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Abstract

The time-accurate prediction of a chaotic system is challenging because its evolution becomes unpredictable
after the predictability time. This is because infinitesimal errors in a chaotic system increase exponen-
tially, i.e., two nearby time series diverge from each other. An approach to the time-accurate prediction
of chaotic solutions is by learning temporal patterns from data. Echo State Networks (ESNs), which are a
class of Reservoir Computing, can accurately predict the chaotic dynamics well beyond the predictability
time. Existing studies, however, also showed that small changes in the hyperparameters may markedly
affect the network’s performance. The overarching aim of this paper is to assess and improve the robust-
ness of Echo State Networks for the time-accurate prediction of chaotic solutions. The goal is three-fold.
First, we investigate the robustness of routinely used validation strategies. Second, we propose the Recycle
Validation, and the chaotic versions of existing validation strategies, to specifically tackle the forecasting
of chaotic systems. Third, we compare Bayesian optimization with the traditional Grid Search for optimal
hyperparameter selection. Numerical tests are performed on two prototypical nonlinear systems that have
both chaotic and quasiperiodic solutions. Both model-free and model-informed Echo State Networks are
analysed. By comparing the network’s robustness in learning chaotic (unpredictable) versus quasiperiodic
(predictable) solutions, we highlight fundamental challenges in learning chaotic solutions.

The proposed validation strategies, which are based on the dynamical systems properties of chaotic
time series, are shown to outperform the state-of-the-art validation strategies. Because the strategies are
principled—they are based on chaos theory such as the Lyapunov time—they can be applied to other
Recurrent Neural Networks architectures with little modification. This work opens up new possibilities
for the robust design and application of Echo State Networks, and Recurrent Neural Networks, to the
time-accurate prediction of chaotic systems.

Keywords: Chaotic dynamical systems, Reservoir Computing, Robustness

1. Introduction

Chaotic systems naturally appear in many branches of science and engineering, from turbulent flows [e.g.,
1, 2, 3], through vibrations [4], electronics and telecommunications [5], quantum mechanics [6], reacting
flows [7, 8], to epidemic modelling [9], to name only a few. The time-accurate computation of chaotic
systems is hindered by the “butterfly effect” [10]: an error in the system’s knowledge—e.g, initial conditions
and parameters—grows exponentially until nonlinear saturation. Practically, it is not possible to time-
accurately predict chaotic solutions after a time scale, known as the predictability time. The predictability
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time scales with the inverse of the dominant Lyapunov exponent, which is typically a small characteristic
scale of the system under investigation [2].

An approach to the prediction of chaotic dynamics is data-driven. Given a time series (data), we wish
to learn the underlying chaotic dynamics to predict the future evolution. The data-driven approach, also
known as model-free, traces back to the delay coordinate embedding by Takens [11], which is widely used
in time series analysis, in particular, in low-dimensional systems [12]. An alternative data-driven approach
to inferring (or, equivalently, learning) chaotic dynamics from data is machine learning. Machine learning
is establishing itself as a paradigm that is complementary to first-principles modelling of nonlinear systems
in computational science and engineering [13]. In the realm of neural networks, which is the focus of this
paper, the feed-forward neural network is the archetypical architecture, which may excel at classification
and regression problems [14]. The feed-forward neural network, however, is not the optimal architecture
for chaotic time series forecasting because it not designed to learn temporal correlations. Specifically, in
time series forecasting, inputs and outputs are ordered sequentially, in other words, they are temporally
correlated. To overcome the limitations of feed-forward neural networks, Recurrent Neural Networks (RNNs)
[15] have been designed to learn temporal correlations. Examples of successful applications span from speech
recognition [16], through language translation [17], fluids [18, 19, 20, 21, 22], to thermo-acoustic oscillations
[23], among many others. RNNs take into account the sequential nature of the inputs by updating a
hidden time-varying state through an internal loop. As a result of the long-lasting time dependencies of the
hidden state, however, training RNNs with Back Propagation Through Time [24] is notoriously difficult.
This is because the repeated backwards multiplication of intermediate gradients cause the final gradient to
either vanish or become unbounded depending on the spectral radius of the gradient matrix [? 25]. This
makes the training ill-posed, which may negatively affect the computational of the optimal set of weights.
To overcome this problem, two main types of RNN architectures have been proposed: Gated Structures
and Reservoir Computing. Gated Structures prevent gradients from vanishing or becoming unbounded by
regularizing the passage of information inside the network, as accomplished in architectures such as Long
Short-Term Memory (LSTM) networks [26] and Gated Recurrent Units (GRU) networks [27]. Alternatively,
in Reservoir Computing (RC) [28, 29], a high-dimensional dynamical system, the reservoir, acts both as a
nonlinear expansion of the inputs and as the memory of the system [30]. At each time step, the output is
computed as a linear combination of the reservoir state’s components, the weights of which are the only
trainable parameters of the machine. Training is, therefore, reduced to a linear regression problem, which
bypasses the issue of repeated gradients multiplication in RNNs.

In chaotic attractors, Reservoir Computing has been employed to achieve at least four different goals: to
(i) learn ergodic properties, such as Lyapunov exponents [31, 32] and statistics [31, 23]; (ii) filter out noise to
recover the deterministic dynamics [33], (iii) reconstruct unmeasured (hidden) variables [34, 35, 36] and (iv)
time-accurately predict the dynamics [37, 38, 39]. In this work, we focus on the time-accurate short term
prediction of chaotic attractors. A successful Reservoir Computing architecture is the Echo State Network
(ESN) [28], which is a universal approximator [40, 41] suitable for the prediction of chaotic time series [37].
There are two broad categories of Echo State Networks: model-free [37, 30] and model-informed [42, 38].
On the one hand, in model-free ESNs, which are the original networks, the training is performed on data
only [30]. On the other hand, in model-informed ESNs, the governing equations, or a reduced-order form
of them, are embedded in the architecture, for example, in the reservoir in hybrid ESNs [42], or in the
loss function in physics-informed ESNs [38] . In chaotic time series forecasting, model-informed ESNs typ-
ically outperform model-free ESNs [42, 38, 39]. Both model-free and model-informed Echo State Networks
perform as well as LSTMs and GRUs, requiring less computational resources for training [43, 44]. The
robustness of ESNs for chaotic time series, however, has not been fully investigated yet, which motivates the
overarching objective of this study. Two key aspects may affect ESN robustness. The first aspect is random
the initialization, which is required to create the reservoir [30]. Networks with different initializations may
perform substantially differently, even after hyperparameter tuning [45]. For an ESN to be robust, network
testing through an ensemble of network realizations is required. The second aspect is high hyperparameter
sensitivity [30, 46]. The most common validation strategy to compute the hyperparameters for learning
chaotic dynamics is the Single Shot Validation, which minimizes the error in an interval subsequent to the
training interval. Other validation strategies have been investigated, such as the Walk Forward Validation
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and the K-Fold cross Validation [47], but this study was restricted to non-chaotic systems. The computation
of the optimal set of hyperparameters is typically performed by Grid Search [28, 21, 42, 37], although other
optimization strategies such as Evolutionary Algorithms [48, 49], Stochastic Gradient Descent [50], Particle
Swarm Optimization [51] and Bayesian Optimization [52] have been proposed. In particular, Bayesian Opti-
mization (BO) has proved to improve the performance of reservoir-computing architectures in the prediction
of chaotic time series, outperforming the commonly used Grid Search strategy [53]. Bayesian Optimization
is a gradient-free search strategy, thereby, it is less sensitive to local minima with respect to gradient descent
methods [52, 50]. Moreover, Bayesian Optimization is based on Gaussian Process (GP) regression [54],
therefore, it naturally quantifies the uncertainty on the computation.

The objective of this paper is three-fold with a focus on learning chaotic dynamics from data. First,
we investigate the robustness of the Single Shot Validation, Walk Forward Validation and the K-Fold cross
Validation. Second, we propose the Recycle Validation and the chaotic version of existing validation strate-
gies to specifically tackle the forecasting of chaotic systems. Third, we analyse Bayesian optimization for
optimal hyperparameter selection. The Lorenz system [10] and the Kutznetsov oscillator [55] are considered
as prototypical low-order nonlinear deterministic systems. We highlight fundamental challenges in the ro-
bustness of ESNs for chaotic solutions with a comparative investigation on quasiperiodic oscillations. Both
model-free and model-informed architectures are analysed.

The paper is organized as follows. Section 2 presents the model-free and model-informed Echo State
Network architectures. Section 3 describes the validation strategies. Section 4 investigates the robustness of
the Single Shot Validation in forecasting chaotic time series. Section 5 analyses the new validation strategies
to improve the robustness in forecasting chaotic time series. Section 6 investigates the robustness of the
validation strategies in forecasting quasiperiodic time series. Finally, we summarize the results of this study
and discuss future work in the conclusions (section 7).

2. Echo State Networks

As shown in Fig. 1, in the Echo State Network, at any time ti the input vector, uin(ti) ∈ RNu , is mapped
into the reservoir state, by the input matrix, Win ∈ RNr×Nu , where Nr � Nu. The reservoir state, r ∈ RNr ,
is updated at each time iteration as a function of the current input and its previous value

r(ti+1) = tanh (Winuin(ti) + Wr(ti)) , (1)

where W ∈ RNr×Nr is the state matrix. The predicted output, up(ti+1) ∈ RNu , is obtained as

up(ti+1) = r̂(ti+1)TWout, r̂(ti+1) = g(r(ti+1)); (2)

where g(·) is a nonlinear transformation, r̂ ∈ RNr̂ is the updated reservoir state, and Wout ∈ RNr̂×Nu is
the output matrix. The input matrix, Win, and state matrix, W, are (pseudo)randomly generated and
fixed, while the weights of the output matrix, Wout, are computed by training the network. In this work,
the input matrix, Win, has only one element different from zero per row, which is sampled from a uniform
distribution in [−σin, σin], where σin is the input scaling. The state matrix, W, is an Erdős-Renyi matrix
with average sparseness s, in which each neuron (each row of W) has on average only (1− s)Nr connections
(non-zero elements). The non-zero elements are obtained by sampling from a uniform distribution in [−1, 1];
the entire matrix is then rescaled by a multiplication factor to set the spectral radius, ρ. The spectral radius
is key to enforcing the echo state property. (In a network with the echo state property, the state loses its
dependence on its previous values for sufficiently large times and, therefore, it is uniquely defined by the
sequence of inputs.) While the echo state property may hold for a wider range of spectral radii [56], the
condition ρ < 1 ensures the echo state property in most situations [30].

The ESN can be run either in open-loop or closed-loop configuration. In the open-loop configuration, first,
we feed data as the input at each time step to compute and store r̂(ti) (1-2). In the initial transient of this
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process, the washout interval, we do not compute the output, up(ti). The purpose of the washout interval
is for the reservoir state to satisfy the echo state property, thereby becoming independent of the arbitrarily
chosen initial reservoir state, r(t0) = 0. Secondly, we train the output matrix, Wout, by minimizing the
Mean Square Error (MSE) between the outputs, up(ti), and the data, ud(ti), over a training set of Ntr

points

MSE ,
1

NtrNu

Ntr∑
i

||up(ti)− ud(ti)||2, (3)

where || · || is the L2 norm. Minimizing (3) is a least-squares minimization problem, which can be solved as
a linear system through ridge regression

(RRT + βI)Wout = RUT
d , (4)

where R ∈ RNr̂×Ntr and Ud ∈ RNu×Ntr are the horizontal concatenation of the updated reservoir states, r̂,
and the data, ud, respectively; I is the identity matrix and β is the user-defined Tikhonov regularization
parameter [57]. We solve the linear system through the linalg.solve function in numpy [58]. In the closed-
loop configuration, starting from an initial data point as an input and an initial reservoir state obtained after
the washout interval, the output, up, is fed back to the network as an input for the next time step prediction.
In doing so, the network is able to autonomously evolve in the future. The closed-loop configuration is used
during validation and testing.

2.1. Model-free and model-informed architectures

We consider model-free and model-informed architectures (Fig. 1). The basic model-free ESN is ob-
tained by setting g(r) = r. This architecture, however, generates symmetric solutions in the closed-loop
configuration [34, 23], which can cause the predicted trajectory to stray away from the actual attractor
towards a symmetric attractor, which is not a solution of the dynamical system (but it is a solution of the
network). To break the symmetry, we add biases in the input and output layers

ri+1 = tanh (Win[uin; bin] + Wri) , r̂i = [ri+1; 1], up = r̂Ti Wout. (5)

where [ · ; · ] indicates vertical concatenation, bin is the scalar input bias and Win ∈ RNr×(Nu+1). In the
model-informed ESN, also known as hybrid as proposed by [42], information about the governing equations
(model knowledge) is embedded into the model through a function of the input, KKK(uin), which, for example,
may be a reduced order model that provides information about the output at the next time step as

r̂i = [ri+1; 1;KKK(uin)]. (6)

In this work, we useKKK(uin) only to update the reservoir state [39], in order to use the same input matrix, Win,
and state matrix, W, of the model-free architecture. This allows us to directly compare the performances
of the model-free and model-informed architectures.
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Figure 1: Schematic representation of (a) model-free and (b) model-informed Echo State Networks (ESNs).

3. Validation

The purpose of the validation is to determine the hyperparameters by minimizing an error. We make a
distinction between the hyperparameters (i) that require re-initialization of Win and W, and (ii) that do not
require re-initialization. The size of the reservoir, Nr, and sparseness, s, require re-initialization, whereas
the input scaling, σin, the spectral radius, ρ, the Tikhonov parameter, β, and the input bias bin, do not. The
fundamental difference between (i) and (ii) is that the random component of the re-initialization of Win

and W makes the objective function to be minimized random, which significantly increases the complexity
of the optimization. In this study, we minimize the error with respect to the input scaling, σin, and spectral
radius, ρ, which are key hyperparameters for the performance of the network [46, 30]. For convenience, we
rewrite the reservoir state equation (1) as

ri+1 = tanh(σinŴin[uin; bin] + ρŴri), (7)

where the non-zero elements of Ŵin are sampled from the uniform distribution in [-1,1] and Ŵ has been
scaled to have a unitary spectral radius.

3.1. Performance metrics

We determine the hyperparameters by minimizing the Mean Squared Error (3) in the validation interval
of fixed length. The networks are tested on multiple starting points along the attractor by using both the
Mean Squared Error and Prediction Horizon (PH), the latter of which is defined as the time interval during
which the normalized error is smaller than a user-defined threshold k [38, 42]

||up(ti)− ud(ti)||√
1

NPH

∑NPH

j ||ud(tj)||2
< k, (8)

where NPH are the number of timesteps in the Prediction Horizon. The Mean Squared Error and Prediction
Horizon for the same starting point in the attractor are strictly correlated (Appendix A). We use the
Mean Squared Error to partition the dataset in intervals of fixed length during validation, while we use the
Prediction Horizon in the test set because it is the most physical quantity when assessing the time-accurate
prediction of chaotic systems [e.g., 37, 33].
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3.2. Strategies

The most common validation strategy for ESNs is the Single Shot Validation (SSV), which splits the
available data in a training set and a single subsequent validation set (Fig. 2a). The time interval of the
validation set, during which the hyperparameters are tuned, is small and represents only a fraction of the
attractor. In nonlinear time series prediction, the choice of the validation strategy has to take into account
(i) the intervals we are interested in predicting and (ii) the nature of the signal we are trying to reproduce.
Here, we are interested in predicting multiple intervals as the trajectory spans the attractor, rather than a
specific interval starting from a specific initial condition. Moreover, an ergodic trajectory of the attractor
has no underlying time-varying statistics, e.g there is no time-dependency of the mean of the signal, hence
trajectories return indefinitely in nearby regions of the attractor. This means that the intervals we are
interested in predicting are potentially similar to any interval of the trajectory that constitutes our dataset,
regardless of the interval position in time within the dataset. For this reason, as shown in section 4, the
Single Shot Validation strategies should not be employed in chaotic time series.

These observations lead us to use validation strategies based on multiple validation intervals, which may
precede the training set, such as the Walk Forward Validation (WFV) and the K-Fold cross Validation
(KFV). We also propose an ad-hoc robust validation strategy—the Recycle Validation (RV). The objective
of these strategies is to tune the hyperparameters over an effectively larger portion of the trajectory, by
minimizing the average of the objective function (error) over multiple validation intervals. The regular
version of these strategies consists of creating subsequent folds by moving forward in time the validation
set by its own length. Additionally, we propose the chaotic version, in which we move the fold forward in
time by one Lyapunov Time (LT) (Fig. 2). The Lyapunov Time is a key time scale in chaotic dynamical
systems, which is defined as the inverse of the leading Lyapunov exponent Λ of the system, which, in turn,
is the exponential rate at which infinitesimally close trajectories, δq(0) diverge [e.g., 2]

||δq(t)||∼ ||δq(0)||exp(Λt) t→∞, ||δq(0)||→ 0. (9)

  

c) K-Fold Cross Validation

b) Walk Forward Validation

d) Recycle Validation

a) Single Shot Validation

Unused data

Training data

Validation data 2c

2

2c

1

2c

2

1

2

1

Figure 2: Partition of the data in the different validation strategies. In (b-d), bar 1 shows the first fold, bar 2 shows the second
fold, and bar 2c shows the second fold in the chaotic version (shifted by one Lyapunov time).
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Walk Forward Validation. In the Walk Forward Validation (WFV) (Fig. 2b), we partition the avail-
able data in multiple splits, while maintaining sequentiality of the data. From a starting dataset of length n,
the first m points (m < n) are taken as the first fold, with Nt points for training and v points for validation
(v+Nt = m). These quantities must respect (n−m) = (k1− 1)v; k1 ∈ N. The remaining (k1− 1) folds are
generated by moving the training plus validation set forward in time by a number of points v. This way,
the original dataset is partitioned in k1 folds and the hyperparameters are selected to minimize the average
MSE over the folds.

K-Fold cross Validation. Although the K-Fold cross Validation (KFV) (Fig. 2c) is a common strategy
in regression and classification, it is not commonly used in time series prediction because the validation and
training intervals are not sequential to each other. This strategy partitions the available data in k2 splits.
Over the entire dataset of length n, after an initial bv points, with 0 ≤ b < 1, needed to have an integer
number of splits, the remaining n − bv points are used as k2 validation intervals, each of of length v. For
each validation interval we define a different fold, in which we use all the remaining data points for training.
We determine the hyperparameters by minimizing the average of the MSE between the folds.

Recycle Validation. We propose a the Recycle Validation (RV) (Fig. 2d), which exploits the informa-
tion obtained by both open-loop and closed-loop configurations. Because the network works in two different
configurations, it can obtain additional information when validating on data already used in training. To do
so, first, we train the output weights using the entire dataset of n points. Second, we validate the network
on k2 splits of length v from data that has already been used to train the output weights. Each split is
imposed by moving forward in time the previous validation interval by v points. After an initial bv points,
with 0 ≤ b < 1, needed to have an integer number of splits, the remaining n − bv points are used as k2

validation intervals. We determine the hyperparameters by computing the average of the MSE between the
splits. This strategy has four main advantages. First, it can be used in small datasets, where the partition
of the dataset in separate training and validation sets may cause the other strategies to perform poorly.
In small datasets, the validation intervals represent a larger percentage of the dataset since each validation
interval needs to be multiple Lyapunov Times to capture the divergence of chaotic trajectories. Therefore,
the training set becomes substantially smaller than the dataset and the output matrix used during valida-
tion differs substantially from the output matrix of the whole dataset. This results in a poor selection of
hyperparameters. Second, for a given dataset, we maximize the number of validation splits, using the same
validation intervals of the K-Fold cross Validation. Third, we tune the hyperparameters using the same
output matrix, Wout, that we use in the test set. Fourth, it has lower computational cost than the K-Fold
cross Validation because it does not require retraining the output matrix for the different folds. which makes
it computationally cheaper (Appendix B).

Chaotic version. The chaotic version consists of shifting the validation intervals forward in time, not
by their own length, but by one Lyapunov Time when constructing the next fold. In doing so, different splits
will overlap, but, since the trajectory related to the split that started one Lyapunov Time (LT) earlier has
strayed away from the attractor on average by eΛ×1LT = e, the two intervals contain different information.
The purpose of this version is to further increase the number of intervals on which the network is validated.
The regular and chaotic versions for each validation strategy are shown in frames (b-d) in Fig. 2 in bars 2
and 2c, respectively. The chaotic versions of the Walk Forward Validation, the K-fold cross Validation and
the Recycle Validation are denoted by the subscript c.

3.3. Grid search and Bayesian optimization

To find the minimum of the Mean Squared Error (3) of the validation set in the hyperparameter space,
we use Bayesian Optimization (BO), which is compared to Grid Search (GS). Bayesian Optimization has
been shown to outperform other state-of-the-art optimization methods when the number of evaluations of
an expensive objective function is limited [59, 60]. It is a global search method, which is able to incorporate
prior knowledge about the objective function and to use information from the entire search space. It treats
the objective function as a black box, therefore, it does not require gradient information. Starting from
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an initial Nst evaluations of the objective function, BO performs a Gaussian Process (GP) regression [54]
to reconstruct the function in the search space, using function evaluations as data. Once the GP fitting is
available, we select the new point at which to evaluate the objective function so that the new point maximizes
the acquisition function. The acquisition function is evaluated on the mean and standard deviation of the GP
reconstruction. After the objective function is evaluated at a new point, the enlarged data set, comprising
of the new point, is used to perform another GP regression, select a new point and so on and forth. In
this work, we use the gp-hedge Bayesian Optimization algorithm implemented in scikit-optimize library
in Python [61, 62]. The details of the formulation are explained in Appendix C and the Supplementary
Material (S.2).

4. Robustness of the Single Shot Validation

The first testcase we investigate is the Lorenz system [10], which is a reduced-order model of Rayleigh–Bénard
convection

ẋ = σL(y − x)

ẏ = x(ρL − z)− y
ż = xy − βLz, (10)

where [σL, βL, ρL] = [10, 8/3, 28] is selected to generate chaotic solutions [e.g., 10]. The system is integrated
with a forward Euler scheme with step dt = 0.009 LT. The Lyapunov Time is LT = Λ−1 ≈ 1.1 [63].

We analyse the performance of the used Single Shot Validation (SSV), which is employed for training
(1LT to 9LTs), validation (9LTs to 12 LTs), and testing (12 LTs to 15LTs), as shown in Fig. 3. The input,
uin, is normalized by its maximum variation. (This is done because we are using a single scalar quantity
σin to scale all the components of the input.) The network has a fixed number of neurons, Nr = 100,
sparseness, s = 97%, Tikhonov parameter, βt = 10−11 and input bias, bin = 1 [30]. The bias, bin, is set for
it to have the same order of magnitude of the normalized input. The input scaling, σin, and spectral radius,
ρ, are tuned during validation in the range [0.5, 5] × [0.1, 1] to minimize the log10(MSE). The range of the
spectral radius, ρ, is selected for the network to respect the echo state property, whereas the range of the
input scaling, σin, is selected to normalize the inputs. The optimization is performed with (i) Grid Search
(GS) consisting of 7×7 points, and (ii) Bayesian Optimization (BO) consisting of 5×5 starting points and
24 points acquired by the gp-hedge algorithm (Appendix C). The two optimization schemes are applied to
an ensemble of Nens = 50 networks, which differ by the random initialization of the input matrix, Win, and
the state matrix, W. Nens is selected after a test on statistical convergence (Appendix D).
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x
y
z

Figure 3: Solution of the Lorenz system. (a) Time series, and (b) phase plot for a longer time window. Time is expressed in
Lyapunov time (LT) units.
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Figure 4 shows the performance of the optimal hyperparameters computed by Grid Search and Bayesian
Optimization for the ensemble members. First, we analyse the performance in validation (panel (a)). As
shown by the medians reported in the caption, Bayesian optimization markedly outperforms Grid Search.
Second, we analyse the performance in the test set (panel (b)). The performance of each network is assessed
by computing the MSE in the test set for the hyperparameters found in the validation set. For this,
the output matrix, Wout, of the test set is obtained by retraining over both the training and validation
sets. As shown by the medians, the overall performance of the networks and the benefit of using Bayesian
Optimization are markedly reduced. This is a signature of chaos, whose unpredictability results in a weak
correlation between validation and test sets. This is further verified by computing the mean of the Gaussian
process reconstruction from a 30×30 grid of log10(MSE) for a representative network of the ensemble (Fig. 5).
The performance of the optimal hyperparameters of the validation set can deteriorate by four, or more, orders
of magnitude in the test set (panel (c)).
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Figure 4: Performance of the optimal hyperparameters computed by Grid Search (GS) and Bayesian Optimization (BO) in
(a) validation and (b) test sets. Vertical lines indicate the median of Grid Search (dash-dotted) and Bayesian Optimization
(dashed). The medians are [5.4, 23.0] × 10−6 in the validation set and [64.8, 60.5] × 10−6 in the test set for BO and GS,
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To assess quantitatively the correlation of the optimal hyperparameters’ performance between the vali-
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dation and test sets, we use the Spearman coefficient [64]

r̃S(x,y) =

∑
i(z(x)i −Nens)(z(y)i −Nens)√∑

i(z(x)i −Nens)2
√∑

i(z(y)i −Nens)2
,

x =

[
m

(BO)
Val

m
(GS)
Val

]
, y =

[
m

(BO)
Test

m
(GS)
Test

]
, (11)

where z(x) is the ranking function; m ∈ RNens contains the MSE for the optimal hyperparameters in
validation (subscript Val), or test (subscript Test) obtained by Bayesian Optimazation (superscript BO), or
Grid Search (superscript GS). r̃S quantifies the correlation between the MSE of the optimal hyperparameters
obtained during validation and the MSE for the same hyperparameters in the test set over the ensemble.
The values r̃S = {−1, 0, 1} indicate anticorrelation, no correlation and correlation, respectively.

Figure 6 shows the correlation analysis. The scatter plot for x and y (panel (a)) shows that the MSE of the
optimal hyperparameters in the validation and test sets are weakly correlated with r̃S = 0.32, independently
on whether they are computed with Bayesian Optimization or Grid Search. Panels (b,c) show the values of
the optimal hyperparameters, which vary substantially from one network realization to another.
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Figure 6: (a) Linear regression (LinReg) and scatter plot of the MSE of the optimal hyperparameters obtained from Bayesian
Optimization (BO) and Grid Search (GS) for each network. Optimal hyperparameters for each network and corresponding
MSE in (b) validation and (c) test sets. For different networks the optimal hyperparameters, and their performance, vary
significantly.

4.1. Remarks

First, because the MSE and optimal hyperparameters vary significantly in different network realizations,
we advise performing optimization separately for each network to increase the accuracy (as further verified in
Appendix E). Second, hyperparameters that are optimal in the validation set may have a poor performance
in the test test, which may greatly reduce the benefit of using Bayesian hyperparameter optimization. This
highlights a fundamental challenge in learning chaotic solutions, in which validation and test sets may be
topologically different portions of the attractor. We, thus, advise that the Single Shot Validation not be
used in the validation of Echo State Networks in chaotic attractors. Robust validation strategies (section
3.2) are next analysed.

5. Validation for chaotic solutions

5.1. Hyperparameter optimization

We compare different validation strategies on the ensemble of Nens = 50 networks in a “short” dataset
(12 LTs) and a “long” dataset (24 LTs). The long dataset is obtained by the integration of the time series
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in Fig. 3. In addition to the short dataset, we analyse the long dataset for two reasons. First, we wish to
test validation strategies that require larger datasets to fully perform, such as the Walk Forward Validation.
Second, we wish to investigate how the robustness is affected by the size of the dataset. We use the Single
Shot Validation (SSV), Walk Forward Validation (WFV), K-Fold Validation (KFV), Recycle Validation
(RV), and corresponding chaotic versions (subscript c). The long dataset allows us to define an additional
chaotic Walk Forward Validation (WFVc) denoted by the superscript ∗ as detailed in the Supplementary
Material (S.1).

The test set has Nt = 100 starting points on the attractor to sample different regions of the solutions
(more details in Appendix D). The Prediction Horizon is globally quantified as an arithmetic mean, PHtest,
with threshold k = 0.2; whereas the Mean Squared Error is globally quantified as a geometric mean, MSETest,
in intervals of 3LTs.

5.1.1. Model-free ESN

Figure 7 shows the mean of the Gaussian Process reconstruction of log10(MSE) in the hyperparameter
space for a representative network of the ensemble. Panels (a,b,c) show the performance of three validation
strategies in the validation set, whereas panel (d) shows the performance of the network in the test set.
Because the error in (b,c) is similar to the error in (d), and the error in (a) differs from (d), we conclude that
in the test set the hyperparameters computed through KFVc and RVc perform well, but the hyperparameters
computed through SSV perform poorly.

A correlation analysis is shown in Tab. 1 with the Spearman correlation coefficients, r̃s (11) (short and
long datasets); and Fig. 8 with scatter plots of the optimal hyperparameters’ performance (long dataset,
for brevity). The Single Shot Validation has the lowest correlation among all the validation strategies in
both datasets. The chaotic versions of the validation strategies correlate better than the corresponding
regular versions. In particular, the chaotic K-Fold Validation and the chaotic Recycle Validation have the
highest correlations. In general, increasing the size of the dataset increases the correlation, but the Single
Shot Validation in the long dataset has a lower correlation than the K-Fold Validations and the Recycle
Validations in the short dataset. This further demonstrates the poor robustness of the Single Shot Validation.
Last, but not least, the Recycle Validation is computationally cheaper than the K-Fold Validation because
the output matrix is the same for the different folds (more analysis on the computational time can be found
in Appendix B).
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Figure 7: Mean of the Gaussian Process reconstruction for the short dataset for a representative network of the ensemble.
Validation set for (a) Single Shot Validation (SSV), (b) chaotic K-Fold Validation (KFVc), and (c) chaotic Recycle Validation
(RVc); and test set (d). The MSE is saturated to be ≤ 1. The Gaussian Process is based on a grid of 30×30 data points.
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Table 1: Spearman coefficients between validation and test sets. Bold text indicates the highest correlation in the dataset.

r̃S SSV WFV WFVc WFV∗
c KFV KFVc RV RVc

Short dataset (12LTs) 0.31 0.31 0.50 - 0.60 0.65 0.59 0.62

Long dataset (24LTs) 0.49 0.51 0.61 0.70 0.70 0.85 0.67 0.81
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Figure 8: Linear regression (LinReg) and scatter plot of the MSE of the optimal hyperparameters obtained from Bayesian
Optimization (BO) and Grid Search (GS) for each network. Single Shot Validation (SSV), Walk Forward Validation (WFV),
K-Fold Validation (KFV), Recycle Validation (RV), and their chaotic versions (subscript c). Long dataset.

A comparison between Bayesian Optimization (BO) and Grid Search (GS) is shown in Fig. 9. Panels
(a,b) show the ratio of the MSE between the optimal hyperparameters obtained by Bayesian Optimization
and Grid Search in the validation and test sets. In both datasets, Bayesian Optimization outperforms Grid
Search in the validation set in ∼ 75% of the networks (except for one outlier). However, BO and GS perform
similarly in the test set, especially in the short dataset (a). In the long dataset (b), Bayesian Optimization on
average outperforms Grid Search, although there is a decrease in performance with respect to the validation
set. Panels (c,d) show the Prediction Horizon (PH) in the test set. The chaotic K-Fold Validation and the
chaotic Recycle Validation increase the Prediction Horizon by 0.5 LTs on average with respect to the Single
Shot Validation. The Prediction Horizon of the long datasets (d) is & 0.5 LTs larger than that of the short
dataset (c). This results in the performance of the KFVc and RVc in the short dataset being closer to the
performance of the SSV in the long dataset. Because Bayesian Optimization does not produce a substantial
increase in the Prediction Horizon with respect to Grid Search, we conclude that the performance of the
networks is more sensitive to the validation strategy rather than the optimization scheme.
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Figure 9: Comparison between hyperparameter optimization by Bayesian Optimization (BO) and Grid Search (GS). The
performance metrics are the Mean Square error (MSE) and Predictability Horizon (PH). 25th (lower bar), 50th (marker) and
75th (upper bar) percentiles. (a,c) short dataset, (b,d,) long dataset.

5.1.2. Model-informed ESN

We leverage knowledge about the governing equations through KKK(uin) in the model in Eq. (6). In this
testcase, we use a reduced-order model obtained through Proper Orthogonal Decomposition (POD) [65, 66]
to define a POD-informed ESN. POD provides a fixed rank subspace E of the state space, in which the
projection of the original state vector optimally preserves its energy. The POD modes / energies are the
eigenvectors / eigenvalues, of the data covariance matrix C = 1

m−1UTU. The M × Nu matrix U is the
vertical concatenation of the M snapshots of the Nu-dimensional timeseries used for washout, training and
validation of the network, from which its mean, d ∈ RNu , is subtracted columns-wise. We create an NPOD-
dimensional reduced-order model by taking the modes φφφi associated with the NPOD largest eigenvalues of
C. Because C is a symmetric matrix, its eigenvectors form an orthonormal basis, which is stored in the
orthogonal matrix ΦΦΦ = [φφφ1; ...;φφφnPOD

]. The state vector q is expressed as a function of its components ξξξ
in the subspace E spanned by ΦΦΦ, and its components ηηη in the orthogonal complement of E spanned by the
basis ΨΨΨ

q = ΦΦΦξξξ + ΨΨΨηηη + d. (12)

The evolution equations are then obtained by using a flat Galerkin approximation [67], which neglects the
contribution of the orthogonal complement: ΨΨΨηηη ' 0. The nonlinear dynamical system q̇ = f(q) is projected
onto E through ξξξ = ΦΦΦT (q− d) as

ξ̇ξξ = ΦΦΦT f(ΦΦΦξξξ + d) (13)

In the POD-informed ESN model (q ≡ uin), we use NPOD = 2 to generate the reduced-order model, which
accounts for 96% of the energy of the original signal. We use the evolution of the trajectory on the POD
subspace, E , to inform the ESN through KKK(uin(ti)) = ξξξ(ti+1). We solve the ODE system in Eq. (13) using
at each time step forward Euler with initial condition ξξξ(ti) = ΦΦΦT (uin(ti) − d), which is the projection of
the input to the network onto E . The projection of the trajectory and the autonomous evolution of the flat
Galerkin approximation are shown in Fig. 10. The reduced order model dynamics, ξξξ, differ significantly
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from the dynamics of the entire state, ΦΦΦT (q-b). However, we show in the next paragraph that embedding
model knowledge, yet imperfect, can improve the performance of the networks.
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Figure 10: Projection of the trajectory onto the 2-dimensional model (ΦΦΦT (q-b)) and autonomous evolution of the flat Galerkin
approximation (ξξξ) in the POD-informed Echo State Network.

As compared to the model-free ESN, there is a decrease in correlation between the validation and test sets
for almost all the validation strategies (Tab. 2). The Single Shot Validation is still outperformed by the other
strategies, while the chaotic K-Fold Validation and chaotic Recycle Validation have the highest correlation.
Panels (a,b) of Fig. 11 show similar results to the model-free case: Bayesian Optimization outperforms Grid
Search in the validation set, but the two schemes perform similarly in the test set. The only exception are
the chaotic K-Fold Validation and chaotic Recycle Validation in the long dataset (b), in which Bayesian
Optimization outperforms Grid Search for up to 75% of the networks in the test set. Panels (c,d) show that
embedding knowledge of the governing equation produces an increase of 1LT in the Prediction Horizon with
respect to the model-free case (see Fig. 9). The qualitative behaviour of the validation strategies remains
similar to the model-free case. To conclude, although the POD-informed architecture does increase the
performance, it does not increase the robustness of the networks with respect to the model-free ESN.

Table 2: Spearman coefficients between validation and test sets. Bold text indicates the highest correlation in the dataset.

r̃S SSV WFV WFVc WFV∗
c KFV KFVc RV RVc

Short dataset (12LTs) 0.15 0.39 0.34 - 0.32 0.73 0.41 0.56

Long dataset (24LTs) 0.19 0.42 0.36 0.51 0.59 0.80 0.55 0.80
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Figure 11: Same as Fig. 9 for the POD-informed ESN.

6. Validation for quasiperiodic solutions

We analyse the nonlinear oscillator proposed by Kuznetsov et al. [55], which physically represents a self-
oscillatory discharge in an electric circuit. The oscillator is a three-dimensional system, which can display
periodic, quasiperiodic and chaotic behaviours as a function of the parameters [λ, ω0, µ]

ẋ = y,

ẏ = y(λ+ z + x2 − 1

2
x4)− ω2

0x,

ż = µ− x2. (14)

The primary purpose of this testcase is to compare the robustness of Echo State Networks in forecasting
quasiperiodic solutions versus chaotic solutions. This enables us to determine whether the challenges en-
countered in the Lorenz system are specific to learning chaotic time series. We obtain quasiperiodic and
chaotic solutions by setting λ = 0, ω0 = 2.7 and µQp = 0.9 and µCh = 0.5, as shown in Figs. 12(b,d),
respectively. (For completeness, in this section, we report the Kuznetsov chaotic solution as well.) The
datasets of 7.5 LTs that we use for washout, training and validation are shown in panels (a,c).
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Figure 12: Kuznetsov oscillator. (a) Quasiperiodic and (c) chaotic time series; (b) quasiperiodic and (d) chaotic phase plots
for a longer time window. Time is expressed in the Lyapunov time (LT) of the chaotic case (LT ≈ 25 [55]).

6.1. Hyperparameter optimization

The network parameters, the size of the ensemble, and the optimization strategies are the same as those
of section 4. We modify the input scaling, bin = 0.1, for it to have the same order of magnitude of the
input, which is obtained by normalizing the signal by its maximum variation component-wise. We study
the enlarged interval ρ = [0.01, 1] because we observed empirically that the optimal hyperparameters often
lie in the range ρ ≤ 0.1. Given the multiple orders of magnitude of the spectral radius, the hyperparameter
space is analysed in a logarithmic scale. We use the same architecture and validation strategies for the
quasiperiodic and chaotic case (as detailed in the Supplementary Material, S.1). The different strategies
are tested by computing the arithmetic mean PHtest of the Prediction Horizon on Nt starting points for the
chaotic case, and by computing the geometric mean MSEtest of the Mean Squared Error in 2 LTs intervals
starting from the same points. In the chaotic case, we select Nt = 75, whereas in the quasiperiodic we
select Nt = 50 through the procedure described in Appendix D. The performance in the quasiperiodic
dataset is assessed only through the Mean Squared Error because the Prediction Horizon is infinite, i.e., a
quasiperiodic solution has zero dominant Lyapunov exponents [68].

6.1.1. Model-free ESN

Figure 13 shows the MSE in the hyperparameter space for the quasiperiodic case. The plots for three
validation strategies, (a-c), are very close to the MSE in the test set, (d), which means that hyperparameters
that perform well in the validation set, perform as well in the test set. This is in contrast with the behaviour
in chaotic solutions (see Fig. 7). The Spearman coefficients (Tab. 3) confirm that the correlation between
validation and test sets is higher in the quasiperiodic dataset than the chaotic dataset. Notably, the peak
r̃s = 0.97 obtained in the Recycle Validations indicates almost complete correlation. As before, the Single
Shot Validation is outperformed by the K-Fold Validation and Recycle Validation, but its correlation in the
quasiperiodic dataset is higher than that of chaotic cases. The high correlation in the quasiperiodic dataset is
identified as the dense clustering around the linear regression of Fig. 14. Two remarks can be made. On the
one hand, the high correlation in the quasiperiodic dataset implies that the challenges in producing robust
results in Echo State Networks in chaotic attractors are due to the complexity of the chaotic signal, rather
than the properties of the networks. On the other hand, the marked difference in performance between
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different networks is still present in the quasiperiodic dataset, which means that ESNs are sensitive to the
realizations (further analysis is reported in Appendix E). Practically, we advise that different networks be
optimized independently in the quasiperiodic case as well.
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Figure 13: Mean of the Gaussian Process reconstruction for the quasiperiodic dataset for a representative network of the
ensemble. Validation set for (a) Single Shot Validation, (b) chaotic K-Fold Validation, and (c) chaotic Recycle Validation; and
(d) test set. The MSE is saturated to be ≤ 1. The Gaussian Process is based on a grid of 30×30 data points.

Table 3: Spearman coefficients between validation and test sets. Bold text indicates the highest correlation in the dataset.

r̃S SSV WFV WFVc KFV KFVc RV RVc

Quasiperiodic dataset 0.80 0.75 0.71 0.93 0.92 0.97 0.97

Chaotic dataset 0.49 0.48 0.58 0.70 0.76 0.66 0.81
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Figure 14: Linear regression (LinReg) and scatter plot of the MSE of the optimal hyperparameters obtained from Bayesian
Optimization (BO) and Grid Search (GS) for each network. (a,d) Single Shot Validation, (b,e) chaotic K-Fold Validation and
(c,f) chaotic Recycle Validation. (a-c) quasiperiodic and (d-f) chaotic datasets.

Panels (a,b) of Fig. 15 show the ratio of the MSE between the optimal hyperparameters obtained by
Bayesian Optimization (BO) and the optimal hyperparameters from Grid Search (GS) in the validation and
test sets. On the one hand, in the quasiperiodic case (a) the performance in the validation set is similar to
the test set. One the other hand, in the chaotic case (b) BO outperforms GS in the validation set, although
the two schemes perform similarly in the test set. In panels (c,d), we show the performance of the networks
in the test set using the MSE for the quasiperiodic dataset (c) and the Prediction Horizon in the chaotic
dataset (d). In the quasiperiodic dataset, Bayesian Optimization outperforms Grid Search, and the K-Fold
Validations and Recycle Validations outperform the other validation strategies. In the chaotic dataset, as
seen in the Lorenz system, Bayesian Optimization only slightly outperforms Grid Search, while the K-fold
Validations and Recycle Validations still outperform the other validation strategies.
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Figure 15: Comparison between hyperparameter optimization by Bayesian Optimization (BO) and Grid Search (GS) for the
two performance metrics (MSE, PH). 25th (lower bar), 50th (marker) and 75th (upper bar) percentiles. (a,c) quasiperiodic
dataset, (b,d,) chaotic dataset.

6.1.2. Model-informed ESN

We design a Forward Euler (FE) informed ESN (6) by integrating in time with forward Euler the y
equation (14) only

KKK(uin) = y + dt(y(λ+ z + x2 − 1

2
x4)− ω2

0x). (15)

Tab. 4 shows the Spearman coefficients for the FE-informed model. In the quasiperiodic dataset,
the correlation decreases for all the validation strategies with respect to the model-free case (see Tab. 3)
except for the Recycle Validations, which have the highest correlation. However, in the chaotic dataset,
the correlation increases for all the validation strategies. Here, the chaotic K-Fold Validation and chaotic
Recycle Validation are the strategies with the highest correlation. Fig.16(a) shows that the decrease in
correlation in the quasiperiodic dataset causes Bayesian Optimization to generate larger MSE than Grid
Search with respect to the model-free case. In panel (b), we observe that there is still a marked discrepancy
between the performance of the optimization schemes in the validation and test sets. Panels (c,d) show the
performance of the FE-informed ESN in the test set. In both datasets, the performance improves when
leveraging knowledge about the governing equations: the MSE decreases by about two orders of magnitude,
and the Prediction Horizon improves by & 2 Lyapunov Times with respect to the model-free case (see Fig.
15). The improvement in performance, however, does not correspond to a consistent increase in correlation
between validation and test sets. The performance of Bayesian Optimization with respect to Grid Search
in the test set does not necessarily improve. In the same fashion as the Lorenz system, the FE-informed
architecture per se does enhance the performance, but it does not enhance the robustness of Echo State
Networks.

Table 4: Spearman coefficients between validation and test sets. Bold text indicates the highest correlation in the dataset.

r̃S SSV WFV WFVc KFV KFVc RV RVc

Quasiperiodic dataset 0.78 0.65 0.67 0.71 0.80 0.98 0.98

Chaotic dataset 0.57 0.63 0.63 0.75 0.79 0.71 0.85
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Figure 16: Same as Fig. 15 for the FE-informed ESN.

7. Conclusions

The Echo State Network (ESN) is a reservoir computing architecture that is able to learn accurately
the nonlinear dynamics of systems from data. The overarching objective of this paper is to investigate and
improve the robustness of ESNs, with a focus on the forecasting of chaotic systems. First, we analyse the
Single Shot Validation, which is the commonly used strategy to select the hyperparameters. We show that
the Single Shot Validation is the least performing strategy to fine-tune the hyperparameters. Second, we
validate the ESNs on multiple points of the chaotic attractor, for which the validation set is not neces-
sarily subsequent in time to the training set. We propose the Recycle Validation and the chaotic version
of existing validation strategies based on multiple folds, such as the Walk Forward Validation and the K-
Fold Cross Validation. The K-Fold Validation and Recycle Validation offer the greatest robustness and
performance, with their chaotic versions outperforming the corresponding regular versions. Importantly,
the Recycle Validation is computationally cheaper than the K-Fold Cross Validation. Third, we compare
Bayesian Optimization with Grid Search to compute the optimal hyperparameters. We find that Bayesian
Optimization is an optimization scheme that consistently finds a set of hyperparameters that perform sig-
nificantly better than the Grid Search in the validation set. On the one hand, in learning quasiperiodic
solutions, hyperparameters that work optimally in the validation set continue to work optimally in the test
set. This is because quasiperiodic solutions are predictable (i.e., they do not have positive Lyapunov expo-
nents). This finding is, thus, expected to generalize to other predictable solutions, such as frequency-locked
solutions and limit cycles. On the other hand, in learning chaotic solutions, hyperparameters that work
optimally in the validation set do not necessarily work optimally in the test set. We argue that this occurs
because of the chaotic nature of the attractor, in which the nonlinear dynamics, although deterministic,
manifest themselves as unpredictable variations. Fourth, we analyse the model-free ESN, which is fully
data-driven, and the model-informed ESN, which leverages knowledge of the governing equations. We find
that the model-informed architecture markedly improves the network’s prediction capabilities, but it does
not improve the robustness. Finally, we find that the optimal hyperparameters are significantly sensitive to
the random initialization of the ESN. Practically, when working with an ensemble of ESNs, we recommend
computing the optimal hyperparameters for each network. In the test performed in the paper, this can
increase up to six Lyapunov Times the network’s Prediction Horizon as compared to using the same set of
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hyperparameters for all realizations.

This work opens up new possibilities for using Echo State Networks and, in general, recurrent neural
networks, for robust learning of chaotic dynamics.
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[30] M. Lukoševičius, A practical guide to applying echo state networks, in: Neural networks: Tricks of the trade, Springer,

2012, pp. 659–686.
[31] Z. Lu, B. R. Hunt, E. Ott, Attractor reconstruction by machine learning, Chaos: An Interdisciplinary Journal of Nonlinear

Science 28 (6) (2018) 061104.
[32] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, E. Ott, Using machine learning to replicate chaotic attractors and calculate

lyapunov exponents from data, Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (12) (2017) 121102.
[33] N. Doan, W. Polifke, L. Magri, Physics-informed echo state networks, Journal of Computational Science 47 (2020) 101237.

doi:https://doi.org/10.1016/j.jocs.2020.101237.
URL http://www.sciencedirect.com/science/article/pii/S1877750320305408

[34] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, E. Ott, Reservoir observers: Model-free inference of unmeasured
variables in chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (4) (2017) 041102.

[35] N. A. K. Doan, W. Polifke, L. Magri, Learning hidden states in a chaotic system: A physics-informed echo state network
approach, in: ICCS, Springer, 2020, pp. 117–123.

[36] A. Racca, L. Magri, Automatic-differentiated physics-informed echo state network (api-esn), arXiv preprint
arXiv:2101.00002 (2020).

[37] J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data:
A reservoir computing approach, Physical review letters 120 (2) (2018) 024102.

[38] N. A. K. Doan, W. Polifke, L. Magri, Physics-informed echo state networks for chaotic systems forecasting, in: ICCS,
Springer, 2019, pp. 192–198.

[39] A. Wikner, J. Pathak, B. Hunt, M. Girvan, T. Arcomano, I. Szunyogh, A. Pomerance, E. Ott, Combining machine learning
with knowledge-based modeling for scalable forecasting and subgrid-scale closure of large, complex, spatiotemporal systems,
Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (5) (2020) 053111.

[40] L. Grigoryeva, J.-P. Ortega, Echo state networks are universal, Neural Networks 108 (2018) 495–508. doi:https://doi.

org/10.1016/j.neunet.2018.08.025.
URL https://www.sciencedirect.com/science/article/pii/S089360801830251X

[41] L. Gonon, J.-P. Ortega, Fading memory echo state networks are universal, Neural Networks (2021). doi:https://doi.

org/10.1016/j.neunet.2021.01.025.
URL https://www.sciencedirect.com/science/article/pii/S0893608021000332

[42] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, E. Ott, Hybrid forecasting of chaotic processes:
Using machine learning in conjunction with a knowledge-based model, Chaos: An Interdisciplinary Journal of Nonlinear
Science 28 (4) (2018) 041101.

[43] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, P. Koumoutsakos, Backpropagation algorithms
and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics, Neural
Networks (2020).

[44] A. Chattopadhyay, P. Hassanzadeh, K. Palem, D. Subramanian, Data-driven prediction of a multi-scale lorenz 96
chaotic system using a hierarchy of deep learning methods: Reservoir computing, ann, and rnn-lstm, arXiv preprint
arXiv:1906.08829 (2019).
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[47] M. Lukoševičius, A. Uselis, Efficient cross-validation of echo state networks, in: International Conference on Artificial
Neural Networks, Springer, 2019, pp. 121–133.

[48] K. Ishu, T. van der Zant, V. Becanovic, P. Ploger, Identification of motion with echo state network, in: Oceans ’04
MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Vol. 3, 2004, pp. 1205–1210 Vol.3.

[49] A. A. Ferreira, T. B. Ludermir, R. R. De Aquino, An approach to reservoir computing design and training, Expert systems
with applications 40 (10) (2013) 4172–4182.

[50] L. A. Thiede, U. Parlitz, Gradient based hyperparameter optimization in echo state networks, Neural Networks 115 (2019)
23–29.

[51] H. Wang, X. Yan, Optimizing the echo state network with a binary particle swarm optimization algorithm, Knowledge-
Based Systems 86 (2015) 182–193.

[52] J. Yperman, T. Becker, Bayesian optimization of hyper-parameters in reservoir computing, arXiv preprint
arXiv:1611.05193 (2016).

22

http://www.sciencedirect.com/science/article/pii/S1877750320305408
https://doi.org/https://doi.org/10.1016/j.jocs.2020.101237
http://www.sciencedirect.com/science/article/pii/S1877750320305408
https://www.sciencedirect.com/science/article/pii/S089360801830251X
https://doi.org/https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/https://doi.org/10.1016/j.neunet.2018.08.025
https://www.sciencedirect.com/science/article/pii/S089360801830251X
https://www.sciencedirect.com/science/article/pii/S0893608021000332
https://doi.org/https://doi.org/10.1016/j.neunet.2021.01.025
https://doi.org/https://doi.org/10.1016/j.neunet.2021.01.025
https://www.sciencedirect.com/science/article/pii/S0893608021000332


[53] A. Griffith, A. Pomerance, D. J. Gauthier, Forecasting chaotic systems with very low connectivity reservoir computers,
Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (12) (2019) 123108.

[54] C. E. Rasmussen, Gaussian processes in machine learning, in: Summer School on Machine Learning, Springer, 2003, pp.
63–71.

[55] A. Kuznetsov, S. Kuznetsov, N. Stankevich, A simple autonomous quasiperiodic self-oscillator, Communications in Non-
linear Science and Numerical Simulation 15 (6) (2010) 1676–1681.

[56] I. B. Yildiz, H. Jaeger, S. J. Kiebel, Re-visiting the echo state property, Neural Networks 35 (2012) 1–9. doi:https:

//doi.org/10.1016/j.neunet.2012.07.005.
URL https://www.sciencedirect.com/science/article/pii/S0893608012001852

[57] A. N. Tikhonov, A. Goncharsky, V. Stepanov, A. G. Yagola, Numerical methods for the solution of ill-posed problems,
Vol. 328, Springer Science & Business Media, 2013.

[58] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming
with NumPy, Nature 585 (7825) (2020) 357–362. doi:10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2

[59] E. Brochu, V. M. Cora, N. De Freitas, A tutorial on bayesian optimization of expensive cost functions, with application
to active user modeling and hierarchical reinforcement learning, arXiv preprint arXiv:1012.2599 (2010).

[60] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian optimization of machine learning algorithms, in: Advances in
neural information processing systems, 2012, pp. 2951–2959.

[61] M. D. Hoffman, E. Brochu, N. de Freitas, Portfolio allocation for bayesian optimization., in: UAI, Citeseer, 2011, pp.
327–336.

[62] P. Virtanen, et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020)
261–272.

[63] D. Viswanath, Lyapunov exponents from random fibonacci sequences to the lorenzequations, Tech. rep., Cornell University
(1998).

[64] C. Spearman, The proof and measurement of association between two things, The American Journal of Psychology 15 (1)
(1904) 72–101.
URL http://www.jstor.org/stable/1412159

[65] J. L. Lumley, The structure of inhomogeneous turbulent flows, Atmospheric turbulence and radio wave propagation (1967).
[66] J. Weiss, A tutorial on the proper orthogonal decomposition, in: AIAA Aviation 2019 Forum, 2019, p. 3333.
[67] H. G. Matthies, M. Meyer, Nonlinear galerkin methods for the model reduction of nonlinear dynamical systems, Computers

& Structures 81 (12) (2003) 1277–1286.
[68] H. Kantz, T. Schreiber, Nonlinear time series analysis, Vol. 7, Cambridge university press, 2004.

Appendix A. Correlation between the mean-squared error and predictability horizon

We show the high correlation between the Mean Squared Error and the Predictability Horizon given the
same starting point for prediction. Figure A.17 shows the Gaussian Process reconstruction from 900 (30×30)
grid points in the hyperparameter space in the Nt = 100 test set (Appendix D) of the Lorenz system for a
representative network realization. The two quantities show almost identical behaviour. Figure A.18 shows
the scatter plots for the Prediction Horizon and the Mean Square Error in the test set for the optimal
hyperparameters for the ensemble in the Lorenz system. The two quantities are highly correlated, with a
Spearman coefficient, rs ≥ 0.95, for all the validation strategies.
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Figure A.17: Mean of the Gaussian Process reconstruction from a 900 points grid in the test set for (a) log10(MSE) and (b)
Prediction Horizon (PH) for a representative network in the short dataset. For visualization purposes we saturate the MSE to
be ≤ 1, and the PH to be ≥ 3. The MSE and PH closely resemble one another.
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Figure A.18: Linear regression (LinReg) and scatter plot for the test set MSE and Prediction Horizon in the long dataset of the
optimal hyperparameters from Bayesian Optimization (BO) and Grid Search (GS) for the Single Shot Validation (SSV), Walk
Forward Validation (WFV), K-Fold Validation (KFV), Recycle Validation (RV), and their chaotic versions, with subscript c.
The trends are highly correlated.

Appendix B. Computational time

In Fig. B.19, we show the CPU time required by the validation strategies to perform a Grid Search in hy-
perparameters space for a single network. The computational advantage of the Recycle Validation increases
with the size of the dataset and the size of the reservoir. We expect the improvement in computational time
to be more significant in RNN architectures whose training is more expensive, such as LSTMs and GRUs.
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The Bayesian Optimization described in section 4 costs approximately 6 seconds more per network in all
the cases shown. This because the additional cost of the Bayesian Optimization is independent of the cost
of the evaluation function.
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Figure B.19: CPU time required for a single network of size N to perform a 7×7 Grid Search in hyperparameters space in
the 12LT and 24LT datasets of the Lorenz system. The validation strategies are the Single Shot Validation (SSV), the Walk
Forward Validation (WFV), K-Fold Validation (KFV), Recycle Validation (RV), and respective chaotic versions (subscript c).
The runs are on a single Intel i7-8750H processor.

Appendix C. Bayesian Optimization for hyperparameters

After we evaluate the objective function at Nst starting points, the objective function is reconstructed
in the hyperparameter search space using the function evaluations as data points for noise-free Gaussian
Process Regression. The computational cost of the regression is proportional to N3

d , where Nd is the number
of data points, because of the inversion of the covariance matrix. The inversion is performed by Cholesky
factorization regularized by the addition of α = 10−10 on the diagonal elements.

Once the Gaussian Process is performed, the next point at which to evaluate the objective function
is selected in the hyperparameter space to maximize the acquisition function. The acquisition function
evaluates a potential point usefulness in finding the global minimum, so that points with a high value of the
acquisition function are selected during the search. A new point can be chosen for one of two reasons: (i) to
try to find a new minimum by using current knowledge of the search space and (ii) to increase the knowledge
of the space by exploring new regions. This trade-off is called balance between exploitation and exploration.
Practically, the most used acquisition functions in the literature are the Probability of Improvement (PI),
the Expected Improvement (EI) and the Lower Confidence Bound (LCB) [59]. On a given testcase, it is
difficult to determine a priori which acquisition function will perform better. For this reason we use the
gp-hedge algorithm [61], which improves the performance with respect to the single acquisition functions.
In the algorithm, when deciding the next point of the search, the three acquisition functions are evaluated
over the search space. Each acquisition function provides its own optimal point as a candidate. The next
point at which the function is going to be evaluated is selected among the three candidates with probability
given by the softmax function. The softmax function is evaluated on the cumulative reward from previous
candidate points proposed by the acquisition functions, so that the strategy leans towards exploitation as
the search progress. Once the point is selected, the Gaussian Process Regression is performed again using
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the updated set of data points, until the prescribed maximum number of function evaluations is reached.
More details are reported in the Supplementary Material, S.2.

Appendix D. Ensemble size and number of starting points in the test set

First, we select the number of networks in the ensemble through the convergence of the low-order moments
of the statistics of the ensemble in the validation set. In Fig. D.20, we show the convergence of the Mean
Squared Error (MSE) in the validation set for the chaotic Recycle Validation and chaotic K-fold Validation
for the Lorenz system. For Nens = 50 networks, indicated by the vertical line, the 25th, 50th and 75th
percentiles have approximately converged to their asymptotic values. Second, we select the number of
starting points in the test set, Nt, through the convergence of the statistical properties of the ensemble in
the test set. The starting points are equally spaced by 3 LTs, and start from 24 LTs in the time series of Fig.
3. In Fig. D.21, we show the convergence of the Prediction Horizon. For Nt = 100 starting points, indicated
by the vertical line, the 25th, 50th and 75th percentiles have approximately converged to their asymptotic
values. We repeat the procedure to decide the number of starting points for the chaotic, Nt = 75, and
quasiperiodic, Nt = 50, datasets in the Kutznetsov oscillator (results not shown). The starting points are
equally spaced by 2 LTs, and start from 7.5 LTs in the time series of Fig. 12.
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Figure D.20: 50th (continuous line) and 25th and 75th percentiles (dashed lines) for the Mean Squared Error in the validation
set as a function of the number of networks in the ensemble in the short dataset of the Lorenz system. The hyperparameters
are obtained through Bayesian Optimization in (a) chaotic Recycle Validation and (b) chaotic K-Fold Validation.
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Figure D.21: 50th (continuous line) and 25th and 75th (dashed lines) percentiles for the Prediction Horizon in the test set
for the ensemble as a function of the number of starting points in the test set in the short dataset of the Lorenz system.
The hyperparameters are obtained through Bayesian Optimization in (a) chaotic Recycle Validation and (b) chaotic K-Fold
Validation.

Appendix E. Hyperparameter variations for different realizations

As shown in Fig. 6, different network realizations have different optimal hyperparameters, which vary
significantly from one network realization to another other. This suggests that different networks need to be
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trained independently. If we select a fixed set of hyperparameters, some networks will perform poorly [45].
In this section, we quantify the difference in performance between optimizing the network independently and
using a fixed set of hyperparameters for the entire ensemble. Figure E.22 shows the mean of the Gaussian
Process reconstruction of the log10(MSE) in the test set. In panels (a,b), we show the MSE in the test set
for two representative networks from the ensemble, while in panel (c), we show the error between the two
networks. The two networks differ substantially. The same hyperparameters may result in MSEs that differ
by more than four orders of magnitude.
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Figure E.22: Mean of the Gaussian Process reconstruction of the MSE in the test set for (a,b) two representative networks in
the short dataset, and (c) difference between the two networks. For visualization purposes we saturate the MSE to be ≤ 1 and
the error to be ≤ 104. The Gaussian Process is based on a grid of 30×30 data points. For the same hyperparameters, the MSE
can differ by orders of magnitude between the two networks.

To quantitatively evaluate the performance of the networks, we assess two possible choices of fixed
hyperparameters: (i) we search the optimal fixed hyperparameters by minimizing the geometric mean over
the 50 networks of the MSE in the validation set; (ii) we use the hyperparamters obtained by performing the
search on a representative network from the ensemble and use that hyperparameters for all the networks. In
both (i) and (ii), we perform the search using Bayesian Optimization in the chaotic K-Fold Cross Validation
(KFVc) and chaotic Recycle Validation (RVc). Figure E.23 shows the violin plots and 25th, 50th and 75th
percentiles for the Prediction Horizon in the test set for the Lorenz system. Using fixed hyperparameters
yields a decrease in performance in the percentiles of around 0.5 LTs when using (i), and of more than 1 LTs
when using (ii). In addition, the tail of the distribution prolongates to values of the Prediction Horizon below
1 LT, which means that the fixed hyperparameters perform poorly in a fraction of the networks. Finally,
we note that the decrease in the Prediction Horizon percentiles for (ii) is larger than the improvement
that we obtain when using the new validation strategies, the increased size of the dataset or the model-
informed architecture. This means that optimizing the network independently, and therefore not using
hyperparameters obtained from validating a network in another network, is key in Echo State Networks.
Similar conclusions can be drawn for the quasiperiodic and chaotic datasets in the Kuznetsov oscillator (Fig.
E.24,E.25).
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Figure E.23: Violin plots and 25th (lower bar), 50th (marker) and 75th (upper bar) percentiles of the Prediction Horizon in the
test set for the 50 networks ensemble in the (a) short (b) and long datasets in the Lorenz system. Independent optimization
(Ind) of each network, optimal set of fixed hyperparameters (Fix (i)), and optimal hyperparameters of a single network (Fix
(ii)). We use Bayesian Optimization in the chaotic K-Fold Validation (KFVc) and chaotic Recycle Validation (RVc).
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Figure E.24: Mean of the Gaussian Process reconstruction of the MSE in the test set for (a,b) two representative networks in
the quasiperiodic dataset, and (c) difference between the two networks. For visualization purposes we saturate the MSE to be
≤ 1 and the error to be ≤ 104. The Gaussian Process is based on a grid of 30×30 data points.
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Figure E.25: Violin plots and 25th (lower bar), 50th (marker) and 75th (upper bar) percentiles for the 50 networks ensemble
of the MSE in the quasiperiodic dataset, (a), and the Prediction Horizon for the chaotic dataset, (b), in the test set in the
Kuznetsov Oscillator. Independent optimization (Ind) of each network, optimal set of fixed hyperparameters (Fix (i)), and
optimal hyperparameters of a single network (Fix (ii)). We use Bayesian Optimization in the chaotic K-Fold Validation (KFVc)
and chaotic Recycle Validation (RVc).
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