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ABSTRACT

Here, we introduce a fully local index named “sensitivity” for each neuron to control chaoticity or
gradient globally in a neural network (NN). We also propose a learning method to adjust it named
“sensitivity adjustment learning (SAL)”. The index is the gradient magnitude of its output with re-
spect to its inputs. By adjusting its time average to 1.0 in each neuron, information transmission
in the neuron changes to be moderate without shrinking or expanding for both forward and back-
ward computations. That results in moderate information transmission through a layer of neurons
when the weights and inputs are random. Therefore, SAL can control the chaoticity of the net-
work dynamics in a recurrent NN (RNN). It can also solve the vanishing gradient problem in error
backpropagation (BP) learning in a deep feedforward NN or an RNN. We demonstrate that when ap-
plying SAL to an RNN with small and random initial weights, log-sensitivity, which is the logarithm
of RMS (root mean square) sensitivity over all the neurons, is equivalent to the maximum Lyapunov
exponent until it reaches 0.0. We also show that SAL works with BP or BPTT (BP through time) to
avoid the vanishing gradient problem in a 300-layer NN or an RNN that learns a problem with a lag
of 300 steps between the first input and the output. Compared with manually fine-tuning the spectral
radius of the weight matrix before learning, SAL’s continuous nonlinear learning nature prevents
loss of sensitivities during learning, resulting in a significant improvement in learning performance.

〈 Highlights 〉
• “Sensitivity” is a local version of the maximum Lyapunov exponent for each neuron.

• Log sensitivity is equivalent to the maximum Lyapunov exponent until the dynamics reach the
“edge of chaos”.

• Sensitivity Adjustment Learning (SAL) adjusts the sensitivity in each neuron and realizes “edge
of chaos” in the network as a result.

• SAL also prevents “vanishing gradient” in gradient-based learning such as BP or BPTT, which
greatly improves learning performance.

• Compared with the adjustment of weight matrix, SAL can consider non-linearity and prevent
the loss of sensitivity caused by another learning.

Keywords Sensitivity, Sensitivity adjustment learning (SAL), Edge of chaos, Recurrent neural network (RNN),
Deep feedforward neural network (DFNN), Vanishing gradient problem
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1 Introduction

Deep learning using a deep feedforward neural network (DFNN) or a recurrent neural network (RNN) has attracted
great attention due to its drastic performance improvement especially in recognition of patterns including the case of
time-series signals [Jiao et al. (2019); Nassif et al. (2019); Fawaz et al. (2018); Otter et al. (2018)]. They have shown
us the overwhelming power of massively parallel processing systems acquired through learning. That suggests the
way towards human-like processing, which human designers have struggled to design for a long time, but has not been
achieved by conventional artificial intelligence.

Since higher functions such as thinking and communication cannot be discussed without processing in the time axis,
there is no doubt that the significance of temporal processing or dynamics will increase more and more, and longer
processing will be required from now on. In temporal processing, we need to think of the internal state of a network
not as points in space but as lines or flow formed around a point moving along time.

When solving a task with long-term dependency is required, the effective preservation of information in a neural
network through time becomes critical. That is deeply related to the chaoticity of the network. If the maximum
Lyapunov exponent of the network is negative, much of the information shrinks and disappears over time. If positive,
the network expands even trivial pieces of information one after another, but in contrast, it cannot magnify rather large
pieces of information so much due to the nonlinearity by the limited value range in each neuron. Therefore, even
though they were large, it is challenging to retrieve the old information from the current internal state after a long time
lag. Accordingly, for effective information preservation through time, dynamics around the “edge of chaos” would be
the right choice.

As for the learning of long-term dependency in an RNN, vanishing/exploding gradient in BPTT (error Back Prop-
agation Through Time) as a gradient-based learning method has been discussed since far before the boom of deep
learning [Bengio et al. (1994); Hochreiter (1998); Pascanu et al. (2013)]. This problem is caused by the same logic as
the information preservation for a long time lag mentioned above. The gradient here is the gradient of some evaluation
(can be cost or error) function of final outputs with respect to the weight vector or neuron state vector. By decompos-
ing the gradient by chain rule, we can understand the problem comes from the repetition of the information scaling
through each time-step. A similar discussion can be made for the same problem in deep feedforward NNs (DFNNs).
Detailed and related works are described in the next section.

Reservoir computing is often used to learn tasks that need temporal processing and shows excellent results even though
it usually does not learn the connection weights among the reservoir neurons. Here, an important parameter is the scale
or spectral radius of the weight matrix in the reserver. Echo state property is considered so that the effect of initial
conditions vanish as time passes [Yildiz et al. (2012)]. For learning long-term dependency, the spectral radius should
be close to 1.0. In FORCE learning, the learning performance is good when the network dynamics are around the edge
of chaos [Sussillo (2009)]. We have also shown in reward-modulated Hebbian learning with chaotic exploration using
a reservoir network, dynamics around the edge of chaos brings out good learning performance [Matsuki and Shibata
(2016, 2020)]. However, the reservoir does not learn its dynamics directly. That is similar to the perceptron that
fixes its randomly-decide hidden weights and does not learn its hidden representation. Furthermore, we cannot find
how such random weights with an appropriate size are realized in each neuron autonomously without any centralized
system. We believe that learning dynamics must be crucial when developing higher functions like “thinking”.

To develop a “thinking machine” as an ultimate artificial intelligence system, autonomous and rational state transitions
even without the help of external stimuli must be essential in its RNN. Similar to the other functions such as “recog-
nition” and “memory”, we expect “thinking” emerges within the framework of end-to-end reinforcement learning
using an RNN [Shibata (2017)]. Acquiring appropriate memories that do not need transitions but need convergence is
relatively easy for an agent [Shibata and Sugisaka (2004); Utsunomiya and Shibata (2009); Shibata and Utsunomiya
(2011); Shibata and Goto (2013)]. However, it is not easy to acquire rational transitions through reinforcement learn-
ing using a regular RNN even though the transitions are externally driven [Sawatsubashi et al. (2012)].

Then, we focused on chaotic dynamics generated in an RNN and proposed a new reinforcement learning (RL) para-
digm [Shibata and Sakashita (2015); Shibata and Goto (2017)]. Chaotic dynamics expand tiny variations in its network
state through time. That destabilizes the dynamics and enables autonomous state transition in the RNN, although the
transition is irregular. In the new proposed RL, exploration does not use stochastic action selection by random noises
but uses the autonomous state transition based on the internal chaotic dynamics. We expect that the irregular dynamics
would become rational by forming attractors on the dynamics through learning. According to the above discussion,
we set up a hypothesis that “exploration” grows into “thinking” through learning. In our new RL, the chaoticity of the
RNN also should not be either too strong or too weak [Goto and Shibata (2017); Sato et al. (2019)]. Adjustment of
chaoticity is critical in this learning paradigm as well.
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Processing in each neuron produces the dynamics of the network. The propagated error signals in gradient-based BP
(error backpropagation) or BPTT learning represent the influence of tiny variation in each neuron’s state on the final
error function. Therefore, we expect that by adjusting the influence in each neuron, we can control both chaoticity
and error backpropagation of the network simultaneously. In this paper, we define the gradient magnitude of its output
with respect to its input vector as “sensitivity” in each neuron and use it as a local index to control the chaoticity
and error signal propagation globally in the network. We also propose a learning method to adjust the sensitivity
based on hill-climbing and call it “sensitivity adjustment learning (SAL)”. Then we show that an RNN comes to
generate chaotic dynamics through SAL, and observe the relationship between the sensitivities as a local index and
the maximum Lyapunov exponent as a global index during learning. We also show some supervised learning results
of a simple problem with a lag of 300 steps between the first input and final output timings when using both BPTT
and SAL in an RNN, and the learning process is analyzed. Finally, we apply SAL to DFNNs with BP and show a
300-layer DFNN can learn a simple problem with noise addition and observe the processing.

2 Related Works

Several techniques have been proposed already to avoid the vanishing/exploding gradient problem in error backprop-
agation (BP) or backpropagation through time (BPTT). They can be roughly divided into two categories.

In the first category, which mainly targets on RNNs whose feedback weight matrix is square, the spectral radius of
the Jacobian matrix between the inputs and outputs of a layer or group of neurons is directly set to be around 1.0.
The simplest way is to set the Jacobian matrix close to the identity matrix. In this case, the output vector is close
to the input vector. Therefore, a slight variation in each neuron state does not change so much through the forward
processing. The error signal in each neuron also does not change so much through the backward processing.

LSTM [Hochreiter and Schmidhuber (1997)], a quite popular RNN, employs special units named LSTM cells. If
the forget gate is fully open, the cell state does not change, and each diagonal element of the Jacobian matrix is
close to 1.0 when only the signal flow inside the cell is focused on. GRU [Chung et al. (2014)] has a simpler but
similar structure to LSTM. We have adopted a far simpler method using a regular RNN with setting all the self-
feedback connection weights to the reciprocal of the maximum derivative of the activation function. Concretely,
the weight value is 4.0 for the sigmoid function and 1.0 for the hyperbolic tangent function. All the other feed-
back connection weights are set to 0.0 or small random values. In this case, the Jacobian matrix is close to the
identity matrix when the activations are small enough in the activation function’s linear region. It works well in learn-
ing memory-required tasks [Shibata and Sugisaka (2004); Utsunomiya and Shibata (2009); Shibata and Utsunomiya
(2011); Shibata and Goto (2013)], which need to form fixed-point attractors or static associative memory. In DFNNs,
shortcut connections through one or more layers as in a ResNet [He et al. (2015)], which is widely used mainly in
convolutional NNs (CNNs), also make its Jacobian matrix close to the identity matrix if the other connection weights
are small.

However, the transformation represented by the identity matrix is equivalent to applying no processing. Therefore, it
is suitable to keep some information without any change, but it is not appropriate to learn a complicated conversion of
input signals or internal dynamic state transition like “thinking”. Actually, in our work [Sawatsubashi et al. (2012)],
although an agent could learn simple state transitions in this approach, learning was so difficult that careful design of
task shaping was necessary.

In the second category, the mean and variance of neuron activations are normalized, usually to zero mean and unit
variance. Batch normalization [Ioffe and Szegedy (2015)], layer normalization [Ba et al. (2016)], weight normaliza-
tion [Salimans and Kingma (2016)], self-normalizing neural networks [Klambauer et al. (2017)] can be categorized
here in a broad meaning. In the self-normalizing neural network, by setting the weight matrix and activation function
appropriately, the activations close to zero mean and unit variance converge towards zero mean and unit variance.
Furthermore, the variance of neuron activations is bounded, and the network does not suffer from a vanishing gradient.
In the weight normalization process, the weight vectors are initialized depending on the given data so that the mean
and variance of neuron activations are normalized.

Different from the approaches mentioned above, moderatism aims to acquire necessary processing by keeping the
variation of both inputs and output in each neuron moderate [Okabe et al. (1998)]. Here, we focus on the sensitivity
that represents magnification or contraction of a small variation in each neuron’s processing. By controlling it in each
neuron, the network’s global dynamics can be controlled. We show that adjusting each neuron’s sensitivity enables
learning for DFNNs or RNNs solving a long time-lag problem.

On the other hand, from the viewpoint of chaos control, previous studies have mainly focused on stabilizing a sys-
tem with chaotic dynamics [Ott et al. (1990); Ighneiwaa et al. (2017)] and have not positively utilized the chaos or
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edge of chaos dynamics. From the information storage or processing perspective, the importance of the “edge of
chaos” has been highlighted by several studies [Langton (1990); Legenstein et al. (2010); Boedecker et al. (2012)].
Moreover, from the biological viewpoint, the relation between known input stimuli and attractors in brain dynam-
ics was investigated, and the role of the chaotic dynamics for new input stimuli was addressed [Skarda and Freeman
(1987); Freeman (1991)]. Based on the study, an associative memory model using a chaotic neural network was also
proposed [Osana and Hagiwara (1999)]. However, it is not easy to find a method to generate and control chaotic
dynamics by learning in an RNN. Consequently, dynamics around the edge of chaos produced in an RNN with fixed
weights have been utilized widely as a reservoir as mentioned above. In this paper, aiming to positively utilize chaos or
edge of chaos dynamics, we propose to generate and control chaotic dynamics in RNNs by adjusting local sensitivity
in each neuron.

3 Sensitivity and Sensitivity Adjustment Learning (SAL)

3.1 Definition of Sensitivity

Fig. 1 shows a general static-type neuron model with m inputs. Its internal state u is derived as the inner product of
the input vector x = (x1, . . . , xm)T and connection weight vector w = (w1, . . . , wm)T as

u = w · x, (1)

and the output o is derived as
o = f(U) = f(u+ θ), (2)

where U = u + θ, θ is the bias, and f(·) is an activation function that can be hyperbolic tangent or sigmoid function.
The sensitivity introduced here is a local index for each neuron to show how the neuron is sensitive to a small change
in its inputs. It is defined as the Euclidean norm of the output gradient with respect to the input vector x as

s(U ;w) = ‖∇xo‖ = f ′(U)‖w‖ (3)

if the activation function f(·) is a monotonically increasing function. If the vector elements are used, it is rewritten as

s(U ;w) =

√

√

√

√

m
∑

i

(

∂o

∂xi

)2

= f ′(U)

√

√

√

√

m
∑

i

w2
i . (4)

3.2 Sensitivity in the forward computation

In the forward computation in the neuron, as shown in Fig. 1, an infinitesimal change in the inputs dx produces the
infinitesimal change in the output do as

do = ∇xo · dx = f ′(U)w · dx, (5)

and can be rewritten as
do = ‖∇xo‖ ‖dx‖ cosφ = s(U ;w) ‖dx‖ cosφ (6)

using the direction cosine cosφ between the input change vector dx and the weight vector w whose direction is the
same as the gradient vector∇xo.

Here, dx is assumed to be an m-dimensional standard normal random vector multiplied by an infinitesimal constant ǫ
as dx ∼ N (0, ǫ2Im) where Im is the m-dimensional unit matrix. The distribution of the vector direction is uniform,

x1 x2
xm

o

u,
w1 wm

w2

f
θ w

x dx

do

do
= x o dx

= f '(U)w dx

w= (w
1
,w

2
,..,wn )

T

Figure 1: A neuron model and the influence of a small deviation in its inputs x on its output o.
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x

m-dimesional
    super sphere

do= dx cosφ w

x1

x2

x3

φ

dx

dx2

dx1

(3-dimesional case)

dx3

Figure 2: The relation between an infinitesimal input change vector dx and the output change do in the case of the
number of inputs m = 3. When the sensitivity s is 1.0, do is the projection of dx onto the weight vector w whose
direction is the same as ∇xo. Therefore, when dx is distributed uniformly on a super sphere surface, the variance of
do is equivalent to that of one of the m input signals.

and that is the same as the uniform distribution on the m-dimensional super sphere surface as presented in Fig. 2. In an
m-dimensional Euclidean space, the square of the vector dx is identical to the sum of its m squared elements. In other
words, the sum of the m squared direction cosine to individual standard bases is 1.0. Therefore, from the symmetry
among m dimensions, the square of the projection of dx on any direction is expected to be 1/m of the square of dx
itself. By applying it to the relation between the vector dx and its elements dxi, the square of the vector dx is expected
to be the m-times of the variance of each element dxi as

E

[

‖dx‖2
]

=

m
∑

i

V [dxi] = mV [dxi] = mǫ2. (7)

By applying it to the projection of the vector dx onto the weight vector w, the variance of the direction cosine cosφ is
derived as

V [cosφ] = E
[

cos2 φ
]

=
1

m
(8)

where the expected direction cosine is 0.0 from the symmetry of the dx distribution. The direction of dx is uniformly
distributed and independent with the size of ‖dx‖. Then, in Eq. (6), ‖dx‖ and cosφ are independent. Therefore, from
Eqs. (7) and (8), the variance of the output change do can be written for a given sensitivity s using the variance of one
input change dxi as

V [do] = {s(U ;w)}2E
[

‖dx‖2
]

E
[

cos2φ
]

= s2V [dxi] = s2ǫ2. (9)

If the sensitivity s is 1.0, then the output change in Eq. (6) can be written as

do = ‖dx‖ cosφ, (10)

and that is the projection of the m-dimensional infinitesimal vector dx onto the direction of the weight vector w as
shown in Fig. 2. Therefore, its distribution becomes do ∼ N (0, ǫ2) not depending on the number of inputs m, and
Eq. (9) is changed as follows:

V [do] = V [dxi] = ǫ2. (11)

This is significant because the neuron maintains the variance of just one input signal as its own output variance without
being shrunk or expanded not depending on the number of connections m.

Next, the case of a group or layer of n neurons as can be seen in Fig. 3 is considered, and its output vector is indicated
as o = (o1, . . . , on)

T. The infinitesimal output change do can be represented using the infinitesimal input change dx
as

do = J(U;W)dx = f ′(U) ◦ (Wdx) (12)

where f ′(U) = (f ′(U1), . . . , f
′(Un))

T and ‘◦’ indicates element-wise multiplication. W = (w1, . . . ,wn)
T is an

n×m weight matrix where wj(j = 1, . . . , n) is the weight vector of the jth neuron. J(U;W) is the Jacobian matrix
as

J(U;W) =







∂o1
∂x1

· · · ∂o1
∂xm

...
. . .

...
∂on
∂x1

· · · ∂on
∂xm






=







(∇xo1)
T

...

(∇xon)
T






=







f ′(U1)w
T
1

...

f ′(Un)w
T
n






. (13)
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o1 o2 on

x1 x2 xm

x= (x
1
, x

2
, .. , x

m
)T

o= (o
1
, o

2
, .. , o

n
)T

w1 wn
w2

= f(U)= f(Wx )+ θ

W=(w
1
,w

2
,.. ,w

n
)T

od =J xd
od

xd

f '(U) W= xd( )

Figure 3: Forward (output) computation through a layer of neurons.

Eq. (12) can be rewritten using sensitivities of the neurons as

do =







∇xo1 · dx
...

∇xon · dx






=







s1 ‖dx‖ cosφ1

...
sn ‖dx‖ cosφn






. (14)

Here, in addition to the assumption of dx mentioned above, it is further assumed that the weight matrix W has been
randomly chosen with i.i.d. elements with mean 0, and also f ′(U) is a random vector having elements with an identical
distribution. If the number of output n is not greater than the number of input m, the elements of the infinitesimal
change of the output vector doj are i.i.d. with mean 0. The mean square of the magnitude of the vector do is n times
the variance of one output change doj as

E

[

‖do‖2
]

=

n
∑

j

V[doj ] = nV[doj ]. (15)

From Eqs. (8) and (9),

1

n
E

[

‖do‖2
]

=
〈s2〉
m

E

[

‖dx‖2
]

= 〈s2〉ǫ2 (16)

on the assumption that n is large enough and

〈s2〉 = E
[

{s(Uj;wj)}2
]

= E
[

{f ′(Uj)wj}2
]

(j = 1, . . . , n) (17)

where 〈s2〉 is the mean of s2 over the n neurons. If 〈s2〉 = 1.0 or the sensitivity of each neuron is 1.0, then

RMS [‖do‖]√
n

=
RMS [‖dx‖]√

m
= ǫ (18)

where RMS means root mean square. If the numbers of inputs m and outputs n are the same, then

RMS [‖do‖] = RMS [‖dx‖] = √mǫ (19)

When the number of neurons n is less than the number of inputs m, it is expected that the amount of information is
decreased through the layer.

From the above discussion, if each neuron’s sensitivity is 1.0, the distribution of the small change in each neuron is
maintained not depending on the number of neurons or number of inputs. Accordingly, a small change in an input
signal of the network reaches the final network output even though (1) the number of layers is large, (2) the number of
neurons in each layer is varied and/or (3) the connection between layers is sparse. The same discussion can be applied
to an RNN. The distribution of small output change is maintained through time regardless of the structure of the RNN,
such as sparse or full connections, flat (non-layered) or layered. Therefore, if the sensitivities for all the neurons are
around 1.0, the maximum Lyapunov exponent as the logarithm of time development of small change is expected to be
around 0.0.

3.3 Sensitivity in the backward computation

As mentioned in the Introduction, when a small change in network inputs reaches the network outputs, the error signals
for learning reach the input layer from the output layer in the backward computation for gradient-based learning such
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w1 wm

2

f’
wδ

δw
δw1 δwm

w

= ˆ f '(U)w

= ˆ
xo

δw
δw2

ˆ ˆ

w= (w1,w2 ,..,wm)T

w

+

Figure 4: Backward (error signal) computation in a neuron.

as BP or BPTT. A neuron receives an error signal for its output δ̂ = −∂E/∂o where E is a given cost or error function.

Error signal δ for its internal state u is derived by multiplying the derivative of its activation function to δ̂ as

δ = −∂E

∂u
= −∂E

∂o

do

du
= δ̂f ′(U). (20)

As depicted in Fig. 4, the error signal is propagated after being weighted by the weight vector w before propagating
to the one-level lower-layer neurons. Then the propagated error signal vector δw can be written as

δw = δ̂f ′(U)w = δ̂∇xo. (21)

Therefore, its magnitude can be expressed as

‖δw‖ =
∥

∥

∥δ̂∇xo
∥

∥

∥ =
∣

∣

∣δ̂
∣

∣

∣ ‖∇xo‖ = s(U ;w)
∣

∣

∣δ̂
∣

∣

∣ . (22)

If the sensitivity s(U ;w) = ‖∇xo‖ is 1.0, then

‖δw‖ =
∣

∣

∣δ̂
∣

∣

∣ , (23)

and the error signal is propagated efficiently without being shrunk or expanded through the neuron.

From the view of group or layer of neurons as can be seen in Fig. 5, the relation between the error signal before and

after the layer δ̂upper , δ̂lower can be written as

δ̂lower = W
T
(

f ′(U) ◦ δ̂upper

)

. (24)

The Jacobian matrix as presented in Eq. (13) can be modified as

J(U;W) =







f ′(U1)w11 · · · f ′(U1)w1m

...
. . .

...
f ′(Un)wn1 · · · f ′(Un)wnm






(25)

= (f ′(U1)w1, . . . , f
′(Un)wn)

T
.

Then, Eq. (24) is changed to

δ̂lower = J
T(U;W)δ̂upper . (26)

Accordingly, though the Jacobian is transposed, the similar discussion as the relation between ‖do‖ and ‖dx‖ in

the forward computation can be made. The same assumptions are made for W and f ′(U) as before, and δ̂upper is
assumed to be a random vector whose elements are i.i.d. with mean 0. The relation between the mean squared error
signal vectors before and after the layer can be found as

1

m
E

[

∥

∥

∥
δ̂lower

∥

∥

∥

2
]

=
〈s2〉
n

E

[

∥

∥

∥
δ̂upper

∥

∥

∥

2
]

, (27)

in the same way as for Eq. (16). If the sensitivity of each neuron is 1.0,

RMS
[∥

∥

∥δ̂lower

∥

∥

∥

]

√
m

=
RMS

[∥

∥

∥δ̂upper

∥

∥

∥

]

√
n

, (28)

and the error signals in backward computation do not either disappear or explode. If the numbers of inputs and outputs
are the same, RMS remains unchanged before and after the layer as stated below:

RMS
[∥

∥

∥
δ̂lower

∥

∥

∥

]

= RMS
[∥

∥

∥
δ̂upper

∥

∥

∥

]

. (29)

Therefore, if the sensitivities of all network neurons can be controlled around 1.0, it is expected that the error signals
propagate backward without being shrunk or expanded.
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f '(U)
= (U1)( (U ))

δ1

upper

δ2

upper

δn

upper

W=(w1,w2 , .. ,wn)
T

.

, ..,. n

δ1

lower
δ2

lower
δm

lower

w1 wn
w2

ˆˆˆ

+ + +

ˆδ̂ = (δ1 , . . , δm
)

T

.
lower

lower
lowerˆ

f 'f '

=J δ̂upper

T

ˆ ˆ ˆ

ˆδ̂ =(δ 1 , . . , δ n
)

T

.
upper

upper
upperˆ

δ̂upper

δ̂lower

f '(U)W δ̂upper=
T
( )

Figure 5: Backward (error signal) computation through a layer of neurons.

3.4 Learning Method (Sensitivity Adjustment Learning (SAL))

In sensitivity adjustment learning (SAL), which we also propose in this paper, each neuron has a small weight vector
initially and updates them to increase its sensitivity by hill-climbing that is the steepest ascent according to

∆w = ηSAL∇ws(U ;w) = ηSAL∇w ‖∇xo‖ (30)

where ηSAL is the learning rate for SAL. From Eq. (3),

∇w‖∇xo‖ = ∇w {f ′(U) ‖w‖}
= f ′(U)∇w ‖w‖+ ‖w‖∇wf

′(U)

= f ′(U)
w

‖w‖ + ‖w‖∇wf ′(U) (31)

Then the update rule can be written as

∆w = ηSAL

(

f ′(U)
w

‖w‖ + ‖w‖∇wf
′(U)

)

. (32)

In the following simulations, we use tanh as activation function f(·) for all the neurons. In this case,

f ′(U) =
1

cosh2(U)
= 1− o2 (33)

and so

∇wf
′(U) = ∇w(1− o2)

= −2of ′(U)∇wU

= −2o(1− o2)x. (34)

Then the update rule is as

∆w = ηSAL(1− o2)

(

w

‖w‖ − 2o ‖w‖x
)

. (35)

In this equation, the term ηSAL(1 − o2)w/ ‖w‖ is originated from the first term of the right-hand side of Eq. (31),
and is called ‘linear term’. w/‖w‖ is the unit vector whose direction is the same as w. Therefore, the sensitivity
is increased directly by making the size of the weight vector greater while keeping its direction. Accordingly, if the
neuron output o is around the linear region, in which the output is around 0.0, the weight vector w becomes greater
at a constant rate decided by ηSAL. The second term −2ηSAL(1 − o2)o ‖w‖x is originated from the second term of
the right-hand side of Eq. (31), and is called ‘non-linear term’. This means the sensitivity is increased indirectly by
making the magnitude of the internal state’s smaller for larger f ′(U). This term works only after the neuron goes out
of the linear region of the activation function.

Different from the case of weight, bias θ cannot increase the sensitivity directly but can increase it indirectly by
updating the bias so that the value U becomes closer to 0.0. Accordingly, the update rule for the bias is indicated as

∆θ = ηSAL ‖w‖
∂f ′(U)

∂θ
. (36)
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Furthermore, assuming the activation function is tanh, it can be rewritten as

∆θ = −2ηSALo(1 − o2) ‖w‖ . (37)

In this paper, to control the sensitivity around 1.0, SAL is applied only when the sensitivity is not greater than 1.0 in
each neuron. However, in practice, since the sensitivity is a function of U (internal state after bias is added) or output
o, it fluctuates largely as U or o fluctuates. Therefore, in this paper, the moving average of sensitivity s in each neuron
is computed as

sn ← βsn−1 + (1− β)sn (38)

where β is a decay rate. n indicates the number of forward computations in the whole learning for each neuron, and
the initial value is set as s̄0 = 0 here. In the case of an RNN, one neuron executes its forward computation repeatedly,
and so n indicates the time step, but is not reset for a new pattern or epoch. It is used as the criterion to decide the
application of SAL in each neuron.

When supervised learning is performed together with SAL learning, error backpropagation (BP) learning based on
stochastic gradient descent (SGD) including BPTT is used such as

∆w = −ηBP∇wE (39)

where E is the squared error when a training signal vector d is given and is expressed as

E =
1

2
(d− o

out)2 (40)

where o
out is the output vector in the output layer. In this paper, assuming simple on-line learning, no batch learning

is done, and the network is trained for each presented pattern one by one. However, we expect no hurdles for the
extension to batch learning because of the SAL’s local learning nature.

s > 1.0

yes

no

SAL learning

BPTT learning

t = Tmax

yes

no

output computation

t = 0

t t+1

t = 0no

t t-1

yes

finish

update s

Figure 6: Flow chart for the parallel learning of
SAL and BPTT for one pattern presentation. SAL
is applied only when the moving average of the sen-
sitivity s is not greater than 1.0. Tmax is the timing
of output. This conditional branch and SAL itself
are performed individually in each neuron.

Since the sensitivity fluctuates largely as mentioned,
the satisfaction of s̄ = 1 in each neuron does not fully
guarantee that the error signals will not explode in the
backward computation. Then, we introduce an addi-
tional technique to avoid the exploding gradient prob-
lem here. The function tanh is equivalent to the iden-
tity function when the input is around 0.0, but the out-
put is saturated when the absolute value of the input is
large. Then, in the backward computation of the error
signals, the function tanh is applied after multiplicting
the derivative f ′(U). Instead of applying Eq. (20), the
error signal is computed as

δ = tanh(δ̂f ′(U)), (41)

and the weight vector is updated as

∆w = ηBP δx. (42)

In this paper, when we apply SAL with BP or BPTT,
the weights are updated by SAL just after the forward
computation at each timing in each neuron when the
moving average of its sensitivity s is not greater than
1.0. Once the network finishes all the forward compu-
tations and SAL learning for the presented pattern, BP
or BPTT is applied in the backward computation. Al-
though the error signal is not propagated backward us-
ing the original weights but using those after the SAL
learning, we think the way is more effective than ap-
plying either SAL or (BP or BPTT) for one forward
computation. The flowchart is shown in Fig. 6 for the
case of learning of an RNN with BPTT as an example.
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4 Simulations

The following simulations are roughly divided into two parts. In the first part, as described in Section 4.1, only
sensitivity adjustment learning (SAL) is applied to recurrent neural networks (RNNs). Then, generation and control
of chaotic dynamics are examined, and the relation between sensitivities and maximum Lyapunov exponent is focused
on. In the second part described in Section 4.2, SAL is applied with supervised learning using BP or BPTT. Then the
performance is observed, and the learning process is analyzed. In all the simulations, hyperbolic tangent is used as the
activation function of each neuron.

4.1 Generation and Control of Chaos

At first, we show the generation of chaos dynamics in RNNs and adjustment of its chaoticity by sensitivity adjustment
learning (SAL) for various network architectures.

Before entering the simulation result, the way to estimate the maximum Lyapunov exponent is explained [Sprott

(2010)]. At every 100 steps (t = 0, 100, 200....), two internal states, u
(1)
0 = ut and u

(2)
0 = ut + rnd where rnd

is a small random vector whose Euclidian norm is 10−3, are prepared. The two states are updated separately without
updating the weights. At each step τ , the distance ratio between before and after one step update is calculated as

lτ = ln

(

u
(2)
τ − u

(1)
τ

10−3

)

. (43)

After that, the distance is normalized to 10−3 as

u
(2)
τ ← 10−3

∥

∥

∥u
(2)
τ − u

(1)
τ

∥

∥

∥

(

u
(2)
τ − u

(1)
τ

)

+ u
(1)
τ . (44)

Finally, the maximum Lyapunov exponent is computed using the 1,000 steps of the forward computation after 100
steps to eliminate the influence of the initial perturbation as

λ =
1

1, 000

1,100
∑

τ=101

lτ . (45)

When the network has two layers, that is computed at the 1st layer.

4.1.1 Case of Flat RNN

Firstly, investigation using a flat RNN with no layer structure is introduced. Table 1 presents the parameters. The
initial connection weights are small and uniform random numbers, and no bias is used here. The learning rate is small
to see the dynamics for each stage during learning. A small random perturbation is added to the internal state vector u
at every 1000 steps from the 1st step as a trigger of activations.

In the first simulation, using an RNN with fully connected 100 neurons, the learning process is shown in detail. Fig. 7
shows the output change of four sample neurons at each of the four stages from (1) to (4) during learning. In early
phase of learning, as shown in Fig. 7 (1), although a small perturbation is added at every 1,000 steps, the output is
decayed soon. Around the 50,000th step, the outputs change almost periodically as shown in Fig. 7 (2), and around
the 53,000th step, the outputs change irregularly as shown in Fig. 7 (3). Around the 100,000th step, as shown in Fig. 7
(4), the outputs still change irregularly, but the value range is greater than in (3).

Table 1: Parameters for chaos generation by SAL using a flat RNN

Number of neurons 100 or 30
Connection rate (%) 100 or 30

Initial connection weights
Uniformly random

[−0.01, 0.01]
Learning rate ηSAL in Eq. (35) 0.00002

Decay rate β in Eq. (38) 0.99
Perturbation (interval, size) (1000, 0.001)
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Figure 7: Change of four sample time-series of four outputs as learning progresses from (1) to (4) when applying SAL
to a flat RNN.

Fig. 8 shows how the learning progressed from various aspects. Fig. 8(a) provides the maximum and mean absolute
value of the output over all the 100 neurons. Before around the 45,000th step indicated by the thick vertical broken
line, all the outputs were almost 0.0 though small perturbations were added. Around the 45,000th step, the outputs
increased suddenly. After that, they increased gradually with some fluctuations, and finally they varied in most of the
value range as can be seen in Fig. 7(4). Fig. 8(b) shows how some sample weights changed during learning. Until
around the 45,000th step when the output of all the neurons is in the linear region, the absolute value of each weight
grows constantly, which is consistent with Eq. (35). After that, the absolute weight value still tends to increase, but
sometimes it decreases, and sometimes the magnitude relation between two weights is switched by the influence of
non-linear term in Eq. (35).

Fig. 8(c) presents the change of RMS of the sensitivities over all the neurons during learning. It increases almost
linearly until it reaches 1.0 right after the neurons take non-zero values. After that, the increase rate becomes smaller,
and the value is fluctuating. To compare it with the maximum Lyapunov exponent, which shows the chaoticity of the
network dynamics, the RMS sensitivity is plotted on the log-scale in Fig. 8(d). We call the value ‘log-sensitivity’ here.
The maximum Lyapunov exponent λ is also plotted on the same graph. They are almost the same until around the
45,000th step. Afterward, the slope for λ becomes less than that for log-sensitivity, but λ is still increasing. Then
Fig. 9(A) shows the relationship between the maximum Lyapunov exponent λ and log-sensitivity ln(RMS[s]) by
plotting them on the x- and y-axis respectively. Five lines indicate five cases with different initial connection weights
decided randomly. The relations are similar in all the five cases, and when the log-sensitivity reaches 0.0, the maximum
Lyapunov exponent reaches almost 0.0.

Then the number of neurons or connection rate is varied and it is examined whether the same relationship can be seen
between the maximum Lyapunov exponent and the log-sensitivity. Fig. 9(B) shows the results when decreasing the

11



Sensitivity – Local Index to Control Chaoticity and Gradient Globally – K. Shibata, T. Ejima, Y. Tokumaru, T. Matsuki

100,0000
0.0

1.0

1.6

80,00060,00020,000 40,000

0.0

1.0

-1.0

-2.0

-3.0
100,00080,000 60,000 20,000 40,000 

(d) maximum Lyapunov exponent & log sensitivity

(c) sensitivity (RMS over all neurons)

100,0000
0.0

80,00060,00020,000 40,000

1.0

0.5

(a) absolute value of output

maximum

average

0.6

(1) (2) (4)(3)

λλ

o
u
tp

u
t

se
n
si

ti
v
it

y
m

ag
n
if

ic
at

io
n
 f

ac
to

r 
(l

n
)

(b) connection weights

(sample 10 weights in one neuron)

-0.3

0.3

0.0w
ei

g
h
t

100,0000 80,00060,00020,000 40,000

((1) - (4) show the timing of the outputs shown in Fig. 7)

ln(s)

ln(s)

0

step

step

step

step

Figure 8: Learning process when applying SAL to a flat RNN. (a) The maximum and average absolute value over all
the outputs. (b) Sample connection weights. (c) RMS of sensitivities over all the neurons. (d) Maximum Lyapunov
exponent and log sensitivity (logarithm of the value in (c)). All the data are plotted at every 100 steps. The thick
vertical broken line shows the boundary of whether the outputs decay to 0.0 or not.
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Figure 9: Relation between the maximum Lyapunov exponent and log-sensitivity during SAL for 5 cases, varying (B)
number of neurons or (C) connection rate.

number of neurons to 30, and Fig. 9(C) shows the results when decreasing the connection rate to 30%. In both figures,
the maximum Lyapunov exponent is almost identical to the log-sensitivity until 0.0 as in the fully connected RNN
with 100 neurons. Only the difference is that the initial value is almost −3.5 in (B) and (C), but originally it is around
−2.8 in (A). Those are almost the same as the expected value ln (RMS [‖w‖]) derived from Eq. (3). Since the initial
weight values are decided as a uniform random number from −0.01 to 0.01, Var [wi] = 10−4/3. Expected number of
inputs is 100 in (A), 30 in (B) and (C), and f ′(U) ≈ 1.0.

4.1.2 Case of Two-Layer RNN

The relationship between the maximum Lyapunov exponent and log-sensitivity is examined in a multi-layer recurrent
neural network (RNN). Here, a two-layer RNN as shown in Fig. 10 is employed. The first layer has 1000 neurons, and
the second layer has 100 neurons. The connection rate from the first layer to the second layer is 100%. In contrast, the
feedback connection rate from the second layer to the first layer is 10%. The expected number of connections is 10 for
the first layer neurons, while 1000 for the second layer neurons. No bias is used. Table 2 summarizes the parameters.

z-1

100 neurons

1,000 neurons

100 %

10 %

2nd layer

1st layer

Figure 10: Two-layer RNN used in this paper. SAL was applied to all the neurons in the network.

Table 2: Parameters for the chaos generation by SAL using a 2-layer RNN

Number of neurons 1000 (1st) 100 (2nd)

Connection rate (%)
100 (2nd← 1st)
10 (1st← 2nd)

Initial connection weights
Uniformly random

[−0.03, 0.03]
Learning rate ηSAL in Eq. (35) 0.00002

Decay rate β in Eq. (38) 0.99
Perturbation (interval, size) (1000, 0.001)
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Figure 11: Relation between the maximum Lyapunov exponent and log-sensitivity during SAL. (1000–100 neurons,
10%–100% connection rate) (B) shows the relation when the target sensitivity was set to 1.0.

Fig. 11(A) shows the relationship between each layer’s log-sensitivity and the maximum Lyapunov exponent. Here
‘total log-sensitivity’ is introduced that is the sum of the log-sensitivities of both layers. The sensitivity value is
different between the two layers because the number of connections is different largely. As learning progresses, the
log-sensitivities increased, and in the second layer, it became greater than 0.0 though the maximum Lyapunov exponent
was still negative. However, it can be seen that the total log-sensitivity is almost the same as the maximum Lyapunov
exponent, and when the total log-sensitivity reached 0.0, the maximum Lyapunov exponent reached around 0.0.

Then to adjust the network dynamics to be around the edge of chaos, SAL was stopped in each neuron when the
moving average of its sensitivity in Eq. (38) reached 1.0. Fig. 11 (B) displays the results. It shows that the second
layer’s log-sensitivity did not become greater than 0.0 by stopping SAL in each of the 2nd layer neurons. Finally
the network dynamics reached around the edge of chaos, which is the dynamical state with the maximum Lyapunov
Exponent λ = 0.0, and maintained it by stopping SAL also in each of the 1st layer neurons.

4.2 Solving the Vanishing Gradient Problem

Next, let us focus on how sensitivity adjustment learning (SAL) works to avoid vanishing gradient problems in the
backward computation for gradient-based learning. Here, SAL is applied in each neuron only when the sensitivity is
not greater than 1.0, following the flowchart as presented in Fig. 6.

In the following, two cases of supervised learning are shown. The first one is a recurrent neural network (RNN) solving
a problem with long-term dependency, and the network is trained by BPTT (error Back Propagation Through Learn-
ing). The second one is a deep feedforward network (DFNN) trained by BP (error Back Propagation). In each case,
in order to see how SAL works in gradient-based learning, a simple learning problem and stochastic gradient descent
(SGD) is used. Therefore, learning is not applied to a batch or mini-batch but applied for each pattern presentation.

4.2.1 Case of RNN Solving a Long Time-Lag Problem

Here, to see how SAL affects gradient-based supervised learning, a simple 3-layer Elman-type RNN is used whose
hidden outputs are fed back to themselves at the next time step. As a simple learning problem, a sequential 3-bit parity
problem with a lag of 300 steps as shown in Fig. 12 is given. In the problem, three inputs are given sequentially at
every 100 steps, and the training signal is given 300 steps after the timing of the first input. Eight patterns are presented
in one epoch.

Table 3 presents the parameters used here. Here, a bias was used in each neuron. Its initial value and learning rate
were decided in the same way as the connection weights in the same layer. For the hidden neurons, they were decided
in the same way as the feedback connection weights. The propagated error signals and sensitivities during learning are
observed as well as the learning performance. One hundred simulations are performed with different random initial
connection weights. Here, only the feedback weight vector wFB is used to compute the sensitivities according to
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Figure 12: Sequential 3-bit parity problem with a lag of 300 steps. Three inputs were given in turn with intervals of
100 steps.

Table 3: Parameters for supervised learning using SAL and BPTT in an RNN.

Number of neurons (input, hidden, output) (3, 20, 1)

Initial
connection weights
(uniformly random)

input→ hidden 0.0
hidden→ output [−0.3, 0.3]
hidden→ hidden [−0.1, 0.1]

Learning rate ηSAL in Eq. (35) 0.0002

Learning rate
ηBP in Eq. (39)

input→ hidden 0.4
hidden→ output 0.1
hidden→ hidden 0.00004

Decay rate β in Eq. (38) 0.999

Eq. (3), and they are computed at every timing except for t = 0 in each hidden neuron. The learning is considered
successful if the absolute value of the error becomes less than 0.01 for each of the eight patterns within 1000 epochs.

Here, to see the effect of SAL and the reason why the combination of SAL and BPTT works well, the performance is
compared among the various conditions from the case (A) to (G) as shown in Table 4. Each of the conditions will be
explained below. Fig. 13 shows the success ratio for each case.

First of all, let us see the case (A) where SAL and BPTT are applied normally, and this case is called ‘original’ for the
following comparisons. There is only one failure in total 100 runs, but even in the failure run, the network could learn
it in 3000 epochs. Fig. 14 (A) shows the learning process of a standard sample run whose learning is the 46th fastest in
the 100 runs. (These initial weights will be used later as a sample of failures in other cases) In Fig. 14, subfigures (a)
and (b) depict the learning curve and the change in the network output for each of the eight patterns during learning.
Note that in the 0th epoch that includes eight pattern presentations, no learning was applied to show the output and
error signals before learning. As shown in Fig. 14(A)-(a), after the 20th epoch, the error decreased gradually except
when it temporarily increased around the 30th epoch.

Subfigure (c) in Fig. 14 shows how the RMS of the error signal δ changed in BPTT in the hidden layer during learning.
Before learning, the error signal at the 300th step, which is the output timing, was around 10−1, but for the other input
timings (200th, 100th, 0th step), it was far less than 10−30. At the 0th step, it was less than 10−160 actually. That
indicates the gradient vanished through the backward propagation. However, by applying SAL at every step, the error
signals increased rapidly, and in the 2nd epoch, they reached the same order as that at the output timing. Then they
stopped to increase. After around 30 epochs of learning, all the four error signals gradually decreased as the final error
in (a) decreased.

Subfigure (d) in Fig. 14 shows the average and standard deviation of sensitivities over all the 20 hidden neurons and
all the 300 steps during learning. The lower graph in the subfigure (d) shows the number of neurons to which SAL
was applied even once during the 300 steps. As shown in Fig. 14(A)-(d), soon after the learning began, the sensitivity
increased and its average reached 1.0. Then each neuron stopped SAL, and the value did not change so much, keeping
the average a bit greater than 1.0. However, SAL was applied in some neurons afterward when their average sensitivity
decreased below 1.0. It is also noticed that the sudden change in the output in Fig. 14(A)-(b) mentioned above was
caused by the SAL application around the 30th epoch.

On the other hand, in the case (F) when only performing BPTT without SAL, no successful run can be seen as in
Fig. 13(F). In RNNs such as a reservoir, the spectral radius of the feedback weight matrix is usually tuned manually
to control the network dynamics before learning. Then the spectral radius of WFB was increased by 0.01 from 1.0 in
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Table 4: List of simulations performed for comparison in the supervised learning of sequential 3bit-parity problem
using SAL+BPTT in an RNN.

Case SAL Criterion Others

(A) Nonlinear Nonlinear ‘original’
(A’) Nonlinear Nonlinear No tanh in BPTT
(B) Nonlinear Nonlinear Applied only initially
(C) Nonlinear Linear

(D) Linear Nonlinear
(E) Linear Linear
(F) Not applied –
(G) Not applied – Tuned init W
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Figure 13: Comparison of success ratio in 100 simulation runs among various conditions in Table 4 in the supervised
learning using SAL and BPTT in an RNN.

the case (G). The maximum success ratio was 43 when the spectral radius is 1.38 as in Fig. 13(G), but the ratio was
still far below the case when SAL was applied.

To analyze how SAL affects the learning positively, five other cases from (A’) to (E) in Table 4 were simulated. Before
entering the analysis of SAL itself, let us see the effect of applying tanh function in the backward error computation
as expressed in Eq. (41). Fig. 13(A’) shows the success ratio when SAL is applied without using tanh function in
error backpropagation in BPTT. In the failure cases, although each neuron stopped to apply SAL when its average
sensitivity was greater than 1.0, the gradient or propagated error signals exploded. The reason could be fluctuation of
the sensitivity due to the term f ′(U) in Eq. (3) and/or the delay due to the average computation in Eq. (38). Therefore,
to avoid such a gradient explosion, it is a good idea to use tanh also in the backward error computation. In the
following, tanh is always used in the backward computation.

At first, the effect of continuous learning is shown. In the case of (B), SAL was applied only until the sensitivity
reached 1.0 for the first time. As shown in Fig. 13(B), the ratio was worse than the ‘original’ case (A). Fig. 14 (B)
shows the learning process when the initial weights were the same as the ‘original’ case (A), but the learning failed as
can be seen in Fig. 14 (B)-(a,b). As shown in Fig. 14(B)-(c), the propagated error signals reached 10−1 order at the
second epoch as well as the case of (A). However, soon after that, the error signal at the earlier steps decreased more
even though the error signal at the output timing (300th step) was not decreased. As shown in Fig. 14(B)-(d), the mean
sensitivities became more than 1.0 once, but they decreased below 1.0 after that. By comparing with the ‘original’
case of (A), it is suggested that SAL is useful not only at the beginning of learning but also works to prevent the loss
in sensitivities caused by BPTT during learning.

Secondly, the effect of nonlinear part f ′(U) of the sensitivity expressed in Eq. (3) is shown. The nonlinear property
influences mainly two parts in SAL. One of them is the second term in the second parenthesis in Eq. (35) for weight
update in SAL itself. The other part is that the sensitivity including f ′(U) is used as the criteria to decide whether SAL
is applied or not. Here, the results of four combinations of the two conditions, each of which is linear or nonlinear, are
shown. The case when the non-linear term in Eq. (35) is deleted in SAL is called ‘linear SAL’. The case when |wFB|
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(A) SAL was always applied when the sensitivity was
below 1.0.  A sample of (A) in Fig. 13.

(B) SAL was applied until the sensitivity reached 1.0
for the first time.  A sample of (B) in Fig. 13.
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Figure 14: Sample learning process when SAL was applied in an RNN together with BPTT and its comparison between
two cases (A) and (B) in Table 4. In (B), SAL was not applied again in each neuron once its sensitivity reached 1.0.
The initial connection weights are the same between (A) and (B). From the top, (a) change of RMS error over eight
patterns, (b) change in the network output for each of eight patterns, (c) RMS of the magnitude of propagated error
signal over all the neurons at several timings in 300 steps of backward computation for BPTT. (d) Upper: distribution
of sensitivity over all the neurons and steps. Three lines show the mean (center) and standard deviation. Lower:
number of neurons in which SAL was applied at least once. (c) and (d) are plotted for each pattern presentation, and
so eight points are plotted in order for each epoch. In the 0th epoch, no learning is applied.
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Figure 15: Comparison of the early stage of the learning process (sensitivity s, absolute output |o|, weight size |w| of
the first three hidden neurons.) depending on whether the nonlinear term is included (A) or not (D) in SAL when SAL
was applied to an RNN together with BPTT. Each of them is an example in the case of Fig. 13 (A) or (D), and the
initial weights are the same as in Fig. 14.

is used as the criterion to apply SAL instead of using sensitivity f ′(U)|wFB |, is called ‘linear criterion’. As can be
seen in Table 4, both are nonlinear in the ‘original’ case (A). In the case of (C), SAL itself is nonlinear, but criterion
is linear. Then SAL was stopped when |wFB| was greater than 1.0. The success ratio for the case (C) is less than the
‘original’ case (A) as shown in Fig. 13. Since f ′(U) is usually less than 1.0, the adjustment target value should be
greater than 1.0 to keep the sensitivity to be around 1.0, but it is not easy to find the optimal target value.

The result for the combination of ‘linear SAL’ and ‘nonlinear criterion’ is shown in Fig. 13(D), but learning succeeded
only in one simulation run. To investigate the failures, a sample learning process for the 50 epochs from the beginning
is shown in Fig. 15. The initial weights were the same as the case of Fig. 14. In the ‘original’ case (A), as shown in
Fig. 15(A)-(a) and (c), once the sensitivity was greater than 1.0, the weight vector did not increase anymore. The mean
absolute value of the output was almost less than 0.5 as in Fig. 15(A)-(b). On the other hand, in the case of linear SAL
(D), as in Fig. 15(D)-(a), the sensitivities dropped from around 1.0 in the 2nd epoch in two of the three hidden neurons
(the first (blue) and third (green) lines) even though their weight size continued to increase as in Fig. 15(D)-(c). At that
time, the mean absolute outputs of the corresponding neurons in (D)-(b) also increased even with a large fluctuation
due to the presented pattern. That means that the decrease in f ′(U) due to the output increase towards the saturation
region caused the sensitivities to decrease. Therefore, it is suggested that the nonlinear term in SAL worked to keep
the sensitivities high by avoiding the outputs from entering the saturation area and made the difference in performance
between the cases (A) and (D).
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In the case (E) when SAL and criterion were both linear, learning was successful in half of the runs as shown in
Fig. 13(E). Since the linear criterion does not include f ′(·), the linear SAL stopped before the weights became very
large. The success ratio is only slightly greater than the best ratio when the scale of the weight matrix is manually
explored in Fig. 13(G). That suggests that the nonlinear property is the origin of the positive influence of SAL on
BPTT learning.

4.2.2 Case of Deep Feedforward Neural Network (DFNN)

Finally, sensitivity adjustment learning (SAL) is applied to a DFNN. To see the effect of the number of layers clearly,
an 8-bit parity problem with noise addition is employed as a simple nonlinear problem. There are eight inputs, each
of them takes a value of −1 or 1. There is only one output, and if the number of 1 values in the inputs is odd, the ideal
value is 0.8, and −0.8 otherwise. The number of patterns is 28 = 256. Number of layers is varied, and each layer has
20 neurons.

Table 5 presents the used parameters. Except for the bottom hidden layer that receives inputs, the learning rate ηBP

for SGD is the same for all the layers but different depending on the number of layers as shown in Table 6. Initial
connection weights are decided randomly in the range of [−init W, init W ]. Here, init W is called ‘initial weight
scale’ that is also the same for all the hidden layers. The initial values and learning rate for the biases were decided in
the same way as the weights in the same layer.

Table 5: Parameters for supervised learning of 8-bit parity problem with noise addition using SAL and BP in a DFNN.

Number of neurons (input, . . . , output) (8, 20, . . . , 20, 1)

Initial
connection weights
(uniformly random)

input→ hidden
[−0.1, 0.1]

hidden→ output

hidden→ hidden
varied or
[−0.1, 0.1]

Learning rate ηBP

in Eq. (39)
input→ hidden 0.02

Learning rate ηSAL in Eq. (35) 0.001
Decay rate β in Eq. (38) 0.99

Noise added to each input (uniformly random) [-0.2, 0.2]
Learning epochs 5000

Table 6: Learning rate ηBP in Eq. (39) for the weights other than those from the inputs to the hidden neurons. It
depends on the number of layers of the used DFNN.

Number of layers 3 5 10 30 100 200 300 1000
Learning rate 0.01 0.003 0.001 0.0007 0.0005 0.0004 0.0003 0.0001

At first, learning performance is observed by changing the number of layers from 3 to 1000. Fig. 16 shows the mean
and standard deviation of log-scaled RMS error over 256 patterns after learning in 20 simulation runs with a different
random sequence for initial weights and noises. The NN can learn the problem even with 300 hidden layers without
employing special architectures. It can be seen that the performance is improved as the number of layers increases until
300 layers, and the errors lie almost on the linear approximation in the log-scale. In the case of 1000 layers, learning
succeeded only once. However, the error was the smallest of all the 20 × 8 runs and lay on the linear approximation
for the range from 3 to 300 layers.

Next, learning performances with various initial weight scales are observed. Fig. 17(A) shows the results when SAL
was not applied, and Fig. 17(B) shows the results when SAL was applied. We call them ‘without SAL’ and ‘with
SAL’, respectively. The errors are plotted for four cases varying the number of layers as 30, 100, 200, 300, and each
plot is the average error over 20 simulation runs with different random sequences.

In Fig. 17(A) for ‘without SAL’, when the initial weight scale was less than 0.4, learning failed even in the case of 30
layers. The learning performance was the best around the initial weight scale from 0.55 to 0.6, where the expected
spectral radius (maximum absolute eigenvalue) of the weight matrix is around 1.6. The error around there is lower
as the number of layers is smaller. When the weight scale becomes greater than the optimal one, the error increases
again. Those can be due to the influence of the vanishing/exploding gradient. However, when the number of layers is
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SAL was applied with BP in a DFNN with an initial weight scale of 0.1. The average and standard deviation over 20
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Figure 17: Comparison of the error after supervised learning for various initial weight scales in a DFNN between the
two cases of (A) only BP (‘without SAL’) and (B) SAL+BP (‘with SAL’). The number of layers was varied in 30, 100,
200, 300. Each plot shows the RMS error for 256 patterns averaged over 20 simulation runs. In (A), the case without
tanh in BP is also shown only for the case of 30 layers. In (B), the case of applying SAL only until the sensitivity
reaches 1.0 for the first time is also shown for the case of 300 layers. The vertical line and the arrow around 0.36 on
the horizontal axis indicate that the expected spectral radius of the weight matrix is 1.0.
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300, even though the step size of varying the initial weight scale is as small as 0.01, there is no scale with which the
error becomes less than around 0.8.

Fig. 17(B) shows the result when SAL is applied with BP. When the initial weight scale was large, learning failed.
However, it can be seen that when the initial weight scale was set to a small value like 0.1, learning succeeded in all
the 20 simulation runs regardless of the number of layers. The boundary scale between learning success and failure is
smaller as the number of layers is greater. From Fig. 16 where the vertical axis is log-scaled, the error is smaller as the
number of layers is larger when the weight scale is 0.1. That is the opposite trend of the case of ‘without SAL’.

Fig. 18 shows the size of the propagated error signal δ at the bottom hidden layer before learning varying the initial
weight scale for the cases of 30, 100, 300 layers. That at the top hidden layer is also plotted for comparison and is
around 10−1 not depending so much on the number of layers or the initial weight scale. At the arrow around the
weight scale of 0.36, the spectral radius of each weight matrix between hidden layers is expected to be 1.0. However,
when the scale is around 0.58, the error signal vector has almost the same size between the top and bottom hidden
layers. The weight scale is almost the same as when the performance is the best in Fig. 17(A). That suggests the
vanishing/exploding gradient made the learning difficult when SAL was not applied.
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Figure 18: RMS of the propagated error signal δ at the bottom hidden layer before learning for the cases of 30, 100,
300 layers. For comparison, the error signal at the top hidden layer is also shown by three dotted lines, but because of
the overlap of them, it is difficult to find two hidden lines.

On the other hand, when the number of layers was 300, the error never went down for any weight scale as in Fig. 17(A)
even though the error signal reached the bottom layer for the weight scale around 0.6. In the case of 200 layers, the
error becomes slightly small around initial weight scale 0.58, but the error was considerably smaller when SAL was
applied with a small initial weight scale as in Fig. 17(B). That implies that simply adjusting the initial weight scale or
spectral radius is insufficient to learn appropriately.

We consider two reasons for the excellent performance when SAL was applied. The first one is the effect of contin-
uous application of SAL. The error when applying SAL only at the beginning of learning, is additionally plotted in
Fig. 17(B) for the case of 300 layers. The learning sometimes failed as well as the case of RNN in Fig. 13 (B). That
means that the sensitivity needs to be around its moderate level not only at the beginning of learning but also during
learning. However, in this case, although it occasionally failed to learn, in many other runs, the error was equivalent
to the case when SAL is always applied. The second reason could be the limitation of adjusting the spectral radius
of the weight matrix. Even though the spectral radius is appropriate, the sensitivities may not be appropriate for all
the neurons, especially when the number of inputs is small. In contrast, SAL makes them moderate in each neuron
through learning. Actually, it was confirmed that when the Euclidean norm of the weight vector |w| was adjusted
around 1.2 individually in each neuron before learning, the average RMS error went down around 0.75 even without
applying SAL in a 300 layer DFNN.

Finally, processing through layers is investigated by observing the output when continuous random inputs were given
to the 20 NNs trained with different initial weights. 1000 sets of 8 continuous uniform random numbers ranging from
−1.0 to 1.0 were used as input, and the output was observed for the total of 1000× 20 = 20000 cases. Fig. 19 shows
the histogram of the output when the number of layers was varied in 3, 10, 30, 100, 300. As the number of layers
increases, the frequency becomes larger for the output being around −0.8 or 0.8. Attractor-like processing through
layers can be seen when the number of layers is large. We think that brought out the high learning performance for the
noisy inputs as presented in Fig. 16.
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Figure 19: Histogram of the network output when 1000 continuous random input vectors whose element was decided
randomly from −1.0 to 1.0 was given to 20 networks after learning of 8 bit parity problem with noise addition. The
number of layers is varied from 3 to 300.

Then the transition of the hidden representation is observed when the number of layers is 300. Fig. 20 shows the
hidden outputs for the random 1000 sets of continuous inputs after PCA (principal component analysis) in each of the
1st (bottom), 100th, 199th, 298th (top) hidden layers. Among 20 simulation runs, one sample that makes it easy to
see the transition in representation is picked up. It can be seen that the representation is extended and folded gradually
like the baker’s transformation, and the internal states are divided into two lumps finally. ✷◦

(a) 1st (lowest) hidden layer (b) 100th hidden layer

(c) 199th hidden layer (d) 298th (highest) hidden layer
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Figure 20: Change of internal representation after PCA through layers for 1000 continuous random input patterns after
learning. (One sample of the 20 networks in Fig. 19) The plot color and shape indicate the final network output as
’�’(red): 0.75 < o < 0.85, ’•’(green): −0.85 < o < −0.75, ’×’(gold): others. Each of the three arrows shows how
a specific point or group of points moves through layers.
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5 Discussion & Conclusion

We believe that in the future, with the increasing demand for higher functions such as conversation and thinking, the
control of dynamics in recurrent neural networks (RNNs) will be more and more critical. Towards such a future, we
have shown the possibility that only by controlling the sensitivity in each neuron, the global dynamics of RNNs can be
controlled. When applying the sensitivity adjustment learning (SAL) to an RNN, the log sensitivity (for layered RNNs,
sum of each layer’s log sensitivity) is almost identical to the maximum Lyapunov exponent until the network dynamics
get into chaos not depending on the number of neurons, connection ratio or number of layers. In particular, when the
sensitivity of each neuron is adjusted to 1.0, the maximum Lyapunov exponent of the entire network becomes 0.0. That
means the dynamical state of ‘edge of chaos’, which is very important from an information-processing perspective, is
achieved autonomously in an RNN through SAL.

In gradient-based learning, maintaining a small deviation through layers in the forward computation and maintaining
the gradient or error signals in the backward computation are both represented by using the Jacobian of the layer’s
computation, and are equivalent to each other. Therefore, SAL with 1.0 target sensitivity leads to avoiding ‘vanishing
gradient’ in gradient-based learning in RNNs, which is also valid in deep feedforward neural networks (DFNNs).
The combination of SAL and BP or BPTT enables to solve the problems without introducing special architecture or
computation except for the general and local learning from small initial weights. The performance is better than when
the initial weight scale is finely tuned without applying SAL. When the values of the weights are small, SAL simply
increases the magnitude of each weight vector without changing the vector direction, and so it seems to be equivalent
to just increasing the weights gradually at a glance. However, the advantage of locality, continuity, and nonlinearity in
SAL can be seen from the above learning results as follows.

• The computation is entirely local, and also the decision to stop the SAL can be made autonomously by each
neuron itself. However, each neuron cannot compute the spectral radius or eigenvalues of the weight matrix
between layers locally.

• Sensitivity is not adjusted for each layer but more finely adjusted for each neuron.

• The sensitivity considers not only linear transformation by the weight vector but also the nonlinear trans-
formation by the activation function. Therefore, different from the adjustment of the spectral radius of the
weight matrix, SAL can control the actual dynamics directly considering non-linear processing. By setting
the target value to be 1.0, ‘edge of chaos’ can be realized easily.

• Nonlinear term in SAL prevents the output from going into the saturation area of the activation function.
That enables the network to maintain good information transmission in both forward (output) and backward
(error) computation.

• Applying SAL with another learning together prevents the loss of sensitivity caused by the other learning.

They give us the hope that SAL will make us free from the fine-tuning of the initial weight and bring us better
learning performance than the manual tuning. In reservoirs, which have yielded outstanding results in time-series data
processing and temporal pattern generation, an appropriate scale of random weight values is essential. The proposed
method can also be an answer to the question of how each neuron gets such moderate weights autonomously.

The following are the immediate issues we are currently facing.

(1) Application to more complicated problems and comparison with other methods
This paper has focused on the analysis of SAL behavior, and we employed simple learning problems when
examining the combination of SAL and BP or BPTT. Therefore, it is strongly expected to apply SAL to more
practical and large-scale complicated problems and compare the performance with other methods.

(2) SAL for different kinds of input
Another essential unsolved issue is to verify whether SAL works more generally, especially, when a neuron
receives both external signals and those from other neurons. The case also should be examined in which
the RNN’s architecture is not simple, but more complicated with multiple loops. In reinforcement learning
problems, the feedback loop through the outer world from actions to perceptions for an agent also influences
the network dynamics. In this paper, SAL could control the global dynamics of a two-layer network even
though the neurons in the other layer were considered as an external world during learning.

(3) Setting initial connection weights
SAL autonomously adjusts connection weights, but small and random initial weights are still assumed.
For being more plausible, a way to determine the initial weights without using random numbers should be
investigated, for example, by considering the physical distance to downstream neurons. The influence of
non-random initial weights should be also investigated.
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(4) Adjustment of learning rate
While we hope SAL reduces the load of tuning the initial weights, naive learning rate adjustment is still
necessary.

(5) Conflict to other learning
SAL sometimes increases the error for the other learning like the case in Fig. 14(b). The influence should be
investigated in more detail.

(6) SAL on dynamical neurons
It also should be examined whether SAL works in dynamical neurons (continuous-time model), enabling vari-
ous time constant or chaotic neurons with refractoriness.

SAL is also significant in terms of autonomous, distributed, and asynchronous processing that enables to control the
global dynamics of an RNN by local learning in each neuron. In the current neural network computation, we often
utilize the parallel processing in GPUs, but they are still under a centralized system. In the future, if the network
becomes larger and more flexible like our brain and is trained and utilized in real-time, parallelization at the level of
each neuron and autonomous decentralized processing will be essential [Okabe et al. (1998)]. The proposed method
in this paper lies in this direction, and we also expect to accelerate researches in this direction.

We believe that SAL shows its potential by using it together with another learning for its original purposes, such as
reinforcement learning and supervised learning. Here, we try to generalize the idea about this framework. In an RNN,
the other learning forms attractors to increase reproducibility for better states or actions and turns the state transitions
from irregular to rational. However, the formation of attractors causes a decrease in sensitivity (chaoticity). As a result,
it is possible that the network is stuck in an attractor and remains inactive for a long time. That would mean“death”
for the learning agent and should never happen.

If the time average of the sensitivity in each neuron is 1.0, the network dynamics is Edge of Chaos that lies on the
boundary between chaos and non-chaos. However, this does not mean that the network always keeps the size of a
tiny variation of a signal constant without diverging or converging. When an attractor is formed by the other learning
under the constraint of average sensitivity to be 1.0, the attractor is not complete but becomes a pseudo-attractor,
and both convergence and divergence appear alternately while being balanced in the course of time. That enables
the agent can balance exploration and learning and maintain autonomous state transitions, ensuring the agent does
not reach the“death”. In the high-dimensional space formed by a large number of neurons, pseudo-attractors would
created through learning and chaotic itinerancy among them emerges, which leads to realizing “thinking” including
“inspiration” and “discovery”, we expect.

We are living not only in space but also in time. However, most of the existing learning methods have focused on
the state or output at a timing. We can express it as a point in space, and learning has moved it to a better place.
Even though we use an RNN and its state or output changes over time, learning has not taken into account its flow
or lines in space. The sensitivity is an index for the flow in the processing of one neuron. We hope the sensitivity
is the key to developing learning methods to control the flow or dynamics. What we want to do most is to bring
this idea of “learning of dynamics” into reinforcement learning and establish a new paradigm. Learning does not
aim to improve the output or state at a specific time but improve the dynamics from the viewpoint of “exploration”
or “reproducibility” in high-dimensional systems. We believe that is a fundamental idea towards the ultimate goal:
“emergence of thinking”.
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