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a b s t r a c t

In this paper, we propose a novel ensembling technique for deep neural networks, which is able
to drastically reduce the required memory compared to alternative approaches. In particular, we
propose to extract multiple sub-networks from a single, untrained neural network by solving an end-
to-end optimization task combining differentiable scaling over the original architecture, with multiple
regularization terms favouring the diversity of the ensemble. Since our proposal aims to detect and
extract sub-structures, we call it Structured Ensemble. On a large experimental evaluation, we show
that our method can achieve higher or comparable accuracy to competing methods while requiring
significantly less storage. In addition, we evaluate our ensembles in terms of predictive calibration
and uncertainty, showing they compare favourably with the state-of-the-art. Finally, we draw a link
with the continual learning literature, and we propose a modification of our framework to handle
continuous streams of tasks with a sub-linear memory cost. We compare with a number of alternative
strategies to mitigate catastrophic forgetting, highlighting advantages in terms of average accuracy and
memory.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

An ensemble is the combination of multiple models, trained
o solve the same task and joined to improve the overall perfor-
ance. Informally, in a good ensemble each member is accurate
n its own, but makes independent errors during the predic-
ion (Perrone & Cooper, 1992). By combining the outputs of
ts components, an ensemble can achieve better performance
han any base member. For neural networks, a simple strategy
or building an ensemble of models is to train repeatedly the
ame architecture starting from different initial conditions, and
veraging the resulting predictions. In this setup, diversity is
rovided by the exponentially growing number of possible min-
ma (Kawaguchi, 2016), while averaging provides a degree of
moothing against minima with poor generalization capability.
While this naive strategy has been shown to provide signif-

cant advantages (e.g., Gustafsson, Danelljan, and Schon (2020),
rogh and Vedelsby (1995), Lakshminarayanan, Pritzel, and Blun-
ell (2017) and Ovadia et al. (2019)), it is not widely used in
ractice. The computational time required to train multiple net-
orks and the memory cost needed to save them limit its use.

n fact, each model must be trained independently and stored
n the system, and this can be infeasible when a single model
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is composed by millions of parameters, or when the hardware
capacity is limited (e.g., mobile devices).

With the emergence of highly over-parameterized models, a
number of alternative techniques, e.g., Huang et al. (2017) and
Wen, Tran, and Ba (2020), have been proposed to mitigate the
space and time constraints. Key to many proposals is that, for a
sufficiently large model, different components of the ensemble
can share portions of the original network, opening the possibility
of a sub-linear scaling of the memory with respect to the size
of the ensemble (Wen et al., 2020). We briefly review these
proposals in Section 2.1. In general, one can observe a trade-off
between the amount of sharing (i.e., the memory cost) and the
performance of the ensemble. Whether this gap can be closed
remains an open research question motivating this paper.

Ensembles of deep neural networks (called deep ensembles in
the following) are of particular interest in the field of contin-
ual learning (CL). In CL, a single network must solve multiple
tasks sequentially, without forgetting already learned informa-
tion (Thrun, 1998). This property is hard to achieve and yet
crucial for real-world scenarios, where the domain can change.
When this is not possible and some, or all, the past learned
information is lost, we have a phenomenon called catastrophic
forgetting (CF, French (1999) and McCloskey and Cohen (1989)).
Because of its importance, many algorithms were proposed re-
cently to achieve effective CL with neural models. Among these
techniques (briefly reviewed in Section 2.2), several solutions find
sub-structures within the original network, each one capable of

https://doi.org/10.1016/j.neunet.2021.09.007
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olving a single task while leaving space for future tasks; usually,
his is done by masking a portion of the network that is not used.
n this sense, these methods can be seen as an ensemble of sub-
etworks, each one specialized on a single task. Thanks to this
eat separation, many of these methods are capable of mitigating
F (Parisi, Kemker, Part, Kanan, & Wermter, 2019).
Deep ensembles and CL are problems that need to be ad-

ressed in order to achieve stable and robust agents that can op-
rate autonomously in real-world applications and, as described
efore, methods developed in the two fields share a number
f similarities. In this paper, we first develop in Section 3 a
ramework that is used for reducing the memory footprint of deep
nsembles, without sacrificing the performances. Differently from
ther proposals in the literature, we optimize the members of
he ensemble at initialization, by solving an optimization problem
efined over partial sub-masks of the original network. Then, we
xtend the method in Section 3.3 for CL scenarios. We describe
ur contributions in more detail next.

.1. Contributions of the paper

.1.1. Structured ensembles
To build an ensemble of N networks, we apply N scaling

vectors over the output of each inner and trainable layer in the
original model. Each scaling vector is associated to a compo-
nent of the ensemble. These vectors are trained by consider-
ing the network at initialization, while the networks’ weights
remain unchanged. In the end, a scaling value is used to es-
timate how important the associated neuron is for the given
component of the ensemble. Only the most important ones are
collected and the sub-network extracted, ignoring the others. This
method is well motivated by the fact that, usually, a network is
over-parameterized, and contains multiple sub-networks that can
be extracted by its structure (Ramanujan, Wortsman, Kembhavi,
Farhadi, & Rastegari, 2020), as demonstrated by the recent Lot-
tery Tickets Hypothesis (Frankle & Carbin, 2018) and by several
structured pruning strategies (He, Zhang, & Sun, 2017).

The overall procedure, which can be seen as a discovery of
hidden paths in the original neural network, is the following: (1)
the scaling vectors are applied and trained for a few epochs, (2)
for each component i = 1 . . .N we collect the scaling vector at
position i in each layer of the original network, (3) the neurons
which are important for the current sub-network are kept, and
the others ignored. The process produces N smaller networks,
and the dimension of each one can be regulated by choosing
the percentage of how many neurons must be discarded in the
extraction phase. An important property is that each network
produced using this process is capable of achieving good per-
formance despite the reduced number of parameters (even with
a large percentage of discarded neurons), and when combining
all the extracted networks into an ensemble the achieved score
overcomes the one obtained using only the original network, due
to the diversity of the networks that compose the ensemble. In
order to create sub-networks that are all different from each
other, we force a level of dissimilarity between scaling vectors
during training using a maximum mean discrepancy (MMD) reg-
ularization term (Pomponi, Scardapane, & Uncini, 2021). To the
best of our knowledge, the proposed method is the first which is
capable of extracting a set of different sub-networks from a single
untrained one.

We evaluate the efficiency of the proposed Structured Ensemble
algorithm over different choices of architectures and datasets,
and by investigating its robustness under different percentages
of kept units. Moreover, we show that the ensembles created
using Structured Ensemble can be better calibrated than other
approaches and the performances remain good when it comes to
evaluating the network on out-of-distribution samples. We also
perform a number of ablation studies on the algorithm, including
over the choice of initialization strategy for the scaling vectors.
408
1.1.2. Continual learning
As the second main contribution of the work, we extend

Structured Ensemble to devise a novel approach for mitigating
CF. In the CL scenario, the key idea is to associate each member
of the ensemble (i.e., using a binary mask mi) to a single task, by
finding which portion of the network is maximally responsible
for the performance on that task. In this way, we can remove CF
by freezing these weights during the training of future tasks.

The overall procedure is the following: (1) before solving a
task, we identify a smaller sub-network that can be used to
achieve good performance, but without extracting it, (2) during
the training only the weights in this subset are modified, while
the others are masked to zero, or used but not changed if they
are part of a sub-network associated to a past task. In this way,
when we want to classify a sample from a given task, only the
weights up to that task are used, and the others ignored. In the
experiments, we evaluate empirically how Structured Ensemble
performs on different CL scenarios, showing that the final ac-
curacy achieved outperforms the other methods and that the
additional memory required to store the binary masks is negli-
gible; in the end, we show also how the hyper-parameters affect
the final results, by performing different ablation studies.

2. Related work

In this section, we provide a short background on related
works concerning ensembling 2.1, continual learning 2.2, and
structured pruning 2.3.

2.1. Ensembles

Deep ensembles (Lakshminarayanan et al., 2017), originally
inspired by bagging (Breiman, 1996), are models which com-
bine multiple neural networks trained from randomly initialized
weights. Ensembles have been theoretically studied to under-
stand how and why the performances improve, as well as how to
reduce the memory footprint and how to speed up the training
time, often focusing on one of the two aspects. Regarding the
memory aspect, the networks can be distilled into smaller ones,
without loss of performance (Hinton, Vinyals, & Dean, 2015),
or compressed, as exposed in Buciluǎ, Caruana, and Niculescu-
Mizil (2006). Regarding the training time aspect, instead, recently
in Huang et al. (2017) the authors proposed Snapshot Ensemble,
in which a single model is forced to explore multiple local minima
using cyclic learning rate schedules; the models obtained in these
minima are saved and combined to build the final ensemble. Also,
to reduce the training time, in Garipov, Izmailov, Podoprikhin,
Vetrov, and Wilson (2018) the geometric properties of a loss func-
tion are used to connect different minima and extract multiple
models, used to build the final ensemble.

In addition to these methods, some techniques to improve at
the same time memory footprint and training time have been
proposed. Recently, in Wen et al. (2020) the authors proposed
Batch Ensemble, a method which uses the Hadamard product to
change the weights and the output of each layer using multiple
sets of trainable scaling vectors, each one associated to a dif-
ferent ensemble’s component. Similarly, in Lee, Purushwalkam,
Cogswell, Crandall, and Batra (2015), the authors proposed a
family of tree structured networks, called TreeNet, that simu-
lates an ensemble by building a network consisting of zero or
more shared initial layers, followed by a branching point and
zero or more independent layers. Another approach is called
MC-Dropout, which uses dropout to simulate multiple networks,
by dropping the weights also during the forward step in the
inference phase (Gal & Ghahramani, 2016). Both approaches are
relaxations of the original ensemble formulation, and there is
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sually a deterioration of the performances (if compared to the
riginal deep ensemble models).
Recently, some studies provide more insight into the deep

nsemble approach, studying why and how this method per-
orms better than others. In Allen-Zhu and Li (2020) the authors
ound that ensemble in deep learning works very differently
rom traditional learning theories, and, to understand and ex-
lain the hidden mechanisms of deep ensembles, they develop a
ew theory, while in Fort, Hu, and Lakshminarayanan (2019) the
nsemble approach is studied from a loss landscape prospective
y measuring the similarity between the different models which
ompose the ensemble.
Other important aspects, that justify studying the ensemble

pproaches, are that these models are usually more calibrated
han a single neural network (Guo, Pleiss, Sun, & Weinberger,
017) and that it is possible to calculate a measure of uncer-
ainty associated to a prediction. Both aspects are crucial in
eal-world applications, e.g., driver-less vehicles and medical ap-
lications (Kwon, Won, Kim, & Paik, 2020).

.2. Continual learning

A continual learning (CL) scenario is one in which a model
s trained to solve a number of sequential tasks , and should
ot forget how to solve past tasks while learning how to solve
he current one (Thrun, 1998). When the models lose the ability
o solve past tasks we have a phenomenon called catastrophic
orgetting (CF (French, 1999; McCloskey & Cohen, 1989)). A CL
ethod should be capable of alleviating, or removing, CF while
olving efficiently the current task.
A CL scenario is a set of tasks and rules on how these tasks

re acquired and which information can be retrieved from them.
any scenarios have been formulated, and we follow those pro-
osed in Van de Ven and Tolias (2019). More specifically, in this
aper we focus on the scenario called Task-IL, where a task’s
dentity is given during both training and testing, and the tasks
ontain disjoint classes. A generic model used to solve this kind
f scenario is composed of a backbone network, that is shared
etween all tasks and therefore may suffer from CF, and a set
f smaller networks, called solvers, one per task, that are used
o classify only the samples from the associated task, that are
rained on top of the backbone. Despite its apparent simplicity,
any approaches have been developed to solve this scenario.
Following the categorization proposed in Parisi et al. (2019),

he methods to mitigate or remove CF in this scenario can be di-
ided into three broad categories: Rehearsal strategies, Regular-
zation techniques, and Architectural strategies (our proposal
alls among the architectural category, on which we focus more).
he Architectural strategies group contains all the methods that

operate over the architecture of a neural network (e.g. custom
layers, weights freezing/pruning) to mitigate or remove CF. Even
if this group of methods has received less attention if com-
pared to the others, many interesting approaches exist. In Rusu
et al. (2016) the authors proposed Progressive Neural Networks,
a model which is capable of expanding its size when a new
task is encountered. It removes CF, but the required memory can
be prohibitive. Batch Ensembles (Wen et al., 2020), mentioned
before, computes a set of scaling vectors associated to the dif-
ferent tasks, training each of them independently. This approach
requires small additional memory, but it is limited because the
backbone is trained only during the first task, while for the
other tasks the backbone is fixed and only the additional vectors
are trained, limiting the final performance. Another interesting
approach, proposed in Golkar, Kagan, and Cho (2019), is based
on the classic pruning scheme, in which the most important
weights for solving a task are saved and freezed, while the others
409
are used to solve new tasks. The main problems of this method
are that it is not possible to automatically decide the pruning
percentage, and some accuracy can be lost when pruning the final
model; also, past information is not used, limiting the achieved
performance. The closest method to the one we propose here
is Supermasks In Superposition (Wortsman et al., 2020), where
for each task a binary mask over the backbone is learned. Our
method has some similarities with these methods, but it is deeply
different as a whole. In fact, it can be seen as a structured pruning
approach, in which the masks are retrieved by searching for the
best structure, instead of pruning the redundant weights after the
training, and each structure is well separated from the others but
reused to extract useful information from future samples, without
compromising the results on past tasks.

2.3. Structured pruning

Our proposal has a strong connection with structured pruning
approaches (He et al., 2017; Li, Kadav, Durdanovic, Samet, & Graf,
2016). These methods do not prune each weight singularly, but
entire groups of them together (e.g., neurons, filters, or chan-
nels). Usually, these methods add a regularization term to the
optimization process. Then, when the minimization is over, the
groups are pruned. Our proposal, instead, is capable of pruning
the neurons before the training process. To this end, we extend
the SNIP approach from Lee, Ajanthan, and Torr (2018), proposing
a method that is capable of detecting multiple structured patterns
within a neural network, used together to build up an ensemble
of models, that is capable of solving efficiently a classification
problem, without loss of performances.

3. Proposed method: structured ensemble

As described before, deep ensembles of multiple neural net-
works suffer from an expensive memory footprint. In this section
we introduce our method, which aims to reduce the required
memory by creating smaller networks from an untrained one.
Firstly, we describe how the main idea works for reducing the
dimension of a network. Secondly, we extend the method so that
it can be used to extract multiple smaller networks within a single
pre-processing procedure.

3.1. Extracting a sub-network

Let us consider a neural network which is composed by L
layers Ll with l = 1 . . . L. To extract a substructure we want to
onsider only the layers that modify the dimension of its input,
uch as linear or convolutional layers. For example, let Ll be a
eneric linear layer with input size i and output o (the same
an be done with a convolutional layer), that has weights matrix
l
∈ Ri×o, and may have bias vector bl ∈ Ro, otherwise bl = 0.

iven an input x ∈ Ri, we have the corresponding output z l =
l(x) = W lT x+ bl.
Our intuition is that a matrix of weights contains a subset of

the output neurons that can be extracted, and used to create a
new layer with reduced dimensions. To estimate the importance
of an output neuron in a layer Ll, we first multiply the output z l
by a learnable real valued vector, called scaling vector, sl ∈ Ro, so
that the new output is given by z l = Ll(x) ⊙ sl. We initialize sl
from the normal distribution N (0, 1).

Denote by S =
⋃

sl the union of all scaling vectors through the
etwork, and by f (x; S) the output of the original network where
very layer is replaced by its scaled version z l. We can find S by

solving an optimization problem over the scaling vectors:

minE[L(y, f (x; S))] (1)

S
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Fig. 1. The image shows the extraction process of two linear layers from a single
one l, using pruning percentage p = 0.5. For simplicity, instead of showing the
whole matrix of weights, only the output neurons of the layer are shown. The
process starts in the step 1: after the minimization step, the gradients associated
to the scaling vectors are collected. In the step 2 the gradients are used to
calculate the thresholds th, one for each scaling vector, and thus the sets of
indexes are created. These sets are used in the last step 3, to create two new
layers l0 and l1 , by extracting the neurons in the original layer l associated to
indexes in the sets.

where L is the loss function for our problem, e.g., cross-entropy.
We found that (1) requires only a small number of epochs to train
the scaling vectors to a reasonable value. Thus, it can be trained
significantly faster than the original optimization problem over
the weights of the network, which is necessary for keeping the
approach bounded in terms of computational time.

Once we have the set S, the scaling vectors are used to mea-
sure how much each output neuron is important for solving
the original problem. Directly using the final scaling values in a
scaling vector sl is not a good choice, since it does not take into
consideration the correlation between the weights of a layer and
its scaling values (higher scaling values do not imply more impor-
tance). To do this we need another estimator of this importance,
and for Structured Ensemble we use the one proposed in Lee et al.
(2018). Given an input sample x and its associated label y, the loss
function L(·, ·) and a scaling vector sl associated to a linear layer
l(x), we calculate the gradient associated to a scaling value j as:

g l
j = g(slj) =

⏐⏐⏐ ∂L(y,f (x;S))
∂slj

⏐⏐⏐∑L
k
∑N

i

⏐⏐⏐ ∂L(y,f (x;S))
∂ski

⏐⏐⏐ (2)

The gradient value g(·) can be computed using the loss over
a single sample, a batch of samples, or the averaged gradients
computed over the whole dataset. Differently from Lee et al.
(2018), in Structured Ensemble we use the value g(·) on the whole
dataset, to avoid sub-optimal extraction of the most important
neurons.

Once all the values g(·) are computed, we collect them into a
set G =

⋃L
l {g(s

l
i) | s

l
i ∈ sl}. To extract a sub-structure we need to

define a threshold over the values in G: if a value g(sli) is higher
than the threshold we want to keep the neuron i of the layer l
also in the extracted network, otherwise it can be discarded. In
Structured Ensemble, the user sets the percentage of neurons p to
discard (as a hyper-parameter), and the threshold is automatically
calculated over the whole set of values as th = QG(p). The function
QA(p) returns the percentile associated to the p% value of the set
A. Once the threshold is calculated, we need to iterate over the
 l

410
Algorithm 1 Structured Ensemble (pseudo-code).
Input untrained network y = f (x), a dataset D = {(x, y)}, the

number of subnetworks to extract N , and a pruning percentage
p.

Output a set of networks E.
1: Initialize the masks Si, for i = 1 . . .N and create S =

⋃
Si.

2: Solve the minimization problem:

min
S

E[L(y, f (x; S)] +
2λ

(N(N − 1))

N∑
i=1,j>i

R(Si, Sj)−1.

3: E = {}
4: for i = 1 . . .N do
5: Retrieve Si
6: Given the dataset D, calculate the gradients g l for each

mask in Si (Eq. (2)).
7: Calculate the threshold th = QG(p) and Il for each layer l

(Eq. (3)).
8: Extract the sub-network f̄ (·) of f (·), composed by the

neurons that have Ii,l = 1.
9: E ← E

⋃
{f̄ (·)}.

10: end for
11: Return the ensemble of networks E.

layers of the network and extract the most important neurons. To
do this, define the set of indexes associated to important neurons
in the layer:

Il = {i|g l
i > th} i = 1 . . . o (3)

for each layer in the network l, where o is its output size. Then,
if the layer l is the first one (l = 1), the new layer Ll has a new
weights matrix that is defined asW

l
∈ Ri×|Il|, where the following

equivalence holds W
l
j,k = W l

j,k for each j = 1 . . . i and for each
k ∈ Il. The equivalence means not only that the weights have not
been changed during the training of the scaling vectors, but also
that the input size of the layer is unchanged, while the output’s
size is composed only of the neurons that have been selected to
be part of the new layer; the same process must be applied to the
bias vector, if present. The extraction procedure for a linear layer
is visualized in Fig. 1.

When the layer is not the first one, in addition to the exposed
procedure, we extract also the input neurons associated to the
selected output’s neurons of the previous layer using the set
Il−1, further reducing the dimension of the layer l. The extraction
process is the same used before, but applied to the input ones.

The process is iterated for all layers whose dimensions depend
on the precedent, or subsequent, layer. In this way, changing
a layer may have repercussions also on connected layers, fur-
ther reducing the number of parameters in the extracted neural
network.

To conclude, the set of new layers Ll compose the new neu-
al network f0(x), which has the same number of layers and
onnections between them, but fewer weights.

.2. Extracting multiple sub-networks via diversity regularization

The process described up to this point works for extracting
ne sub-network, but we want to extract N sufficiently diverse
ub-networks to build up an ensemble model. To this end, we
se a regularization term R(·, ·) to promote the distance be-
ween different scaling vectors in a layer, and thus the extracted
etworks.
Instead of applying a single scaling vector sl on a generic layer

, multiple vectors sl,i are applied, with i = 1 . . .N , where N is
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he number of networks to be extracted. To speed up the pre-
rocessing, we train all the scaling vectors in parallel, following
he idea proposed in Wen et al. (2020). Given a mini-batch of B
amples, we partition it into B/N subsets, and apply a different set
f scaling vectors to each subset. If B contains fewer samples than
or its dimension cannot be divided in N equally sized sets, we

replicate some input samples to make up the difference, in such
a way that a scaling vector does not see a sample twice in the
same optimization step.

Denoting by Si =
⋃

sl,i the set of scaling vectors associated
to the ith component, and by S =

⋃
Si the set of all the scaling

vectors, we can find N sub-networks in parallel by solving:

min
S

E[L(y, f (x; S))]+

2λ
(N(N − 1))

N∑
i=1,j>i

R(Si, Sj)−1
(4)

where R(·, ·) is a regularization term forcing a desired level of di-
versity between a pair of masks, λ is a hyper-parameter balancing
the two terms, and f (x; Si) is the appropriately scaled version of
f . In particular, we regularize the training by applying the MMD
distance (Gretton, Borgwardt, Rasch, Schölkopf, & Smola, 2012)
between pairs of vectors in a layer. Since the MMD distance is
symmetric, the comparisons are reduced to N(N−1)

2 for each layer.
he resulting distances are summed, weighted, and added to the
oss which is minimized during the training of the scaling vectors.
ormally, given a layer l and two scaling vectors sl,i and sl,j, we
alculate the distance as:

MMD2
κ (s

l,i, sl,j) =
1

n(n− 1)

∑
z ̸=k

κ(sl,iz , sl,ik )

+
1

n(n− 1)

∑
z ̸=k

κ(sl,jz , sl,jk )

−
2
n2

∑
k,z

κ(sl,iz ,
l,j
k )

here n is the dimension of the scale vector and κ a kernel
unction. In the experiments we use the RBF kernel κ(a, b) =
xp

{
∥a−b∥2

n

}
.

After the training of the scaling vectors, extracting the sub-
etworks proceeds as exposed before (Section 3.1), but it is done
times: for each i = 1 . . .N , we use the set Si to calculate the

eurons to keep, we extract the associated sub-network fi(x) and
e save it in the ensemble model. During this process the original
etwork is not changed, because this would compromise future
xtractions. Fig. 2 shows the extraction process of two new layers
rom a generic linear layer l.

The final ensemble is the set E = {fi|i = 1 . . .N}, whose
redictions can be combined in standard ways (e.g., the aver-
ge for regression and a majority vote for classification). The
omplete procedure to extract multiple subnetworks from an un-
rained one, while regularizing the distance between the masks,
s summarized in Algorithm 1.

.3. Structured ensemble as an approach to continual learning

As said before, we use the Task-IL CL scenario, proposed
n Lopez-Paz and Ranzato (2017). In this scenario we receive
sequence of disjoint tasks t = 1, . . . ,M , where a new task

an be collected only when the current one is over. Each task
s composed by a set of triples {(xi, yi, t)}Si=1 ∈ X × N+ × Y ,
here xi is a sample from the task (which is not present in
ther tasks), its label is yi, which is defined with respect to the
urrent task t , and t is an index identifying the current task. We
411
Fig. 2. The image shows how the masks are combined to mask the output z l
produced by a generic linear layer l. We follow the process for three tasks t ,
showing which output neurons and gradients are masked to avoid the changing
of weights important to past tasks. In the first one the output vector is masked
only using m1,l , and the gradients ∇ are unmodified. In the following tasks, past
masks are used to build the PANt set, that is combined with mt,l to mask the
output of the layer, while the gradients are masked using the negation of the
masks in PANt .

also define the neural network function f (x;w, wt ), that given
a sample x produces the associated output y. The backbone is
shared between all the tasks and its weights set is w, while
the classifier head used to calculate the prediction depends on
the task t to which x belongs, and its weights set is wt . This
eparation is crucial, since in this scenario CL may arise only in
he backbone network, and thus the weights wt in the solvers are
ot regularized by the methods.
Our main intuition is the following: neurons trained on past

asks are capable of extracting information useful also for fu-
ure tasks, and this can be exploited to use a smaller trainable
tructure, instead of the full network. In this way, a network
s partitioned into logical smaller networks using binary masks,
eeping weights used to solve past tasks unchanged (so that no
F occur), while solving new tasks. As in the ensemble approach,
hen we talk about neurons we refer to the output neurons of
ach inner layer of the backbone (linear or convolutional), in this
ay the binary masks are not applied on the weights, but only
n the layers’ outputs, further reducing the required memory.
When a new task t is retrieved, we follow the same process

or extracting a single network exposed before (Section 3.1), but
ithout extracting it. Instead, we define the set of Active Neurons
f t as ANt =

⋃L
l=1 m

t,l, where each binary mask mt,l is defined
ver the corresponding layer of the backbone as:

t,l
i =

{
1 i ∈ Il,
0 i /∈ Il

here Il is calculated as in (3), using samples from task t , and the
imension of the mask is mt

∈ Ro. Also, this can be done globally,
y calculating the masks using a globally calculated threshold, or
ocally to each layer, where a specific threshold is computed for
ach layer. When a set ANt is calculated, it must be saved in the
emory, because it will be used also for all the tasks t ′ > t ,
s well as during the inference phase. These sets are the only
dditional memory required by the method.
If the task is the first one, t = 1, the optimization problem to

e solved is the following:

min
,w1

E[L (y, f (x;w ⊙ AN1, w1))]

here ⊙ is the element-wise product, and w ⊙ AN1 means that,
iven the input sample x, and a layer l with the associated output
l, the latter is masked using the binary mask present in AN1,
ccordingly to the layer’s index, as: z l = L (x) ⊙ m1,l. The masks
l
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n AN1 are used for zeroing the neurons which are not trained
or used during the training of the first task. In other words, it
orces the minimization process to train only the neurons that
ere extracted using the scaling vectors associated to the current
ask, leaving the others unchanged.

If the task is not the first, t > 1, we want also to use neurons
associated to past tasks, without changing them. To do this, for a
task t and a layer l, we define the cumulative binary mask as:

c(t, l) =
t−1∏
i=1

mi,l

where each mask mi,l
∈ ANi. Then, we define a set called Past

Active Neurons for the task t as

ANt =

L⋃
l=1

c(t, l).

his set contains, for each layer, all the cumulative binary masks
(t, l). In other words, it contains all the neurons which were
ctive during past tasks, and that must be preserved (not changed
uring the training), by masking the gradients associated to the
eights which compose these neurons. At the same time, we
ant to use these neurons to improve the performance on the
urrent task, by using the information they are capable of extract-
ng.

Then, we need to extract the ANt set, and this must be done by
aking into consideration also the masks in PANt . It can be done
n two different ways:

• Soft extraction: when calculating the threshold , also the
neurons active in the PANt set are taken into consideration.
Practically, if a past active neuron is chosen, nothing changes
in the final result, since it belongs to PANt anyhow and
it must not be changed in the minimization process. The
dimension of the ANt set is reduced, leaving more space
for future tasks. This means that the procedure knows that
some past neurons are more useful than others to solve the
current task.
• Hard extraction: in this case, the threshold and the extracted

neurons are calculated only over the neurons which are set
to 0 in the PANt set.

nce we have these sets, we can minimize the optimization
roblem associated to the current task t > 1. Using the same
otation as before, the optimization process for the task t is:

in
w,wt

E[L (y, f (x;w ⊙ ANt ⊙ PANt , wt ))]

To prevent the changing of the weights used by past tasks, we
set to zero the gradients associated to these weights, and this is
done at each step by multiplying these before the optimization
step, as:

w′ = w − η

[
∂L(·, ·)

∂w
⊙ (∼ PANt )

]
where w′ are the new weights, η is the learning rate, and ∼ is
the not operator, that negates all the masks in PANt (∼ mt,l

=

1−mt,l). The overall procedure is displayed in Fig. 2.
When we need to classify a sample x from a task t , we follow

the same steps exposed before: the ANt set is retrieved, if the task
is not the first one PANt is created, then, we use these sets to
mask out the outputs of the layers while performing the forward
step, using the function f (x;w ⊙ AN ⊙ PAN , w ).
t t t
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4. Experiments

In Section 4.1 we compare Structured Ensemble with differ-
ent established ensemble methods, using multiple architectures
and classification datasets. We evaluate different aspects of the
ensemble models, such as accuracy and memory footprint 4.1.1,
calibration 4.1.2, and the capacity to detect out-of-distribution
samples 4.1.3 and 4.1.4. In the end, different ablation studies
are shown in Section 4.1.5, in order to understand how the
percentage of pruned neurons affects the final results.

In Section 4.2 we show the results on multiple CL bench-
marks from the point of view of accuracy 4.2.1 and memory
4.2.2 required by each method. We conclude with a number of
ablation experiments 4.2.3, in which we describe how the various
hyper-parameters affect the final result on the CL benchmarks.

The code and all the files used to run the experiments are
available online.1

4.1. Classification

Datasets and architectures: we evaluate Structured Ensem-
ble on different supervised classification datasets: CIFAR10 and
CIFAR100 (Krizhevsky, Hinton, et al., 2009), SVHN (Netzer et al.,
2011), and TinyImagenet (a subset of ImageNet (Deng et al.,
2009) that contains 200 classes). We test our method on different
architectures, to study how the extraction of the sub-networks
behaves. The architectures are ResNet-20 (He, Zhang, Ren, & Sun,
2016) and VGG11 (Simonyan & Zisserman, 2014) for, respectively,
CIFAR10-100 and SVHN, while for TinyImagenet we used ResNet-
30 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2014). In
this way we can test the extraction on sequential large networks
such as VGG, and others with fewer parameters and with non-
sequential architectures (due to the residual connections), like
ResNet. Regarding the latter, applying the scaling vectors on each
layer is not possible, due to the residual connection. For this
reason we apply the scaling vectors on all the layers, except for
the last one in each residual block. In each experiment we use 5
models to build each ensemble model.

Baselines: being our method an approach which aims to re-
duce the memory footprint of an ensemble model, we compare
it with different established approaches that decrease the re-
quired memory or reduce the training time. For these reason we
decided to compare it with BatchEnsemble (Wen et al., 2020),
Snapshot Ensemble (Huang et al., 2017), MC-Dropout (Gal &
Ghahramani, 2016), besides the Single Model approach (training
a single neural network) and the standard ensemble of neural
networks, which we call Deep Ensemble. These last two ap-
proaches are used only to provide a lower and upper baseline in
terms of performance. We use the whole dataset for training each
network, without performing any kind of bootstrapping.

Hyper-parameters: to set the hyper-parameters for each
ethod we followed the respective papers. Regarding our method
e test different percentages of pruning, and all obtained results
re exposed in Section 4.1.5. The best trade-off is obtained with
ard extraction done layer-wise with percentage is equal to 50%,
nd we train the scaling vectors for 10 epochs at the beginning
f each task, setting λ = 0.1.
Training procedure: for each dataset and network combina-

tion we use the same training approach: we train for 200 epochs
using SGD optimizer with momentum equal to 0.9, and starting
learning rate equal to 0.01 for VGG and 0.1 for ResNet, that is
annealed by multiplying it for 0.8 every 50 epochs. The only
exception is Snapshot Ensemble, that we train for 50 epochs per
cycle. Also, we extract 10% of the training split to build up the

1 https://github.com/jaryP/StructuredEnsemble.

https://github.com/jaryP/StructuredEnsemble
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Table 1
Classification accuracy in percentage, on the classification benchmarks, using different architectures. The values are averaged over 3 experiments, and
the standard deviation is also shown. Best results (among the ensembling approaches) for each dataset and network are highlighted in bold. Except
for MC-Dropout (for which we do 5 sampling while testing) and Single model, each method is an ensemble of 5 neural networks. For TinyImagenet
we used ResNet32 and VGG16; for the others dataset we used ResNet20 and VGG11.
Network Method SVHN CIFAR10 CIFAR100 TinyImagenet

ResNet

Single model 94.08±0.72 88.67±0.47 59.71±1.59 44.82±0.79
Deep ensemble 96.24±0.11 92.35±0.05 70.08±0.67 53.96±0.10

Snapshot 95.69±0.91 90.38±0.08 61.84±0.11 48.75±0.53
Batch ensemble 94.57±0.72 88.09±0.57 58.82±1.46 46.61±1.92
MC-Dropout 94.52±0.01 87.58±0.79 58.33±2.02 43.33±2.10
Structured Ensemble (ours) 96.18±0.04 90.95±0.05 67.55±0.66 49.72±0.21

VGG

Single model 94.26±0.03 88.67±0.47 52.69±2.24 44.20±2.01
Deep ensemble 95.80±0.06 92.35±0.10 60.18±0.29 52.45±0.60

Snapshot 95.35±0.13 89.38±0.08 59.85±0.86 47.38±0.19
Batch ensemble 94.46±0.50 88.09±0.57 55.78±1.21 48.45±0.11
MC-Dropout 94.16±0.02 87.58±0.79 53.87±1.25 44.02±0.96
Structured Ensemble (ours) 95.74±0.05 89.84±0.08 63.13±1.02 52.58±0.42
E
p

r
o

o
o

Fig. 3. The image displays the overhead required by each method with respect
to the base model, which requires 1. The results are associated to an ensemble
of 5 ResNet20.

evaluation dataset, and we use the accuracy score calculated on
it to save the best model during the training, as well as the early
stopping criterion (with tolerance 5 for SVHN and 20 for the other
datasets).

We normalize each dataset so that the images pixels are in the
ange [0, 1]. Also, for CIFAR10-100 and SVHN we use the standard
augmentation scheme, in which the images are zero-padded with
4 pixels on each side and randomly cropped to produce 32 × 32
images, then horizontally mirrored with probability 0.5; we use
the same scheme also for SVHN and TinyImagenet, by scaling
the cropped dimensions of the latter according to the sizes of its
images.

We repeat each experiment 3 times, using incremental seeds
from 0 to 2.

4.1.1. Accuracy and memory
The accuracy results are summarized in Table 1, while Fig. 3

displays memory usage for each method in terms of the num-
ber of trainable parameters of the method over the number of
trainable parameters required by a single neural network, called
Overhead (e.g. a deep ensemble model composed by 5 networks
has overheard equal to 5).

We can see, as expected, that all the models obtain a better,
or similar, accuracy score than the single network, but worse
than the naive ensemble approach. The methods that emulate an
ensemble, Batch Ensemble and MC-Dropout, give the worst accu-
racy results, but require a small amount of memory (respectively
close or equal to a single model). On the other hand, Snapshot
and Structured Ensemble require more memory but the achieved
 S
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Table 2
The resulting ECE (lower is better) scores obtained for all the methods using
ResNet architectures (results associated to the ones displayed in Table 1). The
best results are highlighted in bold.

CIFAR10 CIFAR100 TinyImagenet

Single model 8.21±0.17 19.60±3.97 3.19±0.79
Deep ensemble 1.61±0.04 7.69±0.32 1.56±0.72

Snapshot 3.01±0.21 12.93±0.43 5.60±0.12
Batch ensemble 8.14±1.24 20.52±1.54 2.73±0.14
MC-Dropout 7.11±0.12 13.63±1.83 22.54±0.87
Structured Ensemble (ours) 3.91±0.30 4.02±0.23 2.24±0.33

scores are close, even higher when using VGG on CIFAR100 or
TinyImagenet, to the naive ensemble approach. In terms of mem-
ory, there is no difference between Snapshot Ensemble and the
Deep Ensemble approach, while the memory used by Structured
Ensemble depends on the pruning percentage used (as we will
see).

4.1.2. Calibration
The calibration of a network is well defined and can be easily

calculated. Given a sample x, the associated ground truth label y,
the predicted class ȳ and its associated probability p̄, we define
the calibration of a method as:

p(ȳ = y | p̄ = p) = p ∀ p ∈ [0, 1].

This quantity cannot be computed with a finite set of samples,
but, as proposed in Niculescu-Mizil and Caruana (2005), it can be
approximated using a metric called Expected Calibration Score
(ECE, lower is better), that measures how much the classifica-
tion’s probabilities over a dataset are miscalibrated, by combining
two different quantities. Before defining how to calculate the ECE,
we need to choose the number Z of equally sized bins in the range
[0, 1], and grouping a set of predictions into Z interval bins Bz .
ach Bz groups together the samples with a prediction confidence
¯ that falls into the range ( z−1Z , z

Z ]. The ECE metric is calculated
as:

ECE =
Z∑

z=1

|Bz |

n

⏐⏐⏐acc(Bz)− conf(Bz)
⏐⏐⏐

where n is the number of samples, acc(Bz) and conf(Bz) are,
espectively, the averaged accuracy and the averaged confidence
f the samples in Bz .
In Table 2 the resulting ECEs associated to ResNet20 trained

n CIFAR10 are displayed. The scores obtained depends heavily
n the dataset type. For CIFAR10 we have that the best method is
napshot Ensemble, and Structured Ensemble is the second best;
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able 3
he diversity metrics obtained using all the methods with ResNet20 trained on
IFAR10 (results associated to the ones displayed in Table 1).

CC diversity WC diversity

Deep ensemble 5.73±0.42 32.89±1.56

Snapshot 5.60±0.12 31.67±0.77
Batch ensemble 2.73±0.14 19.21±1.92
MC-Dropout 3.62±0.45 22.54±0.87
Structured Ensemble (ours) 3.99±0.70 26.61±1.45

the other methods achieve a result that is similar to the Single
Model, which is poorly calibrated. When the dataset becomes
more difficult, Snapshot ensemble is one of the worst methods;
we believe that this happens because the length of the learning
cycles must be set accordingly to the dataset. On all the other
dataset our proposal is the method that achieves the better ECE
score. In the end, Structured Ensemble is the approach that gives
the most reliable results.

4.1.3. Diversity analysis
The evaluation metrics used, such as accuracy and ECE score,

o not express the key property of an ensemble model: the
iversity of the models that compose it. In Fort et al. (2019) the
uthors proposed to measure the diversity of two networks based
n how many samples they classify in the same way. We use a
lightly modified version, that measures the similarity using the
robabilities predicted by each model in the ensemble.
We define the function gi(x), which is associated to a network

i, and, for a given sample x, it returns the unbounded prediction
vector v ∈ Rc , where c are the classes of the dataset taken
into consideration. Give this formulation, we define the diver-
sity calculated over a set of samples S, as 1

S

∑S
i H

(
1
N

∑N
j gj(xi)

)
,

here H(·) is the function that transforms the input vector into
a distribution using the soft-max function, and calculates the
entropy of it, normalized in [0, 100]. Using this formulation we
ave that, for a single sample, the higher the entropy is, the more
issimilar networks’ prediction are.
To evaluate the diversity of networks that compose an ensem-

le model, we calculate it on Correctly Classified (CC Diversity)
amples and Wrongly Classified (WC Diversity), both calculated
n the test set. In Table 3 the results obtained using an ensemble
f 5 ResNet20 trained on CIFAR10 are displayed.
We can see that, overall, each method gives low diversity

or CC samples, and higher for WC ones. Also, Batch Ensemble
nd MC-Dropout have smaller difference between CC and WC
amples, while Deep Ensemble and Snapshot ensemble display
ider gap between CC and WC samples. Regarding Structured
nsemble, we see that the predictions are sufficiently diverse, and
he scores are similar to the one obtained by Deep Ensemble.

.1.4. Uncertainty
Here we study how the methods behave when it comes to

etect Out-of-Distribution (OOD) samples. Our main idea is to
tudy if a method can detect and discard less confident predic-
ions, improving the accuracy (if compared to the same prediction
ithout discarding samples).
To do this we rely on two different experiments. In the first

ne we follow the same scenario proposed in Pomponi et al.
2021): we attack the ensemble models using Fast Gradient Sign
ethod (Goodfellow, Shlens, & Szegedy, 2015) that, given an

mage x and its label y, corrupt x as x+ϵ sign(∇xJ(θ, x, y)), where
J is the input–output Jacobian and θ is the set that contains the
parameters of the network. The idea is to understand if the model
is capable of detecting whether an image has been attacked too

much, making correct classification impossible. In the second
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experiment we evaluate the uncertainty on the recently proposed
Corrupted CIFAR10 dataset (Hendrycks & Dietterich, 2019). The
dataset consists of the same 10000 images present in the test spit
of CIFAR10, but corrupted with 20 types of corruptions, each one
with 5 different severity levels.

To understand if an image is corrupt and must be discarded
we use the discarding process proposed in Pomponi et al. (2021).
After a preliminary evaluation of the method, we decided to use
the following formulation:

Tγ (H) = QH(75)

where function QH(75) returns the percentile associated to the
75%-th value of the set H. In our experiments H is the entropy of
each correctly classified image in the development set, calculated
after the training process.

Given a threshold and a corrupted set of samples that we want
to filter by discarding highly corrupted images, we evaluate the
performances by measuring different quantities:

• Accuracy (A): the accuracy calculated over the corrupted set.
• Filtered Accuracy (FA): the accuracy calculated only over the

images that have not been discarded.
• Discarded samples (D): the percentage of images that have

been discarded.

A good method should be able to increment the accuracy by
discarding images on which the confidence is low (maximize the
difference between FA and A), while keeping the highest number
of images on which the accuracy is calculated (minimize D).

In Table 4 the results obtained using ResNet20 trained on
CIFAR10 are exposed. To study how the performances are affected
by the corruptions, we average the scores obtained on moderate
and high corrupted images, by setting ϵ equal to 0.02 and 0.5 for
FGSM, and using severity equal to 3 and 5 for C–CIFAR10.

We see that Batch Ensemble and Snapshot are the worst
methods. In fact, the latter is not capable of discarding enough
corrupted images (due to the similarity between the networks),
while the first discards more samples than the others meth-
ods, but is not capable of reaching good scores if compared to
the other methods; this means that the discarded samples also
contain images that would have been classified correctly. These
results are expected, because these methods are not capable of
building an ensemble in which the models are different enough.
Regarding MC-Dropout, despite being proposed mainly for un-
certainty estimation, it has lower performance than Structured
Ensemble, especially when the severity value is high, where it
reaches a score that is 4% higher than the second best one, while
discarding a similar number of images.

4.1.5. Ablation studies
In this section we study how the pruning percentage affects

the results. Table 5 contains all the results associated to the
different pruning percentages studied.

Accuracy and overhead: from the table we can see that the
accuracy decreases with the increase of pruned neurons, as ex-
pected, but it is always higher than the score obtained using
a single network. Regarding the overhead, we can see that the
additional memory required by the method is always lower than
deep ensemble (which requires 5 in this case), and when the
pruning percentage grows, Structured Ensemble produces an en-
semble model that requires less memory than the base model,
but achieves higher scores.

Calibration: the calibration of our proposal depends on the
pruning percentage: we see that the calibration is poor when the
pruning percentage is low, but, if we can sacrifice some accuracy

points (around 2%), we can build up an ensemble which is better
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Table 4
The results of the uncertainty used to discard the corrupted images. The results are associated to an ensemble model composed of
5 ResNet20 trained on CIFAR10, using the trained networks obtained in Table 1. The results are computed over the test split, which
is composed by 10000 images. We only show the results associated to a medium and high corruption of the images (the results

associated to Corrupted CIFAR10 are averaged over all the types of corruption). The format of the results is the following A
D
−→ FA,

where the definition of A, D, and FA can be found in Section 4.1.4. This formulation means that the accuracy changes from A to FA
by discarding D percentages of images with high associated uncertainty. For each corruption level we highlighted in bold the best
Filtered Accuracy FA.
Method FGSM C-CIFAR10

ϵ Severity

0.02 0.5 3 5

Snapshot 49.95
45.62
−−−→ 65.77 21.18

48.07
−−−→ 25.91 68.25

52.53
−−−→ 86.12 50.12

57.34
−−−→ 71.02

Batch ensemble 42.00
69.08
−−−→ 65.39 21.17

80.13
−−−→ 32.10 67.49

54.45
−−−→ 87.37 49.49

69.97
−−−→ 72.12

MC-Dropout 48.39
71.70
−−−→ 76.89 22.06

82.51
−−−→ 38.42 70.32

52.83
−−−→ 91.99 52.76

67.36
−−−→ 78.17

Structured Ensemble (ours) 48.06
72.27
−−−→ 78.57 21.08

86.56
−−−→ 41.88 70.01

57.21
−−−→ 92.10 51.27

70.78
−−−→ 82.12
w
B
e

Table 5
The resulting metrics obtained when changing the pruning percentage, averaged
over 3 experiments (the standard deviation is also shown). The definitions of
these metrics are in Section 4.1. The displayed results are associated to an
ensemble model composed of 5 ResNet20 trained on CIFAR10.

Accuracy ECE Overhead CC diversity WC diversity

30% 91.51±0.10 4.54±0.26 3.39±0.01 2.85±0.41 22.62±1.07
50% 90.66±0.12 3.91±0.30 2.39±0.01 3.99±0.70 26.61±1.45
60% 90.59±0.46 3.61±0.23 2.38±0.02 3.88±0.36 25.92±1.76
70% 89.43±0.32 2.78±0.25 1.42±0.04 5.87±0.26 31.12±0.26
80% 88.40±0.51 1.55±0.24 0.92±0.02 8.21±0.27 35.42±0.50

Table 6
The resulting metrics obtained when changing the initialization of the masks,
using different distributions from which the values are sampled. The definitions
of these metrics are in Section 4.1. The displayed results are associated to
an ensemble model composed of 5 ResNet20 trained on CIFAR10, build using
Structured Ensemble with pruning percentage set to 50%.

Accuracy ECE Overhead CC diversity WC diversity

N (0, 1) 91.05 3.80 2.39 3.34 24.22
N (0, 2) 90.93 4.11 2.39 3.34 24.22
N (0, 5) 90.87 3.92 2.48 4.16 26.02

U(0, 1) 90.86 4.01 2.41 5.47 25.03
U(−1, 1) 90.74 3.94 2.30 4.74 29.11

calibrated than all the other methods. These results are expected,
because the accuracy score and the ECE are deeply connected,
and usually, a network loses the calibration of its predictions
with the improving of the accuracy. In fact, ensembles composed
by smaller networks give slightly worst results (around 1–3% of
accuracy is lost) but better ECE.

Diversity: from the table we see that the CC diversity is al-
ways low regardless of the pruning percentage, but WC diversity
depends on the pruned neurons, and it grows with the growing
of the pruning percentage. This phenomenon can be explained
thinking that smaller networks tend to be very different from
each other, while bigger ones can converge to similar minima,
and may give similar predictions. In fact, with the increase of the
pruning percentage also the CC diversity increases, and with it
the difference between CC and WC diversities.

Initialization of the masks: in Table 6 the results obtained
hen varying the initialization of the masks are shown. We
an see that the obtained results do not depend heavily on the
nitialization of the masks, because these are used mainly to
stimate the gradient value associated to each output neuron.
owever, when the variance becomes too large, we observe a
light decrease of the performances. In the end, we decided to
nitialize each mask using the standard distribution N (0, 1).
415
4.2. Continual learning

Continual learning setup: any dataset can be used to build
a CL dataset. To do this, we group different labels from the dataset
into disjoint subsets, and, for each set of labels, we extract the
samples associated to its components from the original dataset. In
this way, we can split a dataset having c classes intoM tasks, each
one composed by c

M classes. We use this established approach to
build 3 CL benchmarks: (1) Split-MNIST, which contains 5 tasks,
each one with two classes, (2) Split-CIFAR10 (Rebuffi, Kolesnikov,
Sperl, & Lampert, 2017), with the same configuration of Split-
MNIST, and (3) Split-CIFAR100, that contains 10 tasks, each one
with 10 classes. For MNIST we used LeNet-5 (LeCun et al., 1989),
while for the others datasets we used VGG11 (Simonyan & Zisser-
man, 2014), with the exception that we halved the size of each
kernel. We trained all networks using Adam optimizer (Kingma
& Ba, 2014), with learning rate equal to 0.001. To have a better
statistic of the results we repeat each experiment 3 times, as in
the ensemble experiments.

Baselines: being our method a structural one, we compare it
ith similar approaches proposed in the recent years:
atchEnsemble (Wen et al., 2020) (also used in the ensemble
xperiments), Supermask in Superposition (Wortsman et al.,

2020), and Pruning (Golkar et al., 2019). Also, we selected two
other baselines, which are not CL methods: the first one is Single
Model approach, in which we train a model for each task, and the
second is Naive, where a single network is trained sequentially
on the tasks without any method to alleviate CF. These last two
can be seen as, respectively, upper and lower bounds for the
scores achievable by the other methods; for this reason we do
not compare the CL methods directly to them.

Hyper-parameters: to find the best hyper-parameters for each
method we followed the respective paper. Regarding our method
we test different combination of parameters, which are the same
exposed before. We ended up with hard extraction done layer
wise with percentage is equal to 50%, and we train the scaling
vectors for 10 epochs at the beginning of each task.

Metrics: to evaluate the efficiency and to compare the CL
methods usually two metrics are used. One shows the effective
accuracy obtained on all the tasks, while the second indicates the
amount of accuracy over past tasks that is lost while training new
ones. In this case, the selected CL methods completely remove
the CF phenomenon and for this reason we use only one metric
from (Díaz-Rodríguez, Lomonaco, Filliat, & Maltoni, 2018), simply
called Accuracy. It is calculated on a matrix R ∈ RM×M , where M
is the number of tasks, and each entry Rij is the test accuracy on
task j when the training on task i is completed. Given this matrix
of scores, the accuracy is calculated as:

Accuracy =

∑M
i>j Rij

1 .
2M(M + 1)
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able 7
inal Accuracy averaged over all the tasks, evaluated when the last one is over, is
hown. The values are averaged over 3 experiments, and the standard deviation
s also shown. Best results for each dataset are highlighted in bold. Being the all
ethods structural, the CF phenomenon is not present (it is present only using

he naive approach, but it is not shown).
Method S-MNIST S-CIFAR10 S-CIFAR100

Naive 94.32±0.04 69.99±2.45 29.39±0.40
Single model 99.85±0.04 92.62±0.82 70.44±0.15
SupSup 99.45±0.02 91.06±0.11 65.59±0.34
Pruning 97.91±0.76 78.23±1.56 49.27±0.49
Batch ensemble 99.34±0.07 85.40±0.07 56.12±0.30
Structured Ensemble (ours) 99.66±0.26 92.27±0.32 66.24±0.39

Table 8
The overhead, in terms of floats F (e.g. trainable parameters) and binaries B
e.g. binary values) in addition to the parameters of the neural network. These
alues are an estimation, and are related to the additional values stored within
he model once the training phase is over. For comparison, the number of floats
arameters of a base network is indicated with the constant b, and the number
f tasks is M .
Method F B

Single model (M − 1) · b 0
SupSup 0 M · b
Pruning 0 M · b
Batch ensemble <0.1 · b ·M 0
Structured Ensemble (ours) 0 < 0.001 · b ·M

Table 9
The number of bytes used by each method for two networks. The Naive approach
is used to show the number of base memory required by each model, which is
b. The additional memory required by each method depends on the number of
tasks M . The results are correlated with the ones exposed in Table 8. Here, we
set F = 64, because we assumed that a float requires 64 bites to be saved in
the memory, and B = 1, because each binary value requires 1 bit.
Method LeNet-5 half VGG11

Naive (b) 50550 · 64 2304864 · 64
Single model 50550 · 64 ·M 2304864 · 64 ·M

SupSup 50550 ·M 2304864 ·M
Pruning 50550 ·M 2304864 ·M
Batch ensemble 164 · 64 ·M 2499 · 64 ·M
Structured Ensemble (ours) 142 ·M 1376 ·M

In addition to this metric, we compared the methods under
he point of view of the memory required, by approximating the
umber of additional float or binary values used.

.2.1. Classification results
In Table 7 the results are shown. We can see that our method

utperforms the others, since it is capable of achieving higher
erformances (while also requiring small additional memory, as
e will see). This is accentuated when the complexity of the
roblem increases, starting from CIFAR10, in which our method
ives performances which are similar to the upper bound (Single
odel baseline). We can conclude that our intuition about the
sability of past information improves the performances, com-
ared to the other methods that use a more neat separation of
he sub-networks for solving the tasks.

.2.2. Memory usage
Memory is a crucial aspect of any CL approach, because the

umber of tasks can grow over time, and so it is important to
eep the required memory limited. Table 8 approximates the
emory required by each method, by counting the number of
dditional values stored in the memory while taking into account
he type of the number to save. We partition memory into two
omponents: the floats (F), and the binaries (B). The first one
ounts the additional values that must be stored as float values
e.g. the vectors in Batch Ensemble), while the second one counts
416
Table 10
The results obtained on S-CIFAR10 scenario by combining pruning
techniques, which are: Hard (H) and Soft (S) extraction. Each one
can be done locally in each layer (L) or globally (G). The results
are averaged over two experiments, and best one is highlighted in
bold.
L-S 92.14±0.13
L-H 92.50±0.11
G-S 91.90±0.31
G-H 92.26±0.22

only the values that can be saved as 0 or 1. The split is necessary
because a binary value requires less storage memory than a float
(usually B = 64F). Between the methods, the worst are the one
that apply binary masks over the whole networks (SupSup and
Pruning), followed by BatchEnsemble and Structured Ensemble,
with the latter being capable of further reducing memory usage,
making it negligible.

In Table 9 we expose the approximated count of additional
bits used by each method. We can see that our proposal is the
best method, as said before. In fact, taking LeNet-5 as reference,
we have that our method can store 355 ( 50550142 ) masks, used to
solve the corresponding number of tasks, using the same space
that SupSup uses to store the mask for a single task. The second
best method in terms of memory, BatchEnsemble, can store only
4 tasks using the same space (due to the float values used by the
method).

In the end, the best methods are Batch Ensemble and our
proposal, Structured Ensemble. Both of the approaches require
small memory overhead (with the latter being better under this
aspect). Taking in consideration both the accuracy results exposed
before (Table 1) and the memory Tables 8 and 9, we conclude that
our method is the best in terms of both memory requirements
and accuracy obtained.

4.2.3. Hyper-parameters of structured ensemble
In this section we study how the hyper-parameters of our

method affect the results obtained on S-CIFAR10 dataset.
Local vs Global pruning: in Table 10 the results of the various

combinations are shown. The results show clearly that the local
approach is always better than the global one. To understand
why it happens we inspected the scaling vectors produced by
the method, and discovered that when using the global approach,
the method tends to assign all the neurons in the first layers
to the first task, because these are the ones which extract the
features directly from the images. This prevents future tasks to
adjust how these features are extracted from the images, and so
they are forced to work with inappropriate high level features.
On the contrary, using the local approach, a new task can always
change the inactive neurons of the first layers, allowing custom
high level features extraction.

Hard vs Soft extraction: Table 10 also shown the difference
between soft and hard extraction. In the local approach, we
achieve better results using hard extraction approach, because
using this schema the method is always capable of allocating new
learnable neurons for the current task, while in the soft pruning
case the number of active neurons may vary, and this could lead
to a lack of neurons that can be used to solve properly the current
task. This phenomenon is also visible when it comes to the global
pruning, but the scores are not good enough in either case, due
to the limitations exposed before.

Pruning percentage: Fig. 4 shows how the accuracy score
varies with the pruning percentage (the results are obtained using
local-hard extraction). The pruning percentage must be set in
such a way that the first task has all the computational capacity
to be solved correctly. At the same time, this must be achieved
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Fig. 4. How pruning percentage affects the final score obtained on S-CIFAR10,
with L-H setting.

using the smallest number of neurons, in order to leave some of
them free for future tasks.

We can see that the worst results are obtained when the
runing percentage is too low, around 10%, or too high, around
0%, because, respectively, the space allocated for future tasks is
mall or the first one has a small amount of network to use (the
irst case is slightly preferable, because at least the first task can
e solved efficiently, and this can also improve the accuracy on
uture tasks). The best values are achieved with a percentage in
50, 55]%, which is the final value used in all the experiments
xposed before.

. Conclusion

In this paper we proposed a novel approach to build ensem-
les of deep models requiring less memory. Our approach, called
tructured Ensemble, is capable of extracting multiple networks
rom a single one, and use these to build a smaller ensemble
odel, which gives comparable results. Each network is different

rom the others, and contains the minimal set of structural con-
ections from the original network that can be trained to achieve
ood accuracy while reducing the required memory.
We evaluated or proposal on a wide set of different exper-

ments, including an evaluation of their robustness and diver-
ity, showing it performs on-par or better than state-of-the-art
pproaches in the ensemble literature. We also evaluated our
ethod in a continual learning scenario, in which the model
hould be capable of solving a stream of tasks without losing
he ability to solve past learned ones. Here too we compared
ur method to similar approaches, on a wide set of benchmarks,
nd we achieved the best scores while keeping the memory
equirement negligible.

Future work will explore the time aspect of Structured En-
emble, by focusing on techniques that can speed up the training
rocess, while keeping the ability to extract multiple models from
single one, keeping the memory requirements contained.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

llen-Zhu, Z., & Li, Y. (2020). Towards understanding ensemble, knowledge
distillation and self-distillation in deep learning. arXiv:2012.09816.

reiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
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