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a b s t r a c t

Accurate characterization of brain activity during a cognitive task is challenging due to the dynamically
changing and the complex nature of the brain. The majority of the proposed approaches assume
stationarity in brain activity and disregard the systematic timing organization among brain regions
during cognitive tasks. In this study, we propose a novel cognitive activity recognition method
that captures the activity-specific timing parameters from training data that elicits maximal av-
erage short-lived pairwise synchronization between electroencephalography signals. We evaluated
the characterization power of the activity-specific timing parameter triplets in a motor imagery
activity recognition framework. The activity-specific timing parameter triplets consist of latency of
the maximally synchronized signal segments from activity onset 1t , the time lag between maximally
synchronized signal segments τ , and the duration of the maximally synchronized signal segments w.
We used cosine-based similarity, wavelet bi-coherence, phase-locking value, phase coherence value,
linearized mutual information, and cross-correntropy to calculate the channel synchronizations at
the specific timing parameters. Recognition performances as well as statistical analyses on both BCI
Competition-III dataset IVa and PhysioNet Motor Movement/Imagery dataset, indicate that the inter-
channel short-lived synchronization calculated using activity-specific timing parameter triplets elicit
significantly distinct synchronization profiles for different motor imagery tasks and can thus reliably
be used for cognitive task recognition purposes.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Analysis of the brain activity patterns associated with cogni-
ive as well as other tasks has become a popular research area
or the neuroscience community (Tirsch et al., 2004). Among the
andful of cognitive tasks, motor imagery is arguably one of the
ost remarkable and interesting, even referred to as ‘‘embodied
ognition’’ to study brain functioning (Hanakawa, 2016; Höller
t al., 2013). Motor imagery, in general, is defined as the mental
epresentation of the covert actions without any external effort
Xu et al., 2014). The neural correlates of different kinds of motor
magery activities were investigated and found to share a similar
eural substrate as well as a control mechanism with actual
otor execution (Halder et al., 2011; Izumi et al., 1995; Kilintari
t al., 2016). Based on these findings, motor imagery tasks have
een explored for neurorehabilitation (Chaudhary et al., 2016;
orostenskaja et al., 2017; Lu et al., 2020), sports training (Guillot
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et al., 2013), skill acquisition (Kraeutner et al., 2014), brain–
computer interfaces (BCI) (Park et al., 2013; Schalk et al., 2004;
Wolpaw et al., 2002; Yuan & He, 2014) and virtual environment
navigation (Pfurtscheller et al., 2006).

Numerous electroencephalography (EEG)-based motor
imagery activity recognition studies have been proposed to ex-
tract relevant features of the signals collected during motor
imagery tasks (Kevric & Subasi, 2017; Wierzgała et al., 2018).
To this end, time series modeling (Arnold et al., 1998; Burke
et al., 2005; Samdin et al., 2017; Schlögl, 2000), spatial filtering
(Blankertz et al., 2008; Lemm et al., 2005; Lotte & Guan, 2011;
Ramoser et al., 2000; Song & Epps, 2007; Zhang et al., 2015),
time–frequency analysis (Dodia et al., 2019; Hramov et al., 2019;
Hsu & Sun, 2009; Ince et al., 2007), scalp voltage topography
(Tzovara et al., 2012), entropy-based modeling (Gao et al., 2013;
Göksu, 2018; Kee et al., 2017) as well as other methods have been
used in previous motor imagery-based brain–computer interface
frameworks (Abiri et al., 2019; Bashashati et al., 2007; Dornhege
et al., 2004). These methods, in general, aim to characterize the
localized brain dynamics extracted from the electrical activities
collected via electrodes placed on a specific region of the scalp.
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owever, it is also known that the brain is organized as a complex
etwork in which the neural information is continuously pro-
essed and transferred between different regions of the brain (Jin
t al., 2012; Sporns et al., 2004; Stam & Van Dijk, 2002). Distinct
egions that take part in this complex network are in continuous
nteraction with each other functionally in a nonlinear as well as
ynamic fashion (Marinazzo et al., 2011; Rubinov & Sporns, 2010;
porns et al., 2000).
Two types of statistical interactions, also termed statistical

onnectivity, have been proposed to take place between brain
egions (Fingelkurts et al., 2005; Stam & van Straaten, 2012).
unctional connectivity refers to the temporal synchronization
nd effective connectivity refers to the causal synchronization
etween the electrophysiological/hemodynamic signals, also re-
erred to as the undirected and directed interaction, respectively
Bowyer, 2016). Connectivity appears to be central to under-
tanding the systematic information processing organization of
he brain for cognitive, sensory as well as other processes (Chen
t al., 2019; Chung et al., 2012; Harrison et al., 2003; Kelso et al.,
013; Tognoli & Kelso, 2009). It offers a fundamental insight into
he functional network organization of the brain (Hipp et al.,
012). However, the exact model of the synchronization among
he brain regions and its functional role in cognitive, sensory,
nd motor tasks is still unclear (Marinazzo et al., 2011). For
his reason, various kinds of model-free synchronization metrics
ave been proposed to measure the synchronization between
he brain regions and tested on synthetic and real multichan-
el electrophysiological datasets to evaluate the effectiveness of
hese methods (Bakhshayesh et al., 2019a, 2019b; Duckrow &
lbano, 2003; Greenblatt et al., 2012; He et al., 2019; He & Yang,
021; Olcay & Karaçalı, 2019; Pereda et al., 2005; Sakkalis, 2011).
hese synchronization metrics were also exploited in BCI studies
hat proposed to use the statistical interactions between distinct
egions of the brain as features (Brunner et al., 2006; Daly et al.,
012; Gu et al., 2020; Hamedi et al., 2016; Wei et al., 2007),
nd in biophysical studies to identify various brain disorders
uch as schizophrenia (Calhoun et al., 2008), autism spectrum
isorder (Sarmukadam et al., 2020), depression (Peng et al., 2019),
leep-related disorders (Melia et al., 2015, 2014), mild cognitive
mpairment (Gómez et al., 2009), loss of vision (Bola et al., 2015)
r Parkinson (Skidmore et al., 2011).
In the literature, the majority of the synchronization (i.e.

onnectivity)-based brain activity characterization studies disre-
ard the dynamically changing characteristics of the brain and
ssume that the inter-regional synchronization profile between
rain regions remains constant throughout the cognitive task
eriods (Brunner et al., 2006; Gonuguntla et al., 2016; Makarov
t al., 2018; Olejarczyk et al., 2017; Tirsch et al., 2004; Wang et al.,
006). However, the dynamically changing and nonlinear char-
cteristics introduce an additional challenge in elucidating the
esting state as well as task-based cognitive dynamics (Hutchi-
on et al., 2013; Ince et al., 2009; Rabinovich & Muezzinoglu,
010; Stam, 2005; Stam et al., 2003; Zink et al., 2020). The
ntermittent characteristics of the inter-regional EEG/MEG syn-
hronizations were demonstrated to be the results of transient ac-
ivations/synchronizations of localized neuronal ensembles (Stam
t al., 2003).
Few studies exist in the literature that try to extract and

nterpret the intermittent dynamical characteristics of the brain
ctivity for modeling cognitive tasks/states. Lu et al. analyzed
hort-lived functional interactions of EEG channels via time–
requency cross mutual information analysis. They observed the
ynamical changes of the channel synchronizations according to
he task demands (Lu et al., 2011). Baker et al. used a Hidden
arkov Model (HMM) to capture consistent short-lived brain

tates that emerge with transiently coherent spatial networks
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to characterize the behavior of the brain during idling condi-
tions (Baker et al., 2014). Rodu et al. proposed a dynamical
kernel canonical correlation analysis-based approach to deter-
mine the short-lasting delayed correlation patterns among elec-
trophysiological signals (Rodu et al., 2018). Santamaria et al.
identified the short-lived phase synchronized states during motor
imagery tasks and used them for activity recognition purposes
(Santamaria & James, 2019). Pfurtscheller et al. highlighted the
emergence of short-lived somatotopically-specific brain states
during motor imagery activities (Pfurtscheller et al., 2008). Gu
et al. used time–frequency decomposition for EEG signals col-
lected during lower extremity motor imagery tasks and observed
short-lived frequency-specific ERD/ERS patterns (Gu et al., 2020).
Ambrosi et al. proposed a particle filtering-based method to ana-
lyze the temporal variations of brain synchronization (Ambrosi
et al., 2019). Hansen et al. addressed the transient nature of
the synchronization between brain regions during the rest state
(Hansen et al., 2015). Ren et al. analyzed the fluctuations of
information integration/segregation via dynamic graph metrics
and showed that during cognitive tasks a dynamic small world
architecture emerges in the brain (Ren et al., 2017). Karamzadeh
et al. used a dynamic time warping-based approach to track and
analyze the characteristics of time-varying brain synchronization
due to auditory and visual stimulus presentation (Karamzadeh
et al., 2013). Li et al. proposed a conditional Granger causality
analysis to track the dynamic connectivity between brain regions
(Li, Lei et al., 2019). Spiegler et al. analyzed the frequency-specific
time-varying phase coupling characteristics of tongue-movement
imagery activity on the time–frequency domain (Spiegler et al.,
2004). Dimitriadis et al. proposed a scheme that discretizes the
captured short-lived phase-synchronized microstate patterns to
analyze the transitory behavior of brain regions during task peri-
ods (Dimitriadis et al., 2013). Schack et al. captured the activity-
specific short-lived cortical connectivity profiles during abstract
and concrete noun processing (Schack et al., 2003).

All these studies stress the importance of considering the
dynamic nature of the brain in characterizing electrical activity
during any kind of cognitive state (Pfurtscheller et al., 2008; Vi-
daurre et al., 2018; Zalesky et al., 2014). Additional studies point
to another related phenomenon; the emergence of systematic
timing organization of synchronization of the electrical activity
between different regions of the brain during cognitive tasks
(Adhikari et al., 2010; Boeijinga & Lopes da Silva, 1989; Dawson,
2004; Jeong et al., 2001; Ktonas & Mallart, 1991; Na et al., 2002;
Olcay & Karaçalı, 2019; Roelfsema et al., 1997). The studies that
consider the systematic timing organization of brain synchro-
nization is based on the premise that the brain coordinates the
information routing between cortical regions by re-organizing the
synchronization timings between the associated brain regions for
each cognitive task according to the task demands (Alais et al.,
1998; Dawson, 2004; Jin et al., 2012; Lin et al., 2020). In this man-
ner, the brain integrates the localized neural activities by creating
a short-lived communication window between brain regions by
reciprocally modulating the synchronization of the neural activ-
ities at activity-specific timings during the information routing
(Palmigiano et al., 2017). This argument was also exploited in
recent studies to understand the inherent mechanism of the
synchronization between brain regions which shows a dynam-
ically changing behavior at each time point (Ren et al., 2017).
These instantaneous alterations of inter-regional brain synchro-
nization are thought to be due to the metastable characteristics
(formation and dissolution of metastable states) of the brain
(Kelso et al., 2013; Santamaria & James, 2019; Tognoli & Kelso,
2009; Varela et al., 2001). At the metastable regimes, brain re-
gions dynamically summon and release each other which can be
observed in terms of continuous alterations of inter-regional syn-

chronizations. During cognitive tasks, specialized brain regions
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hare similar intrinsic properties and reveal strong synchroniza-
ions for short periods of time. The emergence of short-lived max-
mal synchronizations between brain regions can be described
y communication-through-coherence (CTC) hypothesis through
hich segregated information over distant brain regions is in-
egrated (Fries, 2005). As Bastos, Hari, and Mitra et al. pointed
ut, inter-regional synchronizations emerge with inter-regional
ime delays (Bastos et al., 2015; Hari & Parkkonen, 2015; Mi-
ra et al., 2015). In our previous study, we showed that the
nter-regional maximal brain synchronizations emerged at spe-
ific inter-channel time lags (Olcay & Karaçalı, 2019). In that
tudy, however, we had only used the time lag parameter (τ )
or synchronization analysis. On the other hand, according to
he temporal information processing mechanism, maximal syn-
hronization between brain regions cannot be expected to be
aintained all the way from task onset to the period end since

he brain is known to exhibit a dynamically changing charac-
eristics. In order to address this limitation, in this study, we
ntroduced two new timing parameters (∆t , w) to accurately find
hen the characteristic synchronization emerges and vanishes
etween channel pairs.
Supporting this hypothesis, Kirschner et al. identified the task-

pecific brain synchronization patterns that emerged consistently
uring a cognitive task and determined that these synchroniza-
ion patterns remain more active than some of the inter-regional
ynchronizations observed within the default mode network
Kirschner et al., 2012). In a face recognition study, Wang et al.
etermined that the phase coherence simultaneously increases at
nfra-slow frequency bands between task-specific brain regions.
hey also suggested that the synchronization lag among the
scillatory activities becomes smaller for faster and more ac-
urate inter-regional communication and that the inter-regional
ynchronization lag reorganizes to adapt to the requirements of
ognitive activities (Wang et al., 2019). Hermanto et al. stated
hat the brain should generate similar synchronization patterns
t similar timings among its regions for each trial of a particular
ognitive task to meet the task-specific demands (Hermanto
t al., 2013). These findings suggest that an accurate character-
zation of cognitive tasks can be achieved by capturing and using
ctivity-specific timings at which the systematic and character-
stic inter-regional short-lived synchronization occurs (Bassett
t al., 2006; Jin et al., 2012).
The principal goal of the present study is to determine the

imings of the activity-specific short-lived synchronizations be-
ween the EEG channels for different cognitive tasks. To that
nd, we propose a method that determines the activity-specific
hort-lived inter-channel synchronization timings that elicited
he most significant maximal average pairwise synchronization
alculated across all task periods separately for each motor im-
gery activity and each channel pair. The short-lasting maximal
ynchrony between the brain electrical signals during a cogni-
ive task can be thought of as evidencing cognitive task-specific
nformation exchange/flow between the corresponding brain re-
ions and possibly also in specific frequency bands (Gonuguntla
t al., 2016; Maars & Lopes Da Silva, 1983; Wibral et al., 2011;
anon et al., 2018), which may further signify the presence of
n activity-specific functional integration mechanism (Jin et al.,
006; Rubinov & Sporns, 2010; Tognoli & Kelso, 2009). The three
iming parameters we use to calculate pairwise channel syn-
hrony are: ∆t for latency of maximally synchronized signal
egments from activity onset (t = 0), τ for the time lag between
aximally synchronized signal segments, and w for the length of

he maximally synchronized signal segments (please see Fig. 1).
n order to determine the values of these timing parameters, we
sed a sliding short-duration time window as done in Hutchi-

on et al. (2013) and Xu et al. (2008) for each task period and o
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hannel pair to track the dynamically evolving synchronization
atterns for varying time lag (τ ) and latency (∆t) values. Then, we
veraged the synchronizations obtained from corresponding task
eriods and channel pairs to obtain a common synchronization
ehavior. Finally, we used a heuristic search method to deter-
ine the associated timing parameter triplets that elicit maximal
verage synchronization.
As the synchronization measures, we used cosine-based sim-

larity (Olcay & Karaçalı, 2019; Sargolzaei et al., 2015), wavelet
i-coherence (Bandrivskyy et al., 2004; Makarov et al., 2018),
hase-locking value (PLV) (Lachaux et al., 1999; Varela et al.,
001), phase coherence value (PCV) (Bakhshayesh et al., 2019b;
ass et al., 1998), linearized mutual information (LMI) (Jin et al.,
010), and cross-correntropy (Liu et al., 2007; Santamaría et al.,
006). As each synchronization method is based on different
athematical assumptions and utilizes different features of the
lectrophysiological signals to evaluate the synchronization, their
erformances elucidated the mechanism of brain synchronization
or motor imagery (Wang et al., 2014).

The activity-specific timing parameter triplets for each chan-
el pair and each type of motor imagery activity were then used
n a motor imagery activity recognition framework whereby we
sed the activity-specific timing parameter triplets to calculate
he inter-channel short-lived synchronizations and used them as
eatures in a task recognition setting. The resulting recognition
erformances indicate that the proposed framework captures the
imings of short-lived and activity-specific inter-channel synchro-
izations. With potentially descriptive information related to the
orresponding cognitive activity, these results also suggest that
his approach can be used in a cognitive activity recognition
ramework.

The remainder of this paper is organized as follows: In
ection 2, we describe the datasets along with the proposed
ethod, as well as the synchronization measures used in this
tudy. In Section 3, we present the recognition performance
esults that compare channel synchronization values obtained
or different tasks calculated using the activity-specific timing
arameter triplets. In Section 4, we discuss the results. The final
ection concludes the paper.

. Materials and methods

In this section, we describe the methodology that pertains to
he study, along with a description of the EEG datasets. Mathe-
atical details are also provided including the definition of the
ynchronization measures as well as the optimization procedure
o identify activity-specific timing parameters for each channel
air.

.1. Datasets

In this study, we used two publicly available motor imagery
atasets, BCI Competition-III dataset IVa (Blankertz et al., 2006;
ornhege et al., 2004) and PhysioNet Motor Movement/Imagery
ataset (Goldberger et al., 2000; Schalk et al., 2004). The for-
er dataset was collected using 118 electrodes according to the
xtended international 10/20 system. The original sampling fre-
uency of the recording system was 1 kHz. This study was carried
ut using a downsampled version of this dataset to 100 Hz which
s also available for download at the competition website. This
ataset was collected from 5 subjects performing right hand/right
oot motor imagery activity with 140 task periods each. Every
otor imagery activity period lasted 3.5 s.
The latter dataset was collected via BCI2000 using interna-

ional 10/10 system with 64 channels at a sampling frequency

f 160 Hz. It includes recordings from 109 subjects performing
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Fig. 1. The illustration of the timing parameters ∆t , τ , and w used to determine pairwise short-lived synchronization between two EEG channels. ∆t stands for
atency of characteristic synchronization from activity onset, τ for time lag between synchronized the signal segments, and w for duration of the characteristic
ynchronization. We demonstrated the three cases in which time-directional synchronization calculated for τ < 0, τ = 0, and τ > 0.
able 1
he progression of the EEG recording sessions for PhysioNet dataset.
Task name Motor execution sessions Motor imagery sessions

Right/Left fist 3, 7, 11 4, 8, 12
Both fists/Both feet 5, 9, 13 6, 10, 14

right/left fist and both feet/both fists motor movement/imagery
tasks. Each subject repeated movement/imagery task periods in
three sessions. Each task period lasted 4.1 s. Prior to the mo-
tor movement/imagery sessions, there exist two 1-minute eyes
open/close recording sessions. The progression of the motor ex-
ecution/imagery sessions is given in Table 1. Each motor move-
ment/imagery session contains 15 task and 15 rest periods.

In total, we used all 280 motor imagery activity periods col-
ected from each subject of the BCI Competition-III dataset, and
f the PhysioNet dataset, we used all 45 motor imagery activity
eriods of all three right/left fist motor imagery sessions of the
irst 20 subjects for training and testing purposes of the proposed
ethod. For both datasets, prior to the analysis, we re-referenced

he signals to the common average to minimize the effects of
olume conduction and referencing problems (Lotte, 2008; Lud-
ig et al., 2009; McFarland et al., 1997). We then filtered the
EG signals with a finite-impulse-response (FIR) filter with a pass
and frequency range of 8–30 Hz to obtain the motor imagery
elated brain dynamics (Höller et al., 2013; Pfurtscheller et al.,
000; Wei et al., 2007; Yuan & He, 2014). The choice of a FIR filter
as made to avoid phase distortions of infinite-impulse-response

ilters (Jian et al., 2017). As the final step of pre-processing, we
xtracted the signals of the motor imagery task periods using the
iming annotations along with the corresponding labels indicating
he associated motor imagery task for the subsequent analysis.

.2. Synchronization measures

In order to capture the timings of the activity-specific short-
ived synchronization between the EEG channels, we used six
ifferent synchronization measures listed below.
455
• Cosine-based similarity (Herff et al., 2019; Olcay & Karaçalı,
2019; Sargolzaei et al., 2015)

• Wavelet bi-coherence (Makarov et al., 2018)
• Phase Locking Value (Lachaux et al., 1999; Varela et al.,

2001)
• Phase Coherence Value (Bakhshayesh et al., 2019b; Tass

et al., 1998; Ziqiang & Puthusserypady, 2007)
• Linearized Mutual Information (Jin et al., 2010)
• Cross-Correntropy (Liu et al., 2007; Principe, 2010; Santa-

maría et al., 2006).

We used Vasicek’s bias-corrected entropy estimation method
(Ibrahim Al-Omari, 2014; Vasicek, 1976) to calculate the en-
tropies of the phase differences for the phase coherence value
method. Furthermore, we used complex Morlet wavelets to cal-
culate the wavelet transforms of the EEG signals for the wavelet
bi-coherence method. Finally, we adopted a Laplacian kernel for
the cross-correntropy method (Rao et al., 2011).

Prior to the synchronization calculation, we extracted the sig-
nal segments of each task period from each channel represented
by s∆t,w

i,n = si
(
t ′
)
|t ′∈[tn+∆t,tn+∆t+w] where the signal segment

extracted from task period n and channel i starts at ∆t mil-
liseconds from the activity onset tn and lasts for w milliseconds.
Similarly, s∆t+τ ,w

j,n = sj
(
t ′
)
|t ′∈[tn+∆t+τ ,tn+∆t+τ+w] represents the

signal segment extracted from task period n and channel j that
starts at ∆t+τ milliseconds from the activity onset tn and lasts for
w milliseconds (please see Figs. 1 and 2). Thus, ∆t represents the
latency of maximally synchronized signal segments from activity
onset, τ represents the time lag between two maximally synchro-
nized signal segments, and w represents the length (i.e., duration)
of the maximally synchronized signal segments. Note that while
τ can take positive or negative values, ∆t takes values that are
greater than or equal to zero only. Consequently, s∆t+τ ,w

j,n may lead
or lag s∆t,w

i,n on the time axis.

2.3. Determination of activity-specific timing parameter triplets

In this study, the main target is to capture the optimal timing
parameter triplets for each specific cognitive activity and channel
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Fig. 2. Illustration of short-lived signal segments s∆t,w
i,n and s∆t+τ ,w

j,n obtained from EEG channels i and j for task period n. Note that here, τ takes a positive value,
ndicating that the ith channel is leading the jth channel.
w
f
A
f
f

air that elicit the maximal synchronization of the channels. In
hat context, we adopted the heuristic search strategy described
elow as the EEG signals and their short-lived synchronization
stimates are quite noisy. In such cases, using well-known search
ethods such as gradient descent and the Nelder–Mead are prone

o get stuck in the 3-dimensional timing parameter space.
In order to determine the activity-specific timing parameter

riplets {∆t, τ , w} for each channel pair and each type of cog-
itive activity, we adopted a sliding time window based search
ethod with a fixed length of 300 ms as in Bola et al. (2015)
nd Roelfsema et al. (1997). In this procedure, we first calculated
he short-lived synchronization between the signal segments ob-
ained for each channel pair (i, j) and training task period n for
arying ∆t ∈ [0 ms, 2000 ms] (Chung et al., 2012; Neuper et al.,
009) and τ ∈ [−125 ms, 125 ms] (Olcay & Karaçalı, 2019) at a
ixed duration of w = 300 ms as

i,j (∆t, τ , n) = S
(
s∆t,300 ms
i,n , s∆t+τ ,300 ms

j,n

)
(1)

here S (·, ·) denotes the synchronization measure of choice. We
hen calculated the average synchronization across the training
ask periods of the same cognitive activity type for each channel
air (i, j) as

D
A1/2
i,j (∆t, τ ) =

1⏐⏐I1/2⏐⏐ ∑
n∈I1/2

Di,j (∆t, τ , n) (2)

here D
A1/2
i,j (∆t, τ ) is the average synchronization matrix calcu-

ated across the corresponding training task periods, and I1 and I2
re the indices of the training task periods belonging to activity
ypes A1 and A2, respectively. Since the aim of this study is to
nalyze the short-lived brain interactions, we adopted a quan-
ile (or alternatively percentile) based thresholding to capture
he important synchronization dynamics as used in Zink et al.
2020). Next, we thresholded the average synchronization values
D
A1/2
i,j (∆t, τ ) with respect to the 99% quantiles of cumulative dis-

ribution function (CDF) obtained from all values
{
D
A1/2
i,j (∆t, τ )

}
for all combinations of ∆t and τ . This revealed candidate short-
lived synchronization patterns that extend along the ∆t axis, that
were then subjected to statistical evaluation.

For the statistical evaluation, we identified the timing pa-
rameter triplets that correspond to each of candidate short-lived
synchronization patterns. Note that a synchronization pattern
observed at τ = τ0 and ∆t1 ≤ ∆t ≤ ∆t2 suggests significant syn-
chronization between s∆t1,∆t2−∆t1+300 ms

i,n and s∆t1+τ0,∆t2−∆t1+300 ms
j,n

(please see Fig. 3). The statistical test evaluated the average
synchronizations observed for each such triple timing parameter
against zero for each channel pair (i, j) in case multiple candidate
456
patterns emerged and selected the one with the lowest P-value
observed as a result of t-test. Consequently, we identified the
optimal timing parameter triplet that maximizes the statistical
significance of channel synchronizations for each activity type
and for each channel pair separately.

2.4. Proposed framework

In this section we provide the details of the proposed frame-
work summarized by the flow diagram in Fig. 4.

In the training phase, we determined the activity-specific tim-
ing parameter triplets

{
∆tA1i,j , τ

A1
i,j , w

A1
i,j

}
and

{
∆tA2i,j , τ

A2
i,j , w

A2
i,j

}
for

cognitive activities A1 and A2 for each channel pair (i, j). Next, we
used the activity-specific timing parameter triplets to calculate
inter-channel synchronization values of all channel pairs and then
collected these synchronization values into a feature vector for
each training task period. Thus, the training feature vector ξℓ for
the training task period indexed by ℓ is constructed as

ξℓ =
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(3)

here M denotes the total number of channels (i.e., M = 118
or BCI Competition-III dataset, M = 64 for PhysioNet dataset).
fter constructing the training feature vectors, we performed a
eature selection procedure to determine the most discriminative
eatures. To that end, we calculated the Fisher’s ratio of each
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Fig. 3. An illustration of the heuristic optimization scheme to determine the
iming parameter triplet characterizing the maximal synchronization for a
hannel pair (i, j). After thresholding, the optimal timing parameter triplet for
his case is determined as (∆t, τ , w) = (∆t1, τ0, ∆t2 − ∆t1 + 300 ms).

eature using (Duda & Hart, 2000)

α =

⏐⏐µα,A1 − µα,A2

⏐⏐
σα,A1 + σα,A2

(4)

where µα,A1 and µα,A2 are the mean and σα,A1 and σα,A2 are
he standard deviation values of the feature indexed by α across
the training feature vectors of activities A1 and A2, respectively.
We selected the features which elicited a Fisher’s ratio higher
than the mean plus two times standard deviation of all Fisher’s
ratios. Finally, we trained classifiers on the reduced training fea-
ture vectors. In this study, we used three different classification
methods, namely Fisher’s linear discriminant (FLD), linear support
vector machines (linear SVM), and nonlinear (radial basis func-
tion) support vector machines (nonlinear SVM). The kernel width
parameter γ for the radial basis function of nonlinear SVM was
calculated according to

γ =

√ 1
L (L − 1)

L−1∑
i=1

L∑
j=i+1

ξi − ξj
2 (5)

where L denotes the total number of training feature vectors.
In the test phase, we constructed the test feature vectors ξ for
each test task periods using the activity-specific timing parameter f

457
triplets obtained in the training phase as

ξ =
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(6)

After the constructing the test feature vectors, we extracted
he features that were identified in the training phase, applied the
lassifiers constructed earlier on the reduced test feature vectors
nd correspondingly assigned the associated task period either to
1 or A2.
To be clearer, we constructed the algorithmic steps in tabular

orm for finding activity-specific timing parameter triplets, and
he classification framework that we adopted in this study (please
ee Tables 2 and 3).

.5. Comparative analysis

We employed conventional CSP and AR modeling methods to
ompare the performance of the proposed method. We calculated
he CSP filters on the training task periods by setting the number
f eigenvectors m = 3 in accordance with the literature and

iltered all training and test task periods by CSP filters (Blankertz
Fig. 4. Illustration of the operational flow diagram of the proposed short-lived synchronization based cognitive activity characterization framework.
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able 2
he algorithmic steps of finding activity-specific timing parameters triplets from the training set.
Algorithm-1: Finding activity-specific timing parameter triplets

Step-1 For the channel pair (i, j), calculate inter-channel synchronizations for ∆t ∈ [0 ms 2000 ms] , τ ∈ [−125 ms 125 ms] via w = 300 ms length
sliding time window for each training task period of activity A.

Step-2 Calculate the average the synchronization values across training task periods of activity A.
Step-3 Set the threshold to %99 quantile of average synchronization values. Then, compare each entry of average synchronization matrix with the

threshold.
Step-4 Determine the timings of each of synchronization patterns remaining after thresholding. Use each one of these candidate timings to extract the

signal segments from corresponding training task periods.
Step-5 Calculate the synchronization between the extracted signal segments. Apply t-test to these synchronization values to determine P-value of each

timing parameter.
Step-6 Identify the timing parameter triplet for channel pair (i, j) and activity A, which elicited the smallest P-value as activity-specific timing

parameter triplet (i.e.,
{
∆tAi,j, τ

A
i,j, w

A
i,j

}
). Repeat these calculations from the steps 1–6 for all channel pairs.
Table 3
The algorithmic steps of the classification framework.
Algorithm-2: The classification framework

Step-1 Use 8–30 Hz bandpass filter and CAR to filter the data spectrally and spatially.
Step-2 Use Algorithm-1 to obtain the A1 activity-specific timing parameter triplets for each channel pair.
Step-3 Use Algorithm-1 to obtain the A2 activity-specific timing parameter triplets for each channel pair.
Step-4 Use both A1 and A2 activity-specific timing parameter triplets to construct training feature vectors.
Step-5 Calculate the Fisher ratio of each feature. Identify the features that elicited higher than mean plus two standard deviation of Fisher ratios of all

features.
Step-6 Train the classifiers by using reduced training feature vectors.
Step-7 Use both A1 and A2 activity-specific timing parameter triplets to construct reduced test feature vectors.
Step-8 Determine the category of each test feature by using the classifier trained in step-6
a
i

t
m
t
t

0

et al., 2008). Then, we extracted the log-variance features from
CSP-filtered task periods. For AR modeling, we used a least-
squares method to calculate the univariate model coefficients
over signal segments of one-second sliding time windows with
%50 percent overlap and concatenated them together to in-
corporate the dynamic changes of the spectral information of
the electrophysiological activity as adopted in the past literature
(Golub & Saunders, 1970; Gürkan et al., 2014; Ince et al., 2007;
Kuruoǧlu, 2002). We set the AR model order of each channel
to six as in Anderson et al. (1998) and Ince et al. (2007) unlike
in McFarland and Wolpaw (2008) due to the limited number of
signal samples in the sliding time window. Next, we performed
a feature ranking via the Fisher’s ratio to select the most dis-
criminative AR coefficients for activity recognition. We selected
the AR features that exceeded mean plus two times standard
deviation calculated using all Fisher ratios of all AR features.
We then trained the classifiers using the reduced training AR
features. Similarly, we extracted the features from each test task
period using the same procedure adopted for training AR based
features. We finally obtained the reduced test feature vectors for
performance comparison.

3. Results

We used two distinct chronological cross-validation scenarios
i.e. scenario-1 and scenario-2) to evaluate the performance of
ur brain activity characterization method for different training
et sizes as in our previous study (Olcay & Karaçalı, 2019). The
etails of the chronological partitioning of the datasets for two
ifferent training/testing scenarios are shown in Table 4.
We determined the activity-specific timing parameter triplets

or each type of motor imagery activity using the training task
eriods for each subject individually in both BCI Competition-III
ataset IVa (i.e., right hand/right foot imagery movement) and
hysioNet dataset (right/left fist imagery movement). Afterwards,
e constructed the synchronization-based feature vectors as in
q. (3) and (6) and carried out training and testing procedures
escribed earlier. Average classification performances are shown
n Figs. 5–8, where in Figs. 5 and 6, we presented the average per-
ormances obtained using the six different synchronization mea-
ures obtained via three different classifiers. In Figs. 7 and 8, we
458
presented the maximum performances obtained via the currently
proposed method, the earlier τ -based method developed by our
group (Olcay & Karaçalı, 2019), the common spatial patterns (CSP)
method (Blankertz et al., 2008; Ramoser et al., 2000), and the
univariate autoregressive (AR) modeling based method (Anderson
et al., 1998). Note that the last two are benchmark methods
in the mental imagery activity related brain activity recognition
literature (Coyle et al., 2005; Pfurtscheller et al., 2000). The results
show that the proposed method trails the earlier τ -based and CSP
methods on the BCI Competition-III dataset IVa dataset while sur-
passing them significantly on the PhysioNet dataset. Interestingly,
the univariate AR model-based method performed no better than
random classification for the most part.

In order to provide additional insights on these results, we
identified the most frequently selected channel pairs during fea-
ture selection in scenario-2 that has a larger collection of training
task periods. We then carried out unpaired two-tailed t-tests
mong the synchronization values between contending motor
magery task periods and obtained the P-values of these syn-
chronizations for each subject. We corrected the P-values of
he channel synchronizations via Benjamini–Hochberg’s (B–H)
ethod to minimize the type-I error rates observed during statis-

ical testing (Benjamini & Hochberg, 1995). Finally, we calculated
he geometric means of the corrected P-values of the synchro-
nization values for each channel pair across all subjects. The
most significant three channel pairs and their corrected P-values
obtained for BCI Competition-III dataset IVa were CCP5-CP3 (P <
, 001), C3-CCP3 (P < 0, 001) and C5-CCP5 (P < 0, 001)

for right foot motor imagery, F3-CFC3 (P < 0, 001), FFC3-FC3
(P < 0, 001), and FC1-C3 (P < 0, 001) for right hand motor
imagery tasks. The three channel pairs that exhibit the most
significant short-lived synchronization for the PhysioNet Motor
Movement/Imagery dataset were FPz-FT7 (P > 0, 05), FP2-FT7
(P > 0, 05), and FP1-FT7 (P > 0, 05) for left fist motor im-
agery, FPz-T10 (P > 0, 05), FP2-F8 (P > 0, 05), and FP2-T10
(P > 0, 05) for right fist motor imagery tasks. Note, however,
that the P-values obtained from the PhysioNet dataset are above
the significance threshold (P < 0, 05). A second evaluation of
the PhysioNet dataset by discarding the subjects that elicited a
recognition performance below 64% in scenario-2 in accordance
with Athif and Ren (2019), Müller-Putz et al. (2007) and Park
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he partitioning of training and test task periods for different chronological cross validation scenarios in which training data precedes the testing data.

Scenario-1 Scenario-2

PhysioNet Task periods in session 4 used for training,
task periods in sessions 8 and 12 used for testing

Task periods in sessions 4 and 8 used for training,
task periods in sessions 12 used for testing

BCI Comp.-III First %33 of all periods used for training; the remaining task periods
used for testing

First %67 of all periods used for training; the remaining task periods
used for testing
Fig. 5. Average classification performances obtained across 5 subjects for BCI Competition-III dataset IVa for both scenarios.
Fig. 6. Average classification performances obtained across first 20 subjects for PhysioNet Motor Movement/Imagery dataset for both scenarios.
t al. (2014) revealed channel pairs with significant task-specific
ynchronizations: The three channel pairs that elicited the most
ignificant synchronizations were FPz-FT7 (P < 0, 05), FP2-FT7
459
(P < 0, 05), and FP1-FT7 (P < 0, 05) for left fist motor imagery,
FP2-F8 (P < 0, 05), FPz-F8 (P < 0, 05), and FPz-T10 (P < 0, 05)
for right fist motor imagery tasks.
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Fig. 7. Average correct classification rates of best performing configurations of maximum average performances obtained from currently proposed {∆t, τ , w} method
long with τ -based, CSP, and autoregressive methods (BCI Competition-III dataset IVa). For {∆t, τ , w} method, we used linear mutual information, and we used

Kraskov’s mutual information estimator for the τ -based method.
Fig. 8. Average correct classification rates of best performing configurations of maximum average performances obtained from currently proposed {∆t, τ , w} method
long with τ -based, CSP, and autoregressive methods (PhysioNet dataset). For {∆t, τ , w} method, we used cosine similarity, and we used Kraskov’s mutual information

estimator for the τ -based method.
In order to elucidate the dynamics of task-specific channel
synchronizations, we plotted the average synchronizations calcu-
lated on the CCP5-CP3 channel pair for right foot and F3-CFC3
pair for right hand motor imagery activity obtained at different
{∆t, τ } combinations for the subject al of the BCI Competition-
III dataset IVa during scenario-2 as used by the heuristic opti-
mization scheme to determine the corresponding optimal timing
parameter triplet. In Figs. 9 and 10, we presented the average
synchronization values calculated using different {∆t, τ } param-
eters for the right foot and right hand motor imagery activities.
The plots in these figures reveal that maximal synchronization
is observed for this subject’s CCP5-CP3 channels for τ = 0
460
and ∆t varying between 1540–1860 ms, corresponding to a tim-
ing parameter triplet of {∆t, τ , w} = {1540 ms, 0 ms, 620 ms}.
Similarly, the synchronization pattern observed for channels F3-
CFC3 corresponded to the timing parameter triplet {∆t, τ , w} =

{580 ms, 0 ms, 1240 ms}.
Likewise, we plotted both average synchronization as well as

the candidate synchronization patterns between channels Fp2-F8
and FPz-FT7 of the best performing PhysioNet subject (S004) for
both right and left fist motor imagery activity in Figs. 11 and
12, respectively. Note that compared to the averaged synchro-
nization patterns observed for the BCI Competition subject, these
patterns are much noisier and the distinction between maximal
synchronization pattern and the rest is much less clear.
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Fig. 9. The illustration of the average synchronization values between CCP5-CP3 channels calculated for each {∆t, τ } combination for right foot motor imagery
activity. The green ellipse represents the candidate maximal synchronization pattern. We used linearized mutual information method to calculate the synchronization
values of subject al who elicited the most successful recognition performance for BCI Competition-III dataset IVa.
Fig. 10. The illustration of the average synchronization values between F3-CFC3 channels calculated for each {∆t, τ } combination for right hand motor imagery activity.
The green ellipse represents the candidate maximal synchronization patterns. We used linearized mutual information method to calculate the synchronization values
of subject al who elicited the most successful recognition performance for BCI Competition-III dataset IVa.
Fig. 11. The illustration of the average synchronization values between FPz-FT7 channels calculated for each {∆t, τ } combination for left fist motor imagery activity.
The green ellipse represents the candidate maximal synchronization patterns. We used cosine similarity method to calculate the synchronization values of subject
S004 who elicited the most successful recognition performances for the PhysioNet Motor Movement/Imagery dataset.
We presented the candidate synchronization patterns ob-
tained for different type of motor imagery tasks in Figs. 9–12.
In Tables 5 and 6, we presented the activity-specific timings
for the most significant channel pairs identified for different
motor imagery tasks for both BCI Competition-III dataset IVa and
PhysioNet Motor Movement/Imagery dataset, respectively. Note
that we presented the timings of all of the five subjects in former
dataset; however, and we presented the timings of the subjects
where the 64% recognition performance threshold was exceeded.
461
It is interesting to note that the time lag values are near or equal
to zero for the most significant channel pairs.

4. Discussion

Our main motivation for proposing this method is based on
the premise that the brain regions transiently interact with each
other during periods of cognitive activity (Bastos et al., 2015;
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Fig. 12. The illustration of the average synchronization values between FP2-F8 channels calculated for each {∆t, τ } combination for right fist motor imagery activity.
he green ellipse represents the candidate maximal synchronization patterns. We used cosine similarity method to calculate the synchronization values of subject
004 who elicited the most successful recognition performances for the PhysioNet Motor Movement/Imagery dataset.
able 5
he activity-specific timing parameter triplets obtained during scenario-2 using
inearized mutual information metric for CCP5-CP3 channel pair for right foot
nd F3-CFC3 during right hand motor imagery activity (BCI Competition-III
ataset IVa).
Subject
ID

Right foot imagery
activity-specific
timing parameter
(CCP5-CP3)

Right hand imagery
activity-specific
timing parameter
(F3-CFC3)

Performance
(at
Scenario-2)

∆t (ms) τ (ms) w (ms) ∆t (ms) τ (ms) w (ms)

aa 1590 0 520 220 0 580 67.39%
al 1540 0 620 580 0 960 91.30%
av 800 0 560 360 0 550 60.86%
aw 1280 0 450 1730 0 570 73.91%
ay 770 0 360 1460 0 820 89.13%

Table 6
The activity-specific timing parameter triplets obtained during scenario-2 using
linearized mutual information for FPz-FT7 channel pair for left fist motor im-
agery activity and for FP2-F8 during right fist motor imagery activity (PhysioNet
Motor Movement/Imagery dataset). We used the most successful 8 subjects that
elicited more than 64% performance (Müller-Putz et al., 2007).
Subject
ID

Left fist imagery
activity-specific
timing parameter
(FPz-FT7)

Right fist imagery
activity-specific
timing parameter
(FP2-F8)

Performance
(at
Scenario-2)

∆t (ms) τ (ms) w (ms) ∆t (ms) τ (ms) w (ms)

S001 0 0 563 0 0 518.8 73.33%
S002 1912 0 387.5 31.3 0 493.8 80%
S004 31 6.25 462.5 0 −6.25 500 86.67%
S006 231 0 575 0 0 818.8 73.33%
S007 0 0 493.8 0 0 650 73.33%
S015 118.8 0 487.5 12.5 0 662.5 86.87%
S018 0 0 512.5 0 −6.25 443.8 80%
S020 225 −6.25 462.5 12.5 −6.25 431.3 73.33%

Fries, 2005). These reciprocal interactions may carry critical neu-
ral information which is vital for the generation of task-specific
neural patterns within the brain. In our previous study, we cal-
culated only the synchronization lags (τ ) between the channel
airs which was found to be useful for characterizing the cog-
itive activity (Olcay & Karaçalı, 2019). However, according to
astos et al. and Fries et al. the activity-specific inter-regional
nteractions emerge and vanish in relatively short time intervals
ithin the task periods. In order to track this behavior, in this
tudy, we extended our earlier approach with the addition of
wo new timing parameters (i.e., the latency of maximal syn-
hronization between channel pairs from activity onset (∆t), and
462
duration of maximal synchronization among channel pairs (w))
to characterize the cognitive activities.

Since we do not know which synchronization measure would
capture the actual neural synchronization patterns that emerge
within the brain better, we tried six different synchronization
measures and evaluated their performance in a motor imagery
activity recognition framework. The reason for using these syn-
chronization measures is that they elicited a better character-
ization performance in the past literature and that they had
favorable computational properties. In the literature, there are
many additional synchronization methods that have been used
in various types of brain activity characterization studies. We
believe that the six measures we have evaluated in our study
covers the range of prominent and effective similarity measures
well.

Lastly, the majority of brain activity characterization studies in
the literature use the entire task periods to calculate connectivity-
based features. As depicted above, there is evidence in the liter-
ature that the task-related information is embedded within the
signal pairs only for a limited duration. These finite-length signal
pairs can thus be used to calculate several features such as com-
mon spatial patterns (CSP), power-based features, time domain
features . . . etc. to further improve task recognition performances.

In the light of these motivations, our method presented in
this paper captures the activity-specific timing parameter triplets
of the characteristic short-lived synchronization between EEG
channels for each channel pair and each cognitive activity type. In
order to determine the activity-specific timing parameter triplets,
we adopted a heuristic search method that uses a 300ms-length
sliding time window to calculate average channel synchroniza-
tions across all task periods for the remaining delay parameter
combinations. We then evaluated the usefulness of the channel
synchronizations calculated at activity-specific timing parameter
triplets in a motor imagery task recognition setting and in sta-
tistical tests comparing the resulting synchronizations between
the contending cognitive tasks. Prior to the classification, we
selected the most discriminative synchronization features for a
better classification. We observed that, for both dataset, both ad-
jacent and non-adjacent channel pairs remained after the feature
selection which is in line with the fact that many different brain
regions are involved to integrate information during cognitive
tasks (Mišić & Sporns, 2016; Telesford et al., 2011; Uhlhaas et al.,
2009). The recognition performances and the statistical test re-
sults reveal several insights on connectivity based brain activity
characterization as discussed below.
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.1. Performance evaluation and comparison

The average recognition performances obtained for six differ-
nt synchronization metrics for both BCI Competition-III (right-
oot/right-hand imagery) and PhysioNet (right-fist/left-fist
magery) in Figs. 5 and 6 show that the linear mutual infor-
ation and cosine-based similarity methods demonstrated the

op-ranking average performances in scenario-2 for BCI
ompetition-III and PhysioNet datasets, respectively. This out-
ome indicates that these two synchronization metrics capture
he timings of the characteristic synchronizations of the channel
airs more accurately than the other methods used in this study.
In terms of recognition performances, the CSP-based method

anked supreme on the BCI Competition-III dataset IVa as ex-
ected since a CSP-based approach was the winner of the compe-
ition. On the PhysioNet dataset, the proposed method surpasses
he CSP recognition performance which suggests that the CSP
ethod may be overfitted to the BCI Competition data and may
ot necessarily do as well in other instances. In comparison, the
erformance of the proposed method was more stable on both
atasets. The univariate AR model based method, however, did
ot perform well despite its popularity in the literature.
Note that the most likely reason for performances lower than

he minimum reliable communication rate of 70% on the Phy-
ioNet dataset may be the small number of task periods con-
idering that even 30 task periods for training in scenario-2
ay be insufficient to extract reliable average synchronization
atterns (Ahn & Jun, 2015). In the specific case of CSP these
esults suggest that the method could not find suitable spatial
ilters to discriminate between different cognitive activities due
o inaccurate estimates of spatial covariance matrices.

Another possible reason for low performances on the Phys-
oNet dataset may be a low signal-to-noise ratio. In the literature,
he studies that employ the PhysioNet dataset, in general, use
oise/artifact removal methods to filter out the non-neural sig-
als (Varsehi & Firoozabadi, 2021). In such a case, it may be
elpful to use various denoising techniques in the preprocess-
ng step to identify and remove the noise component from the
EG signals (Hyvärinen & Oja, 2000; Jolliffe, 1986; Von Bünau
t al., 2009). Despite these problems, it is noteworthy that the
roposed method achieved the best performance among the four
ompeting approaches on the PhysioNet dataset, indicating ro-
ustness against various pitfalls associated with changes in EEG
rocedures, equipment, or signal recording quality. Importantly,
n the literature, the majority of the motor imagery activity recog-
ition studies on the PhysioNet dataset report the performance
esults of only the well-performing subjects with recognition
erformances over 64% (Athif & Ren, 2019; Handiru & Prasad,
016; Kim et al., 2016; Park et al., 2014; Tolić & Jović, 2013). In
his study, we showed the average performances of the first 20
ubjects without any performance-related elimination criteria to
larify the pros and cons of the proposed method along with the
lternative techniques.

.2. The effect of window size

Our heuristic optimization method uses a 300ms-length time
indow as an initial step of the procedure used to obtain the tim-

ng parameter triplets associated with the characteristic pairwise
hannel synchronizations. For the BCI Competition-III dataset IVa
fs = 100 Hz), this corresponds to 30 samples and for the
PhysioNet dataset (fs = 160 Hz), to 48 samples for synchro-
nization calculations. Using such low number of samples, how-
ever, especially for BCI Competition-III dataset IVa, may lead to
an underestimation of synchronization (Fraschini et al., 2016;
Sideridis et al., 2014). This suggests that using an EEG recording
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system with a greater sampling frequency may improve the reso-
lution with which the optimal timing parameters are determined
and increase the number of samples in the 300ms-length time
window for more accurate synchronization estimates.

4.3. Biophysical relevance of the identified channel pairs

We identified the most significant channel pairs according to
the geometric means of the corrected P-values of the pairwise
channel synchronizations calculated at activity-specific timings
obtained for both datasets in scenario-2. For the BCI Competition-
III dataset IVa, the most significant channel pairs for more accu-
rate synchronization estimates for right foot motor imagery task
correspond to the left central and left centro-parietal electrode
pairs CCP5-CP3 (P < 0, 001), C3-CCP3 (P < 0, 001), and C5-
CCP5 (P < 0, 001). As for right hand motor imagery task, the
most significant channel pairs include left frontal, left fronto-
central and left central electrodes/electrode pairs F3-CFC3 (P <

0, 001), FFC3-FCF3 (P < 0, 001), and FC1-C3 (P < 0, 001).
We also provided the resulting P-values for all channel pairs
of BCI Competition-III dataset IVa as supplementary materials.
These results suggest that the majority of the electrodes that
elicit significant task-specific synchronization across all 5 subjects
are mainly located on the left hemisphere, which is consistent
with the existing literature (Chen et al., 2019; Chung et al., 2011;
Gao et al., 2011; Gonuguntla et al., 2016; Halder et al., 2011;
Hanakawa, 2016; Hétu et al., 2013; Höller et al., 2013; Kasess
et al., 2008; Munzert et al., 2009; Pfurtscheller & Berghold, 1989;
Pfurtscheller & Neuper, 1997; Xu et al., 2014).

As for the PhysioNet dataset, we obtained the top three most
frequently observed significant channel pairs according to the
geometric means of P-values of the channel synchronizations for
the first 20 subjects. For left fist motor imagery activity, the elec-
trodes associated with these channel pairs are generally placed
on the left frontal, left fronto-temporal, and left temporal regions.
Similarly, for the right fist imagery activity, the significant elec-
trodes are placed on right and left frontal and right frontal as well
as temporal regions, respectively. Although these findings fall at
odds with the current biophysical literature on the right/left hand
motor imagery activity that points to the significance of the con-
tralateral connectivity patterns during motor imagery tasks, there
are several important biophysical studies that found ipsilateral
activations/synchronization profiles as significant (Brunner et al.,
2006; Gao et al., 2011; Kraeutner et al., 2014; Porro et al., 2000),
especially for the novice participants (Milton et al., 2007).

The emergence of ipsilateral synchronization patterns falls be-
tween frontal/fronto-temporal electrodes during motor imagery
tasks might be due to several reasons. First, there may be an
excessive information flow from parietal to frontal regions to
compensate for the imagination inability during kinesthetic mo-
tor imagery task which may cause unexpected short-lived syn-
chronization (Bauer et al., 2015; Gu et al., 2020; Menicucci et al.,
2020). Another reason may be the insufficient number of training
task periods available for statistical analysis: in the PhysioNet
dataset, there are only 45 motor imagery activity task periods
in total for each subject which may cause subject-specific inter-
regional synchronization (Demuru & Fraschini, 2020; Pani et al.,
2020; Xie et al., 2018). By filtering the subject-specific synchro-
nization modulations or using a greater number of motor imagery
task periods, more reliable and biophysically relevant channel
pairs may be expected to emerge (Allen et al., 2014).

Furthermore, the frontal channel synchronizations observed
on the PhysioNet dataset may be the result of an inherent
condition of the human brain: if the participants’ ‘‘mind sets’’
cannot be fully isolated from internal (e.g., concentration, focus-
ing momentarily on other issues, some accompanying thoughts,
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tc.) or external (any minor external trigger etc.) factors, the
nferred electrophysiological organization of the brain may alter
ubstantially. Furthermore, a change of the imagination strategy
uch as from kinesthetic imagery to visual imagery or vice versa
y the participants during the task may significantly modify
he information processing scheme and thus the inter-regional
ynchronization timings of the brain that causes a performance
eterioration (Neuper et al., 2005; Park et al., 2015).

.4. The effect of time lag on characterization performance

We presented sample synchronization patterns observed for
ifferent subjects during the heuristic optimization scheme to
etermine the optimal timing parameter triplets in Figs. 9–12.
nterestingly, these figures along with the timing parameters
see Tables 5 and 6) show that the short-lived synchronization
atterns emerge and vanish at different timings, but more impor-
antly, the time lag between the corresponding signal segments of
he most significant channel pairs is near or exactly equal to zero.
his shows a zero-lag organization between primarily activity-
elated regions potentially to integrate the neural information
nto coherent representational states which provides effective
s well as efficient information transfer during a cognitive task
Roelfsema et al., 1997). The zero-lagged synchronization may
lso be the result of an organization mechanism that dynamically
elays the neural information among the activity-related regions
ia thalamo-cortical circuit and/or hippocampal circuits (Vicente
t al., 2008).
The channel pairs that we identified as the most significant for

CI Competition-III dataset IVa (CCP5-CP3 for right foot activity,
nd F3-CFC3 for right hand activity), and for PhysioNet Motor
ovement/Imagery dataset (FPz-F7 for left fist activity, and FP2-
8 for right fist activity) are relatively close to each other as
emonstrated in Fig. 13. Since the aforementioned electrodes
re placed relatively close to each other, they tend to collect
he electrophysiological activities from overlapping cortical struc-
ures. In this circumstance, the most probable reason why the
ime lag between these channel pairs is near or equal to zero
or each subject is the volume conduction problem which ham-
ers the actual time lag between these channel pairs (Bastos &
choffelen, 2016; Tognoli & Kelso, 2009). To minimize the effects
f volume conduction, we used the common average referencing
CAR) method before the synchronization calculation (McFarland
t al., 1997; Tsuchimoto et al., 2021). However, as Cohen stated,
here is no perfect method that completely eliminates the ef-
ects of volume conduction (Cohen, 2015). In order to achieve
slightly better characterization performance, more advanced

patial filtering techniques are required albeit with a greater
omputational cost (Rathee et al., 2017).
Although the volume conduction appeared as the primary

eason, we actually do not know the exact timings (∆t, τ , and w)
of the activity-specific synchronization for each channel pair. In
our results, we observed zero-lagged short-lived synchronization
for the most significant channel pair which is not necessarily
completely due to volume conduction phenomena. For instance,
Witham et al. observed in the monkeys that the movement-
related cortical synchronization between relatively close areas
emerges at zero time lag (Witham et al., 2007).

It is important to highlight that, not all channel pairs synchro-
nize at zero time lag. The channel pairs presented in Tables 5
and 6 in the manuscript, were the most statistically significant
in terms of their short-lived interactions (as the result of t-tests),
and also, these channels are the one of most frequently selected
channel pairs as features (according to the Fisher ratio) for each
activity type. In addition to these channel pairs, there are also
other channel pairs that elicit significant synchronization with an
inter-channel time lag different from zero.
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Table 7
The electrode clusters of BCI Competition-III dataset IVa and PhysioNet dataset
according to CB2 subset. This clusters contain C3, C4, and Fz channels and their
nearest neighbors.
Cluster-1 Cluster-2 Cluster-3

Fz C3 C4
AF3 FC3 FC4
AF4 CP3 CP4
F1 C5 C6
F2 C1 C2
FCz – –

We performed an extra analysis and observed that not only
adjacent but also non-adjacent channels may elicit zero-lag syn-
chronization. We used several channel pairs that were used in
previous motor imagery activity recognition studies. We deter-
mined the activity-specific timings of these channel pairs for
each different cognitive activity, and we calculated the channel
synchronizations to use in a motor activity recognition frame-
work. In a previous synchronization-based motor imagery activity
characterization study, both adjacent and non-adjacent channel
pairs were used (Wei et al., 2007). In that study, the channels
Fz and its neighbors (Cluster-1), C3 and its neighbors (Cluster-2),
and C4 and its neighbors (Cluster-3) achieved the best recognition
accuracy. These electrodes are known to collect the electrophysi-
ological activity from left and right primary motor, sensorimotor,
premotor and prefrontal cortices which are actively engaged in
motor imagery tasks (Chung et al., 2012; Decety, 1996; Munzert
et al., 2009). We paired the channels (i.e., Cluster-1 ↔ Cluster-
2, Cluster-1 ↔ Cluster-3, and Cluster-2 ↔ Cluster-3) contained
in different clusters without considering the intra-cluster channel
pairs, providing a total of 85 non-adjacent channel pairs (please
see Table 7 for the channels). Please note that since the EEG
recording system that was used to collect BCI Competition-III
dataset IVa did not contain the AFz electrode, we included both
AF3 and AF4 electrodes instead of AFz.

We showed the time lags of the channel synchronizations for
each of the 85 pairs during right hand motor imagery activity in
Fig. 14. Note also that, for synchronization calculation, we used
linear MI which appeared as the most successful measure for
BCI Competition-III dataset IVa on the average. The ‘‘*’’ symbol
above/below the time lag bars indicates that the timing parame-
ter triplet elicited statistically significant synchronization for that
channel pair for right hand motor imagery activity.

We repeated the time lag estimation for the correntropy
method for the subject al for which we observed the highest
performance (93,47%). We showed the correntropy results in
Fig. 15.

In these figures, it is clear that not only the adjacent channel
pairs synchronized at zero lag but also several non-adjacent chan-
nel pairs significantly synchronized at zero-lag along with several
other pairs for which activity-specific synchronization occurred at
non-zero time lags.

In addition to the above analysis, we obtained 1452 pairwise
short-lived synchronizations as significant. Among these synchro-
nizations 391 of them demonstrated non-zero time lag for linear
mutual information method. Furthermore, for the correntropy
method, out of the 1757 significant pairwise synchronizations,
1017 of them demonstrated non-zero time lag. These results
point that the main source of lag between the EEG signals as
identified by the synchronization measure of choice is the de-
lay between electrophysiological signals generated by the brain
during cognitive tasks according to a timing organization (Hari &
Parkkonen, 2015).

This shows that the brain adjusts the timings of the syn-
chronizations according to the task demands in the associated
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Fig. 13. Illustration of the electrode montages of both PhysioNet and BCI Competition-III dataset IVa. The electrodes that marked with red star was found as significant
channel for one cognitive activity, and the electrodes marked with blue star was found as significant for another cognitive activity. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. The illustration of time lag parameters for short-lived synchronization of non-adjacent channels for right hand motor imagery activity for subject al (for
inear MI). Note that the ‘*’ symbol above or below the lag representation bar plots denotes that the synchronization of corresponding channel pair is statistically
ignificant (P < 0.05).
Fig. 15. The illustration of time lag parameters for short-lived synchronization of non-adjacent channels for right hand motor imagery activity for subject al (for
orrentropy). Note that the ‘*’ symbol above or below the lag representation bar plots denotes that the synchronization of corresponding channel pair is statistically
ignificant (P < 0.05).
i
n
i
s
t
v
d

s

egions with communication through hypothesis. This hypoth-
sis suggests that the brain generates temporal communication
indows by maximizing the temporal synchronization among its
egions for task-specific neural information transfer (Bastos et al.,
015; Fries, 2005). These inter-areal communication windows
ntegrate the processed segregated information. We observed that
he timings of the short-lived maximal synchronization elicited
ignificantly different synchronizations for different types of mo-
or imagery activities. The differences of the timing parameters
riplets are thought to be the result of different neural mecha-
isms taking place for different activities. In Gao et al. (2019),
 e
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t was demonstrated that neural synchronizations calculated at
ormal conditions show a significant difference when calculated
n a fatigue mood. This shows that neuronal conditions exhibit
ignificant alteration between different brain states, and this al-
eration affects the neural synchronization dynamics. In a similar
ein, Salyers et al. showed that different task conditions requires
ifferent network coordination (Salyers et al., 2019).
There are other studies in the literature that point to the

ystematic time lag organization between brain regions (Adhikari

t al., 2010; Bastos et al., 2015; Mijalkov et al., 2020; Olcay &
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Fig. 16. The average recognition performance obtained under a universal zero-lag assumption indicated by {∆t, τ } in comparison with the proposed method for
PhysioNet dataset.
Fig. 17. The average recognition performance obtained under a universal zero-lag assumption indicated by {∆t, τ } in comparison with the proposed method for BCI
Competition-III dataset.
Karaçalı, 2019). In order to determine the effect of the zero-lag as-
sumption on the activity recognition performance, we conducted
another classification analysis where we set τ = 0 and opti-
mized the average inter-channel synchronizations with respect
to ∆t and w only for each channel pair and each type of motor
imagery activity. The performance results presented in Figs. 16
466
and 17 shows that the recognition accuracy obtained using the
proposed {∆t, τ , w}-based method is, in general, greater than the
performances obtained by assuming a zero time lag. The find-
ings of statistical comparison tests clearly establish that maximal
task-specific synchronizations often occur at non-zero time-lags,
albeit with minor improvements in the overall task recognition
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erformance. A possible explanation for some low performances
resented in Figs. 16 and 17 is the relatively stronger reliance
f the classifiers to the channel pairs with zero time lag, lim-
ting the effects of channel pairs with non-zero time lag on
he task recognition performance. In a more intriguing scenario,
owever, this may also be due to the fact that the proposed three-
arameter representation for the task-specific synchronization
ails to adequately account for inter-trial variations in subject task
omprehension and response. We are currently in the process of
xpanding our formulation to cover such subject and trial specific
ffects on task-specific channel synchronizations.
To sum up, the performance results presented in Figs. 16 and

7 suggest that not all brain regions synchronize at a zero-lag
uring cognitive tasks. In the same context, as pointed out in Qian
t al. (2013), the time lag parameter is a crucial parameter that
ecides the characteristics of the neural functions. This outcome
tresses the importance of considering time-lagged synchroniza-
ion between brain regions in cognitive activity characterization
pplications.

.5. Biophysical evidences for considering the latency and duration
arameters

The electrophysiological activity obtained during controlled
xperiments show that the task related brain patterns from any
xternal (or internal) stimulation would continue for hundreds of
illiseconds (Bayazit et al., 2009; Güdücü et al., 2019; Olcay et al.,
017; Schack et al., 2003) (please see Tables 5 and 6). For instance,
t was shown that during processing of internal and external
timuli, intra- and inter-hemispheric short-lived synchronizations
ay emerge in a temporal order to evaluate the complex nature
f the stimulus (Bola et al., 2015; Solomon et al., 2019; Zanon
t al., 2018). This shows that the bottom-up cognitive task related
nformation processing is embraced with top-down higher-level
ontent assessment. But more importantly, it signifies that the
hort-lived activations/synchronizations of different and distant
rain regions in response to a stimulus or during a cognitive
ask may manifest according to a temporal order for efficient and
ffective brain coordination (Bullmore & Sporns, 2012; Dawson,
004; Dimitriadis et al., 2013). In a previous BCI study, a similar
trategy was adopted for feature extraction. J. Li et al. proposed
o use time–frequency mask (TFM) to capture the discriminative
ime–frequency features embedded in a small time and frequency
ange (Li et al., 2016). This study highlights the importance of
he time-sensitive feature analysis when characterizing the brain
ctivities further. This supports that taking the latency (∆t) as
ell as the duration (w) parameters of the temporal information
rocessing timings into account for the analysis of short-lived
lectrophysiological brain synchronizations.
As an important point, it was presented in Tables 5 and 6,

he latency (∆t) and duration (w) parameters vary considerably
cross the subjects. According to the information provided by the
wo datasets that we used in our study; these subjects performed
nly motor imagery tasks associated with the command provided
y the experimenter (Dornhege et al., 2004; Goldberger et al.,
000).
The variation of these parameters is thought to be due to the

ifferent mental strategies adopted by the subjects during these
asks (Friedrich et al., 2012; Kilintari et al., 2016). Differences
n mental strategies among the subjects can be observed in the
iming parameter triplets identified for each mental task and
hannel pair. Please note that the latency (∆t) and duration (w)
arameters are thought to be indicators of temporal processing of
he task-related information in the brain. The timing parameters
∆t , τ , and w) are systematically adjusted according to the
ental strategies that the subjects adopt.
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It is important to note that the subject’s condition may also
have a significant impact on these parameters in addition to
the task requirements. Especially the latency ∆t parameter is
inevitably affected by several important factors such as the sub-
ject’s command perception time, and initialization time to motor
imagination, which may cause random variations from trial to
trial during motor imagery tasks.

Our reasoning in seeking the optimal timing parameters using
the average synchronization values is based on the premise that
since perception and task initiation are subjective parameters
and vary randomly according to the aforementioned reasons,
averaging of synchronization values ought to minimize these
task-unspecific (i.e., subject-specific) variations and allow captur-
ing the task-specific timing parameters. The performance results,
which we presented in the manuscript, show that, especially in
scenario-2 that uses a greater number of training task periods,
we elicited a better recognition performance than obtained in
scenario-1.

4.6. Alternative synchronization metrics

In this study, we evaluated six different synchronization mea-
sures to identify the timings of the short-lived characteristic
channel synchronizations. The choice of these similarity measures
was made in part due to their computational efficiency, along
with their favorable performances observed in past studies in-
cluding our own previous work Olcay and Karaçalı (2019) and in
Zalesky et al. (2012). The differences observed in the recognition
performances for each metric (please see Figs. 5–8) are due to
the differences in the way synchronization is evaluated by the
methods: Each method extracts and uses a different aspect of the
signal features to calculate channel synchronizations (Sakkalis,
2011).

Alternative measures can also be used such as phase lag
index (PLI) (Stam et al., 2007), imaginary part of coherency (im-
COH) (Nolte et al., 2004), transfer entropy (TE) (Schreiber, 2000;
Wibral et al., 2013, 2014), coherence (COH) (Bakhshayesh et al.,
2019a; Greenblatt et al., 2012; Rocca et al., 2014; Sakkalis, 2011;
Wendling et al., 2009), cross-sample entropy (Gomez et al., 2016),
and synchronization likelihood (Stam & Van Dijk, 2002). This
study can also be conducted via Kraskov’s mutual information
estimation method (Kraskov et al., 2004) which elicited the best
performance in our previous study (Olcay & Karaçalı, 2019).
However, mutual information calculation between the signal
segments across the whole datasets via Kraskov’s method is
computationally prohibitive. Advanced parallel computing ar-
chitectures coupled with efficient algorithms can be investi-
gated to overcome the computation issues of Kraskov’s mutual
information estimation.

4.7. Future directions for brain–computer interface systems

As for the potential extension of the methodology proposed
here to brain–computer interfacing applications, it should be
noted that the core of the method relies on identifying the chan-
nel pairs with significantly different synchronization characteris-
tics during different activities in terms of optimal activity-specific
timing parameters. Clearly, once the activity-specific timing pa-
rameter triplets of the characteristic pairwise channel synchro-
nizations are identified, the synchronizations can be used as
features in a connectivity-based BCI framework. First and fore-
most, filtering of the EEG signals into 8–30 Hz frequency band
is consistent with many BCI studies where the motor imagery
related information is sought within the frequency range of 8–
30 Hz (Lafleur et al., 2013; McFarland & Wolpaw, 2008; Yuan &
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e, 2014). Several studies used a filter-bank structure or wavelet-
ased methods for brain activity characterization (Emre Cek et al.,
010; Higashi & Tanaka, 2013; Kumar et al., 2017; Nguyen-Ky
t al., 2012; Park et al., 2018; Rosso et al., 2001, 2006). Clearly, a
ilter-bank strategy or a discrete wavelet transform analysis may
lso be incorporated here prior to the synchronization calculation,
llowing analysis of different frequency bands (Ang et al., 2008;
ark et al., 2018; Walden & Contreras Cristan, 1998). For instance,
he importance of µ and β band networks during motor imagery
ctivity was revealed in earlier studies (Athanasiou et al., 2018;
u et al., 2020). Also, the µ rhythm dynamics have been asso-
iated with the motor imagery related information processing
mong the motor cortical regions (Başar et al., 2001; Llanos et al.,
013). However, it should be noted that an increase in the spec-
ral resolution using wavelet-based or filter bank-based methods
ntails a substantial increase in computational cost, requiring
epeated calculations for each frequency band.

As an extension, our method can reliably be considered in
uman–computer interaction such as gesture recognition appli-
ations. Up to now, many different conspicuous efforts have been
pent to increase the accuracy of gesture recognition applications
Li, Li et al., 2019; Sun et al., 2020). In this respect, brain syn-
hronization/activation features can additionally be adopted to
ncrease the recognition accuracy. Once the important EEG chan-
el pairs and the corresponding movement-specific inter-regional
ynchronization timings are determined in training phase, our
ethod can reliably be used in conjunction with current surface
MG-based gesture recognition methods to achieve improved
ovement identification performances and thus be used in hand
otion controlled devices. In a similar manner, the proposed

iming-based brain activity analysis method can also be used to
etect brain lesions, which may cause significant alterations of
nter-regional communication patterns (Li, Jiang et al., 2019).

On a final note, it should be emphasized that, the approach
resented here deviates significantly from the majority of the
rain activity characterization studies in the literature that aim
o extract characteristic synchronization-based features for differ-
nt motor imagery tasks using whole activity periods (Anderson
t al., 1998; Feng et al., 2018; Lemm et al., 2005). Notably, a
ritical issue can arise when using the whole activity periods
o determine activity-specific brain patterns: Although the exact
ime of initiation and end cue for motor imagery activity is
nown in synchronous BCI experiments, the initiation and end
ime of the reciprocal information processing can be different
or different brain regions (Curran & Stokes, 2003). That means
he activity-related localized activation/synchronization dynam-
cs may emerge and disappear in a short period of time due to the
ctivity-specific timing organization. In the literature, few studies
ttempt to find the most informative short-lived time segment
Ang et al., 2012; Hsu et al., 2007; Wang et al., 2018, 2020; Zhang
t al., 2019). These studies, however, used time windows of fixed
uration, usually 1 or 2 s, disregarding potential variations in the
uration of the brain’s responses. In our study, optimal latency
∆t), time lag (τ ) and duration (w) of the coupling were deter-
ined to capture activity-specific inter-channel synchronization

or each motor imagery activity type and each channel pair,
ddressing both issues listed above to their full complexity.

. Conclusion

The brain appears to operate through multi-dimensional states
Breakspear & Stam, 2005). Communication among different re-
ions, sensory and motor information processing associated areas,
nd frontal/prefrontal areas co-exist. The nature of asymmetrical
rain response to dichotic stimulus has given some insight to
rans-hemispheric and posterior-frontal axes in stimulus-specific
468
time intervals (Bayazit et al., 2009). The operational complexity
as well as the timing specialization of the brain forces us to seek
novel analysis methods that can elucidate the characteristic as
well as transient synchronization between distinct brain regions.
Since cognition as well as other processes shows nonstation-
ary behavior, methods that invoke stationarity assumptions on
brain electrophysiology are rendered inadequate to reveal the
characteristic synchronization.

The major shortcoming of the classical analysis methods is
the disregard of the transient as well as the complex nature of
the brain’s distributed functionality in favor of model simplic-
ity. The more adequate distributed systems approach requires
new tools as the function blocks are widely distributed and the
information complexity overwhelms locality to a large degree.
This manuscript proposes a new framework that can be useful
to trace and characterize the behavior of distributed information
processing during cognition.

The methodology proposed here determines the timings of
the characteristic synchronizations among the brain structures
for different cognitive activities. The differences in the timings
for each different cognitive activity and each different brain re-
gion indicate that the brain generates transient synchronization
windows to integrate the segregated neural information to sup-
port a rich variety of cognitive processes (Zalesky et al., 2014).
Additionally, these differences in the synchronization timings
may constitute a ‘‘synchrony filter’’ to inhibit the interference
of task-unspecific neural synchronizations coming from different
brain regions (Patel & Joshi, 2013). The cognitive task recog-
nition performance results point to the importance of consid-
ering time-resolved cortical communication for discovering the
working principles of the brain.

To conclude, in this study:

• We adopted the temporal communication-through-
coherence perspective for motor imagery activity charac-
terization that uses inter-areal time delays as Bastos et al.
suggested (Bastos et al., 2015). We determined the timing
organization among the brain regions and used them for
cognitive activity characterization.

• As previously demonstrated in Ince et al. (2009) and Li et al.
(2016) the accurate brain activity characterization requires
a time-sensitive analysis to extract task-related features.
In a similar vein, we show that an accurate brain activity
characterization requires temporal synchronization analysis.

• Our analysis extended the premise that the brain synchro-
nization emerges at similar time lags for similar cognitive
activities (Bandt et al., 2019; Feige et al., 2017; Hermanto
et al., 2013; Mitra et al., 2015). Here, we showed that the
brain exhibits synchronization patterns not only on specific
time lags but also at specific latency and duration param-
eters as well. In this context, we have relaxed the common
brain activity characterization assumptions adopted by pop-
ular methods such as CSP adopt, associated with implicit
assumption of zero lag and zero latency and which uses
entire task period to extract relevant brain dynamics.
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