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Abstract

Rodents use whisking to probe actively their environment and to locate objects in space, hence providing a
paradigmatic biological example of active sensing. Numerous studies show that the control of whisking has
anticipatory aspects. For example, rodents target their whisker protraction to the distance at which they
expect objects, rather than just reacting fast to contacts with unexpected objects. Here we characterize the
anticipatory control of whisking in rodents as an active inference process. In this perspective, the rodent
is endowed with a prior belief that it will touch something at the end of the whisker protraction, and it
continuously modulates its whisking amplitude to minimize (proprioceptive and somatosensory) prediction
errors arising from an unexpected whisker-object contact, or from a lack of an expected contact. We will use
the model to qualitatively reproduce key empirical �ndings about the ways rodents modulate their whisker
amplitude during exploration and the scanning of (expected or unexpected) objects. Furthermore, we will
discuss how the components of active inference model can in principle map to the neurobiological circuits of
rodent whisking.
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1. Introduction

Rodents use whisking to probe actively their environment and to locate objects in space � hence providing
a paradigmatic biological example of active sensing [1, 2, 3]. Active whisking has been studied in many
contexts, such as during the perception of object location [4, 5, 6, 7] and the discrimination of shapes [8].

Studies of whisking behavior in freely behaving animals reveal two main whisking modalities. Away from5

an object, rodents perform �exploratory� behavior characterized by extended whisking protractions, allowing
the animal to scout larger areas. On the other hand, when they are in contact with an object, they adopt a
�scanning� strategy, reducing the amplitude of whisking protractions to match their distance to objects.

Matching whisking protraction to object distance is an e�ective strategy to ensure that contacts happen at
the end of the protraction, with a light touch and minimal bending � a strategy called �minimal impingement�.10

After a contact with an unexpected object, whiskers cease to protract very rapidly (e.g., within 15ms). This
rapid cessation of protraction (RCP) suggests a rapid feedback-control mechanism [9, 10, 11].

However, feedback-control alone cannot account for the fact that when objects are removed, the target
protraction remains stable for at least one whisking cycle, increasing again only afterwards [7]. This �nding
suggests that rodents target their whisker protractions to where they expect objects to be, rather than just15

react to unexpected contacts. In other words, the modulation of whiskers' amplitude appears to be an
anticipatory strategy that depends on sensory prediction errors � or the mismatch between expected and
sensed inputs � rather than just on current sensory inputs.

Importantly, the anticipatory modulation of whiskers allows the animal to actively perceive � and maintain
an expectation about � its distance from an object. Here, perception is �active� in the sense that the alignment20
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between the animal's expectations about its distance from an object and the e�ective distance is achieved by
acting (i.e., by changing the amplitude of whiskers' oscillations), not by merely updating internal beliefs, as
normally assumed in inferential theories of perception [12, 13, 14, 15]. Unlike classical theories of perception,
which assume that the brain recognizes objects via representations of (hiearchies of) action-independent
object features [16, 17], this form of active perception relies on a generative model that describes how25

(touch) sensations change when an object is in contact, i.e., models of sensorimotor contingencies [18] (see
[19, 20] for examples of such generative models).

In this paper, we formally characterize rodents' anticipatory and error-correction whisking strategies in
terms of active inference: a framework developed in computational neuroscience to explain animal behavior
and neural activity as resulting from the minimization of variational free energy, or under simplifying as-30

sumptions, prediction errors [21]. We develop an active inference model of whisking dynamics and use it to
simulate an object localization task that exposes anticipatory aspects of whisking dynamics [7]. Furthermore,
we discuss how our simulated agent performs active perception, displaying a dynamical alignment of internal
expectations and animal-object distance without explicitly encoding such distance. Finally, we illustrate the
putative neurobiological substrate of the active inference model of rodent whisking.35

1.1. Summary of the active inference perspective on active whisking

The core idea of the active inference approach proposed here is to specify a generative model of sen-
sorimotor contingencies: contingencies between whiskers' protractions and the resulting proprioceptive and
somatosensory (touch) sensations.

The agent's model continuously generates proprioceptive and touch-related predictions during the action-40

perception loop. Crucially, the model includes a prior belief that objects will only be touched at the end of a
whisker protraction. Hence, the agent will continuously adjust (increase or decrease) whisker protractions to
match the prior prediction � or in other words, to minimize prediction errors resulting from either touching
unexpected objects, or failing to touch expected objects that are instead missing.

The dynamical adjustment of whiskers' protractions automatically produces a transition from exploration45

to scanning with a decrease of whisking amplitude, and from scanning to exploration with an increase of
whisking amplitude. Importantly, both the decrease and the increase of whiskers' amplitude result from the
same (error minimization) mechanism, in two di�erent conditions.

During the exploratory phase (characterized by larger oscillations of the whiskers), touching an object
with the whiskers before the end of the protraction generates a somatosensory (touch) prediction error. This50

is because such input is unexpected given the prior (that an object will be touched only when the whiskers
are fully extended). To minimize this prediction error, the animal can reduce the amplitude of the whisking
protractions, so that it matches more closely the distance from the object. At the same time, the animal
can also update its prior belief about the whisking amplitude, so to select (or predict) a smaller amplitude
for the next step. This dynamical adjustment of whisking amplitude entails a shift from an �exploratory� to55

a �scanning� phase.
During the object scanning phase, when somatosensory or �exploratory� prediction errors have been

minimized and hence the amplitude of whisker protractions closely matches animal-object distance, the
sudden removal of the object causes a new sensory prediction error to arise � because the animal expected
a touch sensation in correspondence of the missing object. To minimize this new prediction error, the60

animal will thus increase the amplitude of the whisking protraction, until another object is located, or
the maximum span of the protractions is reached. In parallel, it will also update its prior beliefs about
these reaching movements, leading to a larger protraction amplitude for the ensuing cycles. This dynamical
adjustment of whisking amplitude characterizes a transition from a �scanning� to an �exploratory� phase.

As we will see in our results, in addition to producing switches from exploration to scanning and vice65

versa, the dynamic adjustment of whisker movements allows an animal to perceive its distance from an
object. Indeed, in a regime of dynamical convergence (i.e., after some cycles of adjustments) the whiskers'
amplitude can be used as a proxy for animal-object distance � even if the generative model has no explicit
notion of either objects or distance, but simply embodies sensorimotor contingencies, or relations, about
how whisker protractions generate touch sensations. This idea is in accordance with theoretical views of70
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perception as a closed-loop convergence process, during which motor variables (e.g., whisking velocity or
amplitude) are dynamically controlled over time, until they converge to steady state [22, 6, 23].

In the next section, we formally introduce the active inference model and illustrate simulations of whisking
behavior during animal-object interactions [7]. Our simulations will show that minimizing somatosensory
prediction errors guides both active exploration and the scanning of objects by whiskers.75

2. Methods

2.1. Active inference

In theories of agency and perception inspired by Bayesian principles, the goal of an inferential agent is to
generate a purposeful engagement with the world via the estimation of the probability of hidden variables
u = {x,v}1 given by hidden states x = {xi}Di=1 and hidden causes v = {vi}Fi=1 for some sensory inputs80

s = {si}Si=1

P (u|s) =
P (u, s)

P (s)
=
P (s|u)P (u)

P (s)
. (1)

A common issue with exact Bayesian schemes is that the marginal likelihood or model evidence P (s) is often
analytically intractable or computationally di�cult to calculate. Moreover, the posterior P (u|s) may not
follow a standard distribution and thus have no tractable summary statistics.

Active inference [25, 21, 26, 27, 28] brings forward a biologically plausible (variational) approximation to
this problem, where an auxiliary distribution Q(u) called recognition density has to be optimized to become
a good approximation of the posterior. To implement this, the Kullback-Leibler divergence (a measure of
the dissimilarity between probability distributions with roots in information theory) is minimized:

DKL(Q(u) ||P (u|s) ) =

∫
Q(u) ln

Q(u)

P (u|s)
du = F + lnP (s) (2)

where F ≡ −〈lnP (s,u)〉Q + 〈lnQ(u)〉Q is the variational free energy (VFE). This quantity depends on85

the recognition density and the agent's knowledge about the environment recapitulated by the joint density
P (s,u) = P (s|u)P (u), while lnP (s) does not depend on the recognition density Q(u). Hence, minimizing
F with respect to Q(u) will minimize the whole DKL.

Optimizing F for arbitrary Q(u) can however be a complex task. A common choice is thus to intro-
duce a Laplace approximation [29] assuming that the joint density is a smooth function of u, and that its
logarithm can be approximated with a quadratic function near the mode (i.e. the logarithm of a Gaussian
distribution). This is equivalent to a variational Gaussian approximation of the recognition density as a
multivariate Gaussian form over the D-dimensional space u centered around the estimated mode µ [30]. The
Laplace approximation is therefore here used to evaluate, up to quantities that act as constants during the
minimization process, F as

F ≈ − lnP (s,u)|u=µ (3)

where µ has the role of the agent's expectations about the hidden states x and hidden causes v (see [31]
for a pedagogical treatment).90

To evaluate the VFE, we then specify the joint density P (s,u) expressing hidden states and sensory
inputs. In particular, we will assume that

P (s,u) =P (s,x,v) (4)

=P (s|x,v)P (x,v)

thus specifying dependencies typical of state space model in continuous time, with the likelihood P (s|x,v)
corresponding to observation law and the prior P (x,v) encoding dynamics following the treatment found,

1For a treatment including other variables, e.g., parameters evolving on di�erent time scales, see for instance [24].
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for instance, in [24]. At the same time, we also assume that the probability of hidden causes v, P (v), is
Gaussian with precision approaching zero (i.e., whose covariance tends to in�nity), meaning that it will not
a�ect the remainder of the prior P (x|v). In the case of a system with one hidden state, one hidden cause
and one sensory input this is equivalent to

s = g(x) + zs x′ = f(x, v) + zx (5)

where g(·) maps hidden states to observations, f(·) encodes the dynamics of the hidden state and zs, zx
represent (white) noise terms. Under zero-mean Gaussian assumptions about random variables zs and zx,
the VFE is then

F ≈1

2

[
(s− g(x))

2

Σs
+

(x′ − f(x, v))
2

Σx
− ln(ΣsΣx)

]∣∣∣∣∣
x=µx,v=µv

=
1

2

[
(s− g(µx))

2

Σs
+

(µ′x − f(µx, µv))
2

Σµx

− ln(ΣsΣx)

] (6)

where Σs and Σx are the variances of the random variables zs and zx, respectively.
At this point, the optimization of the VFE can be achieved either by changing the expected states µ, µ′

through a (modi�ed) gradient descent (see [24] for details)

µ̇x = µ′x −
∂F
∂µx

µ̇v = − ∂F
∂µv

, (7)

or by selecting an action through a free energy gradient descent where

α̇ = −∂F
∂α

= −∂F
∂s

∂s

∂α
(8)

The gradient with respect to actions highlights a key assumption of active inference treatments, whereby
the action variable a is not itself part of the generative model (to be speci�ed in the next section) but
instead appears only in the recognition dynamics (i.e., the minimisation of variational free energy for action
and perception embodied by an agent) via the relation ∂s

∂α , capturing how actions a a�ect sensory input s95

given an agent's speci�c �implementation�, e.g., bodily constraints. In the active inference literature this is
usually associated with the idea of re�ex arcs, proposed to be the central construct for motor execution (here
thought of essentially as a chain of re�exes) via the minimization of proprioceptive prediction errors induced
by top-down modulatory signals from motor areas [32]. Such signals (i.e., predictions about proprioceptive
sensory input) are thought to generate mismatches between expected proprioceptive signals and e�ective100

proprioceptive sensations, based on an equilibrium-trajectory (referent) control [33, 34] framework encoding
desired movements in the (low-dimensional) space of observables, as opposed to classical treatments of motor
control relying on inverse models that specify motor commands as (high-dimensional) signals in an intrinsic
(bodily) frame of reference describing movements explicitly (e.g., motor signals describing stretching and
compressing of muscle �bers).105

2.2. Active whisking model

Whisker control in rodents is simulated in a rat-like agent that controls a single whisker, attached near
its nose, in a 2D kinematic environment (see Figure 1A). The agent moves forward with a constant speed
until it reaches a speci�ed �nal position (e.g., the end of a platform). At that point, an object can appear
within reach of the whisker, and later disappear. Our simulations (discussed in Section 3) will show how the110

agent controls its whiskers' protraction when objects appear or disappear.
Importantly, in active inference, there is a fundamental distinction between the generative process, corre-

sponding to the actual dynamics that govern the whisker's movements in the environment (Figure 1) and the

4
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agent's (whisker) controller, implicitly speci�ed as a generative model of the whisker's dynamics (Figure 2)
giving rise to the agent's recognition dynamics (see previous section). The recognition dynamics and genera-115

tive process are thus engaged in a closed action-perception loop: the recognition dynamics instantiate actions
for the generative process and the generative process provides sensory evidence to the recognition dynamics.
To set up such action-perception loop, we will describe next the generative process and the generative model
used to derive the recognition dynamics of the agent, respectively.

A B

ẋGP =

[
ẋGPo
ẋ′GPo
ẋGPw

]
=

[
x′
GP

o

−ω2xGPo
(αxGPo − xGPw )l

]

l =

{
1 if xGPw < k
0 otherwise

sGPp = ẋGPw + zsGPp

sGPs =
1

2
(tanh(β(xGPw − k)) + 1)

zsGPp
∼ N (0,ΣGP

s )

Figure 1: The simulated environment, or generative process. (A) The 2D environment: the simulation includes a rat-like agent
with a single whisker. (B) Generative process and whisker dynamics. The generative process is speci�ed by the dynamics of
the state variable xGP. The �rst two components of xGP(xGPo and x′GPo ) represent a central pattern generator described by
an harmonic oscillator, while the last component xGPw describes the motor command for the angular position of the whisker's
joint. The parameter ω determines the frequency of the central pattern generator oscillation and is kept constant during all
simulations. The value of α speci�es a scaling factor for the oscillation in the xGPw component. The generated sensory states
are de�ned by sGPp and sGPs , with k representing the current upper limit of xGPw (the position of the external object in terms of
whisker base angle), and β = 500 being the smoothness of the pressure response of the whisker.

Generative process. The whisker's dynamics are simulated within the generative process (Figure 1B). The120

whiskers' oscillatory movements are given by a dynamical system which comprises of three variables. The
�rst two (xGPo and x′

GP

o ) de�ne a harmonic oscillator of unitary amplitude as a �rst order system, which (for
simplicity) will remain �xed in our simulations. The third one (xGPw ) de�nes the actual movement of the
joint angle of the whisker. This auxiliary variable rescales (with a leak term) the amplitude of the oscillator
response in xGPo through a parameter α. Importantly, in this model, the agent's actions correspond to updates125

of α, the parameter that regulates the amplitude of the oscillation of xGPw . In other words, in this model, the
agent can only change the way it samples its environment, by modulating the amplitude of the protraction
of its whiskers.

The term xGPw is not only controlled by the agent, but also constrained by an external factor (k) that
corresponds to the current limit of the whisker angle, due for example to the presence of an object that130

limits its oscillation. When the whisker angle (provided by xGPw ) approaches the limit k, a somatosensory
touch event is produced, which corresponds to a peak in the sensory state sGPs of the agent's generative
model. Proprioceptive sensory states are simulated as linear and noisy mappings of ẋGPw .

Generative model. The generative model is schematically illustrated in Figure 2. For simplicity, this model
only describes only the dynamics of a single whisker; the forward movement of the simulated agent is135

hardwired in our simulations and hence not included in the generative model. Here, the variable xGPo
encodes the central pattern generator of the generative process. It is assumed to be known (analogously to
standard problems of �ltering with known inputs [35], and in line with dynamical accounts of sensorimotor
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A B

ẋ = x′ = f(x, v) + zx = (vxGPo − x) + zx

s =

[
sp
ss

]
=

[
gsp(x′)
gss(x, x′)

]
+ zs

gsp(x′) = x′

gss(x, x′) = sech(θx)
tanh(θx′) + 1

2
zx = N (0,Σx)

zs =

[
zsp
zss

]
=

[
N (0,Σsp)
N (0,Σss)

]

Figure 2: The generative model. (A) Schematic illustration of the model as a Bayesian network. The model includes x, a
variable that �lters the amplitude of the whisker oscillation given by the central pattern generator xGPo . The variable x depends
also on an input (v), encoding a prior over the desired amplitude. x and x′ are then mapped to predictions about somatosensory
(ss) and proprioceptive (sp) input. (B) Generative model in analytical form. The somatosensory mapping function gss between
µx and ss has θ = 50 that sets the smoothness of the pressure sensory prediction. The yellow arrow from xGPo describes a known
input to the internal variable x′, under the assumption of an additional observation with an identity mapping to the pattern
generator xGPo , omitted from the �gure for simplicity (i.e., identity mappings imply prediction errors with in�nite precision, or
equivalently, zero variance, and thus variational updates instantaneously reaching steady-state).

interactions with no �xed set-point control, cf. the role of inputs ϕ0 in the centrifugal governor found in
[36]) and thus equivalent to a sharply peaked Gaussian distribution with (in the limit) zero variance.140

The variable x represents the (stochastic) dynamics of the whisker and is described in Langevin form,
with a deterministic term rescaling (with a leak) the amplitude of the oscillations of xGPo by a factor v. Here
we also implicitly assumed the presence of an additional observation variable with an identity mapping (i.e.,
in�nite precision) to the pattern generator xGPo . Due to the mapping appearing as a simple identity, we
however omitted this from the generative model and thus from the associated free energy functional.145

On the other hand, the hidden cause v models an exogenous input (from a dynamical systems perspective)
in the dynamics of x, scaling the amplitude of whisker oscillations while in�uenced by bottom-up prediction
errors, see below. Crucially, P (v) is modelled as a Gaussian distribution with arbitrarily high variance (zero
precision), meaning that its role as prior on the desired amplitude is entirely driven by external stimuli, i.e.,
v, or rather its mode µv, will act a proxy that registers the presence of unknown objects in the environment.150

The variable s includes two sensory predictions: a proprioceptive prediction (sp), proportional to the
current angle velocity of the whisker, and a somatosensory (touch) prediction (ss), corresponding to the
actual pressure over the whisker during the contact with an external object. Both predictions are assumed
to be generated from Gaussian distributions, with means given by the two mapping functions gss and gsp
that link the dynamics of the variable x. The prediction ss is modelled as a radial function centered on the155

local maximum of the hidden states encoding the whisker's angle (i.e. the component x of the internal state
variable and its velocity x′). It is then interesting to note that while ss and s

GP
s refer to the same physical

quantity, there is a fundamental di�erence between the radial function used to model ss and the equation
used in the generative process for sGPs (see Figure 1), see also [19, 20].

Variational updates, or recognition dynamics. As explained in Section 2.1, once the joint density of the160

generative model (Equation 4) is speci�ed, it is possible to compute the variational free energy using the
current means (modes) of the model's hidden variables µx, µ

′
x, µv and the current sensory states (see equation
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6). With the VFE speci�c to the generative model, we can then �nd the gradients of VFE, generating updates
for perception and action of our simulated agent (see equations 7 and 8). For perception, the model is updated
by changing the posterior beliefs about both the expected hidden states µx and µ′x and the expected causal165

variable v. For action, the model is updated by descending the free energy gradient ∂F
∂α with respect to the

parameter α. This gradient can be factored into two components ∂F
∂s

∂s
∂α . The former (∂F∂s ) is the gradient

of the free energy with respect to the sensory states. The latter ( ∂s∂α ) is the gradient of sensory states with
respect to the action. It corresponds to a learned (or hardwired) mapping between action and sensory states
at the level of the generative process and it is usually identi�ed with the spinal neural circuits which manage170

re�ex arcs [37]. This gradient ∂s
∂α is implemented here as a composition of

∂sp
∂α = xGPo and ∂ss

∂α ≈ 1, where

xGPo is the exact solution of the proprioceptive part of the gradient (
∂sp
∂α ), while the somatosensory gradient

(∂ss∂α ) is approximated to 1, which is su�cient to inform the process about the direction of the update of α
based on somatosensory states.

The update of v showcases how the agent adapts to external constraints, such as the presence of an object175

that blocks whisker movements, updating its beliefs about the causes of its sensory input and preventing
whisker oscillations from reaching the desired, but unattainable, amplitude speci�ed in the current prior
expectation µv. In other words, when the agent cannot change the world (e.g., cannot use the whisker to
push the object) via its own actions, it can nonetheless adapt its internal prior beliefs µv to account for the
actual constraints of the generative process.180

3. Results

We used the active inference model of whisking to simulate the experimental setup of Figure 1a, and the
control of a single whisker in the presence or the absence of an object. The simulation can be conceptually
divided into three phases. (1) Initially there is no object and the animal's whiskers operate in �exploration
mode�, a phase characterized by large whisker oscillations. (2) An object then appears and the animal185

progressively reduces whisking amplitude, shifting from �exploration" to the �scanning� of the object. (3)
Finally, the object is removed and the amplitude progressively increases once again, marking a transition
back from �scanning� to �exploration�.

Figure 3 shows the results of the simulations. At �rst, the recognition dynamics and the generative
process are in the same initial conditions. Figure 3A shows the dynamics of the variable xGPw that controls190

the amplitude of the whisker oscillation in the generative process, as a function of time. Without objects,
the animal is in �exploration� mode, characterized by large whisker oscillations and extended protractions,
which slightly increase over time. In the second phase, an object (black line) appears, limiting whiskers'
protractions. Finally, in the third phase, the object disappears and whisker protractions increase once again.
Crucially however, they initially remain signi�cantly smaller than in the �rst phase. This is especially evident195

in the �rst cycle after the disappearance of the object, when they almost match (expected) animal-object
distance, even if the object is not there to stop whiskers' protractions. This is the key empirical observation
that has lead to the proposal that whisker movements are guided by anticipatory mechanisms that consider
expected animal-object distance, rather than feedback-control mechanisms [7].

In the �rst phase, when there is no object, the variables xGPw and x that control the amplitude of whisker200

oscillation in the generative process (Figure 3A) and model (Figure 3B) slightly increase over time. This is
because the agent expects to make contact with something at the end of the whisker protraction, but does
not receive any touch input (Figure 3C) � and hence generates a negative somatosensory prediction error
(Figure 3D). The action increment that cancels out this prediction error (Figure 3F) increases the value of
α (Figure 3E), which in turn ampli�es the whisker oscillation / protraction (xGPw in Figure 3A).205

In the second phase, when the object (black line) appears, the agent's expected amplitude is signi�cantly
greater than the actual amplitude of the generative process; this is because xGPw is physically blocked by
the presence of an unexpected object, but µx is not (note also that there is no explicit representation of
the object in the generative model). However, the variable µx rapidly re-aligns to the true dynamics of the
generative process. This re-alignment process is guided by an error-correction mechanism, as we can see210

with sensory signals and prediction errors shown in Figure 3C and Figure 3D, respectively. As shown in
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the third panel, the agent receives somatosensory (touch) and proprioceptive sensations from the generative
process, especially evident with the �rst prominent somatosensory input (�rst orange peak). This input is
completely unexpected and hence generates a large positive somatosensory prediction error, which is shown
in Figure 3D. The (negative) action increment that cancels out this prediction error (Figure 3F) suddenly215

decreases the value of the α parameter (Figure 3E), which in turn decreases the amplitude of the whisker
oscillation / protraction (xGPw in Figure 3A). This decrease stops when the whisker touches the object gently
and the α parameter �nds a dynamic equilibrium around the correct value.

Finally, in the third phase, when the object (black line) disappears, the µx variable (Figure 3B) continues
to guide whisker protraction at the expected distance from the object, at least in the �rst cycle. The sudden220

disappearance of the object implies that the agent does not receive its expected touch sensation (i.e., there
is no orange peak in Figure 3C) and hence generates a negative somatosensory prediction error (Figure
3D), which is compensated by progressively increasing the amplitude of whisker oscillations (Figure 3E and
Figure 3F). This marks thus a transition back to the exploratory mode characterising phase one, bringing
the whisker oscillations back to baseline, i.e., extended protactions to explore the environment.225

The simulation of the three phases closely resembles the empirical results reported in [7], where upon
appearance of an object (in [7], a platform), whiskers' protractions match precisely the distance between
the animal and the object � as seen in the second phase of our simulation. Crucially, when the object is
suddenly removed, whiskers' protractions do not adapt immediately, but remain proportional to the last
(expected) animal-object distance � which is exactly what happens in the third phase of our simulation.230

This suggests that the control of whiskers may be anticipatory at its core (based on expectations about
animal-object distance) [7]. Furthermore, our simulations show that error-correction (via a free energy
minimization) mechanism can explain both the shift from �exploration� to �scanning� when the object is
introduced (second phase) and the reverse one from �scanning� to �exploration� when the object is removed
(third phase). In our model, what guides the changes in whisker protraction is the somatosensory (touch)235

prediction error. The proprioceptive prediction error instead plays a stabilizing role on whisking oscillation,
allowing our agent to compensate for small and unexpected changes caused by external disturbances of noise.

3.1. Control of multiple whiskers

To showcase further applications of our model, we �nally consider an agent with multiple (here, two)
whiskers. Given the structure of our framework, the formulation is rather straightforward, showing thus240

its potential for the development of more complex models of active perception. In this extended generative
model (Figure 4A), we simply add a copy of the variables speci�ed in the previous generative model, except
for the oscillator variable xGPo , which is shared across all the whiskers. Given this duplication, the parameters
of di�erent whiskers can be tuned independently, hence we here simulate two whiskers with slightly di�erent
lengths and centers of oscillations (Figure 4). However, since the model relies on a shared oscillator variable245

xGPo , the resulting whisker dynamics remain in phase during scanning behaviour (Figure 4B) � as observed
empirically [6].

4. Discussion

We proposed an active inference model of active sensing through whiskers. We started from the premise
that rodents use their whiskers' dynamics to make (perceptual) inferences about the world; and described the250

active control of whiskers as an error-correction mechanism ensuring that a prior prediction (that something
will be touched at the end of the protraction) can be realized in the environment.

Our simulations illustrate that the active inference model reproduces key anticipatory aspects of whisker
movement control, such as the fact that mice target the amplitude of their whisking movements to the
expected distance from an object; and (contrary to purely reactive models) that such expectations are255

robust and stable for some time even when objects disappear [7]. Furthermore, the model characterizes the
the alternation of exploration and scanning phases, exploration to scanning when an object is sensed and
scanning to exploration when such object disappears, in terms of a unique prediction error minimization
mechanism. Finally, this model explains how the control of whisker movements supports active perception
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by dynamically aligning expectations (about whisker protraction) in the agent's generative model to e�ective260

object distance. This is because the same error (or more precisely, free energy) minimization process has
the dual role of selecting the motor actions to execute and updating the internal variables of the generative
model.

The proposed model builds on a tradition of early cybernetic models and in particular perceptual control
theory [38], which stresses the importance of continuously controlling motor variables (e.g. modulating265

the force impressed on the acceleration pedal while driving) to keep a preferred (prior) perceptual variable
constant (e.g., to ensure that I always see 120Km/h on my speedometer). Furthermore, our model is also in
line with the (more recent) theoretical view of active perception as a closed-loop convergence process, where
motor variables (here, whisker amplitude) are continuously modulated for perceptual purposes [22, 23].

The active view of perception that emerges from the model di�ers in at least two ways from views270

of perception as the recognition of objective features of the environment [16] or the inference of external
variables [12, 13, 14, 15]. First, traditional theories of perception assume that in order to recognize external
variables (e.g., objects, faces or places), an agent has to be endowed with a model of these variables and
their features. Rather, the proposed model stresses the perception of external variables (here, animal-object
distance) without an explicit, action-independent model of objects and their features. The generative model275

only includes knowledge about touch sensations changing as an e�ect of whisking actions (i.e., sensorimotor
contingencies [18, 39, 19, 40]), without explicit action-independent perceptual features or external variables
like objects or distances, as commonly assumed in other theories of perception.

Second, traditional theories assume that perception is only achieved by changing beliefs internally. Here,
instead, the perception of animal-object distance is achieved in an active manner: by dynamically adjusting280

a motor variable (whisker amplitude) based on a prior encoding the sensorimotor coupling between agent and
environment, rather then a �xed set-point [36]. This ensures that touch sensations only happen at the end
of the protraction � hence minimizing any discrepancy between prior predictions about touch and current
sensations. An interesting �side-e�ect� of this adjustment is that it provides an implicit estimate of animal-
object distance. Given this lawful correlation between whisker protraction (in the stationary regime) and285

animal-object distance, the animal can use the former as a proxy for the latter, so to, for example, approach
or avoid the object. Our model therefore shows how to endow active inference models with minimalistic
(sensorimotor or action-oriented) models or action-world interactions, in place of more complete models that
describe and predict external dynamics independent of an agent's actions [41, 42, 43, 44, 45, 46, 47] (see also
e.g., [19, 48, 36, 20] for example implementations). An objective for future research is testing to what extent290

this approach scales up to robotic settings [49, 50].

4.1. The neurobiology of whisking from an active inference perspective

The neurobiology of active whisking involves a widely distributed brain network, which spans sensory,
motor, premotor/prefrontal areas and the brain stem [1]. Figure 5 shows part of this network and highlights
the putative neuronal underpinnings of the main variables of the generative model used in this article. We295

map sensory inputs and prediction errors in the two sensory modalities (somatosensory information about
touch, such as the mechanical pressure over whiskers ss and proprioceptive information sp) to the barrel
cortex (vibrissal somatosensory cortex) [51, 52, 53], the two variables of the central pattern generator (xGPo and
x′
GP

o ) to the brain stem, the hidden variable that modulates the central pattern generator µxto vibrissal motor
cortex and the hidden cause µvto the premotor / prefrontal cortex.300

The proposed neurobiological scheme follows a dynamical systems perspective on cortical computations
and movement control [54, 55]. In this scheme, premotor/prefrontal areas de�ne a prior over the amplitude of
the oscillation of whiskers. Vibrissal motor cortex controls whisker movements (until they reach the desired
set point) by modulating the amplitude and midpoint of whiskers protractions [56, 57]. The actual control
of movement engages synergistically the vibrissal motor cortex and central pattern generators in the brain305

stem. Evidence indicates that vibrissal motor units indirectly control the activity of vibrissal motoneurons,
through the modulation of sub-cortical central pattern generators; and in turn the motorneurons control the
facial muscles responsible for whiskers' movements [58].

Somatosensory prediction errors (discrepancies between somatosensory predictions and sensations) are
computed by the barrel cortex and are related to whisking amplitude change rather than whisking frequency310

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2021. ; https://doi.org/10.1101/2021.07.16.452665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452665
http://creativecommons.org/licenses/by/4.0/


or velocity [59, 7]. These prediction errors are sent to vibrissal motor cortex and premotor/prefrontal cortical
areas, to keep the agent's generative model in register with external constraints, such as the (unpredicted)
presence of an object, which may prevent the whisker from reaching the �desired� amplitude speci�ed in the
current prior expectation (µv). Speci�cally, prediction errors modify the oscillation amplitude of whiskers
at the level of motor cortex; and the prior about oscillation amplitude at the level of premotor/prefrontal315

cortical areas. Finally, the model includes a second type of (proprioceptive) prediction error, which measures
the di�erence between the expected and currently sensed whisker protraction, and ultimately helps stabilizing
whisker movements in face of small external disturbances, such as wind.

5. Conclusions

The model introduced in this article explains the active control of whisker movements as an active320

inference process which continuously minimizes prediction errors and the discrepancy between expected
somatosensory sensations and current observations. This anticipatory, error correction mechanisms allows
smooth transitions between phases of exploration and scanning of objects, and vice versa, empowering the
animal with the ability to (actively) perceive their distance from objects.

Our model is in agreement with key empirical evidence supporting the anticipatory, expectation-based325

nature of whisking control [7]. Furthermore, it provides preliminary evidence for a new interpretation of
neural signals in the brain circuits for whisking in terms of Bayesian (active) inference constructs, such as
priors about amplitude of oscillation in premotor / prefrontal cortices and sensory prediction errors in barrel
cortex. While some aspects of the model qualitatively align with the known neurophysiology of whisking (see
Section 4.1) the speci�c mappings between neuronal circuits and active inference signals will be an object of330

future studies.
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Figure 3: Simulation results. (A) Dynamics of the variable xGPw , which corresponds to the whisker's base angle in the generative
process. (B) Dynamics of the variable µx, which corresponds to the predicted whisker's base angle in the generative model.
By comparing A and B, it is possible to notice that the appearance of the object in phase 2 a�ects immediately the dynamics
of the whisker's base angle in the generative process (xGPw ); however, the dynamics of the predicted whisker's base angle µx
take slightly longer to adapt. (C) Agent's sensory inputs (somatosensory (touch) in orange and proprioceptive in blue). (D)
Agent's prediction errors (somatosensory (touch) in orange and proprioceptive in blue). (E-F) Dynamics of α (action) and its
derivative α̇. Negative peaks of touch prediction error correspond to situations in which the agent would have expected to touch
the object but did not � and hence increases the amplitude of the whisker protraction (by increasing α). Rather, negative peaks
of touch prediction error correspond to situations in which the agent feels unexpected touch sensations � and hence decreases
the amplitude of the whisker protraction (by decreasing α).
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A B

Figure 4: Simulation of the control of two whiskers having slightly di�erent dimensions and central points of oscillations. (A)
Extended generative model for the control of two whiskers. The model's variables are the same as Figure 2, but there is a
separate set of variables for each whisker, except for the oscillator variable xGPo , which is shared across both whiskers. (B)
Simulation results. The notation is the same as in Figure 3. Here, they key thing to notice is that the two whiskers (blue and
orange) have oscillate in phase. See the main text for an explanation.

Figure 5: Putative neuronal underpinnings of the generative model for whisker control discussed in this article. This simpli�ed
neuronal scheme comprises premotor / prefrontal areas (PMPF), vibrissal motor cortex (VMC), central pattern generators
(CPGs) in the brain stem, and Barrel Cortex / vibrissal somatosensory cortex. Colored circles represent variables of the
generative model, whereas the ξ symbols represent prediction errors. Colored edges show the (neuronal) message passing
between variables of the model. The red edge originating from the v (causal) variable represents top-down signals. Blue edges
originating from the ξ symbols represent prediction errors that are propagated bottom-up. See the main text for explanation.
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