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Abstract

Recurrent Neural Networks with Long Short-Term Memory (LSTM) make use of gating
mechanisms to mitigate exploding and vanishing gradients when learning long-term
dependencies. For this reason, LSTMs and other gated RNNs are widely adopted,
being the standard de facto for many sequence modeling tasks. Although the memory
cell inside the LSTM contains essential information, it is not allowed to influence the
gating mechanism directly. In this work, we improve the gate potential by including
information coming from the internal cell state. The proposed modification, named
Working Memory Connection, consists in adding a learnable nonlinear projection of the
cell content into the network gates. This modification can fit into the classical LSTM
gates without any assumption on the underlying task, being particularly effective when
dealing with longer sequences. Previous research effort in this direction, which goes
back to the early 2000s, could not bring a consistent improvement over vanilla LSTM.
As part of this paper, we identify a key issue tied to previous connections that heavily
limits their effectiveness, hence preventing a successful integration of the knowledge
coming from the internal cell state. We show through extensive experimental evaluation
that Working Memory Connections constantly improve the performance of LSTMs on a
variety of tasks. Numerical results suggest that the cell state contains useful information
that is worth including in the gate structure.

Keywords: Long Short-Term Memory Networks, Cell-to-Gate Connections, Gated
RNNs, Language Modeling, Image Captioning

1. Introduction

Recurrent Neural Networks (RNNs) (Elman, [1990; Rumelhart et al., |1986) are
a family of architectures that process sequential data by means of internal hidden
states. The set of parameters of the network is shared across time steps, allowing
the RNN to process inputs of variable length. As RNNs suffer from the so-called
exploding and vanishing gradient problem (EVGP) (Bengio et al.l [1993; [Hochreiter}
1991)), which hinders the learning of long-term dependencies (Bengio et al., [1994;
Pascanu et al., 2013)), previous works have proposed to enrich the recurrent cell with
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gating mechanisms (Hochreiter and Schmidhuber, |1997} Jing et al.l 2019). For instance,
Long Short-Term Memory networks (LSTMs) (Hochreiter and Schmidhuber} [1997) use
gates to control the information flow towards and from the memory cell and to regulate
the forgetting process (Gers et al.l [2000). LSTMs are adopted in a wide number of
tasks, such as neural machine translation (Bahdanau et al., 2015} |Sutskever et al.| 2014),
speech recognition (Graves et al.,[2013)), and also vision-and-language applications like
image and video captioning (Vinyals et al.,|2015}; | Xu et al.l 2015; Baraldi et al., [2017).

In this paper, we propose a novel cell-to-gate connection that modifies the classic
LSTM block. Our formulation is general and improves LSTM overall performance
and training stability without any particular assumption on the underlying task. In the
vanilla LSTM formulation, the gates are controlled by the current input of the block
and its previous output, which acts as the hidden state for the network. The long-term
memory cell, instead, is employed to store information during the forward pass and
provides a safe path for back-propagating the error signal. We argue that the content
stored in the memory cell could be useful to regulate the gating mechanisms, too. The
key element of our design is a connection between the memory cell and the gates with
a protection mechanism that prevents the cell state from being exposed directly. We
draw inspiration from the gated read operation employed to reveal the cell content at the
block output, and enrich it with a learnable projection. In this way, the LSTM block can
use the knowledge in the cell (acting as a long-term memory) to control the evolution of
the whole network in the short-term.

A similar concept in cognitive psychology and neuroscience is the so-called working
memory (Ericsson and Kintschl [1995), a type of memory employed, for instance, to
retain the partial results while solving an arithmetic problem without paper, or to
combine the premises in a lengthy rhetorical argument (Hernandez, 2018)). Although
definitions are not unanimous, working memory is said to be a cognitive system acting
as a third type of memory between long-term and short-term memory. Our connections
share this characteristic with working memory. For this reason, we call them Working
Memory Connections (WMCs).

A first attempt to fuse the information of the cell in the gates was made with the
design of peepholes (Gers and Schmidhuber, 2000): direct multiplicative connections
between the memory cell and the gates. This approach has not been largely adopted in
literature, as recent studies report mixed results (Greff et al.l 2017) and discourage their
use. Since our idea recalls the rationale of peephole connections, we provide a large
comparison with this previous work. By doing so, we point out the major issues in the
peephole formulation that hinder effective learning and attest that WMCs do not suffer
from the same problems. In our experiments, we show that an LSTM equipped with
Working Memory Connections achieves better results than comparable architectures,
thus reflecting the theoretical advantages of their design. In particular, WMCs surpass
vanilla LSTM and peephole LSTM in terms of final performances, stability during
training, and convergence time. All these aspects testify the advantage in letting the cell
state participate in the gating dynamics. In order to support our conclusions, we conduct
a thorough experimental analysis covering a wide area of current research topics.

To sum up, our contribution is mainly three-fold. First, we present a modification
of LSTM in which traditional gates are enriched with Working Memory Connections,
linking the memory cell with the gates through a protection mechanism. Then, we



demonstrate that exposing the LSTM internal state directly and without a proper protec-
tion yields unstable training dynamics that compromise the final performance. Finally,
we show the effectiveness of the proposed solution in a variety of tasks, ranging from toy
problems with very long-term dependencies (adding problem, copy task, and sequential
MNIST) to language modeling and image captioning.

2. Related Work

Long Short-Term Memory networks (Hochreiter and Schmidhuber, |1997) aim to
mitigate the exploding and vanishing gradient problem (Hochreiter, |1991}; |Bengio et al.|
1994) with the use of gating mechanisms. Since its introduction, LSTM has gained
a lot of attention for its flexibility and efficacy in many different tasks. To simplify
the LSTM structure, [Liu et al.|(2020) propose to exploit the content of the long-term
memory cell in a recurrent block with only two gates. However, this model neglects
the importance of the LSTM output. While this might be useful for simple tasks, it is
unlikely to generalize to more complex settings. |Arpit et al.|(2019) propose to modify
the path of the gradients in order to stabilize training with a stochastic algorithm specific
to LSTM optimization. This direction of work is not in contrast with our goal, and
could possibly be integrated with our proposal since our connection does not require a
specific setup to be optimized. Among the LSTM variants, the Gated Recurrent Unit
(GRU) (Cho et al., 2014bja)) is the most popular and common architecture (Chung et al.,
2014), and features a coupling mechanism between input and forget gates (Greft et al.,
2017). A recent line of research aims to tailor the LSTM structure for specific tasks.
For instance, Baraldi et al.| (2017) propose a hierarchical model for video captioning,
while other works incorporate convolutional models into the LSTM structure (Xiao
et al., 2020; |Li et al., 2018)). While these works propose a modification of the LSTM
towards a specific goal, we propose a general and powerful idea that adapts to a large
set of different tasks.

Recently, models based on self-attention, such as Transformer architecture (Vaswani
et al.l 2017) and its variants, are achieving state-of-art performances on many different
tasks, and also for sequence modeling. For instance, language representations based on
BERT (Devlin et al., 2018) can be finetuned with an additional output layer to obtain
state-of-art results on many language-based tasks. However, RNNs require much fewer
parameters and operations to run than Transformer-based architectures and are still
widely adopted. Moreover, LSTMs still have a large market in embedded systems and
edge devices for their low computational and memory requirements.

3. Proposed Method

In this section, we present a complete overview of Working Memory Connections.
First, we recall the LSTM equations. Second, we explain the modifications introduced
in our design. Finally, we motivate the choices behind WMCs w.r.t. other approaches.
Specifically, we identify key problems in previous cell-to-gate connections that hinder
the learning process, and we show that the proposed solution does not suffer from these
weaknesses.
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Figure 1: Comparison between a vanilla LSTM gate, a peephole connection, and a Working Memory
Connection.

3.1. LSTM

The core idea behind Long Short-Term Memory networks is to create a constant
error path between subsequent time steps. Being X, the input vector at time ¢ we can
write the rollout equations for a vanilla LSTM as:

g, = tanh(Wg,x, + Wy,h,_; +b,) (1)
i = c(Wix, + Wyh,_ | + b)) )
f, = c(Wex, + Wghe +by) 3)
¢ =foc_+i,0g ()
0, = o (Wox; + Woph,y +b,) Q)
h, = o, © tanh(c,). 6)

Here, g is the block input, i, f, and o are respectively the input, forget, and output
gates, ¢ represents the memory cell value, and h is the block output. In this notation,
o is the sigmoid function and © denotes element-wise Hadamard product. In its
first formulation (Hochreiter and Schmidhuber, [1997)), LSTM did not include the
multiplicative forget gate. However, being able to forget about past inputs (Gers et al.}
2000) allows LSTM to tackle longer sequences while not hindering the back-propagation
of the error signal.

3.2. Working Memory Connections

In the following, we introduce Working Memory Connections, which enable the
memory cell to influence the value of the gates through a set of recurrent weights. Given
a proper design for the connection, we argue that there is a practical advantage in letting
the cell state influence the gating mechanisms in the LSTM block directly. In fact,
the cell state ¢, provides unique information about the previous time steps that are not
present in h,. For instance, h, may be close to zero as a consequence of the output gate
saturating towards zero (see Eq.[6), while ¢; may be growing and changing as a result of
a sequence of input vectors. In that case, since the cell state cannot control the output
gate, the LSTM block is forced to learn which particular value in the input vector is the
marker that signals to open the output gate. Instead, with an appropriate connection



strategy, the LSTM block could learn a mapping between the cell internal state and the
gate values.

Our solution employs a set of recurrent weights W, x € {i, f, 0} and a nonlinear
activation function to model a connection between memory cell and gates. The applica-
tion of a non-linearity on the memory cell is coherent with the present LSTM structure:
as it can be noticed from Eq. (6] a nonlinear activation function is applied to ¢, before
the Hadamard product with oﬁ In light of the above-mentioned intuitions, we modify
Eq. and [5| by exposing the cell state ¢, at time 7 through a protection mechanism as
follows:

i; = c(Wix; + Wi h, | + tanh(W;.¢, 1) + b)) @)
f, = O’(foXt + thht—l + tanh(Wch,_l) + bf) (8)
0; = O-(Woxxz + Wyh, g + tanh(vvncct) + bo)a (9)

where W, ¢, denotes a general linear transformation.

At a first glance, Working Memory Connections may seem redundant in the gate
structure. In fact, #,-; depends from the value of ¢,—; (Eq. @ This impression is
misleading, as the proposed connections introduce two main aspects of novelty. First,
the non-linear activation function operates on three different projections of the cell state,
one for each gate type. Second, Eq.[9] shows that the connection on the output gate
depends on ¢, rather than on ¢;_;, hence allowing for a more responsive control of the
output dynamics of the entire LSTM block.

3.3. Advantages of Working Memory Connections

To formally motivate the improvement given by Working Memory Connections, we
start by considering the local gradients of the gates in which the cell interaction is added.
We limit our formal analysis to the input gate i,, but our reasoning can be generallzed to
f, and o,. If we denote by i, the argument of the sigmoid activation function (Eq.|7) at
time #:

it = Wix; + Wih,_ + tanh(W,.¢,_1) + b, (10)

then the local gradient of the input gate i, is expressed by:

g—;iz 661 0'( ) dlug[(r(l,) (I—O'(f,))], 11)

where 1 denotes a vector of ones, and diag[x] indicates a diagonal N X N matrix whose
diagonal contains the N elements of vector x.
From here, we can easily derive the local gradients on the recurrent weights W;,,

"Previous works (Greff et all[2017) have also shown that removing this non-linearity leads to a significant
loss in terms of performance.



W;,, and W, at time ¢:
oi, oi;

= —= X, 12

oW 8, (12)
di,  oi

= —_®h_ 5 ]3

Wa -1 (13)
6i o~

W =6l ® ¢, (14)

where ® denotes the outer product of two vectors, and:

~ oi
& = 2 0 (1 - tanh’(Wiee,1) ). (15)
oi;

Now, let’s consider what happens as ¢ grows: we observe that x, and h, are bounded to
a limited interval. In particular, X, is a sample of the input data, and h, is bounded in the
interval [—1, 1] by construction. Instead, the cell ¢, can grow linearly with the number
of recursive steps, making its domain extremely task-dependent. This is a well-known
problem, which motivated the introduction of the forget gate in the original LSTM
structure (Gers et al.,2000). Despite this, the range of possible values of ¢; cannot be
restricted to a fixed domain. The hyperbolic tangent non-linearity helps to avoid an
excessive influence of the unbounded cell state in the gate mechanics, hence preventing
unwanted saturation. As it can be seen in Eq.[7][8] and[J] the term related to the cell state
is bounded in the interval [-1, 1]. Additionally, it helps screen the connection weights
W, from unstable updates.

Even if ¢, grew linearly with the number of time steps, its influence on the sigmoid
argument would be mitigated, and it could not take the sigmoid function into its saturated
regime against the other two terms driven by x and h respectively. On the other hand,
the growth of the cell state would push the hyperbolic tangent towards its own saturated
regime. This behavior helps protect the weight matrix employed in the connection from
unstable updates.

Peephole Connections and their Limitations. We now turn our attention to a related
connection, namely the peephole connection (Gers and Schmidhuber, 2000), which is
no longer common in the LSTM formulation. Peephole connections were introduced
by Gers and Schmidhuber in (Gers and Schmidhuber; 2000), and enrich the LSTM
equations with recurrent weights W,., x € {i,f, o}:

i; = c(Wix, + Wihy 1 + Wiee, 1 +by) (16)
fi = c(Wex, + Weph + Weee, + by) (17)
0, = o(Wox; + Worhip + Woee; +by), (18)

with W, . generally constrained to be diagonal (Graves| |[2013}|Greff et al.,|2017)). While
this formulation allows for a more precise control of the gates, there are two issues that
limit its effectiveness. In this case, the local gradient at time ¢ is expressed by:

j_ - a%a(;,) = diag|or (V) o (1= (1) (19)
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Figure 2: The cell state ¢; may grow linearly with the number of time steps. Peephole connections directly
expose ¢, creating a key issue (b). Data for this plot is taken from the first training iterations of the sequential

MNIST (see §@

with i, being the argument of the sigmoid function in Eq

i = Wix, + Wyh + Wieey + by (20)
In light of this difference, Eq. [I4] and [T5]become:
i, O
= —=Q®C_1. 21
W a2 1 (2D

We observe that, both in Eq.[7]and in Eq[16] the magnitude of the product W;.¢;_;
can in principle grow unbounded. The activation function introduced in WMCs squashes
this term into a closed bounded interval. In peephole connections, hovewer, this term
is added inside the gate without an adequate protection (see Fig.[I]). The result is that,
in the peephole formulation, the sigmoid function applied immediately after could be
pushed towards its saturating regime independently from the value of x, and h,. In
theory, the LSTM block can recover from this situation by setting all the weights in
the peephole connection to 0, but in practice this might not happen if the sigmoid gate
is saturated most of the time. Even if the two other summands can compensate for
the growth of W, .c, hence letting gradients flow through the gate, there is still a key
issue that hinders learning. In fact, as shown in Eq. the gradients on the recurrent
peephole weights grow linearly with ¢, making updates unstable.

To exemplify this behavior, we report the Euclidean norm of ¢, during the early
training stages in Fig. 2] After a small number of time steps, the content of the cell
floods the gates of the peephole LSTM. A possible consequence would be that both
the input and the forget gates would saturate towards 1. In our example, this aspect
leads to an additional and uncontrolled growth of the magnitude of ¢,. As it can be seen,
Working Memory Connections exhibit a much more regular behavior than peepholes
and can prevent the uncontrolled growth of the memory cell.

4. Experiments and Results

The effectiveness of Working Memory Connections and their general benefits can
be appreciated in many different tasks. The proposed experiments cover a wide area
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Figure 3: Comparison among traditional LSTM, the proposed LSTM with working memory connections, and
peephole LSTM. We investigate three different tasks: the adding problem (top), the copying task (center), and
the sequential/permuted MNIST (bottom). In all the plots, shading indicates the standard error of the mean.

of applications: two different toy problems, digit recognition, language modeling, and
image captioning. While the analysis on simple tasks helps to clarify the inherent ad-
vantages of the proposed approach, results on more challenging real-world applications
motivate a wider adoption of our novel connections, especially for long sequences. We
compare our model (LSTM-WC) to a traditional LSTM and to an LSTM with peephole
connections (LSTM-PH).

4.1. Adding Problem and Copying Tasks

In the adding problem (Hochreiter and Schmidhuber} [1997), the input to the network
consists of a series of T pairs (n;, f;), with 0 < ¢ < T. The first element n;, is a real-valued
number between 0 and 1, and f; is a corresponding marker. In the entire sequence,




only two markers f; and f; are set to 1, while the others are set to 0. The goal is to
predict the sum of the corresponding real-valued items n; + n;, for which f = 1. In our
experiments, we test with 7 = 200 and 7' = 400, and we measure the performance using
mean squared error. For this experiment, the networks have hidden size N = 128 and
train for 200 epochs. We optimize the parameters using SGD with Nesterov update rule.
The learning rate is 10> (momentum factor 0.9) and the batch size is 128. We also clip
the gradient norm to 1.0. Results are reported in Fig. [3 (top), where we plot the MSE on
the test set for every epoch of training. LSTM-WM achieves the best convergence time
for T = 200, while the final performance on this setup is similar among the three models.
The effectiveness of WMCs is striking in the 7' = 400 setup. In fact, the proposed model
solves the adding problem around epoch 145, while the other two architectures cannot
learn the task and are stuck on the trivial solution.

In the copying task (Hochreiter and Schmidhuber, |1997), the network observes a
sequence of 10 input symbols, waits for 7" time steps (we use 7 = 100 and T = 200),
and then must reproduce the same sequence as output. For this experiment, we adopt
the same setup described in (Arjovsky et al.,[2016). We keep the same implementation
details described for the adding problem, except that we train for 500 epochs. In Fig.[3]
(center), we plot the test accuracy achieved by the three models at each epoch. In both
setups, WMCs play an important role in terms of final performance and convergence
time. As in the adding problem, the performance gain given by the proposed architecture
is more evident when working on longer sequences: for 7' = 200, WMCs outperform
peephole LSTM and vanilla LSTM by around +25% and +40%.

4.2. Permuted Sequential MNIST

The sequential MNIST (sMNIST) (Le et al.,2015) is the sequential version of the
MNIST digit recognition task (LeCun et al.,|1998)). In this task, the image pixels are
fed sequentially to the network (from left to right, and top to bottom). The permuted
sequential MNIST (pMNIST) is a sequential version of the MNIST digit recognition
problem in which the pixels are permuted in a random but fixed order. In both tasks, the
goal is to predict the correct digit label after the last input pixel. Following the setup
proposed in (Arpit et al.| [2019), we use 50k images for training, 10k for validation, and
10k to test our models. The experimental setup is as follows. We set the hidden size to
N = 128 for all the networks, and train for 200 epochs using SGD with learning rate
1072 and batch size 128 (momentum 0.9 and Nesterov update rule). We clip the gradient
norms to 1.0.

Fig. [3| (bottom) reports the mean test accuracy of the three LSTM variants for both
setups. We report the standard error of the mean as a shaded area. For the SMNIST
task, peephole LSTM performs slightly better than vanilla LSTM. LSTM with Working
Memory Connections, instead, outperforms the competing architectures in terms of final
accuracy and convergence speed. In particular, our architecture employs only 50 epochs
to get above 92% accuracy, while other models are still generally stuck around 65%
(vanilla LSTM) and 82% (LSTM-PH). In this experiment, we also find out that WMCs
help stabilize training. In fact, the area given by the standard error of the mean is much
thicker for our approach than for the other two variants, in particular during the early
stages of training. On the pMNIST task, all the models achieve good final results, with
LSTM with Working Memory Connections still being the best option.



Table 1: Test accuracy on the sequential MNIST task.

Model sMNIST pMNIST
iRNN (Le et al., 2015) 97.00 82.00
uRNN (Arjovsky et al.,2016) 95.10 91.40
h-detach (Arpit et al.| [2019) 98.50 92.30
LSTM (h = 128) 98.16 92.94
LSTM (h = 256) 97.68 93.97
LSTM-PH (h = 128) 98.58 93.25
LSTM-PH (h = 256) 98.33 93.40
LSTM-WM (h = 128) 98.63 93.97

Table 2: Mean test bit per character on the PTB test set. Error range indicates the standard error of the mean.

Test Bit per Character (BPC)

Fixed # Params (~ 2.2M) Fixed # Hidden Units (512)
Model TPTB =150 TPTB =300 TPTB =150 TPTB =300
LSTM 1.334 £ 0.0006  1.343 + 0.0004 1.386 + 0.0005  1.395 + 0.0005
LSTM-PH 1.339 £ 0.0048  1.343 + 0.0009 1.383 £0.0004  1.394 + 0.0005
LSTM-WM 1.299 + 0.0005  1.302 + 0.0008 1.299 + 0.0005  1.302 + 0.0008

Numerical results, reported in Table |1} confirm that our model outperforms the
classic LSTM by a discrete margin (+0.47% and +1.03% on the sequential and permuted
MNIST respectively). Since WMCs introduce additional learnable parameters in the
LSTM structure, we also compare with vanilla and peephole LSTM with increased
hidden size (256 instead of 128). Note that, in this setting, LSTM and LSTM-PH have
more than 2X the number of learnable parameters of LSTM-WM. Despite this, LSTM-
WC achieves the best results on both tasks. It is worth noting that, while additional
parameters in vanilla LSTM improves the results on pMNIST, they are not helpful
in the sSMNIST task. The flexibility given by WMCs, instead, allows the proposed
model to achieve the best result in both setups. Always in Table[I] we compare with
two state-of-the-art RNNs (Le et al., |2015; |Arjovsky et al.,[2016), and with a training
algorithm for LSTM (Arpit et al.,|2019). The proposed LSTM-WC outperforms the
competitors in terms of test accuracy.

4.3. Penn Treebank (PTB) Character-Level Language Modeling

Character-level language modeling requires to predict a single character at each
time step given an observed sequence of text. In our experiments on the Penn Treebank
(PTB) dataset (Marcus and Marcinkiewicz, |1993)), we evaluate the performance of the
three different LSTM variants in terms of test mean bits per character (BPC), where
lower BPC denotes better performance. We report the results in Table [2| where we
compare truncated back-propagation through time (7prp) over 150 and 300 steps. Since
our connection introduces new learnable weights, we consider an additional setup in
which we keep a fixed number of parameters for the three networks. For this experiment,
we follow the setup proposed by [Merity et al.| (2018]), with the only exception that we
employ a single LSTM layer instead of three. The advantage of using Working Memory
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Table 3: Image captioning results on COCO test set.

Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE
No Attention, ResNet-152
LSTM 70.9 27.9 24.4 51.7 92.0 17.6
GRU 69.5 26.2 22.7 50.4 82.3 15.6
LSTM-PH 71.4 27.8 24.3 51.7 91.1 17.5
LSTM-WM 714 28.3 24.6 524 94.0 17.8
Attention, Faster R-CNN
LSTM 75.9 36.1 27.4 56.3 111.9 203
GRU 76.0 36.1 27.0 56.5 111.0  20.2
LSTM-PH 75.8 35.9 27.3 56.3 111.5 20.2
LSTM-WM 76.2 36.1 27.5 56.5 1127 204

Connections is more evident for equal number of hidden units, where the proposed
architecture overcomes the vanilla LSTM and peephole LSTM by a significant margin.
Even when the number of parameters is fixed for all the models, LSTM-WC outperforms
the competitors by 0.035 and 0.041 BPC for Tprp = 150 and Tprp = 300 respectively.
It is worth noting that peephole LSTM performs similarly to or even worse than vanilla
LSTM on this task.

4.4. Image Captioning

We evaluate the performance of our LSTM with Working Memory Connections on
the image captioning task, which consists of generating textual descriptions for images.
We apply our approach to two different captioning models: Show and Tell (Vinyals et al.|
2015)) and Up-Down (Anderson et al.,[2018). The first model includes a single LSTM
layer and does not employ attention, while the second is composed of two LSTM layers
and integrates attention mechanisms over image regions. We use the Microsoft COCO
dataset (Lin et al., 2014} following the splits defined in (Karpathy and Fei-Fei, |[2015). To
represent images, we employ a global feature vector extracted from the average pooling
layer of ResNet-152 (He et al., 2016)) for the Show and Tell model, and multiple feature
vectors extracted from Faster R-CNN (Ren et al.| | 2015)) for the Up-Down architecture.
We train both models with Adam optimizer (Kingma and Bal 2015) using a learning
rate equal to 107*. All other hyper-parameters are left the same as those suggested in
the original papers.

Numerical results are reported in Table [3] using standard captioning evaluation
metrics (i.e. BLEU-1, BLEU-4 (Papinent et al.|[2002), METEOR (Banerjee and Lavie,
2005), ROUGE (Lin, [2004), CIDEr (Vedantam et al., [2015)), and SPICE (Anderson et al.,
2016)). For all these, higher metric results indicate better performance, with CIDEr
being the metric that best correlates with human judgment. In both settings, our LSTM-
WM outperforms traditional LSTM and LSTM-PH by a clear margin. Specifically,
LSTM-WM improves the vanilla LSTM results by 2.0 CIDEr points on the model
without attention and 0.8 CIDEr points on the model with attention over image regions,
demonstrating the contribution of WMCs also for this task. As an additional comparison,
we replace the LSTM layers with GRU layers. Numerical results suggest that there is
not a clear advantage in using GRUs instead of LSTMs for this task. In Fig. 4] we plot

11
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Figure 4: Metric gaps on the image captioning task for increasing instruction lengths.

the metric gap between LSTM-WM and the two competitors in terms of METEOR and
CIDEr. On the X-axis we report the length of the generated captions, meaning that we
consider the first x words of each predicted sentence. On the Y-axis, a 0 value means
that our proposal performs equally, i.e. has no performance gap w.r.t. the competitor,
while a higher value indicates better performance for our model. With this analysis, we
aim to check whether the improvement given by WMCs can be restricted to a particular
subset of the dataset. As one can observe, the metric gap generally increases with the
caption length, especially w.r.z. peephole LSTM. We can deduce that the contribution of
WMCs escalates with the number of time steps.

5. Discussion

With Working Memory Connections, we show that information stored in the LSTM
cell should be accessible in the gate structure. We compare the performance of WMCs
to a similar approach named peephole connections (Gers and Schmidhuber, |2000),
and to vanilla LSTM. We find out that the structure of WMCs allows for two distinct
improvements:

1. A more precise control of the gates. The multiplicative gates in the LSTM block
must regulate the information flowing through the cell, but they cannot access the
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state of that same cell in the traditional LSTM formulation. The presence of the
cell state in the multiplicative gates motivates the improvements of LSTM-WM
w.r.t. vanilla LSTM.

2. Increased stability during training compared to peephole connections. Exposing
different projections of the cell state without squashing its content seems to be a
critical point for the LSTM-PH. This element of novelty in our design explains
why WMCs provide a boost in performance even when peepholes fail.

As a consequence of these two improvements, WMCs incorporate the theoretical benefits
of peephole connections, originally described by |Gers and Schmidhuber|(2000), with
the training stability and versatility of vanilla LSTM.

It is worth noting that, for tasks that do not require to access the content of the
memory cell, Working Memory Connections would not probably bring any benefit in
the LSTM formulation, while peepholes might still hinder the whole learning process
because of unstable updates.

At the same time, when training stacked LSTMs, the benefits given by WMCs may
become less significant. We suppose that this is due to the increased complexity in the
network structure, where multiple LSTM blocks can interact through the various layers.
Similarly, many architectures employ LSTMs as building blocks together with different
components, and the influence of WMCs in these compound deep networks cannot be
easily determined. Experiments on image captioning, proposed in this paper, partially
answer this question and prove that WMCs afford a small yet existing improvement
even in this scenario. However, there are many other complex tasks involving vision,
language, and other modalities, that are worth investigating.

6. Conclusion

A current limitation of Long Short-Term Memory Networks consists in not letting
the cell state influence the gate dynamics directly. In this paper, we propose Working
Memory Connections (WMCs) for LSTM, which provide an efficient way of using
intra-cell knowledge inside the network. The proposed design performs noticeably
better than the vanilla LSTM and overcomes important issues in previous formulations.
We formally motivate this improvement as a consequence of more stable training
dynamics. Experimental results reflect the theoretical benefits of the proposed approach
and motivate further study in this direction. One future direction might consist in testing
the efficacy of Working Memory Connections for an even wider set of tasks.
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