
Content-Aware Convolutional Neural Networks

Yong Guoa,b,c, Yaofo Chena, Mingkui Tana,b,∗, Kui Jiaa, Jian Chena,∗, Jingdong Wanga

aSouth China University of Technology, China
bKey Laboratory of Big Data and Intelligent Robot, Ministry of Education

cPazhou Laboratory, China
dMicrosoft Research Asia, China

Abstract

Convolutional Neural Networks (CNNs) have achieved great success due to the powerful

feature learning ability of convolution layers. Specifically, the standard convolution

traverses the input images/features using a sliding window scheme to extract features.

However, not all the windows contribute equally to the prediction results of CNNs. In

practice, the convolutional operation on some of the windows (e.g., smooth windows

that contain very similar pixels) can be very redundant and may introduce noises into the

computation. Such redundancy may not only deteriorate the performance but also incur

the unnecessary computational cost. Thus, it is important to reduce the computational

redundancy of convolution to improve the performance. To this end, we propose a

Content-aware Convolution (CAC) that automatically detects the smooth windows and

applies a 1×1 convolutional kernel to replace the original large kernel. In this sense, we

are able to effectively avoid the redundant computation on similar pixels. By replacing

the standard convolution in CNNs with our CAC, the resultant models yield significantly

better performance and lower computational cost than the baseline models with the

standard convolution. More critically, we are able to dynamically allocate suitable

computation resources according to the data smoothness of different images, making it

possible for content-aware computation. Extensive experiments on various computer

vision tasks demonstrate the superiority of our method over existing methods.

∗Corresponding author
Email addresses: guo.yong@mail.scut.edu.cn (Yong Guo),

sechenyaofo@mail.scut.edu.cn (Yaofo Chen), mingkuitan@scut.edu.cn (Mingkui Tan),
kuijia@scut.edu.cn (Kui Jia), ellachen@scut.edu.cn (Jian Chen),
jingdw@microsoft.com (Jingdong Wang)

ar
X

iv
:2

10
6.

15
79

7v
2

 [
cs

.C
V

]
 2

3
Ju

l 2
02

1

Keywords: Convolution, Neural Networks, Redundancy Reduction.

1. Introduction

Recently, convolutional neural networks (CNNs) have achieved remarkable per-

formance in many computer vision tasks, including image classification [1, 2], face

recognition [3, 4, 5], semantic segmentation [6, 7, 8], and object detection [9, 10]. More-

over, deep CNNs have also become the workhorse of many other tasks and real-world

applications beyond computer vision, such as speech recognition [11, 12] and natural

language processing [13, 14].

One of the key factors behind the success of CNNs lies in the powerful feature

learning ability of convolution layers. Typically, the standard convolution transforms

the input images/features into a set of windows and exploits a sliding window manner

to extract features over them [15]. However, not all the windows contribute equally to

the prediction results of CNNs. As shown in Figure 1, the input images/features often

contain a lot of smooth windows that consist of very similar pixels. These windows may

contain very limited information about the data [16, 17] since a similar pattern may also

appear in the surrounding areas. As a result, the computation on smooth windows may

be very redundant. More critically, performing convolution on these windows may also

introduce noises into the computation and thus deteriorate the performance (See results

in Tables 1 and 2). Thus, it is important and necessary to reduce the computational

redundancy of convolution to improve the performance.

Regarding this issue, existing methods improve the convolutional operation by

reducing the redundant communications among different channels of feature maps [18,

19, 20] or reducing the spatial size of some of the redundant channels [21]. Specifically,

group convolution [18] and depthwise separable convolution [19, 20] divide the channels

of feature maps into multiple groups and perform convolution independently over each

group. Recently, Chen et al. propose the Octave Convolution (OctConv) [21] method,

which downscales the feature maps in some redundant channels into smaller sizes to

reduce the computational cost. However, these methods only focus on the redundancy

inside the channels of feature maps but ignore the spatial redundancy of the pixels

2

Conv-1 (1x scale)
Input image

Conv-2 (4x scale)
Layer 1

Conv-7 (8x scale)
Layer 6

Conv-12 (16x scale)
Layer 11

In
pu

t f
ea

tu
re

 m
ap

Im
ag

e/
Fe

at
ur

e G
ra

di
en

t

Figure 1: Demonstration of computational redundancy in the input feature maps of different layers of
ResNet18 (pretrained on ImageNet). The top row and bottom row show the input feature maps and the
corresponding gradient in different layers, respectively. Red boxes denote the sharp windows that contain the
main content of the image. Blue boxes denote the smooth windows that contain limited information about the
image and require redundant computation.

in each window. Moreover, existing methods perform the same computation on the

samples with different spatial redundancy, which makes the prediction not optimal and

also very inefficient.

In this paper, we seek to reduce the computational redundancy on smooth windows

to improve the performance of convolution. To this end, we propose a Content-aware

Convolution (CAC) that uses a 1× 1 convolution to replace the computation of original

k×k convolution on smooth windows. In this sense, we are able to effectively avoid the

redundant computation to improve the feature learning ability of convolution. To obtain

the weights for the 1×1 convolutional kernels, we spatially aggregating the k×k kernel

by summing up all the kernel parameters (See detailed analysis in Section 4.2). In order

to automatically detect the smooth windows, we propose an effective training method

that seeks for a trade-off between model performance and computational cost. More

critically, CAC dynamically allocates computation resources for different samples based

on the smoothness of their contents. Therefore, we are able to perform content-aware

3

computation. In practice, our CAC models yield significantly better performance and

lower computational cost than the models with the standard convolution. Extensive

experiments on different computer vision tasks demonstrate the superiority of our

method over existing methods.

In this paper, we make the following contributions.

• We propose a Content-aware Convolution (CAC) method that replaces the original

k×k kernel with a 1×1 kernel on the smooth windows to improve the performance

of convolution. With CAC, we are able to effectively reduce the computational

redundancy of convolution and significantly improve the performance.

• We propose an effective training method to automatically detect the smooth win-

dows for each layer. To achieve this goal, we solve a multi-objective optimization

problem to find a trade-off between model performance and computational cost.

• Equipped with CAC, the resultant models achieve content-aware computation by

dynamically allocating computation resources to different samples according to

the data smoothness. Extensive experiments on different computer vision tasks

demonstrate the effectiveness of the proposed method.

2. Related Work

Recently, many efforts have been made to reduce the redundancy of deep networks,

including channel pruning, network quantization, and energy-efficient model design.

2.1. Channel Pruning

Channel pruning is one of the predominant approaches for deep network compres-

sion. Li et al. [22] measure the importance of different channels by computing the

sum of absolute values of weights to conduct channel selection. Hu et al. [23] use the

average percentage of zeros (APoZ) to select important channels. Several training based

methods [24, 25] have been proposed to automatically identify the redundant chan-

nels by introducing a sparsity regularizer in the training objective. The reconstruction

methods [26, 27] seek to solve the channel pruning problem by minimizing the recon-

struction error between the feature maps of the pretrained model and the compressed

4

model. Recently, Zhuang et al. [28] propose a discrimination-aware channel pruning

(DCP) method to choose the channels that contribute to the discriminative power and

obtain state-of-the-art results. Based on DCP, Zhuang et al. [29] further propose a

discrimination-aware kernel pruning (DKP) method by removing the redundant kernels

according to the discrimination power. However, these methods only focus on the

redundancy in model parameters but ignore the redundancy incurred by the input data.

2.2. Network Quantization

Network quantization aims to convert the pretrained full-precision convolution

networks into the low-precision versions to reduce the computational cost. Recently,

Song et al. [30] propose a three-stage deep compression pipeline, including pruning,

trained quantization, and Huffman coding. DoReFa-Net [31] seeks to quantize the full

precision weights, activations, and gradients to the low bit ones for deep networks. In

ternary weight networks (TWNs) [32, 33], the parameters are constrained to +1, 0, and

−1, and the model achieves higher accuracy than binary neural networks. Similar to

channel pruning, network quantization also reduces the redundancy in model parameters

and may yield limited performance.

2.3. Energy-efficient Model Design

Many energy-efficient modules have been proposed to reduce the computational

cost of deep networks. Specifically, sparse convolution [34, 35] zeros out a large

number of parameters to reduce the model size. Group convolution [18] and depthwise

separable convolution [19] divide the input channels into groups to reduce the redundant

communications among different groups. NAT [36, 37] replaces redundant operations

with identity mapping or directly remove them to obtain efficient models.

Related to our method, Li et al. [38] propose a Region Convolution (RC) that

reduces the computational redundancy for semantic segmentation models. Specifically,

given an input feature map, RC performs convolutions on the regions of hard pixels and

discards the easy pixels according to the confidence of the predicted mask. However,

it has some underlying limitations. First, RC relies on the predicted confidence of all

pixels to construct the mask and cannot be applied to tasks without dense prediction,

5

e.g., image classification. Second, RC completely discards the easy regions and may

influence the features learned in the deeper layers. Unlike RC, our CAC preserves the

information in all regions/pixels and can be applied to most computer vision tasks, e.g.,

image classification, semantic segmentation, and object detection.

Very recently, Chen et al. propose the octave convolution (OctConv) [21] method,

which reduces the spatial resolution of some low-frequency feature maps to reduce

the computational complexity. However, it has two major limitations. First, the low-

frequency feature maps are predefined before training rather than detected according

to the input data. Second, OctConv only considers the redundancy in the channels of

the feature maps but ignores the redundancy in the data content, e.g., pixels. Compared

to OctConv, our CAC automatically detects the sharp/smooth windows from the input

data to achieve content-aware computation. Moreover, CAC considers the pixel level

redundancy caused by the input data.

3. Notations and Problem Definition

In this paper, we assume that the convolution has the stride of 1 and is performed

with padding to guarantee that the output feature maps have the same size as the input

feature maps. In this paper, we consider the squared input images and feature maps.

For simplicity, we consider one single-channel input feature map X ∈ Rn×n and one

convolutional kernel W ∈ Rk×k, where n and k denote the sizes of the feature maps

and kernels, respectively. Thus, the standard convolution can be written as

Y = X⊗W, (1)

where ⊗ denotes the convolutional operator.

In practice, the computation of convolution is often converted to the matrix-matrix or

matrix-vector multiplication [39]. Given a convolution with a k × k kernel and an input

feature map X ∈ Rn×n, there are n2 windows that are convolved by the kernel [40]. In

this sense, we can represent X by a set of windows

Ψ := {Qi ∈ Rk×k | i = 1, ..., n2}, (2)

6

flatten

…

≈

×

im2col⊗

𝑘×𝑘

𝑘%×1

𝑛×𝑛

𝑛%× 𝑘%

𝜌𝑛% × 𝑘%
𝑘%×1

Convolutional kernel Input feature map

…

sharp regions smooth regions

1×1 convolution approximation on

=

×

1 − 𝜌 𝑛%×1

1×1

…
=

𝑘×𝑘 convolution on

output features ⊗ convolution operation

…
…

Λ

Φ

𝐘,

𝐘-

Figure 2: The computation method of Content-aware Convolution. We first divide the input feature maps into
two parts, namely the sharp windows (red boxes) and smooth windows (blue boxes). Then, we perform k× k
convolution on sharp windows and 1× 1 convolution on smooth windows.

where Qi denotes the i-th window in Ψ. For any window Qi, we can reshape it into a

vector pi = vec(Qi) ∈ Rk2 . For convenience, we define P := [p1, ...,pn2] ∈ Rk2×n2

and w := vec(W) ∈ Rk2 . Note that the transformation from X to P is often called

im2col (See Fig. 2). Thus, Eqn. (1) can be written as a matrix-vector multiplication:

Y = vec2mat(PTw), (3)

where the function vec2mat(·) denotes the operation to reshape a vector to a matrix.

Clearly, the complexity of the matrix-vector multiplication isO(n2k2), which can be

very expensive when n and/or k are very large. However, some of the windows are very

smooth and only contain limited information. More critically, performing convolution

on smooth windows may also introduce noises into the computation and thus hamper

the performance. Thus, it is necessary and important to reduce the computational

redundancy on smooth windows to improve the performance of convolution.

4. Proposed Method

In this paper, we propose a Content-aware Convolution (CAC) that replaces the

original kernel with a 1×1 kernel to perform convolution on smooth windows. Moreover,

we present an effective method to automatically detect smooth windows. We show the

overall scheme in Fig. 2 and the detailed computation method of CAC in Algorithm 1.

7

4.1. Motivation

The standard convolution convolves the input images/features by transforming them

into a set of windows and adopts a sliding window scheme to extract features [40].

However, not all the windows contribute equally to the prediction results of deep

networks. As shown in Fig. 1, there are a large number of smooth windows in the

feature maps of each layer. These windows often contain very similar pixels and come

with very limited information about the data. As a result, performing convolution on

smooth windows can be redundant. More critically, the computational redundancy

on these smooth windows may also introduce noises into the computation and thus

deteriorate the performance.

Instead of convolving all the windows using the same kernel, we seek to perform

different convolutional computations on the windows according to their smoothness.

Specifically, we first recognize the sharp and smooth windows. Then, we perform the

standard convolution on the sharp windows and perform the convolution with a smaller

kernel of 1× 1 on a single pixel of the smooth windows to reduce the computational

redundancy. Since the computation depends on the content of the input data in each

layer, we call our method Content-aware Convolution (CAC).

4.2. Content-aware Convolution

Given an input feature map or image, we divide the whole window set Ψ into two

disjoint subsets, namely the sharp window set Λ and the smooth window set Φ. We

will illustrate how to detect smooth/sharp windows from Ψ in Section 4.3. To reduce the

computational redundancy on smooth windows, we seek to use a 1× 1 kernel to replace

the original large kernel. Given an input window Qi ∈ Rk×k and a single-channel

kernel W ∈ Rk×k, the output of a convolution layer yi can be computed by

yi = Qi ⊗W = p>i w =

k2∑
j=1

pjwj , (4)

where pi denotes vector presentation of Qi and pj denotes the j-th element of pi. If

Qi is a smooth window, it implies that all the elements of the window should have very

8

Algorithm 1: Content-Aware Convolution (CAC).

Require: Input feature map X ∈ Rn×n;
Convolutional kernel W ∈ Rk×k;
Learnable parameters kernel γ and β;
Set of input windows Ψ := {Qi ∈ Rk×k | i = 1, ..., n2}.

1: Compute the 1×1 kernel wΦ using Eqn. (6);
2: Compute the average feature map using Eqn. (9);
3: Compute the gradient of feature maps G using Eqn. (10);
4: Compute the score map based on G:

M = Sigmoid (γG + β);
5: Obtain the set of sharp windows:

Λ = {Qi |Mi > 0.5};
6: Obtain the set of smooth windows:

Φ = Ψ \ Λ;
7: Perform convolution on Λ:

YΛ = Conv(Λ;W);
8: Perform convolution on Φ:

YΦ = Conv(Φ;wΦ);
9: Combine YΛ and YΦ to obtain the final output:

Y = Combine(YΛ,YΦ).

similar values, i.e., for ∀m,n∈{1, ..., k2}, pm ≈ pn. Therefore, it follows that

p>i w =

k2∑
j=1

pjwj ≈ p̄ ·
k2∑
j=1

wj , (5)

where p̄ can be the average value of all pj (p̄ = 1
k2

∑k2

j=1 pj) or any element of this

window. In this paper, we choose the center element to compute p̄. Relying on Eqn. (5),

we approximate the original k × k convolution kernel using a 1× 1 kernel:

wΦ =

k2∑
j=1

wj . (6)

Note that the computation on similar pixels may introduce noises into the computation.

Our CAC performs convolution on a single pixel in a window and thus effectively

reduces the impact of the noisy information. In this sense, the CAC based models are

often more robust than the models built with the standard convolution (See results in

Table 5). Moreover, the computational cost of CAC on smooth windows can be reduced

to 1/k2 of the cost with the k × k kernels.

9

Given the sharp windows Λ and smooth windows Φ, we obtain the output of CAC

by performing a k × k convolution and a 1× 1 convolution on Λ and Φ, respectively.

Let W ∈ Rk×k be the parameters of a single-channel convolutional kernel, wΦ be the

1× 1 kernel obtained by Eqn. (6). The computation on Λ and Φ can be formulated by

YΛ = Conv(Λ;W), YΦ = Conv(Φ;wΦ). (7)

Then, we combine YΛ and YΦ to obtain the final output according to the relative

positions of the windows.

Y = Combine(YΛ,YΦ). (8)

4.3. Sharp and Smooth Window Recognition

Based on the smoothness of windows, we propose an effective method to automati-

cally detect the sharp/smooth windows. In this paper, we measure the data smoothness

using the gradients of the input images or features.

For any layer of a deep network, not all the channels are useful and some of them

are noisy or irrelevant to the final prediction results [28]. As a result, the features in

these channels can be very noisy and thus may hamper the final prediction results [41].

Regarding this issue, we seek to compute the average feature map over different channels

to alleviate the influence of noisy features:

X =
1

m

m∑
i=1

Xi, (9)

wherem denotes the number of channels. Then, we compute the gradient of the averaged

feature map to compare the sharpness of different windows. In this paper, we use the

Sobel operator [42] to compute the gradient by performing two 1-d convolutions along

10

the x- and y-axis, respectively:

Gx = X⊗
[
−1 0 +1

]
⊗


1

2

1

 , Gy = X⊗
[
1 2 1

]
⊗


−1

0

+1

 .

Thus, the total gradient becomes

G =
√

G2
x + G2

y. (10)

Given the feature map with m channels, computing gradients on the averaged feature

map only yields 1/m cost of the computation on all the channels. Compare to the cost

of convolution, the cost of computing gradients can be negligible in practice.

Based on the computed gradients, we may divide the windows into sharp and

smooth windows according to some threshold. However, such a threshold has to be

carefully selected for each layer, making it very time consuming and labor-intensive.

To address this issue, we propose a learnable module to automatically discriminate the

sharp windows from the smooth windows. Specifically, we exploit an affine function to

transform the gradients and then apply the Sigmoid function to compute the probability

of a window being sharp. The probability map M can be computed by

M = Sigmoid (γG + β), (11)

where γ and β are trainable parameters.

Here, we consider the windows with the probability larger than 0.5 as sharp windows

and the other windows as smooth windows. Formally, the sets of sharp and smooth

windows can be represented by:

Λ = {Qi |Mi > 0.5}, Φ = Ψ \ Λ, (12)

where Mi is the score of the window Qi and Ψ denote the set of all the windows. By

changing a hard threshold manner to a learnable scheme, the model is able to adjust γ

11

and β to find the optimal number of smooth windows to perform 1× 1 convolution. We

will show the training method for γ and β in Section 4.4.

4.4. Training Method

Note that CAC seeks to find a number of smooth windows to perform 1 × 1 con-

volution to improve the performance. Although we can reduce the computational cost,

performing 1× 1 convolution on too many windows may also hamper the performance

(See results in Table 6). To find a good trade-off between model performance and

computational cost, we propose to solve a multi-objective optimization problem.

Let M be the CAC-based model to be trained, M b be the baseline model with the

standard convolution, and c(∗) be the function to measure the computational cost of

deep models, e.g., the number of multiply-adds (MAdds). To train CAC-based models,

we use the weighted product method1 to build the objective:

L = `(M)

(
c(M)

c(M b)

)λ
, (13)

where `(M) denotes the standard loss function w.r.t. M (e.g., the cross-entropy loss

for classification models) and λ ≥ 0 is a constant weight factor. When λ = 0, the

objective is reduced to the standard loss for a specific task. When λ > 0, we seek to

find a promising trade-off between model performance and computational cost. In this

paper, to obtain a good balance, we use λ to control the importance of computational

cost (See discussions on λ in Section 7.2).

5. More Discussions

In this section, we first analyze the computational complexity of the proposed CAC

convolution in Section 5.1. Then, we discuss the differences between the proposed

methods and existing methods in Section 5.2.

1We use the weighted product method because it is easy to customize for different models. The weighted
sum method is also appropriate.

12

5.1. Computational Complexity Analysis

To analyze the computational complexity of the proposed CAC, we consider the

more general case in which a convolution layer contains multiple channels. Let XXX ∈

Rn×n×cin be the input feature maps of a convolution layer and the convolutional kernel

be W ∈ Rk×k×cin×cout , where cin and cout are the numbers of input and output

channels, respectively. Then, the convolution in a standard convolution layer can be

computed by

O = X ⊗W , O ∈ Rn×n×cout , (14)

where ⊗ denotes the convolution operation. The number of multiply-adds (MAdds)

required by the standard convolution is given by:

ΩConv = cin · cout · k · k · n · n. (15)

Given a specific proportion of sharp windows (denoted by ρ), the computational

complexity consists of three parts. First, there are ρ · n2 sharp windows in Λ where

we perform the standard convolution using the k × k kernel. Thus, the complexity of

the first part becomes ρΩconv. Second, we perform 1 × 1 convolution on (1−ρ) · n2

smooth windows in Φ, each of which only requires 1/k2 complexity of the standard

k × k convolution. Therefore, the computational complexity of the second part is

(1− ρ)Ωconv/k
2. Third, we perform two 1-d convolutions with a single output channel

to compute the gradients along the x- and y-axis, respectively. Thus, there are a total of

four 1× 3 or 3× 1 convolutions to compute the gradient.

Compared to the standard convolution with cin input channels and cout output

channels, the complexity of computing gradients in the third part is

4 · 3

k2
· 1

cincout
ΩConv︸ ︷︷ ︸

computing gradient

+
1

k2cincout
Ωconv︸ ︷︷ ︸

linear transformation

=
13

k2cincout
Ωconv. (16)

13

As a result, the total computational complexity of the CAC convolution becomes:

ΩCAC =

 ρ︸︷︷︸
k × k conv

+
1− ρ
k2︸ ︷︷ ︸

1× 1 conv

+
13

k2cincout︸ ︷︷ ︸
computing score map

ΩConv. (17)

To accelerate the computation of the convolutions, according to Eqn. (17), we have

to satisfy the condition such that ΩCAC/ΩConv ≤ 1. In this sense, we can obtain the

upper bound of the ratio ρ:

ρ ≤ ρ = 1− 13

(k2 − 1) · cin · cout
. (18)

Specifically, for a 3 × 3 convolution (i.e., k = 3), the upper bound is ρ = 1 −
13

8·cin·cout
. Taking ResNet [1] as an example, the number of channels cout ranges from

16 to 512. In this sense, the ratio only needs to be ρ < 99.3% when we substitute the

smallest value cin = cout = 16 into Eqn. (18). Thus, there is considerable potential to

accelerate the computation of the standard convolution.

5.2. Differences from Existing Methods

The proposed CAC method has several essential differences from existing methods.

First, the standard convolution performs convolution using a general kernel on all the

windows and ignores the inherent redundancy, which may hamper the performance

(See results in Tables 1 and 2). In contrast, the proposed CAC performs different

convolutions on these windows to reduce the computational redundancy and improve

the performance. Second, existing methods perform the same computation on the

samples with different spatial redundancy. Unlike these methods, our CAC adopts a

content-aware computation scheme that dynamically allocates suitable computational

resources for different samples according to their data smoothness. It is worth noting

that our CAC is more robust to the samples with adversarial perturbations than existing

convolution methods. The main reason is that CAC replaces the large kernel convolution

with a 1× 1 convolution on smooth windows, which effectively reduces the influence

incurred by the noises/attacks in these windows.

14

Conv-1(1x)
Input image

Conv-2(4x)
Layer 1

Conv-3(4x)
Layer 2

Conv-4(4x)
Layer 3

Conv-7(8x)
Layer 6

Conv-8(8x)
Layer 9

Conv-12(16x)
Layer 11

Conv-14(16x)
Layer 13

In
pu

t I
m

ag
e/

Fe
at

ur
e

Sh
ar

p/
Sm

oo
th

 R
eg

io
ns

In
pu

t I
m

ag
e/

Fe
at

ur
e

Sh
ar

p/
Sm

oo
th

 R
eg

io
ns

Figure 3: Visualization of the feature maps of different layers in CAC-ResNet18 on ImageNet. For each
image, the top row shows the feature map of different layers and the bottom row shows the corresponding
map of sharp windows detected by CAC. In the bottom row, yellow regions denote the sharp windows to
perform 3× 3 convolution and the dark regions denote the smooth ones to perform 1× 1 convolution. We
scale the feature maps of different layers to the same spatial size for better visualization.

6. Experiments

In this section, we use CAC to accelerate two popular convolution methods, namely

the standard convolution and the octave convolution (OctConv) [21]. We apply CAC

to various architectures and demonstrate the performance on three computer vision

tasks, including image classification, semantic segmentation, and object detection. All

implementations are based on PyTorch2.

We organize the experiments as follows. First, we show the visual interpretation of

each CAC layer in Section 6.1. Second, we evaluate our CAC on image classification

tasks in Section 6.2. Third, we apply our CAC method to semantic segmentation models

and evaluate the proposed method in Section 6.3. Fourth, we conduct experiments to

show the effectiveness of our CAC method on object detection tasks in Section 6.4.

Finally, we investigate the effect of the hyperparameter λ in Section 7.2.

2The implementation of the proposed CAC method is available at https://github.com/guoyongcs/CAC.

15

https://github.com/guoyongcs/CAC

6.1. Visual Interpretation of CAC Convolution

To better understand the proposed CAC method, we visualize the feature maps and

the corresponding masks of the sharp windows of different CAC layers inside deep

networks. In this experiment, we take the CAC-ResNet18 model as an example and

show the results in Fig. 3.

From Fig. 3, the sharp windows (marked in yellow) are often located at the edges

and contain the main information about the object. However, the smooth windows

(marked in black) are often very smooth areas that only contain little information. As

discussed in Section 4, when the input windows are very smooth, it is not necessary to

use a large kernel to perform convolution. Thus, we can reduce the computational cost

of convolution on the smooth windows using a 1× 1 kernel to approximate the original

output. In this way, our CAC method can greatly reduce the computational complexity

without a loss of information. More critically, since the input images or features may

have different numbers of smooth windows, the resultant CAC models can dynamically

allocate suitable computation power to different input images. Thus, our CAC models

can perform content-aware computation to improve the performance of convolution.

6.2. Experiments on Image Classification

In this experiment, we consider two popular convolution methods as the base-

line methods, namely, the standard convolution and the OctConv [21]. We apply the

proposed CAC method to various image classification models, including ResNet [1],

DenseNet [43], and ShuffleNetV2 [44].

6.2.1. Datasets and Implementation Details

We conduct experiments on two benchmark image classification datasets, including

CIFAR-10 [45], and ImageNet [46]. CIFAR-10 consists of 50k training samples and

10k testing images with 10 classes. ImageNet contains 123k training samples and 50k

testing images for 1,000 classes.

We follow the settings in [1] and use SGD with nesterov [47] for the optimization.

The momentum and weight decay are set to 0.9 and 0.0001, respectively. On CIFAR-10,

we train the models for 400 epochs using a mini-batch size of 128. The learning rate is

16

Table 1: Comparisons of different convolutions in terms of both computational complexity and testing error
based on various architectures on CIFAR-10. “\” denotes the missing results of the models to which OctConv
cannot be applied.

Conv Type ResNet20 ResNet32 ResNet56 DenseNet121 ShuffleNetV2
#MAdds Error #MAdds Error #MAdds Error #MAdds Error #MAdds Error

(M) (%) (M) (%) (M) (%) (M) (%) (M) (%)
Standard Conv 40.93 8.75 69.12 7.51 126.08 6.97 888.51 4.78 45.04 7.25

CAC 25.79 8.37 46.58 7.25 87.27 6.51 733.82 4.60 41.33 7.13
OctConv [21] 26.33 8.77 44.02 8.07 61.72 7.58 403.80 5.52
CAC-OctConv 19.49 8.60 34.39 7.63 52.12 6.99 356.63 4.68

initialized to 0.1 and divided by 10 at epochs 160 and 240, respectively. On ImageNet,

we train the models for 90 epochs with a mini-batch size of 256. The learning rate is

started at 0.1 and divided by 10 at epochs 30 and 60, respectively. We train the CAC

based models with λ = 0.3. We use the number of multiply-adds (MAdds) to measure

the computational complexity of deep models. Based on sharp window set Λ and the

set of all the windows Ψ, we compute the ratio of sharp windows inside a convolution

layer by ρ = |Λ|/|Ψ|, where | · | denotes the cardinality of a set. In general, a lower

ratio implies that the more windows would be convolved with a 1× 1 kernel.

6.2.2. Comparisons on CIFAR-10

In this experiment, we evaluate our CAC method on a small dataset CIFAR-10.

From Table 1, the proposed CAC method greatly accelerates ResNet and DenseNet

models equipped with different convolution types. Specifically, for both the models with

the standard convolution and OctConv, our CAC consistently yields significantly better

performance and lower computational cost. Moreover, we also show the ratios of sharp

windows ρ of each layer based on several models in Fig. 4. From this figure, deep layers

tend to have larger ratios than shallow layers due to their better representation ability

and smaller feature map, yielding a smaller risk of containing smooth windows. These

results show that the proposed CAC removes the redundancy caused by the smooth

windows in each layer.

We also consider very compact models, e.g., ShuffleNetV2, which mainly consists

of 1× 1 group convolution. However, since OctConv requires information exchange

among groups, it would destroy the computation of group convolution and thus cannot

be directly applied to ShuffleNetV2. Thus, we only compare the performance of the

17

CAC-ResNet20 CAC-ResNet32 CAC-ResNet56

CAC-Oct-ResNet20 CAC-Oct-ResNet32 CAC-Oct-ResNet56

Figure 4: Visualization of the ratios of sharp windows for different layers in ResNet20, ResNet32, and
ResNet56 on CIFAR-10. We compute the ratios by averaging the ratios over 10,000 testing samples.

models equipped with the standard convolution and the proposed CAC. Even with such

a compact model, our CAC further improves the validation accuracy and reduces the

redundancy in the model. These results demonstrate the effectiveness of our method.

6.2.3. Comparisons on ImageNet

We also evaluate our method on a large-scale dataset ImageNet. Similar to the

experiments on CIFAR-10, we apply our CAC to improve both the standard convolution

and OctConv. In this experiment, we consider ResNet, DenseNet and ShuffleNetV2 as

the baseline model. The results are shown in Table 2.

From Table 2, our CAC based models significantly outperform the baseline models

with different architectures in terms of Top-1 and Top-5 error. More critically, the

resultant models often have lower computational cost and thus become more compact.

These results demonstrate the superiority of the proposed CAC method over the existing

methods. We also show the ratios ρ of each layer for ImageNet models in Fig. 5. From

this figure, due to the training difficulty on a large-scale dataset, ImageNet models are

often hard to compress without performance degradation [25, 27, 28], yielding larger

ratios of the intermediate layers than the CIFAR-10 models.

18

Table 2: Comparisons of different convolutions in terms of both computational complexity and validation
error on ImageNet. “\” denotes the missing results of the models to which OctConv cannot be applied.

Conv Type
ResNet18 ResNet50 DenseNet121 ShuffleNetV2

#MAdds Error (%) #MAdds Error (%) #MAdds Error (%) #MAdds Error (%)
(G) Top-1 Top-5 (G) Top-1 Top-5 (G) Top-1 Top-5 (G) Top-1 Top-5

Conv 1.81 30.36 11.02 4.09 24.01 7.07 2.83 25.35 7.83 0.15 30.64 11.68
CAC 1.41 30.19 10.87 3.75 23.79 6.81 2.52 24.49 7.37 0.13 30.13 11.27

OctConv [21] 1.14 29.64 10.48 2.37 23.27 6.55 1.37 25.68 7.90
CAC-OctConv 0.96 29.43 10.27 2.19 23.05 6.37 1.28 24.82 7.61

CAC-ResNet18 CAC-ResNet50 CAC-Oct-ResNet18 CAC-Oct-ResNet50

Figure 5: Visualization of the ratios of sharp windows for different layers in ResNet18 and ResNet50 on
ImageNet. The layer index for ResNet50 denotes the index of the bottleneck block. We compute the ratios for
different layers by averaging the samples in the validation set.

6.3. Experiments on Semantic Segmentation

We further apply the proposed CAC to semantic segmentation models, e.g., fully

convolutional network (FCN) [48]. We compare the performance of the models with

and without CAC based on a benchmark dataset PSACAL VOC 2012 [49].

6.3.1. Compared Methods

We adopt FCN as the baseline model and apply our CAC to show the effectiveness

of CAC. In this experiment, we compare our CAC with a strong baseline region convo-

lution (RC). Moreover, we also consider several semantic segmentation methods as the

baselines, including BONN-SVR [50], O2P [51], SDS [52], and MSRA-CFM [53].

6.3.2. Datasets and Implementation Details

We conduct experiments on the benchmark semantic segmentation dataset PASCAL

VOC 2012, which consists of 1, 464 training images and 1, 449 validation images. We

measure the performance using the commonly used metric, i.e., the mean intersection

over union (mIoU), which computes the percent between the intersection and union of

the ground truth segmentation mask and the prediction mask.

In this experiment, we use the ImageNet pretrained model as the backbone model,

e.g., ResNet18. Following the setting in [54], we make some modifications to adapt the

19

Input Image Ground Truth FCN-ResNet18 RC-FCN-ResNet18 CAC-FCN-ResNet18

Figure 6: Visual comparison of the segmentation masks produced by different methods. The first and the
second columns show the input images and the corresponding ground truth segmentation masks, respectively.
The last three columns show the segmentation masks predicted by different models.

Table 3: Comparisons of different models on each class for semantic segmentation. We adopt the FCN-
ResNet18 model as the baseline model. “-” denotes the results that are not reported.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU #MAdds (G)
BONN-SVR [50] 54.3 23.9 39.5 35.3 42.6 65.4 53.5 46.1 15.0 47.4 30.1 33.9 48.8 54.4 46.4 28.8 51.3 26.2 44.9 37.2 43.3

O2P [51] 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6 47.8 -
SDS [52] 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6 -

MSRA-CFM [53] 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8 -
FCN [48] 83.5 29.7 68.7 59.8 50.2 80.3 71.9 71.8 28.6 59.6 44.4 61.2 59.0 66.7 80.3 40.8 63.4 42.5 74.4 66.9 61.7 45.0

RC-FCN [38] 82.8 28.9 64.4 58.6 50.3 80.5 70.5 71.6 26.7 58.3 45.5 58.4 58.1 67.8 79.6 40.9 58.6 42.7 73.9 63.6 60.6 38.2
CAC-FCN 84.1 29.9 69.1 60.5 51.9 82.2 73.1 71.5 28.9 59.7 48.0 59.5 60.2 69.2 80.2 41.8 63.1 44.1 76.9 67.0 62.5 37.2

model to the semantic segmentation task. First, we remove the last two subsampling

layers in ResNet18 to upscale the size of the output feature map by 4×. Second, we

replace the last four convolution layers with dilated convolutions. Third, we replace

the linear layer with an interpolated upsampling layer. In the training, we first train

the model on MS-COCO dataset and then finetune it on PASCAL VOC 2012. We

make some modifications to adapt it to the semantic segmentation task. We apply data

augmentation by randomly scaling the input images (from 0.5 to 2.0) and randomly

left-right flipping in training. The input images are resized to 480 × 480 in testing.

We finetune 30 epochs using mini-batch SGD with a weight decay of 0.0001 and a

momentum of 0.9. The learning rate is started at 0.01. In all experiments, we train the

CAC based models with λ = 0.3 and C = 0.5.

20

6.3.3. Performance Comparison

In this section, we compare the proposed CAC method with the standard convolution

and region convolution (RC) on semantic segmentation tasks. For convenience, we use

FCN, RC-FCN, and CAC-FCN to represent the models with the standard convolution,

RC, and CAC. We show the results in Table 3 and Fig. 6.

From Table 3, our CAC-FCN outperforms the baseline models with the standard

convolution and RC on most of the categories. For the average performance in terms

of mIoU, the CAC-FCN model yields significant performance improvement. We also

provide a visual comparison of different models in Fig. 6. From this figure, our CAC-

FCN produces more accurate segmentation masks than the FCN and RC-FCN baselines.

6.4. Experiments on Object Detection

In this section, we apply the proposed CAC method to object detection models. We

evaluate the CAC-based models on the benchmark dataset MS COCO [55].

6.4.1. Compared Methods

In this experiment, we adopt the widely used model Faster-RCNN network as the

baseline model. We compare our CAC based model with several state-of-the-art object

detection models, including Fast-RCNN [56], ION [57], YOLOv2 [58], SSD300 [59]

and SSD512 [59].

6.4.2. Datasets and Implementation Details

We conduct experiments on the MS COCO dataset which contains 117k training

images and 5k validation images with 80 classes. We use the ImageNet pretrained

ResNet18-based FPN network for comparing different methods on MS COCO dataset.

We follow the setting in [60]. The networks are optimized for 13 epochs using SGD

with a weight decay of 0.0001 and a momentum of 0.9. The learning rate is initialized

with 0.02 and divided by 10 at 8 and 11 epochs.

We evaluate different object detection models using the COCO’s standard metric,

namely mAP@0.5 and mAP@0.75. These two metrics represent the mean average

precision (mAP) computed at the IoU thresholds of 0.5 and 0.75, respectively. We also

21

Table 4: Comparisons of different object detection models on MS COCO dataset. We use the ResNet18 model
as the backbone. “-” denotes results that are not reported.

Model mmAP mAP@0.5 mAP@0.75 #MAdds (G)
Fast-RCNN [56] 18.9 38.6 - -

ION [57] 23.6 43.2 23.6 -
YOLOv2 [58] 21.6 44.0 27.8 -
SSD300 [59] 23.2 41.2 23.4 -
SSD512 [59] 26.8 46.5 27.8 -

Faster-RCNN [60] 28.6 49.2 29.6 23.82
CAC-Faster-RCNN 29.9 49.9 31.1 20.49

Ground Truth Faster-RCNN CAC-Faster-RCNN Ground Truth Faster-RCNN CAC-Faster-RCNN

Figure 7: Visual comparison of different object detection methods. The first column shows the input images
with the corresponding ground truth bounding boxes. The second and third columns show the bounding boxes
predicted by different models.

compute mmAP for different models by averaging multiple mAP values with the IoU

thresholds ranging from 0.5 to 0.95 with the step of 0.05. In all experiments, we train

the CAC based models with λ = 0.3 and C = 0.5.

6.4.3. Performance Comparison

In this experiment, we use CAC to replace the standard convolution layers in the

Faster-RCNN model. We show the quantitative and visual results in Table 4 and Fig. 7.

From Table 4, CAC can obtain very compact models with better performance

and lower computational cost than the baseline models equipped with the standard

convolution. Specifically, the resultant CAC-Faster-RCNN has a lower computational

cost and consistently outperforms the baseline model on all the considered metrics,

including mmAP, mAP@0.5, and mAP@0.75. We also show the visual comparison of

different object detection models in Fig. 7. From this figure, our CAC model generates

more accurate bounding boxes than the Faster-RCNN baseline. The results demonstrate

the effectiveness of the proposed CAC method on object detection tasks.

22

Table 5: Comparisons of robustness of deep models with different convolutions on CIFAR-10.

Model Method Error on Adversarial Examples (%)
FGSM [61] MI-FGSM [62] PGD-10 [63] PGD-100 [63]

ResNet20 Standard Conv 29.82 54.89 57.99 65.41
CAC 28.97 53.67 57.13 64.74

ResNet56 Standard Conv 26.91 51.91 55.33 64.81
CAC 25.58 51.03 54.72 63.75

7. Further Experiments

In this section, we first compare the accuracy of our CAC method with the standard

convolution method under adversarial perturbations to investigate the robustness of

our method. Then, we conduct more experiments to investigate the effect of the

hyperparameter λ.

7.1. Comparisons of Robustness

We investigate the robustness of the proposed CAC by comparing the accuracy on

adversarial samples generated by four different attack methods, including FGSM [61],

MI-FGSM [62], PGD10 [63] and PGD100 [63]. We train the standard convolution

models (namely ResNet20 and ResNet56) and the CAC based models with adversarial

samples on CIFAR-10. We report the adversarial accuracy that is evaluated on adver-

sarial samples. The higher adversarial accuracy the model has, the more adversarially

robust the model will be.

Following the setting in [63], we train all the models for 200 epochs and use an

SGD optimizer with a momentum of 0.9 and a weight decay of 0.0005. The initialized

learning rate is set to 0.1 and divided by 10 at epochs 90, 140 and 160, respectively. All

attacks are with a total perturbation scale of 8/255 (0.03) and a step size of 2/255 (0.01).

We set the number of attack iterations to 10, 10 and 100 for MIFGSM [62], PGD10 [63]

and PGD100 [63], respectively. From Table 5, our CAC based models achieve higher

adversarial accuracy than the standard convolution ones under four different attack

perturbations. These results demonstrate that the proposed CAC convolution is more

robust than the standard convolution. The main reason is that our CAC replaces the

original large kernel with a 1× 1 kernel to perform convolution on smooth windows.

23

Table 6: Comparisons of the CAC-ResNet20 models with different values of λ on CIFAR-10.
Method Standard Conv CAC
λ - 0.3 0.5 0.7 1.0

Error (%) 8.75 8.37 9.92 10.07 11.81
#MAdds ↓ (%) 0 36.98 40.38 51.68 69.39

In this sense, we are able to effectively reduce the influence incurred by the noises and

attacks in these windows.

7.2. Effect of λ on CAC

We investigate the effect of the hyperparameter λ in Eqn. (13) on the performance

of CAC models. In this experiment, we use ResNet20 as the baseline model and train

the models with different values of λ ∈ {0.3, 0.5, 0.7, 1.0} on CIFAR-10. We show the

results in Table 6.

From Table 6, the reduction of MAdds would increase when we gradually increase

λ. However, due to the redundancy incurred by the smooth windows, it is possible

to simultaneously reduce the computational cost and improve the performance, e.g.,

when setting λ = 0.3. If we further increase the value of λ, the objective in Eqn. (13)

encourages the model to focus more on the computational cost but compromise the

performance. For example, when λ is set to 1.0, CAC reduces the computational cost

by 69.39% but incur significant performance degradation. Thus, we set λ = 0.3 to train

CAC models in the experiments.

8. Conclusion

In this paper, we have proposed a Content-aware Convolution (CAC) to reduce the

computational redundancy incurred by the smooth windows when performing convo-

lution. To reduce the computational redundancy and improve the performance, CAC

replaces the original k × k kernel with a 1 × 1 kernel to perform convolutions on

the smooth windows. Moreover, we propose an efficient algorithm to automatically

recognize the sharp and smooth windows. Given different samples, the resultant CAC

models could allocate different computation resources according to their data smooth-

ness, which makes it possible for content-aware computation. Extensive results on

24

image classification, semantic segmentation, and object detection tasks show that our

CAC based models yield significantly better performance and lower computational cost

than the baseline models with the standard convolution.

9. Acknowledgements

This work was partially supported by Ministry of Science and Technology Foun-

dation Project (2020AAA0106900), National Natural Science Foundation of China

(62072190, 62072186), Key Realm R&D Program of Guangzhou (202007030007),

Fundamental Research Funds for the Central Universities (D2191240), Program for

Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07X183), Key-

Area Research and Development Program of Guangdong Province (2019B010155002),

Guangdong Basic and Applied Basic Research Foundation (2019B1515130001), Ten-

cent AI Lab Rhino-Bird Focused Research Program (JR201902), Guangzhou Science

and Technology Planning Project (201904010197), Opening Project of Guangdong Key

Laboratory of Big Data Analysis and Processing.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: The IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

770–778.

[2] Y. Guo, J. Chen, Q. Du, A. Van Den Hengel, Q. Shi, M. Tan, Multi-way backprop-

agation for training compact deep neural networks, Neural networks.

[3] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A Unified Embedding for Face

Recognition and Clustering, in: The IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 815–823.

[4] Y. Sun, X. Wang, X. Tang, Deeply Learned Face Representations are Sparse,

Selective, and Robust, in: The IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 2892–2900.

25

[5] S. Ozawa, S. L. Toh, S. Abe, S. Pang, N. Kasabov, Incremental learning of feature

space and classifier for face recognition, Neural Networks 18 (5-6) (2005) 575–

584.

[6] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic

segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence

39 (4) (2017) 640–651.

[7] L. Liu, J. Cao, M. Liu, Y. Guo, Q. Chen, M. Tan, Dynamic extension nets for

few-shot semantic segmentation, in: Proceedings of the 28th ACM international

conference on Multimedia, 2020.

[8] N. Ibtehaz, M. S. Rahman, Multiresunet: Rethinking the u-net architecture for

multimodal biomedical image segmentation, Neural Networks 121 (2020) 74–87.

[9] S. Ren, K. He, R. B. Girshick, J. Sun, Faster R-CNN: towards real-time object

detection with region proposal networks, IEEE Transactions on Pattern Analysis

and Machine Intelligence 39 (6) (2017) 1137–1149.

[10] H. Wang, L. Dai, Y. Cai, X. Sun, L. Chen, Salient object detection based on

multi-scale contrast, Neural Networks 101 (2018) 47–56.

[11] M. D. Skowronski, J. G. Harris, Automatic speech recognition using a predictive

echo state network classifier, Neural networks 20 (3) (2007) 414–423.

[12] B. Schrauwen, M. D’Haene, D. Verstraeten, J. Van Campenhout, Compact hard-

ware liquid state machines on fpga for real-time speech recognition, Neural net-

works 21 (2-3) (2008) 511–523.

[13] A. Gross, D. Murthy, Modeling virtual organizations with latent dirichlet allocation:

A case for natural language processing, Neural networks 58 (2014) 38–49.

[14] W. Duch, P. Matykiewicz, J. Pestian, Neurolinguistic approach to natural language

processing with applications to medical text analysis, Neural Networks 21 (10)

(2008) 1500–1510.

[15] C. S. Burrus, T. Parks, and Convolution Algorithms, Citeseer, 1985.

26

[16] A. Bar-Hillel, D. Weinshall, Efficient learning of relational object class models,

International Journal of Computer Vision 77 (1-3) (2008) 175–198.

[17] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised scale-

invariant learning, in: 2003 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2003. Proceedings., Vol. 2, IEEE, 2003, pp. II–II.

[18] A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolu-

tional neural networks, in: Advances in Neural Information Processing Systems,

2012, pp. 1106–1114.

[19] L. Sifre, S. Mallat, Rigid-motion scattering for image classification, Ph.D. thesis,

Citeseer (2014).

[20] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:

The IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.

1800–1807.

[21] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, J. Feng, Drop

an octave: Reducing spatial redundancy in convolutional neural networks with

octave convolution, in: The IEEE International Conference on Computer Vision,

2019, pp. 3434–3443.

[22] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient

convnets, in: International Conference on Learning Representations, 2017.

[23] H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: A data-driven neuron

pruning approach towards efficient deep architectures, ArXiv abs/1607.03250.

[24] J. M. Alvarez, M. Salzmann, Learning the number of neurons in deep networks,

in: Advances in Neural Information Processing Systems, 2016, pp. 2270–2278.

[25] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional

networks through network slimming, in: The IEEE International Conference on

Computer Vision, 2017, pp. 2755–2763.

27

[26] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural

networks, in: The IEEE International Conference on Computer Vision, 2017, pp.

1398–1406.

[27] J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep neural

network compression, in: The IEEE International Conference on Computer Vision,

2017, pp. 5068–5076.

[28] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, J. Zhu,

Discrimination-aware channel pruning for deep neural networks, in: Advances in

Neural Information Processing Systems, 2018, pp. 883–894.

[29] J. Liu, B. Zhuang, Z. Zhuang, Y. Guo, J. Huang, J. Zhu, M. Tan,

Discrimination-aware network pruning for deep model compression, arXiv preprint

arXiv:2001.01050.

[30] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural net-

work with pruning, trained quantization and huffman coding, in: International

Conference on Learning Representations, 2016.

[31] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, Dorefa-net: Training low bitwidth

convolutional neural networks with low bitwidth gradients, Arxic abs/1606.06160.

[32] F. Li, B. Zhang, B. Liu, Ternary weight networks, ArXiv abs/1605.04711.

[33] C. Zhu, S. Han, H. Mao, W. J. Dally, Trained ternary quantization, in: International

Conference on Learning Representations, 2017.

[34] B. Liu, M. Wang, H. Foroosh, M. Tappen, M. Pensky, Sparse convolutional neural

networks, in: The IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 806–814.

[35] B. Graham, M. Engelcke, L. van der Maaten, 3d semantic segmentation with sub-

manifold sparse convolutional networks, in: The IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 9224–9232.

28

[36] Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, J. Huang, Nat: Neural

architecture transformer for accurate and compact architectures, in: Advances in

Neural Information Processing Systems, 2019, pp. 737–748.

[37] Y. Guo, Y. Zheng, M. Tan, Q. Chen, Z. Li, J. Chen, P. Zhao, J. Huang, Towards

accurate and compact architectures via neural architecture transformer, IEEE

Transactions on Pattern Analysis and Machine Intelligence.

[38] X. Li, Z. Liu, P. Luo, C. Change Loy, X. Tang, Not all pixels are equal: Difficulty-

aware semantic segmentation via deep layer cascade, in: The IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 6459–6468.

[39] A. Vasudevan, A. Anderson, D. Gregg, Parallel multi channel convolution using

general matrix multiplication, in: 2017 IEEE 28th International Conference on

Application-specific Systems, Architectures and Processors (ASAP), IEEE, 2017,

pp. 19–24.

[40] J. Ludwig, Image convolution, Portland State University.

[41] L. Wang, W. Ouyang, X. Wang, H. Lu, Visual tracking with fully convolutional

networks, in: Proceedings of the IEEE International Conference on Computer

Vision, 2015, pp. 3119–3127.

[42] N. Kanopoulos, N. Vasanthavada, R. L. Baker, Design of an image edge detection

filter using the sobel operator, IEEE Journal of solid-state circuits 23 (2) (1988)

358–367.

[43] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, Densely connected

convolutional networks, in: The IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 2261–2269.

[44] N. Ma, X. Zhang, H.-T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for

efficient cnn architecture design, in: The European Conference on Computer

Vision, 2018, pp. 122–138.

29

[45] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images,

Tech Report.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale

hierarchical image database, in: The IEEE Conference on Computer Vision and

Pattern Recognition, 2009.

[47] Y. Nesterov, A method of solving a convex programming problem with conver-

gence rate o (1/k2), in: Soviet Math. Dokl, Vol. 27, 1983, pp. 372–376.

[48] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic seg-

mentation, in: The IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 3431–3440.

[49] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M. Winn, A. Zis-

serman, The pascal visual object classes challenge: A retrospective, International

Journal of Computer Vision 111 (1) (2015) 98–136.

[50] J. Carreira, F. Li, C. Sminchisescu, Object recognition by sequential figure-ground

ranking, International Journal of Computer Vision 98 (3) (2012) 243–262.

[51] J. Carreira, R. Caseiro, J. Batista, C. Sminchisescu, Semantic segmentation with

second-order pooling, in: The European Conference on Computer Vision, 2012,

pp. 430–443.

[52] B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Simultaneous detection and

segmentation, in: The European Conference on Computer Vision, 2014, pp. 297–

312.

[53] J. Dai, K. He, J. Sun, Convolutional feature masking for joint object and stuff seg-

mentation, in: The IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 3992–4000.

[54] L. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for

semantic image segmentation, Arxiv abs/1706.05587.

30

[55] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

C. L. Zitnick, Microsoft COCO: common objects in context, in: The European

Conference on Computer Vision, 2014, pp. 740–755.

[56] R. Girshick, Fast r-cnn, in: The IEEE International Conference on Computer

Vision, 2015, pp. 1440–1448.

[57] S. Bell, C. Lawrence Zitnick, K. Bala, R. Girshick, Inside-outside net: Detecting

objects in context with skip pooling and recurrent neural networks, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

2874–2883.

[58] J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: The IEEE Conference

on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271.

[59] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, Ssd:

Single shot multibox detector, in: The European Conference on Computer Vision,

Springer, 2016, pp. 21–37.

[60] S. Ren, K. He, R. B. Girshick, J. Sun, Faster R-CNN: towards real-time object

detection with region proposal networks, in: Advances in Neural Information

Processing Systems, 2015, pp. 91–99.

[61] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial

examples, in: Y. Bengio, Y. LeCun (Eds.), International Conference on Learning

Representations, 2015.

[62] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks

with momentum, in: The IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 9185–9193.

[63] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning

models resistant to adversarial attacks, in: International Conference on Learning

Representations, 2018.

31

	1 Introduction
	2 Related Work
	2.1 Channel Pruning
	2.2 Network Quantization
	2.3 Energy-efficient Model Design

	3 Notations and Problem Definition
	4 Proposed Method
	4.1 Motivation
	4.2 Content-aware Convolution
	4.3 Sharp and Smooth Window Recognition
	4.4 Training Method

	5 More Discussions
	5.1 Computational Complexity Analysis
	5.2 Differences from Existing Methods

	6 Experiments
	6.1 Visual Interpretation of CAC Convolution
	6.2 Experiments on Image Classification
	6.2.1 Datasets and Implementation Details
	6.2.2 Comparisons on CIFAR-10
	6.2.3 Comparisons on ImageNet

	6.3 Experiments on Semantic Segmentation
	6.3.1 Compared Methods
	6.3.2 Datasets and Implementation Details
	6.3.3 Performance Comparison

	6.4 Experiments on Object Detection
	6.4.1 Compared Methods
	6.4.2 Datasets and Implementation Details
	6.4.3 Performance Comparison

	7 Further Experiments
	7.1 Comparisons of Robustness
	7.2 Effect of on CAC

	8 Conclusion
	9 Acknowledgements

