its performance and application under reverberant environ-
ments.

In this study, we propose a novel time-domainDAN (TD-
DAN) to simultaneously perform dereverberation and sepa-
ration tasks. The designed architecture consists of 2 parallel
streams, a speaker encoding stream (SES) for speaker em-
bedding modelling and a speech decoding stream (SDS) for
speech separation and dereverberation. The SES is trained
with a reconstruction loss and clustering losses, resulting in
speaker embeddings that are discriminative and suitable for
clustering. Moreover, the SDS serves as an inference mod-
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ule that first models the deep embeddings on the spectro-
temporal representations and then interacts with the SES to
generate enhanced signals. The proposed scheme makes the
following contributions:

• Different learning targets are compared using the clean
signal as the reference. We have demonstrated that
the early reflection is a favorable choice for models to
learn the mapping from reverberant mixtures to dere-
verberated single-speaker signals.

• The DAN is extended to the time domain with a two-
stream architecture, which generates the embeddings
defined on the spectro-temporal representations and
performs dereverberation and separation simultaneously.
On the 2/3-speaker evaluation (Eval.) set, the TD-
DAN achieved scale-invariant source-to-distortion ra-
tios (SI-SDRs) exceeding the DAN and Conv-TasNet
by 1.92∕0.68 dB and 0.91∕0.47 dB, respectively.

• Clustering losses are employed to bridge the gap be-
tween the oracle attractor and K-means clustering un-
der the reverberant environment.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly introduce the techniques related to the pro-
posed method. In Section 3, we describe the proposed TD-
DAN and the auxiliary clustering loss. Section 4 presents
and discusses the experimental results of the proposed meth-
ods. Section 5 concludes this work.

2. Related work
Previous work on far-field speech separation focused on

the following 3 issues: dereverberation, speech separation
and unified frameworks.

Dereverberation: Many algorithms have been proposed,
such as beamforming (Schwartz, Gannot & Habets (2016);
Kodrasi & Doclo (2017); Nakatani & Kinoshita (2019a))
and blind inverse filtering (Schmid, Malik & Enzner (2012);
Yoshioka & Nakatani (2012)), to address the dereverbera-
tion problem. The weighted prediction error (WPE) was de-
veloped under the paradigm of blind inverse filtering, which
rose to prominence in the REverberant Voice Enhancement
andRecognitionBenchmark (REVERB) challenge (Kinoshita,
Delcroix, Gannot, Habets, Haeb-Umbach, Kellermann, Leut-
nant, Maas, Nakatani, Raj, Sehr & Yoshioka (2016)). It
aims to minimize the prediction error by optimizing the de-
layed linear filters to eliminate the detrimental late rever-
beration (Nakatani, Yoshioka, Kinoshita, Miyoshi & Juang
(2010)). Deep neural networks (DNNs) have been used to
learn the spectral mapping from reverberant signals to ane-
choic signals (Geetha & AYATHRI (2017)). In practice,
mask estimation is preferred for its superior performance
compared with the spectral mapping (Wang, Narayanan &
Wang (2014)). Moreover, complex ideal ratiomasks (cIRMs)
are proposed to overcome the drawback that real-valuedmasks
cannot reconstruct the phase information of the target signal
(Williamson & Wang (2017)). Some researchers attempt to

combine DNNs with WPE by deep learning-based energy
variance estimation, leading to a non-iterative WPE algo-
rithm (Heymann, Drude, Haeb-Umbach, Kinoshita&Nakatani
(2019)).

Paradigms of speech separation: Most architectures
adopt 2 paradigms, PIT and embedding clustering-basedmeth-
ods. PIT (Kolbaek, Yu, Tan & Jensen (2017)) directly op-
timizes the reconstruction loss with possible permutations.
PIT can deal with the condition of variable speakers by itera-
tive separation (Takahashi, Parthasaarathy, Goswami&Mit-
sufuji (2019)), model selection (Nachmani et al. (2020)) or
assuming a maximum number of sources (Luo &Mesgarani
(2020)). Speaker clustering methods such as deep clustering
(DC) (Hershey, Chen, Roux &Watanabe (2016); qiu Wang,
Roux & Hershey (2018)) are trained to generate discrimi-
native deep embeddings on each T-F bin, and use cluster-
ing algorithms to obtain speaker assignment during the test
phase. The DAN is developed following DC, but it directly
optimizes the reconstruction of the spectrogram (Luo et al.
(2018)). DC and DANs can deal with a variable number of
speakers by setting the cluster number.

Learning objects of speech separation: Most previous
approaches have been formulated by predicting T-Fmasks of
the mixture signal. Commonly used masks are ideal binary
masks (IBMs), ideal ratio masks (IRMs) and Wiener filter-
like masks (WFMs) (Wang et al. (2014)). Some approaches
directly predict the spectrogram of each source (Du, Tu, Dai
& Lee (2016)). Both mask estimation and spectrum pre-
diction use the inverse short-time Fourier transform (iSTFT)
of the estimated magnitude spectrogram of each source to-
gether with the original or the modified phase. Recently,
TasNet have introduced a novel method of separating sig-
nals from the raw waveform. It utilizes 1-D convolutional
filters to encode the raw waveform and decode the generated
spectro-temporal representations. A speech separation mod-
ule accepts the representation and predicts source masks.
Unlike the fixed weights of the short-time Fourier transform
(STFT), TasNet learns the transformationweight by optimiz-
ing SI-SDRs between the estimated and target source sig-
nals.

Unified frameworks: Speech separation in a reverber-
ant environment is a difficult task by simultaneously address-
ing the dereverberation and separation problems. Some sys-
tems adopt algorithms in tandem, for example, the frame-
work in (Nakatani et al. (2020)) combines weighted power
minimization distortion-less response (WPD) (Nakatani &
Kinoshita (2019b)), noisy complex Gaussian mixture Model
(noisyCGMM) (Ito, Schymura, Araki & Nakatani (2018)),
and convolutional neural network (CNN)-based PIT. A purely
deep learning-based network is introduced for denoising and
dereverberation by learning the noise-free deep embeddings
firstly and then performingmask-based dereverberation (Fan
et al. (2020)). The Conv-TasNet achieved a low SI-SDR
to perform both the dereverberation and separation tasks,
compared with its performance on the clean WSJ0-2MIX
dataset (Maciejewski et al. (2019)). Some researchers have
designed sophisticated architectures andmodules to improve
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the performance (Nachmani et al. (2020)Shi et al. (2020)).
Zeghidour & Grangier (2020) proposes a clustering method
to capture the long-term representation, but the number of
speakers is fixed and the separation is conducted by feature-
wise linear modulation (Perez, Strub, Vries, Dumoulin &
Courville (2018)) instead of the similarity between deep em-
beddings.

3. Methods
In this section, we first formulate the problem and intro-

duce the baseline DAN and Conv-TasNet. Following the de-
sign of the speaker attractor and time convolutional network
(TCN), 2 types of two-stream TD-DANs are proposed, one
with hybrid encoders and another with fully time-domain
waveform encoders. Additionally, clustering losses are pro-
posed to improve the performance of the attractors obtained
by the K-means clustering algorithm.
3.1. Problem formulation

Assume that speech signals from K speakers are cap-
tured by a distant microphone in a noisy reverberant envi-
ronment. The captured signal is

y =
K
∑

k=1
y(k) + n =

K
∑

k=1
d(k) +

K
∑

k=1
r(k) + n, (1)

where n is the noise and y(k) is the reverberant source signal,
which is decomposed as d(k) representing the direct sound
and early reflection and r(k) representing the late reverbera-
tion. For simplicity, d(k) is referred to as the early reflection
in the rest of the paper. The STFT transforms the signal to
T-F representations, reformulating Eq.(1) as

yt,f =
K
∑

k=1
yk,t,f + nt,f =

K
∑

k=1
dk,t,f +

K
∑

k=1
rk,t,f + nt,f , (2)

with T frames, maximum frequency index F , frame index
t = 1, ..., T and frequency index f = 0, ..., F . The early
reflection dk,t,f and the late part rk,t,f are generated by con-
volution,

dk,t,f =
D−1
∑

�=0
ak,�,f sk,t−�,f , (3)

rk,t,f =
La−1
∑

�=D
ak,�,f sk,t−�,f , (4)

where ak,f = [ak,0,f , ak,1,f , ..., ak,La−1,f ] is the transfer func-tion with late reverberation starting from frame D and end-
ing at frame La for frequency f , and sk,t,f is the source sig-
nal for speaker k on bin t, f . As indicated in (Bradley, Sato
& Picard (2003)), the early reflections increase the speech
intelligibility scores for both impaired and non-impaired lis-
teners. Moreover, it is indicated in Section 5.1 that the early
reflection is a favorable learning target for networks to con-
duct the dereverberation and separation tasks. Thus, in this
study, dereverberation is to eliminate the late part rk,t,f .

Mixture
waveform

ᵆ�

LPS encoder
EncDAN

LPS

Embedding
generator

Embeddings
ᵈ�ᵆ�,ᵅ�

Masks
ᵅ�ᵆ�,ᵅ�
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Attractor
ᵈ�ᵅ�

LPS feature
ᵄ�ᵆ�,ᵅ�

Reconstruction
loss ᵃ�ᵅ�

Speaker
assignment

Waveform
ᵅ�ᵅ�

LPS decoder
DecDAN

LPS
Estimated
spectrum

Figure 1: The architecture of the DAN, where the attractor is
obtained by oracle assignment and K-means clustering in the
training and testing phases, respectively.

The ideal masks are defined in the T-F domain. The IRM
for speech separation only is expressed as

mIRM(sepr)
k,t,f =

|yk,t,f |
∑

k |yk,t,f | + |nt,f |
, (5)

where | ⋅ | is a modulus operation. In the reverberant envi-
ronment, the IRM for the dereverberated source k is defined
as

mIRM(sepr+derevb)
k,t,f =

|dk,t,f |
|yt,f − dk,t,f | + |dk,t,f |

, (6)

where the interference signal is obtained by removing the
early part of source dk,t,f , i.e., it includes both the late rever-beration of the target source and other interference signals.
Similarly, WFM is formulated as

mWFM(sepr)
k,t,f =

√

|yk,t,f |2
∑

k |yk,t,f |2 + |nt,f |2
, (7)

mWFM(sepr+derevb)
k,t,f =

√

|dk,t,f |2

|yt,f − dk,t,f |2 + |dk,t,f |2
. (8)

3.2. Baseline DAN and Conv-TasNet
Our TD-DAN is inspired by the design of the deep em-

bedding and TCN,which is originally proposed inDAN (Luo
et al. (2018)) and Conv-TasNet (Luo & Mesgarani (2019)),
respectively. We briefly introduce these 2 networks in this
section.
3.2.1. Deep attractor network

The attractor is a speaker embedding indicating speaker
information. As shown in Fig.1, the DAN accepts the log
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power spectrum (LPS) and generatesD-dimensional speaker
embeddings at,f ,
{at,f}t,f = DAN(EncLPSDAN(y)), (9)
where {⋅}{⋅} denotes the matrix form with subscripts rep-
resenting the axes and EncLPS{⋅} is the LPS feature extractor.
During training, the attractor vector ak for speaker k is ob-
tained by averaging over the T-F bins,

ak =
∑

t,f m
IBM
k,t,fvt,fat,f

∑

t,f m
IBM
k,t.fvt,f

, (10)

where vt,f ∈ {0, 1} denotes the absence/presence of speech
calculated by a threshold of power and mIBM

k,t,f is the binary
speaker assignment. Here, we use early reflections to calcu-
late mIBM

k,t,f :

mIBM
k,t,f =

{

0, if |dk,t,f | ⩽ ∑

q≠k |dq,t,f |
1, if |dk,t,f | > ∑

q≠k |dq,t,f |
, (11)

where at,f is expected to indicate the source information
and can be used to perform both separation and dereverber-
ation. During the testing phase, the attractors are obtained
by K-means clustering with prior knowledge of the number
of speakers,
{ak}k = KMeans({at,f |if vt,f = 1}). (12)
The masks are estimated with Sigmoid activation,
m̂MRM
k,t,f = Sigmoid(aTk at,f ), (13)

where ak ∈ ℝD×1 is the D-dimensional attractor of speaker
k. The DAN is trained byminimizing the reconstruction loss
for both separation and dereverberation,
Lr =

∑

k,t,f
(yt,f m̂MRM

k,t,f − dk,t,f )2. (14)

The optimization leads to an embedding pattern that the vec-
tors from the same speakers become more similar and those
from different speakers become more discriminative. How-
ever, due to yt,f ≠

∑

k dk,t,f , Eq.(14) may lead to perfor-
mance degradation in clustering, which can be relieved by
adding extra clustering losses (Section 3.4).
3.2.2. Conv-TasNet

Conv-TasNet is a fully convolutional time-domain audio
separation network, composed of a 1-D convolutional en-
coder, a separation module and a 1-D convolutional decoder.
Multiple sequential TCN blocks with various dilation factors
are stacked as the separation module. The fully convolu-
tional architectures result in a small-sized model. As plotted
in Fig.2, the encoder encodes the input mixture signal,
{yt,f}t,f = EncFreeTasNet(y), (15)

Mixture
waveform

ᵆ�

Free encoder
EncTasNet

Free

Spectro-temporal
representation

ᵄ�ᵆ�,ᵅ�

Separation
module

Free decoder
DecTasNet

Free

Masks
ᵅ�ᵅ� ,ᵆ� ,ᵅ�

TD

Waveform
ᵅ�ᵅ�

SI-SDR loss
ᵃ�SI − SDR

Estimated
spectro-temporal

representation

Figure 2: The architecture of Conv-TasNet, where the sep-
aration module generates masks {m̂k,t,f}k,t,f for a predefined
number of speakers.

where EncFree{⋅} is a 1-D time convolutional kernel and yt,f
is the spectro-temporal representation. We use “Free” to in-
dicate that the kernel parameters are learnable. The TCN-
based separation module is trained to predict masks,
{m̂TD

k,t,f}k,t,f = TCN({yt,f}t,f ), (16)

where m̂TD
k,t,f is the estimated mask defined on the spectro-

temporal representation. The decoder decodes the masked
spectro-temporal representation and generates the enhanced
waveforms,
{d̂k}k = DecFreeTasNet({yt,f m̂

TD
k,t,f}k,t,f ), (17)

where DecFreeTasNet is a 1-D time-domain kernel. Conv-TasNet
uses utterance-level PIT (uPIT) to optimize the SI-SDR (Kol-
baek et al. (2017)).
3.3. Time-domain deep attractor network

The TD-DAN has a two-stream architecture composed
of an SES for embedding modelling and an SDS for dere-
verberation and speaker extraction. We creatively separate
the task into 2 parts and jointly train the 2 streams with a
multi-task loss. We first describe the two-stream architec-
ture together with the hybrid waveform encoders and then
step into the fully time-domain encoders.
3.3.1. TD-DAN with hybrid encoders

As plotted in Fig.3, the SES is similar to the DAN net-
work, which accepts the LPS with EncLPSSES and calculates themasks with speaker embeddings and attractors. The whole
feed-forward procedure follows Eqs.(9)-(14).

The SDS models the input signal with a 1-D convolu-
tional encoder and stacked TCNs,
{et,f}t,f = TCN(EncFreeSDS(y)). (18)
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Figure 3: The architecture of TD-DAN, which is composed of an SES and an SDS. The waveform encoder of the SES can adopt
frequency-domain LPS transform, time-domain stacked STFT kernels or free kernels.

where et,f ∈ ℝE×1 is the E-dimensional high-level repre-
sentation. The SDS accepts the transformed attractor to cal-
culate themasks and finally generates the dereverberated and
separated signal,
m̂TD
k,t,f = ReLU((ak)T et,f ), (19)

d̂k = DecFreeSDS({m̂
TD
k,t,f et,f}t,f ), (20)

The model is trained to optimize a multi-task loss,
LTD-DAN = LSI-SDR + �rLr, (21)
where LSI-SDR is calculated by comparing dk with d̂k, �r isthe loss balance factor.

This TD-DAN is with hybrid encoders because the SES
is encoded by the STFT, while the SDS is encoded by a 1-D
convolutional encoder with free kernels. Nevertheless, it is
regarded as a time-domain DAN since it is trained to predict
waveforms directly.
3.3.2. TD-DAN with fully time-domain encoders

Here, we replace the waveform encoder EncLPSSES in the
TD-DAN SESwith time-domain convolutional kernels. The
problem is the definition of the IBMs in the spectro-temporal
representations, which are originally computed based on the
spectrogram (Eq.(11)). The time-domain SES encoder EncTDSESencodes the mixture signal into yt,f , formulated as
{yt,f}t,f = EncTDSES(y). (22)

By setting the magnitude of the signal as |yt,f |, its IBM is
formulated similarly,

mIBM
k,t,f =

{

0, if |EncTDSES(dk,t,f )| ⩽
∑

q≠k |EncTDSES(dq,t,f )|
1, if |EncTDSES(dk,t,f )| >

∑

q≠k |EncTDSES(dq,t,f )|
(23)

We introduce 2 time-domain kernels, namely, the stacked
time-domain STFT kernel and the free kernel :

1) The stacked STFT encoder EncSTFTSES : The STFT is split
into real and the imaginary parts with a stacked con-
volutional kernel expressed as follows,
Kcos
f [n] = w[n]cos(2�nf∕N), (24)

Ksin
f [n] = w[n]sin(2�nf∕N), (25)

KSTFT = [Kcos
0 , ...,Kcos

F−1,K
cos
F ,Ksin

1 , ...,Ksin
F−1], (26)

where F usually equals N∕2, columns of KSTFT are
1-D convolutional kernels, n is the sample index in
a convolutional kernel of size N , f = 0, 1, ..., F is
the kernel index corresponding to the frequency of
the STFT, andw is the pre-designed analysis window.
This kernel is different from STFT since it stacks real
and imaginary part of the spectrum, which can be con-
ducted with real-valued convolutional operations.
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Figure 4: The histogram of the IRM calculated on the clean
and reverberant multi-speaker mixtures. The clean mixture is
mixed with early reflections, while the reverberant mixture is
mixed with early and late reflections. The IRM is calculated
with Eq.(6).

2) The free convolutional encoder EncFreeSES : 1-D convolu-
tional kernel KFree is trained together with the whole
network.

The whole procedure with fully time-domain encoders
follows Fig.3, where the attractor is obtained by masks de-
fined by EncTDSES and is calculated by Eqs.(10)-(14); the dere-verberation and separation are conducted following Eqs.(18)-
(20). Speech presence vt,f is obtained by a threshold of the
magnitude of the spectro-temporal representations. The net-
work is trained to optimize the multi-task loss (Eq.(21)).
3.4. Auxiliary clustering loss

The reconstruction loss (Eq.(14)) indicates that the mask
will be near 1 if the T-F bin embeddings are close to the
speaker attractor, otherwise close to 0. The sparsity assump-
tion declares that the observed signal contains at most one
source on each T-F bin, which ensures the clustering perfor-
mance in the DAN since most embeddings are optimized so
that they are close to some attractor to achieve binary-like
masks. However, the reverberant signal may not follow the
sparsity assumption. The distribution of the IRM in the mix-
ture signal is plotted in Fig.4. Notably, approximately 20%
T-F bins have an IRMvalue larger than 0.95 in themixture of
early reflections, while in the reverberant signal, the percent-
age declines significantly to approximate 6%. The reason is
that the IRM of early reflections is the ratio of the target early
part to the interference early parts, while Eq.(6) is the ratio of
the target early reflection to the target late reverberation, the
interference early and late reverberation. The lack of high-
value T-F masks causes difficulty in embedding clustering.

To achieve a better clustering performance, we introduce
the clustering loss, including the concentration loss and the
discrimination loss. The concentration loss is designed for
all DAN-based models,
Lc =

∑

k,t,f
||ak − mIBM

k,t,fvt,fat,f ||
2
2. (27)

Attractor 1

Attractor 2

Concentration loss

Discrimination loss

Mask

Reconstruction loss

T-F bin embedding

Category plane

Figure 5: The diagram of the reconstruction loss and the clus-
tering loss. The arrows of the clustering losses represent the
optimization direction. The reconstruction loss with the mask
constrains the attractors and the T-F embeddings. The cate-
gory plane determines the dominated speaker on the embed-
ding.

Its gradient is

)Lc
at,f

=

⎧

⎪

⎨

⎪

⎩

−2(1 − 1
∑

t,f m
IBM
k,t,f vt,f

)(ak − at,f ), if mIBM
k,t,fvt,f = 1

0, if mIBM
k,t,fvt,f = 0

(28)
which enforces embedding at,f to be close to the attractor akwhen dominated by speaker k.

Another inter-class discrimination lossmaximizes the dis-
tance among different attractors,

Ld = max(0, l2d −
k≠q
∑

k,q
||ak − aq||22), (29)

where themaximumdistance ld is to avoid the network achiev-ing a large distance by generating attractors with large norms.
In fact, Eq.(14) includes the optimization of discrimination,
whereby the attractor distance will be enlarged if mMRM

t,f is
close to 0. The discrimination loss here is designed for free
convolutional kernelKFree in the SESwhere small |EncFreeSES(y)|may result in small Lr as well as the small inter-class dis-
tance. The training loss is updated to,
LTD-DAN = LSI-SDR + �rLr + �cLc + �dLd, (30)
where �c and �d are factors for the concentration and the
discrimination losses.

Fig.5 presents a diagram to illustrate different losses. The
intra-class concentration loss may conflict with Eq.(14) to
some degree, i.e., the loss pushes the embeddings concen-
trated around the attractors, which results in large-valued es-
timated masks and may lead to a suboptimal reconstruction
loss, which was observed on DAN as described in Section
5.2. For TD-DAN, the concentration loss might make the
output of KFree lose discrimination. But this problem will
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not occur on the TD-DAN with fixed SES encoders. Due
to the proposed 2-stream architecture, the clustering loss is
applied on the SES branch, while the time-domain signal re-
construction is conducted on the SDS branch by using the
attractors from the SES branch. The precision of the attrac-
tor plays an important role on the quality of the estimated
signals. In practice, the joint optimization of the reconstruc-
tion and the concentration loss leads to a narrowed perfor-
mance gap between the oracle and estimated attractors. The
detailed experiments will be presented in Section 5.3.2.

4. Experimental configuration
4.1. Dataset

The experiments were conducted on the SpatializedMulti-
Speaker Wall Street Journal (SMS-WSJ) (Drude, Heitkaem-
per, Böddeker & Haeb-Umbach (2019)). The performance
was evaluated on the test sets of the datasets. We used K-
means to obtain the attractor and 3 measurement methods,
SI-SDR, SDR andWER, to evaluate the performance. With-
out special annotation, the SI-SDR uses the corresponding
learning target as the reference signal (early reflections), the
SDR uses the clean signal as the reference signal, the sig-
nal was estimated by attractors from K-means clustering al-
gorithm. The measurement methods are also discussed in
detail in Section 5.1.

The SMS-WSJ dataset artificially spatialized and mixed
utterances taken from WSJ. The dataset was split into the
training, validation and test sets, which contained 33561,
982 and 1332 utterances, respectively. The room impulse
response (RIR) was randomly sampled with different room
sizes, array centers, array rotation, and source positions. The
sound decay time (T60) was sampled uniformly from 200
ms to 500 ms. The simulated 6-channel audios contained
early reflections (< 50ms), late reverberation (> 50ms), and
white noise. The start sample of the room impulse response
(RIR) was determined by finding the first sample which was
larger than the maximum divided by ten. The end of the
early part of the RIR was set to be 50 ms after the start
sample. The signal-to-interference ratio (SIR) and signal-
to-noise ratio (SNR) formixtures were randomly drawn from
−5 dB to 5 dB and from 20 dB to 30 dB, respectively. More-
over, we simulated a 3-speaker dataset as a more challeng-
ing task, which used the same RIRs and utterance split as
the SMS-WSJ dataset. The official automatic speech recog-
nition (ASR) system was used to evaluate the word error
rate (WER). In our experiments, we used only the first chan-
nel of the multi-channel signal. As demonstrated in Section
5.1, the networks were trained to map the reverberant multi-
speaker signal to early reflections.
4.2. Training settings

The experiments were conducted with Asteroid (Pari-
ente, Cornell, Cosentino, Sivasankaran, Tzinis, Heitkaem-
per, Olvera, Stöter, Hu, Martín-Doñas, Ditter, Frank, Dele-
forge & Vincent (2020)), an audio source separation toolkit
based on PyTorch (Paszke, Gross, Chintala, Chanan, Yang,

Table 1
The model architectures with TCN hyper-parameter
B∕H∕P∕X∕R, the embedding dimension of at,f∕et,f in the
SES/SDS, and default loss factor �r∕c∕d .

Hyper-params. DAN Conv-TasNet TD-DAN

B 128 128 128
H 512 512 512
P 3 3 3
X 4 8 8
R 4 4 1(SES) + 3(SDS)
a 20 − 20
e 20 − 20
�r 1.0 − 1.0
�c 0.05 − 1.0
�d 0.0 − 0.0
ld − −

√

5

Devito, Lin, Desmaison, Antiga&Lerer (2017)). We changed
theDANarchitecture from bi-directional long short-termmem-
ory (BLSTM) to TCN blocks, which allowed for fair com-
parison among different frameworks.

The two-stream TD-DAN was composed of the SES and
the SDS, which adopted the architecture corresponding to
the baseline DAN and Conv-TasNet, respectively. By fol-
lowing the hyper-parameter notations in (Luo & Mesgarani
(2019)), we list the architectures in Table 1, where all mod-
els repeated TCN blocks 4 times. The power threshold was
set to keep the top 15% bins of the mixture spectrogram.

We used the Adam optimizer (Kingma & Ba (2015))
with a learning rate starting from 10−3 and then halved if the
best validation model was not found within 3 epochs. The
maximum number of epochs was set to 50. The TD-DANs
were trained with 4-second segments and a batch size of 16.

5. Results and discussion
In this section, we will explore and discuss the perfor-

mance of TD-DANs. Our goal is to improve the model’s
separation and dereverberation ability in a reverberant envi-
ronment. The experiments will be presented in the following
4 parts. First, we think that a reasonable learning target can
ease the learning difficulty. Thus, choosing early reflections
as learning targets was demonstrated by comparing different
signals on the SMS-WSJ dataset. Second, DANs showed
different characteristics when deployed under the reverber-
ant environment. Thus, the model settings were adjusted in
terms of the losses and power thresholds. Third, the TD-
DAN model was explored by extending the DAN from the
T-F domain to the time domain where the SES encoder and
the clustering loss were studied in detail. Fourth, the TD-
DAN was tested under the condition of a variable number of
speakers and was compared with PIT-based multi-speaker
separation paradigms.
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Table 2
Comparison of different learning targets in terms of SI-SDR, SDR, PESQ and STOI mea-
surements, where the clean signal was used as the reference. The WER was measured
with the official ASR baseline.

Learning target SI-SDR (dB) SDR (dB) PESQ STOI WER (%)

Anechoic −15.04 49.15 4.53 1.00 6.38
Early −18.31 49.46 2.35 0.86 7.04
Reverberation −18.74 14.86 2.0 0.83 8.17

5.1. Learning target comparison
The SMS-WSJ dataset provided the original clean sig-

nal, early reflections and reverberant signals for each mix-
ture utterance. We simulated the anechoic signal addition-
ally. These signals were chosen as the learning targets to
demonstrate their difference. It was believed that the learn-
ing target should be close to the original clean signal and
easy to be learned for the deep learning-based model. Thus,
the comparison was conducted in 2 aspects, signal measure-
ment against the clean signal and training difficulty under
the baseline Conv-TasNet.

Table 2 compares different learning targets with the orig-
inal clean signal. Following messages were obtained:

• SI-SDRs were low for all learning targets due to the
convolution of the clean signal and the RIRs,
sreverberant/early/anechoic = sclean ∗ rir, (31)
where the convolution operator ∗ shifted and rescaled
the signal, while the SI-SDR is sensitive to the shift.

• Source-to-distortion ratio (SDR, Vincent, Gribonval
& Févotte (2006)) allows the target signal located in a
subspace spanned by the delayed version of clean sig-
nals. The filter length here was set to 512 (64ms with
sample rate 8000 Hz). The anechoic signals and early
reflections could perfectly match the projected clean
signal in the subspace. The reverberant signal, how-
ever, had a lower SDR since its RIR filter was longer
than 200 ms.

• The perceptual evaluation of subjective quality (PESQ,
Rix, Beerends, Hollier&Hekstra (2001)) and the short-
time objective intelligibility (STOI, Taal, Hendriks,
Heusdens & Jensen (2011)) were calculated based on
the power spectrum. On the one hand, the RIR length
of the anechoic signal was short. The convolution op-
erator mainly changed the phase in each frame. The
power spectra of the anechoic and clean signals were
nearly the same, resulting in the highest scores. On the
other hand, late reverberation caused “spectral smear-
ing” (Maciejewski et al. (2019)), resulting in the low-
est scores.

• WER is another objective measurement. Our acous-
tic model was trained using reverberant single-speaker
signals following the baseline of SMS-WSJ.We found
that the anechoic signal achieved the best performance,

Table 3
The performance of Conv-TasNet by using different learning
targets. The “SI-SDR” was calculated by comparing the esti-
mated signal with the learning targets. The “SDR” was calcu-
lated by comparing the estimated signal with the clean signal.

Learning target SI-SDR (dB) SDR (dB) WER (%)

Anechoic 5.25 7.36 45.09
Early 8.04 9.39 36.01
Reverberant 9.28 8.39 37.38

0.66% and 1.79% lower than early and reverberant sig-
nals, respectively.

In conclusion, the early reflections could achieve a sim-
ilar SDR and a slightly higher WER than the anechoic sig-
nal. The SI-SDR, PESQ and STOI were sensitive to distor-
tions caused by the time-invariant filters. However, the deep
learning-based model needed a loss function to learn the sig-
nal mapping. The SI-SDR was easy to implement. It rep-
resented the similarity between the estimated signal and the
training target. Thus, we chose 3measurement methods: SI-
SDR, SDR andWER. In the rest of the paper, without special
annotations, the SI-SDRuses the corresponding learning tar-
get as the reference signal, the SDR uses the clean signal as
the reference signal. In most experiments, we tested only the
SI-SDRs to evaluate the performance of the models quickly.

Table 3 indicates that learning the mask from the rever-
berant signal to the early reflection was a preferred choice.
The early reflection made the estimated signals have high
signal quality (SDR: 9.39 dB) and relatively low ASR error
(WER: 36.01%). Since the acoustic model (AM)was trained
on the reverberant signals, the highWER indicated that time-
domain mapping introduced much distortion, which was un-
seen for the AM. Early reflections were chosen as the learn-
ing target for models to perform both separation and dere-
verberation tasks.
5.2. Exploring DANs in a reverberant

environment
The DAN was evaluated to perform both separation and

dereverberation tasks (Table 4). The performance of the
DAN surpassed that of the Conv-TasNet in a small-sizemodel
setting (X = 4 here instead of X = 8). Adding the concen-
tration loss narrowed the performance gap between K-means
clustering and oracle attractor. However, as we have stated
in Section 3.4, the concentration loss resulted in a subop-
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Figure 6: Visualization of embedding features from DAN models with different power thresholds (top N% T-F bins) and Lc =
0.0∕1.0.

Table 4
Experiments on DAN models with various hop size (ms) and
power percentages (top N% T-F bins). The hop size was
set as the half of the window size. The performance of the
oracle attractor (Oracle) is also listed. All models employed
R(4) ×X(4) ×H(512) TCN blocks.

Model Hop size Top N% SI-SDR (dB)
(ms) bins K-means Oracle

Conv-TasNet - - 6.58
DAN (w/o Lc) 16 50 6.51 6.96
DAN (w/ Lc) 16 50 6.77 6.77

DAN (w/ Lc) 32 50 6.92 6.97
DAN (w/ Lc) 64 50 6.22 6.23
DAN (w/ Lc) 8 50 6.03 6.05

DAN (w/ Lc) 32 15 6.95 6.98
DAN (w/ Lc) 32 90 6.76 6.97

timal model with a lower signal measurement under oracle
attractors (w/o Lc : 6.96 dB vs w/ Lc : 6.77 dB).

Thewindow settings and power percentagewere tuned to
be a hop size of 32ms and the top 15% T-F bins. The embed-
ding features are visualized in Fig.6. According to Figs.6(a)-
(b), the concentration loss concentrated the embeddings into
a more compact pattern, resulting in higher SI-SDRs for the
attractors calculated by K-means clustering. Since the late
reverberation usually exhibited lower energy than the early
reflections, lowering the power thresholds excluded the em-
beddings generated by late reverberation (Figs.6(b)-(d)). A
more accurate attractor was obtained by aggregating more
embeddings from the T-F bins dominated by early reflec-
tions.
5.3. Exploring TD-DANs in a reverberant

environment
5.3.1. Extending DAN to TD-DAN

The 1st part of Table 5 displays the results of our baseline
models, Conv-TasNet and DAN. The Conv-TasNet achieved
an SI-SDR of 8.04 dB, 1.21 dB better than that of the DAN
on the Eval. set. Compared with Table 4, the performance of
Conv-TasNet was vastly improved after increasing the con-
volutional layer number (X = 8). The reason might be that
the deep model benefit the time-domain modelling and had
a larger reception field, which helped the model to conduct

Table 5
Experiments on TD-DAN models under different hop sizes,
SES encoders and architectures. The hop size of the SES was
set to the half of the window size. The default architecture
settings for models were R(4) × X(8) × H(512) TCN blocks.
The DANs/TD-DANs were trained with a combination of the
losses (�r∕�c∕�d = 1.0∕1.0∕0.0 for the LPS and STFT en-
coders, �r∕�c∕�d = 1.0∕1.0∕1.0 for the free encoders). The
SES and SDS had 1 and 3 TCN blocks, respectively. TD-DAN
(1-stream) merged the SES and SDS module into 1 stream,
whose input and output are the concatenated features of the
ones of the SES and the SDS.

Model SES SI-SDR (dB)Encoder Hop size (ms)

Conv-TasNet (X = 4) - - 6.58
Conv-TasNet - - 8.04
DAN (X = 4) LPS 32 6.95
DAN LPS 32 6.83

TD-DAN LPS 32 7.97
TD-DAN LPS 1 8.37
TD-DAN LPS 2 8.44
TD-DAN LPS 4 8.37
TD-DAN STFT 2 8.69
TD-DAN Free 2 8.08

TD-DAN
(1-stream) STFT 1 8.22

dereverberation and separation tasks. The DAN model did
not exhibit performance improvement due to its large win-
dow size and the T-F domain representation.

The TD-DAN was designed following the architectures
of DAN and TasNet. As listed in the 2nd part of Table 5, the
TD-DAN gave an SI-SDR of 7.97 dB with the LPS encoder
combined with the SDS, slightly lower than the SI-SDRs
of Conv-TasNet. Since the deep embeddings from the SDS
branch were from the time domain with a small hop size, the
model could achieve better performance by eliminating the
mismatch between the attractors and the time-domain em-
beddings. The TD-DAN could achieve an SI-SDR of 8.53
dB by setting the hop size to 2ms and using STFT encoders.
Predefined SES encoders were a preferred choice in the task
as the free encoder achieved an SI-SDR of only 8.08 dB.

As listed in the 3rd part of Table 5, the TD-DAN was
compared with the 1-stream model. The 1-stream TD-DAN
accepted the concatenated features from the SES and SDS
encoders and then processed the representation with the 1-
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Figure 7: Enhanced spectra with different models under the 2-speaker condition. The enhanced spectra from (b) DAN model and
(c) SES branch in TD-DAN exhibited low signal quality but they performed both the dereverberation and separation tasks (yellow
boxes). Compared with (e) Conv-TasNet, (f) SDS branch in TD-DAN achieved a better performance in removing interference
signals (orange boxes) and preserving the target signals (red boxes).

Table 6
The SI-SDR (dB) results of TD-DAN models with STFT/free
SES encoders.

Lr Lc Ld
STFT Free

K-means Oracle K-means Oracle

✓ 7 7 8.47 8.95 6.86 8.47
✓ ✓ 7 8.69 8.94 7.30 8.23
7 ✓ ✓ 7.74 8.14 7.93 8.30
✓ ✓ ✓ 7.86 8.21 8.08 8.42

stream TCN model. The generated deep embeddings were
split into SES and SDS parts. The SI-SDR of the 1-stream
model was 0.47 dB lower than that of the best TD-DAN,
implying the effectiveness of using 2 separate modules for
different embeddings.

Fig.7 plots the enhanced STFT spectra estimated by dif-
ferent models. The DAN and the SES branch could perform
dereverberation tasks (Figs.7(a)-(c)). However, the spectrum
reconstruction exhibited lower signal quality than the early
reflections and the one from the time-domain Conv-TasNet.
The TD-DANachieved better performance by removingmore
interference signals and preserving the target speech (Figs.7(d)-
(f)).
5.3.2. Analysis of the clustering loss

An ablation study was conducted to validate the effec-
tiveness of the clustering loss with the stacked STFT and
free SES encoders (Table 6). For STFT encoders, the con-
centration loss helped the embedding much more concen-
trated, resulting in a smaller gap of the oracle attractors and
the ones from K-means (Oracle: 0.48 dB vs K-means: 0.25
dB). The concentration loss made a little effect on the perfor-
mance under the oracle attractors since the SDS branch only
needed the estimated attractors. We observed a performance
degradation by replacing the reconstruction loss with the dis-

crimination loss (Lc + Lr: 8.69 dB vs Lc + Ld : 7.74 dB).
The reconstruction loss here played the role of enlarging the
inter-class distance implicitly by constraining the estimated
masks. Yet the discrimination loss delivered a more straight-
forward way. It was thought that the reconstruction loss was
preferred since it offered more detailed distance information
with the reconstructed masks. The discrimination loss was
unnecessary here as the reconstruction loss already provided
considerable inter-class distance in our observation. Apply-
ing all the 3 losses led to performance degradation since the
discrimination loss might change the optimal pattern of the
embeddings with the fixed STFT encoders.

For free encoders, the concentration helped the cluster-
ing process. Meanwhile, it made the SES encoder generate
representations less discriminative, whichmight explain per-
formance degradation on the oracle attractors (Lr: 8.47 dB
vs Lc + Lr: 8.23 dB). This phenomenon was not observed
on the STFT encoder because the STFT weights were fixed
and covered the whole frequencies. The discrimination loss
delivered a narrow gap of the SI-SDRs between the oracle at-
tractor and K-means. The reason was that the reconstruction
loss could be lowered by generating small-valued spectro-
temporal representations, as indicated in Eq.(14). The dis-
crimination loss and the concentration loss explicitly opti-
mized the inter- and intra-class distance, forcing the network
to generate embeddings easy to perform clustering. Com-
bining all the 3 losses offered a slight performance improve-
ment, where both the clustering loss and the reconstruction
loss assisted the free encoders in forming the pattern of the
deep embeddings.
5.4. Exploring TD-DANs with a variable number

of speakers
The merit of the TD-DAN is that it can deal with mix-

ture signals with variable numbers of speakers. To validate
this feature, we further trained the DAN/TD-DAN on 2 and
3-speaker datasets. Besides, approximate 10% samples were
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Table 7
Performance measurement of SI-SDR/SDR/WER under 1-, 2- and 3-speaker conditions.
“1/2/3” means that we trained 1-, 2- and 3-speaker Conv-TasNet on the 1-, 2- and 3-
speaker dataset individually.

Model Training set 1 speaker 2 speakers 3 speakers
Speaker # SI-SDR(dB) SDR(dB) WER(%) SI-SDR(dB) SDR(dB) WER(%) SI-SDR(dB) SDR(dB) WER(%)

DAN 2 12.75 15.43 11.06 6.95 8.42 47.08 −0.50 0.05 80.87
DAN 1+2+3 12.93 15.68 10.62 7.03 8.24 48.18 3.02 3.86 76.94
TD-DAN 2 14.25 16.74 11.38 8.69 9.90 35.57 0.20 0.83 77.56
TD-DAN 1+2+3 14.64 17.08 9.00 8.95 10.22 33.03 3.70 4.82 66.04

Conv-TasNet 1/2/3 14.53 16.89 9.38 8.04 9.31 36.01 3.23 4.29 70.96
A2PIT 1+2+3 13.89 16.52 9.14 8.01 9.33 36.30 2.36 3.34 76.05
ORPIT 1+2+3 13.64 16.27 9.20 9.20 9.10 37.95 2.91 4.26 67.73

Mixture - 11.75 14.52 8.90 −0.84 −0.41 78.36 −3.77 −3.37 91.46
IRM(Eq.(5)) - - - - 8.61 10.25 8.63 7.20 8.62 9.21
IRM(Eq.(6)) - 15.30 17.72 7.77 10.53 11.69 7.52 8.69 9.69 7.90
WFM(Eq.(7)) - - - - 8.37 9.84 8.70 6.94 8.17 9.16
WFM(Eq.(8)) - 15.19 18.02 7.74 10.27 11.37 7.74 8.44 9.32 7.79

chosen as the 1-speaker condition, i.e., the input and learn-
ing target were 1-speaker reverberant signals and early re-
flections, respectively. The experiment results are listed in
the 1st part of Table 7. The DAN/TD-DAN only trained on
the 2-speaker dataset could deal with 1-speaker reverberant
signals and 3-speaker mixture signal with SI-SDR gains of
1.00∕2.50 dB and 3.27∕3.97 dB compared with the reverber-
ant input signals, respectively. After trained on the concate-
nated dataset, the DAN/TD-DAN achieved higher SI-SDR
gains of 1.18∕2.89 dB, 7.87∕9.79 dB and 6.79∕7.47 dB on
the 1-, 2- and 3-speaker datasets, respectively.

We compared the TD-DAN with PIT-based models un-
der the condition of a variable number of speakers, includ-
ing individual Conv-TasNet trained on the 1-/2-/3-speaker
datasets, trained with auxiliary autoencoding permutation
invariant training (A2PIT, Luo&Mesgarani (2020)) and trained
with one-and-rest permutation invariant training (ORPIT, Taka-
hashi et al. (2019)). The output of the ORPIT was the single-
speaker early reflection and the mixture of the residual rever-
berant signals. It neededK iteration to estimate early reflec-
tions from K speakers, while other models could output the
estimated early reflections in 1 pass. In most cases, the indi-
vidually trainedConv-TasNet obtained the best performance.
The ORPIT presented a large gap between the SI-SDR and
the SDR and a lower WER. The reason might be that the
signal shift might occur when the early reflection was ob-
tained based on the estimated reverberant mixture. The low
WER indicated that iterative separation could preserve more
speech details than the Conv-TasNet on the 3-speaker condi-
tion.

It was observed that the TD-DAN could achieve the best
performance, surpassing Conv-TasNet/A2PIT/ORPIT by an
SDR of 0.47∕1.34∕0.79 dB on the 3-speaker dataset. All
models exhibited speech distortion, resulting in high WERs
tested on theAM trained only on the reverberant signals. The
TD-DAN model achieved the lowest WERs by preserving
more speech cues on the spectrum, presented in Fig.7.

The performance of idealmasks is listed in the 3rd part of
Table 7. The SI-SDR gap of 4.99 dB between IRM (Eq.(6))

and the TD-DAN on the 3-speaker dataset indicates that per-
formingmulti-speaker separation and dereverberation remains
a challenging task.

6. Conclusion
In this paper, we explored a framework of TD-DANs for

speech separation tasks in a reverberant environment. We
used different waveform encoders, including the LPS en-
coder, the stacked STFT and free convolutional kernels. The
experimental results implied that the TD-DANwith the stacked
STFT encoder achieved the best performance, surpassing the
baseline Conv-TasNet and DAN model in terms of SI-SDR,
SDR and WER on the 1-, 2- and 3-speaker dataset. We
anticipate further exploring the TD-DAN architecture with
the multi-channel information for better dereverberation and
separation in future work.

Acknowledgment
This work is partially supported by the Strategic Prior-

ity Research Program of Chinese Academy of Sciences (No.
XDC08010300), the National Natural Science Foundation
of China (Nos. 11590772, 11590774, 11590770, 11774380).

References
Bahmaninezhad, F., Wu, J. Y., Gu, R., Zhang, S.-X., Xu, Y., Yu, M., & Yu,

D. (2019). A comprehensive study of speech separation: spectrogram
vs waveform separation. In INTERSPEECH.

Bradley, J. S., Sato, H., & Picard, M. (2003). On the importance of early
reflections for speech in rooms. The Journal of the Acoustical Society of
America, 113 6, 3233–44.

Drude, L., Heitkaemper, J., Böddeker, C., & Haeb-Umbach, R.
(2019). Sms-wsj: Database, performance measures, and baseline
recipe for multi-channel source separation and recognition. ArXiv,
abs/1910.13934.

Du, J., Tu, Y., Dai, L.-R., & Lee, C.-H. (2016). A regression approach
to single-channel speech separation via high-resolution deep neural net-
works. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 24, 1424–1437.

Hangting Chen et al.: Preprint submitted to Elsevier Page 11 of 12



Time-domain deep attractor network

Fan, C., hua Tao, J., Liu, B., Yi, J., & Wen, Z. (2020). Simultaneous
denoising and dereverberation using deep embedding features. ArXiv,
abs/2004.02420.

Geetha, K., & AYATHRI (2017). Learning spectral mapping for speech
dereverberation and denoising.

Hershey, J. R., Chen, Z., Roux, J. L., & Watanabe, S. (2016). Deep cluster-
ing: Discriminative embeddings for segmentation and separation. 2016
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), (pp. 31–35).

Heymann, J., Drude, L., Haeb-Umbach, R., Kinoshita, K., & Nakatani, T.
(2019). Joint optimization of neural network-based wpe dereverberation
and acoustic model for robust online asr. ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), (pp. 6655–6659).

Ito, N., Schymura, C., Araki, S., & Nakatani, T. (2018). Noisy cgmm:
Complex gaussian mixture model with non-sparse noise model for joint
source separation and denoising. 2018 26th European Signal Processing
Conference (EUSIPCO), (pp. 1662–1666).

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980.

Kinoshita, K., Delcroix, M., Gannot, S., Habets, E. A. P., Haeb-Umbach, R.,
Kellermann, W., Leutnant, V., Maas, R., Nakatani, T., Raj, B., Sehr, A.,
&Yoshioka, T. (2016). A summary of the reverb challenge: state-of-the-
art and remaining challenges in reverberant speech processing research.
EURASIP Journal on Advances in Signal Processing, 2016, 1–19.

Kodrasi, I., & Doclo, S. (2017). Evd-based multi-channel dereverbera-
tion of a moving speaker using different retf estimation methods. 2017
Hands-free Speech Communications and Microphone Arrays (HSCMA),
(pp. 116–120).

Kolbaek, M., Yu, D., Tan, Z.-H., & Jensen, J. (2017). Multitalker speech
separation with utterance-level permutation invariant training of deep
recurrent neural networks. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 25, 1901–1913.

Luo, Y., Chen, Z., & Mesgarani, N. (2018). Speaker-independent speech
separation with deep attractor network. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 26, 787–796.

Luo, Y., & Mesgarani, N. (2018). Tasnet: Surpassing ideal time-frequency
masking for speech separation.

Luo, Y., & Mesgarani, N. (2019). Conv-tasnet: Surpassing ideal time-
frequency magnitude masking for speech separation. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 27, 1256–1266.

Luo, Y., & Mesgarani, N. (2020). Separating varying numbers of sources
with auxiliary autoencoding loss. In INTERSPEECH.

Maciejewski, M., Wichern, G., McQuinn, E., & Roux, J. L. (2019).
Whamr!: Noisy and reverberant single-channel speech separation.
ArXiv, abs/1910.10279.

Nachmani, E., Adi, Y., & Wolf, L. (2020). Voice separation with an un-
known number of multiple speakers. In ICML.

Nakatani, T., & Kinoshita, K. (2019a). Maximum likelihood convolutional
beamformer for simultaneous denoising and dereverberation. 2019 27th
European Signal Processing Conference (EUSIPCO), (pp. 1–5).

Nakatani, T., &Kinoshita, K. (2019b). A unified convolutional beamformer
for simultaneous denoising and dereverberation. IEEE Signal Process-
ing Letters, 26, 903–907.

Nakatani, T., Takahashi, R., Ochiai, T., Kinoshita, K., Ikeshita, R., Del-
croix, M., & Araki, S. (2020). Dnn-supported mask-based convolutional
beamforming for simultaneous denoising, dereverberation, and source
separation. In ICASSP 2020.

Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., & Juang, B.-H.
(2010). Speech dereverberation based on variance-normalized delayed
linear prediction. IEEE Transactions on Audio, Speech, and Language
Processing, 18, 1717–1731.

Pariente, M., Cornell, S., Cosentino, J., Sivasankaran, S., Tzinis, E.,
Heitkaemper, J., Olvera, M., Stöter, F.-R., Hu, M., Martín-Doñas, J. M.,
Ditter, D., Frank, A., Deleforge, A., & Vincent, E. (2020). Asteroid: the
PyTorch-based audio source separation toolkit for researchers. In Proc.
Interspeech.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., Devito, Z., Lin, Z.,

Desmaison, A., Antiga, L., &Lerer, A. (2017). Automatic differentiation
in pytorch.

Perez, E., Strub, F., Vries, H. D., Dumoulin, V., & Courville, A. C.
(2018). Film: Visual reasoning with a general conditioning layer. ArXiv,
abs/1709.07871.

Rix, A., Beerends, J., Hollier, M., & Hekstra, A. P. (2001). Perceptual
evaluation of speech quality (pesq)-a new method for speech quality as-
sessment of telephone networks and codecs. 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No.01CH37221), 2, 749–752 vol.2.

Schmid, D., Malik, S., & Enzner, G. (2012). An expectation-maximization
algorithm for multichannel adaptive speech dereverberation in the
frequency-domain. 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), (pp. 17–20).

Schwartz, O., Gannot, S., & Habets, E. A. P. (2016). Joint maximum likeli-
hood estimation of late reverberant and speech power spectral density in
noisy environments. 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), (pp. 151–155).

Shi, Z., Lin, H., Liu, L., Liu, R., Hayakawa, S., & Han, J. (2019).
Furcax: End-to-end monaural speech separation based on deep gated
(de)convolutional neural networks with adversarial example training.
ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), (pp. 6985–6989).

Shi, Z., Liu, R., & Han, J. (2020). Lafurca: Iterative refined speech separa-
tion based on context-aware dual-path parallel bi-lstm.

Taal, C., Hendriks, R., Heusdens, R., & Jensen, J. (2011). An algorithm for
intelligibility prediction of time–frequencyweighted noisy speech. IEEE
Transactions on Audio, Speech, and Language Processing, 19, 2125–
2136.

Takahashi, N., Parthasaarathy, S., Goswami, N., & Mitsufuji, Y. (2019).
Recursive speech separation for unknown number of speakers. ArXiv,
abs/1904.03065.

Vincent, E., Gribonval, R., & Févotte, C. (2006). Performance measure-
ment in blind audio source separation. IEEE Transactions on Audio,
Speech, and Language Processing, 14, 1462–1469.

Wang, Y., Narayanan, A., & Wang, D. (2014). On training targets for su-
pervised speech separation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22, 1849–1858.

qiu Wang, Z., Roux, J. L., & Hershey, J. R. (2018). Alternative objective
functions for deep clustering. 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), (pp. 686–690).

Williamson, D. S., & Wang, D. (2017). Time-frequency masking in the
complex domain for speech dereverberation and denoising. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 25, 1492–
1501.

Yoshioka, T., & Nakatani, T. (2012). Generalization of multi-channel linear
prediction methods for blind mimo impulse response shortening. IEEE
Transactions on Audio, Speech, and Language Processing, 20, 2707–
2720.

Zeghidour, N., & Grangier, D. (2020). Wavesplit: End-to-end speech sep-
aration by speaker clustering. ArXiv, abs/2002.08933.

Hangting Chen et al.: Preprint submitted to Elsevier Page 12 of 12


